JP2003007702A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JP2003007702A
JP2003007702A JP2001187119A JP2001187119A JP2003007702A JP 2003007702 A JP2003007702 A JP 2003007702A JP 2001187119 A JP2001187119 A JP 2001187119A JP 2001187119 A JP2001187119 A JP 2001187119A JP 2003007702 A JP2003007702 A JP 2003007702A
Authority
JP
Japan
Prior art keywords
conductive layer
polishing
layer
forming
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001187119A
Other languages
Japanese (ja)
Inventor
Mika Fujii
美香 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001187119A priority Critical patent/JP2003007702A/en
Publication of JP2003007702A publication Critical patent/JP2003007702A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent generation of steps on a surface to be polished due to the difference in the polishing rate by CMP in holes or regions of groove pattern with high and low densities on the semiconductor surface. SOLUTION: In the manufacturing method of semiconductor devices, the hole or an entire formation surface of a groove pattern 12 is covered for forming a conductive layer 13 on an insulating layer 11, impurities (P, B, and As) having a higher polishing rate than the conductive layer are implanted to the hole or the conductive layer 13 that is formed in a region where a groove pattern density is low, and the conductive layer is polished and removed by a CMP to obtain a uniform polishing surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は導電体材料の研磨加
工方法に特徴を有する半導体装置の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, which is characterized by a method of polishing a conductor material.

【0002】[0002]

【従来の技術】DRAM(ダイナミック・ランダム・ア
クセス・メモリ)に於けるコンタクトプラグ、キャパシ
タ等の充填には、ドープされたポリシリコンが広く用い
られ、その平坦加工方法としては従来エツチバック法が
一般的であった。しかしながら、近年のLSIの高集積
化に伴う多層化、微細化により、層間絶縁膜の平坦化や
パーティクルに対する要求は年々厳しくなっており、エ
ッチバック法に代わり、これらの面で有利な化学的機械
研磨法(以下、CMP研磨)が用いられるようになって
きた。
2. Description of the Related Art Doped polysilicon is widely used for filling contact plugs, capacitors, etc. in DRAM (Dynamic Random Access Memory), and the conventional etchback method is generally used as a flattening method. Met. However, the demand for flattening of the interlayer insulating film and particles has become stricter year by year due to the multi-layering and miniaturization accompanying the high integration of LSI in recent years. A polishing method (hereinafter, CMP polishing) has come to be used.

【0003】このCMPによる研磨装置は、図2に模式
的に示すように、回転自在な定盤1と、その上に上下動
かつ回転自在に配置された研磨ヘッド3及びコンディシ
ョナー7とからなっている。定盤1には、研磨パッド5
が張り付けられており、ここにスラリー供給ノズル6を
介してスラリー2を滴下し、ヘッド3に取り付けた被研
磨物、例えばウエーハ4を前記パッド5面に押圧しなが
ら、定盤1とヘッド3の回転力を利用して前記スラリー
で研磨を行う。
As shown schematically in FIG. 2, this CMP polishing apparatus comprises a rotatable surface plate 1, a polishing head 3 and a conditioner 7 which are arranged on the rotatable surface plate 1 so as to be vertically movable and rotatable. There is. On the surface plate 1, a polishing pad 5
While the slurry 2 is dropped through the slurry supply nozzle 6 and the object to be polished, such as the wafer 4, attached to the head 3 is pressed against the surface of the pad 5, the surface plate 1 and the head 3 are attached. Polishing is performed with the slurry by using a rotating force.

【0004】図3A乃至Dは、このCMP装置を用いた
従来のポリシリコンの研磨加工プロセスを、コンタクト
プラグの形成を例に採って順に示したものである。図3
Aはパターンを施した相間絶縁膜11を示した断面図
で、通常のLSI処理を施したSi基板上に形成されて
いる。この構造は、例えば、通常のフォトリソグラフィ
ー工程でパターニングされたレジストをマスクしてドラ
イエッチングを施すことで、コンタクトホール径:0.
25μm、深さ:650nmの接続孔を形成することに
よって得ることできる(工程1)。
FIGS. 3A to 3D show, in order, a conventional polysilicon polishing process using this CMP apparatus, taking contact plug formation as an example. Figure 3
A is a cross-sectional view showing the patterned interphase insulating film 11, which is formed on a Si substrate which has been subjected to normal LSI processing. This structure is formed by, for example, masking a resist patterned by a normal photolithography process and performing dry etching to obtain a contact hole diameter of 0.
It can be obtained by forming a connection hole having a thickness of 25 μm and a depth of 650 nm (step 1).

【0005】次に、図3Aに示したパターンを形成した
層間絶縁膜11上にLPCVD法により膜厚:250n
mのポリシリコンを全域に成膜して、接続孔に充填する
と共に全体を平坦な表面にする(工程2)。図3Bはこ
の状態を示す断面図である。続いて、CMP装置によ
り、成膜したポリシリコンを研磨除去する。即ち、研磨
ヘッドにポリシリコンを成膜した半導体基板を装着して
スラリーを供給しながら研磨パッドに押圧し、研磨ヘッ
ド及び研磨パッドの回転で研磨して除去する(工程
3)。
Next, a film thickness of 250 n is formed on the interlayer insulating film 11 having the pattern shown in FIG. 3A by the LPCVD method.
m poly-silicon is deposited over the entire area to fill the connection holes and make the entire surface flat (step 2). FIG. 3B is a sectional view showing this state. Subsequently, the deposited polysilicon is polished and removed by a CMP apparatus. That is, a semiconductor substrate having a polysilicon film formed thereon is mounted on a polishing head, pressed against a polishing pad while supplying a slurry, and polished and removed by rotation of the polishing head and the polishing pad (step 3).

【0006】ここでCMP法による研磨が均一に行われ
ば、図3Cに示すような平坦面を備えたコンタクトプラ
グが得られる筈