JP2003008550A - Wdm optical transmitter and wdm optical transmission method - Google Patents

Wdm optical transmitter and wdm optical transmission method

Info

Publication number
JP2003008550A
JP2003008550A JP2001184820A JP2001184820A JP2003008550A JP 2003008550 A JP2003008550 A JP 2003008550A JP 2001184820 A JP2001184820 A JP 2001184820A JP 2001184820 A JP2001184820 A JP 2001184820A JP 2003008550 A JP2003008550 A JP 2003008550A
Authority
JP
Japan
Prior art keywords
optical
optical signals
wdm
multiplexed
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001184820A
Other languages
Japanese (ja)
Other versions
JP3575442B2 (en
Inventor
Takayoshi Hagiwara
崇好 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2001184820A priority Critical patent/JP3575442B2/en
Publication of JP2003008550A publication Critical patent/JP2003008550A/en
Application granted granted Critical
Publication of JP3575442B2 publication Critical patent/JP3575442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a WDM optical transmitter that applies orthogonal polarized wavelength multiplexing to optical signals to multiplex many more optical wavelengths and can be simply realized at a low cost. SOLUTION: The WDM optical transmitters are respectively provided with a PBS (polarized wave multiplex coupler) 54 that applies orthogonal polarized wave multiplexing to two optical signals (e.g. λ1 and λ2) as a set among a plurality of optical signals with different wavelengths λ1-λm, a DCF(dispersion compensation fiber) 56 that compensates a dispersion of one set of the multiplexed optical signals, and an optical amplifier 58 that amplifies a set of the compensated optical signals. A multiplexer 60 multiplexes the amplified optical signals of each set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長の異なる複数
の光信号を多重するして送信するWDM(Wavelength Di
vision Multiplexing)光送信装置に関し、特に直交偏波
波長多重を行うWDM光送信装置およびWDM光送信方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a WDM (Wavelength Dielectric) which multiplexes and transmits a plurality of optical signals having different wavelengths.
The present invention relates to a WDM optical transmission device and a WDM optical transmission method that perform orthogonal polarization wavelength division multiplexing.

【0002】[0002]

【従来の技術】現在、大容量化を目的として波長多重伝
送方式における波長間隔を狭くし、より多くの光信号を
伝送させる方式の開発が盛んである。この種のWDM光
送信装置を図3に示し、その説明を行う。図3は、従来
のWDM光送信装置の構成を示すブロック図である。
2. Description of the Related Art At present, a method of narrowing a wavelength interval in a wavelength division multiplexing transmission method and transmitting more optical signals is actively developed for the purpose of increasing the capacity. A WDM optical transmitter of this type is shown in FIG. 3 and will be described. FIG. 3 is a block diagram showing the configuration of a conventional WDM optical transmitter.

【0003】この図3に示すWDM光送信装置10は、
奇数(ODD)チャネルと偶数(EVEN)チャネルの
光信号の波長を各々増幅し、分散値を補償して合波した
後、チャネル番号順に多重して送信するものであり、奇
数チャネルの光信号処理側に、各々に光レーザが搭載さ
れた複数の光送信回路11と、これら光送信回路11に
接続された複数の光増幅器13と、これら光増幅器13
にDCF(分散補償ファイバ)15によって接続された
合波器17とを備え、同様に偶数チャネルの光信号処理
側に、各々に光レーザが搭載された複数の光送信回路1
2と、これら光送信回路12に接続された複数の光増幅
器14と、これら光増幅器14にDCF16によって接
続された合波器18とを備え、各合波器17と18に接
続されたCPL(光カプラ)20を備えて構成されてい
る。
The WDM optical transmitter 10 shown in FIG.
The wavelengths of the optical signals of the odd number (ODD) channel and the even number (EVEN) channel are respectively amplified, the dispersion values are compensated and multiplexed, and then multiplexed and transmitted in the order of the channel numbers. On the side, a plurality of optical transmission circuits 11 each equipped with an optical laser, a plurality of optical amplifiers 13 connected to these optical transmission circuits 11, and these optical amplifiers 13
And a multiplexer 17 connected by a DCF (dispersion compensating fiber) 15, and a plurality of optical transmitter circuits 1 each equipped with an optical laser on the optical signal processing side of even channels.
2, a plurality of optical amplifiers 14 connected to these optical transmission circuits 12, and a multiplexer 18 connected to these optical amplifiers 14 by a DCF 16, and CPL (connected to each multiplexer 17 and 18) The optical coupler) 20 is provided.

【0004】このような構成において、各々の光送信回
路11から出射された奇数チャネルの光信号が、各々の
光増幅器13で増幅され、各々のDCF15を介して合
波器17に入力され、ここで合波される。同様に各々の
光送信回路12から出射された偶数チャネルの光信号
が、各々の光増幅器14で増幅され、各々のDCF16
を介して合波器18に入力され、ここで合波される。各
合波器17,18からの光信号はCPL20で多重され
たのち光ファイバ伝送路へ送信される。
In such a configuration, the odd-numbered channel optical signals emitted from the respective optical transmission circuits 11 are amplified by the respective optical amplifiers 13 and input to the multiplexer 17 via the respective DCFs 15. Is combined with. Similarly, the even-numbered channel optical signals emitted from the respective optical transmission circuits 12 are amplified by the respective optical amplifiers 14, and the respective DCFs 16 are amplified.
Is input to the multiplexer 18 and is multiplexed there. The optical signals from the multiplexers 17 and 18 are multiplexed by the CPL 20 and then transmitted to the optical fiber transmission line.

【0005】このような波長多重処理によってCPL2
0から出力される光信号の偏波方向と光スペクトルの一
例を図4に示す。この図4では第1奇数チャネルの光信
号の波長λ1、第1偶数チャネルの波長λ2、…第n偶
数チャネルの波長λnの順に配列されて多重され、各波
長間隔が0.4nmとなっている。
CPL2 is obtained by such wavelength multiplexing processing.
An example of the polarization direction and the optical spectrum of the optical signal output from 0 is shown in FIG. In FIG. 4, the wavelength λ1 of the optical signal of the first odd-numbered channel, the wavelength λ2 of the first even-numbered channel, ... The wavelength λn of the n-th even-numbered channel are arranged and multiplexed in this order, and each wavelength interval is 0.4 nm. .

【0006】ところが、上記のように波長間隔を狭くす
ると隣接するチャンネルのクロストークや伝送路内での
非線形効果(FWM、XPM等)による劣化が大きくな
り、伝送する光信号が劣化する。この劣化を改善する方
法として、全WDM信号の奇数チャンネルと偶数チャン
ネルの偏波を直交させて多重する直交偏波の波長多重方
式が提案され、良好な伝送性能が得られている。(OF
C’98 PD12”320Gb/s WDM Transmission (64×
5Gb/s) over 7200km using Large ModeFiberSpans and
Chirped Return-to-Zero Signals” 参照)直交偏波波
長多重方式のWDM光送信装置を図5に示し、その説明
を行う。図5は、従来の直交偏波波長多重方式が適用さ
れたWDM光送信装置の構成を示すブロック図である。
However, when the wavelength spacing is narrowed as described above, deterioration due to crosstalk between adjacent channels and non-linear effects (FWM, XPM, etc.) in the transmission line becomes large, and the transmitted optical signal deteriorates. As a method of improving this deterioration, a wavelength multiplexing system of orthogonal polarization has been proposed in which the polarization of the odd-numbered channels and the polarization of the even-numbered channels of all WDM signals are orthogonalized and multiplexed, and good transmission performance has been obtained. (OF
C'98 PD12 ”320Gb / s WDM Transmission (64 ×
5Gb / s) over 7200km using Large ModeFiberSpans and
Chirped Return-to-Zero Signals ”) A WDM optical transmitter of the orthogonal polarization wavelength division multiplexing system is shown in Fig. 5 and explained. It is a block diagram which shows the structure of a transmitter.

【0007】図5に示すWDM光送信装置30は、奇数
チャネルの光信号処理側に、各々に光レーザが搭載され
た複数の光送信回路31と、これら光送信回路31に接
続された複数の偏波保存型光増幅器33と、これら偏波
保存型光増幅器33に偏波保存型DCF(偏波保存型分
散補償ファイバ)15によって接続された偏波保存型合
波器37とを備え、同様に偶数チャネルの光信号処理側
に、各々に光レーザが搭載された複数の光送信回路32
と、これら光送信回路32に接続された複数の偏波保存
型光増幅器34と、これら偏波保存型光増幅器34に偏
波保存型DCF36によって接続された偏波保存型合波
器38とを備え、各合波器37と38に接続されたPB
S(偏波多重カプラ)40を備えて構成されている。
A WDM optical transmitter 30 shown in FIG. 5 has a plurality of optical transmitter circuits 31 each having an optical laser mounted on the optical signal processing side of an odd channel, and a plurality of optical transmitter circuits 31 connected to these optical transmitter circuits 31. A polarization-maintaining optical amplifier 33 and a polarization-maintaining multiplexer 37 connected to the polarization-maintaining optical amplifier 33 by a polarization-maintaining DCF (polarization-maintaining dispersion compensating fiber) 15 are provided. A plurality of optical transmission circuits 32 each having an optical laser mounted on the optical signal processing side of the even channel.
And a plurality of polarization-maintaining optical amplifiers 34 connected to these optical transmission circuits 32, and a polarization-maintaining multiplexer 38 connected to these polarization-maintaining optical amplifiers 34 by a polarization-maintaining DCF 36. PB provided and connected to each multiplexer 37 and 38
An S (polarization multiplexing coupler) 40 is provided.

【0008】但し、各光送信回路31と各偏波保存型光
増幅器33は偏波保存ファイバで接続され、同様に偏波
保存型合波器37とPBS40、各光送信回路32と各
偏波保存型光増幅器34、偏波保存型合波器38とPB
S40も偏波保存ファイバで接続されている。
However, each optical transmission circuit 31 and each polarization preserving optical amplifier 33 are connected by a polarization preserving fiber, and similarly, the polarization preserving multiplexer 37 and PBS 40, each optical transmission circuit 32 and each polarization. Conservation type optical amplifier 34, polarization conservation type multiplexer 38 and PB
S40 is also connected by a polarization maintaining fiber.

【0009】このような構成において、各々の光送信回
路31から出射された奇数チャネルの光信号が、各々の
偏波保存型光増幅器33で増幅され、各々の偏波保存型
DCF35を介して偏波保存型合波器37に入力され、
ここで合波される。同様に各々の光送信回路32から出
射された偶数チャネルの光信号が、各々の偏波保存型光
増幅器34で増幅され、各々の偏波保存型DCF36を
介して偏波保存型合波器38に入力され、ここで合波さ
れる。各合波器37,38からの光信号はPBS40で
直交偏波波長多重されたのち光ファイバ伝送路へ送信さ
れる。
In such a configuration, the odd-numbered channel optical signals emitted from the respective optical transmission circuits 31 are amplified by the respective polarization-maintaining optical amplifiers 33, and polarized via the respective polarization-maintaining DCFs 35. It is input to the wave preservation type multiplexer 37,
It is multiplexed here. Similarly, the even-numbered channel optical signals emitted from the respective optical transmission circuits 32 are amplified by the respective polarization-preserving optical amplifiers 34, and are transmitted through the respective polarization-preserving DCFs 36 to the polarization-preserving multiplexer 38. It is input to and multiplexed here. The optical signals from the multiplexers 37 and 38 are orthogonally polarized and wavelength-multiplexed by the PBS 40 and then transmitted to the optical fiber transmission line.

【0010】このような直交偏波波長多重処理によって
PBS40から出力される光信号の偏波方向と光スペク
トルの一例を図6に示す。この図6では第1奇数チャネ
ルの光信号の波長λ1、第1偶数チャネルの波長λ2、
…第n偶数チャネルの波長λ2nの順に配列されて直交
多重され、各波長間隔が0.2nmとなっている。つま
り、全ての波長間の偏波が直交しているため、全ての波
長間隔をより狭くすることができる。
FIG. 6 shows an example of the polarization direction and optical spectrum of the optical signal output from the PBS 40 by such orthogonal polarization wavelength division multiplexing processing. In FIG. 6, the wavelength λ1 of the optical signal of the first odd channel, the wavelength λ2 of the first even channel,
The wavelength λ2n of the n-th even channel is arranged in this order and orthogonally multiplexed, and each wavelength interval is 0.2 nm. That is, since the polarized waves between all the wavelengths are orthogonal to each other, it is possible to make all the wavelength intervals narrower.

【0011】また、この種の直交偏波波長多重を行う装
置としては、特開平8−18536号公報に記載されて
いるものがある。この公報の内容は、その要約書の記載
を引用すると、光送信器と光合波手段間に偏光制御手段
を、波長領域における光分波手段と光受信器間に偏光分
離手段をそれぞれ設け、前記光送信器の出力光間の波長
間隔を、漏話を無視できる抑圧比が前記光分波手段によ
り得られる最小の波長間隔よりも小さく設定し、かつ、
それらの隣りあう波長の出力光の偏光方向を前記偏光制
御手段によって略直交させるというものである。
An apparatus for performing this kind of orthogonal polarization wavelength division multiplexing is disclosed in Japanese Patent Laid-Open No. 8-18536. As for the contents of this publication, when the description in the abstract is cited, a polarization control means is provided between the optical transmitter and the optical multiplexing means, and a polarization separating means is provided between the optical demultiplexing means and the optical receiver in the wavelength region. The wavelength spacing between the output lights of the optical transmitter is set to be smaller than the minimum wavelength spacing at which the suppression ratio at which crosstalk can be ignored is obtained by the optical demultiplexing means, and
The polarization directions of the output lights having the adjacent wavelengths are made substantially orthogonal by the polarization control means.

【0012】[0012]

【発明が解決しようとする課題】しかし、従来のWDM
光送信装置において、図5に示した直交偏波波長多重の
WDM光送信装置30では、波長毎にそれぞれ偏波保持
された状態で信号を多重する必要があるため、図3に示
した波長多重方式のWDM光送信装置10に比べ構成が
複雑になるという問題がある。また、多くの偏波保存型
光増幅器33,34や偏波保存型の分散補償ファイバ3
5,36および合波器37,38を含んだ構成となる。
これら構成要素33〜38のデバイスは特種であるため
WDM光送信装置50の実現性・量産性が難しいという
問題がある。このためこの種の直交偏波波長多重方式の
実用化はまだ実現されていない。
However, the conventional WDM
In the optical transmitter, the orthogonal polarization wavelength division multiplexing WDM optical transmitter 30 shown in FIG. 5 needs to multiplex signals in a state in which polarization is maintained for each wavelength. There is a problem that the configuration is complicated as compared with the WDM optical transmitter 10 of the system. In addition, many polarization-maintaining optical amplifiers 33 and 34 and polarization-maintaining dispersion compensating fiber 3 are provided.
5, 36 and multiplexers 37, 38 are included.
Since the devices of these constituent elements 33 to 38 are special types, there is a problem that it is difficult to realize and mass-produce the WDM optical transmitter 50. Therefore, the practical use of this kind of orthogonal polarization wavelength division multiplexing system has not been realized yet.

【0013】また、特開平8−18536号公報におい
ても、波長毎にそれぞれ偏波保持された状態で信号を多
重する必要があるため、偏波保存型デバイスのような偏
波保存型合波器を用いる必要があり、そのデバイスは実
現の難しさやコストが高額であるという問題点がある。
Also, in Japanese Patent Laid-Open No. 18536/1996, it is necessary to multiplex signals while maintaining polarization for each wavelength. Therefore, a polarization preserving multiplexer such as a polarization preserving device. However, there is a problem that the device is difficult to realize and the cost is high.

【0014】本発明はかかる点に鑑みてなされたもので
あり、直交偏波波長多重を行うことによって、より多く
の光波長を多重することができると共に、簡易且つ低コ
ストで実現することができるWDM光送信装置およびW
DM光送信方法を提供することを目的とする。
The present invention has been made in view of the above point, and by performing orthogonal polarization wavelength division multiplexing, more optical wavelengths can be multiplexed and can be realized simply and at low cost. WDM optical transmitter and W
It is an object to provide a DM optical transmission method.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明のWDM光送信装置は、直交偏波波長多重処
理を行うWDM光送信装置において、各々波長が異なる
複数の光信号の内、2つの光信号を1組として偏波を直
交させて多重する多重手段と、前記多重された1組の光
信号の分散値を補償する補償手段と、前記補償された1
組の光信号を増幅する増幅手段とを各組毎に具備すると
共に、前記増幅された各組の光信号を合波する合波手段
を具備することを特徴としている。
In order to solve the above problems, a WDM optical transmitter according to the present invention is a WDM optical transmitter that performs orthogonal polarization wavelength division multiplexing processing. A multiplexing unit that multiplexes two optical signals as one set with orthogonal polarizations; a compensating unit that compensates the dispersion value of the multiplexed one set of optical signals;
Each group is provided with an amplifying means for amplifying a pair of optical signals, and a multiplexing means for multiplexing the amplified optical signals of each group.

【0016】また、本発明のWDM光送信装置は、前記
合波手段で合波される光信号の波長間隔が等しくなるよ
うに、光信号出射時の光信号周波数を定めることを特徴
としている。
Further, the WDM optical transmitter of the present invention is characterized in that the optical signal frequency at the time of emitting the optical signal is determined so that the wavelength intervals of the optical signals multiplexed by the multiplexing means become equal.

【0017】また、本発明のWDM光送信装置は、前記
合波手段で合波される光信号において互いに偏波が直交
した組内の光信号の波長間隔を狭くし、各組間の光信号
の波長間隔が広くなるように、光信号出射時の光信号周
波数を定めることを特徴としている。
Further, the WDM optical transmitter of the present invention narrows the wavelength interval of the optical signals in the groups whose polarizations are orthogonal to each other in the optical signals multiplexed by the multiplexing means so that the optical signals between the groups are Is characterized in that the frequency of the optical signal at the time of emitting the optical signal is determined so that the wavelength interval of is wide.

【0018】また、本発明のWDM光送信方法は、直交
偏波波長多重処理を行って光信号を送信するWDM光送
信方法において、各々波長が異なる複数の光信号の内、
2つの光信号を1組として偏波を直交させて多重し、こ
の多重された各組の光信号を合波して送信することを特
徴としている。
Further, the WDM optical transmission method of the present invention is a WDM optical transmission method for transmitting an optical signal by performing orthogonal polarization wavelength division multiplexing processing, wherein among a plurality of optical signals having different wavelengths,
It is characterized in that two optical signals are set as one set and their polarizations are orthogonalized to each other, and the multiplexed optical signals of each set are multiplexed and transmitted.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0020】図1は、本発明の実施の形態に係るWDM
光送信装置の構成を示すブロック図である。
FIG. 1 shows a WDM according to an embodiment of the present invention.
It is a block diagram which shows the structure of an optical transmitter.

【0021】図1に示すWDM光送信装置50は、直交
偏波波長多重処理を行うものであり、隣接する奇数およ
び偶数チャネルの1組の光信号(例えば波長はλ1,λ
2)が出射されるように、光信号を出射する光レーザが
搭載された1組の光送信回路51,52と、これら光送
信回路51,52に偏波保存ファイバで接続されたPB
S(偏波多重カプラ)54と、PBS54にDCF(分
散補償ファイバ)56によって接続された光増幅器58
とを備える回路を、光信号全チャネル数mの1/2数備
えると共に、各々の光増幅器58に接続された合波器6
0を備えて構成されている。
The WDM optical transmitter 50 shown in FIG. 1 performs orthogonal polarization wavelength division multiplexing processing, and a set of optical signals of adjacent odd and even channels (for example, wavelengths λ1 and λ).
2) is emitted, a pair of optical transmission circuits 51 and 52 equipped with an optical laser that emits an optical signal, and a PB connected to these optical transmission circuits 51 and 52 with a polarization maintaining fiber.
An S (polarization multiplex coupler) 54 and an optical amplifier 58 connected to the PBS 54 by a DCF (dispersion compensation fiber) 56.
And a multiplexer 6 connected to each of the optical amplifiers 58 as well as a circuit including a half of the total number m of optical signal channels.
It is configured with 0.

【0022】但し、図中一番手前の回路が第1及び第2
チャネルの光信号(波長はλ1,λ2)を出射するもの
であり、後方に向かう順に第3及び第4チャネルの光信
号(波長はλ3,λ4)…第m−1及び第mチャネルの
光信号(波長はλm−1,λm)を出射するものである
とする。
However, the circuit at the forefront in the figure is the first and second circuits.
The optical signals of the channels (wavelengths are λ1 and λ2) are emitted, and the optical signals of the third and fourth channels (wavelengths are λ3 and λ4) ... (Wavelength is λm−1, λm).

【0023】このような構成において、まず、各第1及
び第2チャネルの光送信回路51,52から出射された
隣接する波長λ1とλ2の光信号が、PBS54により
お互いの光信号の偏波が直交した状態で合波される。こ
の直交偏波多重された2つの信号は、DCF56により
それぞれの信号の分散値が補償され、その後、光増幅器
58によって一定の光信号パワーまで増幅される。この
増幅された光信号と、同様に1組づつ直交偏波多重され
た他の光信号とが合波器60で多重される。
In such a structure, first, the optical signals of the adjacent wavelengths λ1 and λ2 emitted from the optical transmission circuits 51 and 52 of the first and second channels are polarized by the PBS 54. The waves are combined in the orthogonal state. The DCF 56 compensates the dispersion value of each of the two orthogonal polarization multiplexed signals, and then the optical amplifier 58 amplifies the signals to a constant optical signal power. The amplified optical signal and another optical signal which has been similarly orthogonally polarized and multiplexed one by one are multiplexed by the multiplexer 60.

【0024】このように、実施の形態のWDM光送信装
置によれば、隣接チャネルの光信号を1組毎に直交偏波
波長多重するようにしたので、従来の図3に示したよう
な波長多重方式の装置に比べ隣接チャンネル間の非線形
相互作用を低減し、伝送距離拡大、狭チャンネル間隔化
による波長多重数の拡大を実現することができる。
As described above, according to the WDM optical transmitter of the embodiment, since the optical signals of the adjacent channels are orthogonally polarized and wavelength-multiplexed for each set, the conventional wavelengths as shown in FIG. 3 are used. It is possible to reduce the non-linear interaction between adjacent channels, as compared with a multiplexing system, and to realize an increase in transmission distance and an increase in the number of wavelength multiplexes by narrowing the channel spacing.

【0025】また、従来の図5に示したような直交偏波
波長多重方式の装置に比べ、簡易且つ低コストで実現す
ることができる。この理由は、直交偏波波長多重した光
信号の分散を補償して増幅するので、分散補償ファイバ
や光増幅器の数も半分になり、多くの偏波保存型光増幅
器や偏波保存型の分散補償ファイバおよび合波器を用い
なくてもよいからである。
Further, it can be realized easily and at low cost as compared with the conventional apparatus of the orthogonal polarization wavelength division multiplexing system as shown in FIG. The reason for this is that the number of dispersion compensating fibers and optical amplifiers is halved because it compensates and amplifies the dispersion of orthogonal polarization wavelength-multiplexed optical signals, and many polarization-maintaining optical amplifiers and polarization-maintaining dispersion amplifiers are used. This is because it is not necessary to use the compensation fiber and the multiplexer.

【0026】この他の実施の形態として、図2に示すよ
うに、直交偏波多重された隣り合う2波長(λ1とλ
2、λ3とλ4、…、λm−1とλm)の波長間隔を狭
く(例えば0.2nm)し、各組の間の波長間隔(例え
ばλ2とλ3、λ4とλ5…)を広く(例えば0.4n
m)設定するようにしてもよい。この設定は、各光送信
回路51,52の光レーザ出射光の周波数を、各組の光
信号では25GHz、各組の間の光信号では50GHz
とすることによって実現することができる。
As another embodiment, as shown in FIG. 2, two adjacent wavelengths (λ1 and λ) that are orthogonal polarization multiplexed are provided.
2, .lamda.3 and .lamda.4, ..., .lamda.m-1 and .lamda.m) are narrowed (for example, 0.2 nm), and the wavelength intervals between each pair are wide (for example, .lamda.2 and .lamda.3, .lamda.4 and .lamda.5 ... .4n
m) It may be set. In this setting, the frequency of the optical laser emission light of each optical transmission circuit 51, 52 is 25 GHz for each pair of optical signals and 50 GHz for each pair of optical signals.
It can be realized by

【0027】また、このように設定できるのでは、直交
偏波多重された隣り合う2波長(λ1とλ2、λ3とλ
4、…、λm−1とλm)間のチャンネル間隔は、伝送
時の隣接チャンネル間の非線形相互作用(FWM、XP
M等)が低減されるので、偏波の直交性が保たれていな
いλ2とλ3(λ4とλ5、…)間よりも狭くすること
ができるからである。
In addition, if such a setting can be made, two adjacent wavelengths (λ1 and λ2, λ3 and λ) that are orthogonal polarization multiplexed are provided.
, ..., λm−1 and λm), the channel spacing is determined by the nonlinear interaction (FWM, XP) between adjacent channels during transmission.
(M, etc.) is reduced, so that it can be made narrower than between λ2 and λ3 (λ4 and λ5, ...) In which the orthogonality of polarization is not maintained.

【0028】このように偏波が直交している隣接チャネ
ルの波長間隔を狭めることによって、従来の波長多重方
式に比べより多くの波長を多重することができる。
By thus narrowing the wavelength interval of the adjacent channels whose polarizations are orthogonal to each other, more wavelengths can be multiplexed as compared with the conventional wavelength multiplexing system.

【0029】また、何れの波長間隔も等間隔とした場合
は、64波などの波長数をあまり多く必要としない光伝
送システムにおいては有効となる。これは、波長数が少
ない場合は、各波長間隔を等間隔としてもその分間隔を
広くすることができ、これによって伝送時の隣接チャン
ネル間の非線形相互作用(FWM、XPM等)が低減さ
れるので、特性を改善することができるからである。
If all the wavelength intervals are made equal, it is effective in an optical transmission system that does not require a large number of wavelengths such as 64 waves. This is because when the number of wavelengths is small, even if the wavelength intervals are equal, the intervals can be widened by that amount, which reduces the nonlinear interaction (FWM, XPM, etc.) between adjacent channels during transmission. Therefore, the characteristics can be improved.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
〜したので、直交偏波波長多重を行うことによって、よ
り多くの光波長を多重することができると共に、簡易且
つ低コストで実現することができる。
As described above, according to the present invention,
Therefore, by performing orthogonal polarization wavelength division multiplexing, more optical wavelengths can be multiplexed, and at the same time, it can be realized easily and at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係るWDM光送信装置の
構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a WDM optical transmitter according to an embodiment of the present invention.

【図2】他の実施の形態に係るWDM光送信装置から送
信される光信号の偏波方向と光スペクトルの一例を示す
図である。
FIG. 2 is a diagram showing an example of a polarization direction and an optical spectrum of an optical signal transmitted from a WDM optical transmitter according to another embodiment.

【図3】従来のWDM光送信装置の構成を示すブロック
図である。
FIG. 3 is a block diagram showing a configuration of a conventional WDM optical transmitter.

【図4】上記従来のWDM光送信装置から送信される光
信号の偏波方向と光スペクトルの一例を示す図である。
FIG. 4 is a diagram showing an example of a polarization direction and an optical spectrum of an optical signal transmitted from the conventional WDM optical transmitter.

【図5】従来の直交偏波波長多重方式が適用されたWD
M光送信装置の構成を示すブロック図である。
FIG. 5 is a WD to which a conventional orthogonal polarization wavelength division multiplexing method is applied.
It is a block diagram which shows the structure of the M optical transmitter.

【図6】上記従来の直交偏波波長多重方式が適用された
WDM光送信装置から送信される光信号の偏波方向と光
スペクトルの一例を示す図である。
FIG. 6 is a diagram showing an example of a polarization direction and an optical spectrum of an optical signal transmitted from a WDM optical transmitter to which the conventional orthogonal polarization wavelength division multiplexing method is applied.

【符号の説明】[Explanation of symbols]

10,30,50 WDM光送信装置 11,12,31,32,51,52 光送信回路 13,14,58 光増幅器 15,16,56 DCF(分散補償ファイバ) 17,18,60 合波器 20 CPL(光カプラ) 33,34 偏波保存型光増幅器 35,36 偏波保存型DCF(偏波保存型分散補償フ
ァイバ) 37,38 偏波保存型合波器 40,54 PBS(偏波多重カプラ)
10, 30, 50 WDM optical transmitter 11, 12, 31, 32, 51, 52 Optical transmitter circuit 13, 14, 58 Optical amplifier 15, 16, 56 DCF (dispersion compensation fiber) 17, 18, 60 Multiplexer 20 CPL (optical coupler) 33, 34 Polarization-maintaining optical amplifier 35, 36 Polarization-maintaining DCF (polarization-maintaining dispersion compensating fiber) 37, 38 Polarization-maintaining multiplexer 40, 54 PBS (polarization-multiplexing coupler) )

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04J 14/06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H04J 14/06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直交偏波波長多重処理を行うWDM光送
信装置において、 各々波長が異なる複数の光信号の内、2つの光信号を1
組として偏波を直交させて多重する多重手段と、前記多
重された1組の光信号の分散値を補償する補償手段と、
前記補償された1組の光信号を増幅する増幅手段とを各
組毎に具備すると共に、前記増幅された各組の光信号を
合波する合波手段を具備することを特徴とするWDM光
送信装置。
1. A WDM optical transmitter that performs orthogonal polarization wavelength division multiplexing processing, wherein one of two optical signals is selected from a plurality of optical signals having different wavelengths.
Multiplexing means for orthogonally multiplexing the polarized waves as a group, and compensating means for compensating for the dispersion value of the multiplexed one set of optical signals,
WDM light comprising: each set of amplification means for amplifying the one set of compensated optical signals, and multiplexing means for multiplexing the amplified set of optical signals of each set. Transmitter.
【請求項2】 前記合波手段で合波される光信号の波長
間隔が等しくなるように、光信号出射時の光信号周波数
を定めることを特徴とする請求項1記載のWDM光送信
装置。
2. The WDM optical transmitter according to claim 1, wherein the optical signal frequency at the time of emitting the optical signal is determined so that the wavelength intervals of the optical signals multiplexed by the multiplexing means become equal.
【請求項3】 前記合波手段で合波される光信号におい
て互いに偏波が直交した組内の光信号の波長間隔を狭く
し、各組間の光信号の波長間隔が広くなるように、光信
号出射時の光信号周波数を定めることを特徴とする請求
項1記載のWDM光送信装置。
3. In the optical signals multiplexed by the multiplexing means, the wavelength intervals of the optical signals in the groups whose polarizations are orthogonal to each other are narrowed, and the wavelength intervals of the optical signals between the groups are widened. The WDM optical transmitter according to claim 1, wherein an optical signal frequency at the time of emitting the optical signal is determined.
【請求項4】 直交偏波波長多重処理を行って光信号を
送信するWDM光送信方法において、 各々波長が異なる複数の光信号の内、2つの光信号を1
組として偏波を直交させて多重し、この多重された各組
の光信号を合波して送信することを特徴とするWDM光
送信方法。
4. A WDM optical transmission method for performing an orthogonal polarization wavelength division multiplexing process to transmit an optical signal, wherein two optical signals among a plurality of optical signals having different wavelengths
A WDM optical transmission method characterized in that polarized waves are orthogonalized and multiplexed as a set, and the multiplexed optical signals of each set are multiplexed and transmitted.
JP2001184820A 2001-06-19 2001-06-19 WDM optical transmitter Expired - Fee Related JP3575442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184820A JP3575442B2 (en) 2001-06-19 2001-06-19 WDM optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184820A JP3575442B2 (en) 2001-06-19 2001-06-19 WDM optical transmitter

Publications (2)

Publication Number Publication Date
JP2003008550A true JP2003008550A (en) 2003-01-10
JP3575442B2 JP3575442B2 (en) 2004-10-13

Family

ID=19024517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184820A Expired - Fee Related JP3575442B2 (en) 2001-06-19 2001-06-19 WDM optical transmitter

Country Status (1)

Country Link
JP (1) JP3575442B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384930A (en) * 2002-01-16 2003-08-06 Nec Corp Orthogonal polarization multiplexing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2384930A (en) * 2002-01-16 2003-08-06 Nec Corp Orthogonal polarization multiplexing
GB2384930B (en) * 2002-01-16 2004-04-14 Nec Corp Orthogonal polarization multiplexing transmission apparatus and multiplexing method used for the same
US7366209B2 (en) 2002-01-16 2008-04-29 Nec Corporation Orthogonal polarization multiplexing transmission apparatus and multiplexing method used for the same

Also Published As

Publication number Publication date
JP3575442B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
EP1248392B1 (en) Optical amplifier device and bidirectional wavelength division multiplexing optical communication system using the same
US6714740B2 (en) Optical network and switch control method for use in the optical network
JP3544210B2 (en) Multi-channel optical signal transmission method and multi-channel communication system
JP4252219B2 (en) Optical node device and system including the device
KR100334432B1 (en) Bidirectional add/drop optical amplifier module using one arrayed-waveguide grating multiplexer
US6771854B2 (en) Optical transmission system and optical coupler/branching filter
JPH10341206A (en) Wavelength multiplex transmitter
US6904240B1 (en) Optical multiplexing apparatus and optical multiplexing method
EP1317083A2 (en) Optical transmission system and optical transmission method utilizing Raman amplification
JP2002135212A (en) Two-way transmittable optical wavelength division multiplexing transmission system
US20060082866A1 (en) Optical terminal apparatus
JP2904114B2 (en) Optical amplifying device and wavelength division multiplexing optical transmission device using the same
US20060061855A1 (en) Optical node
Bigo et al. Transmission of 125 WDM channels at 42.7 Gbit/s (5 Tbit/s capacity) over 12/spl times/100 km of TeraLight/spl trade/Ultra fibre
JPH11103286A (en) Wavelength multiplexed light transmitting device
JP2001044934A (en) Wavelength multiplex optical transmitter
JP2710199B2 (en) Optical fiber amplifier for WDM transmission
JP2006050617A (en) Bidirectional optical add-drop multiplexer
JP4246644B2 (en) Optical receiver and optical transmission device
JP3971360B2 (en) Light source generator for wavelength division multiplexing optical communication system
JP3575442B2 (en) WDM optical transmitter
JP2005221737A (en) Raman optical amplifier, and optical transmission system using same, and raman optical amplification method
JP3275855B2 (en) Wavelength multiplexing optical transmission device and wavelength multiplexing optical transmission device provided with this device
JPH10322313A (en) Wavelength multiplexing transmitter
JP2004007662A (en) Wavelength interleaving bi-directional optical add/drop multiplexer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees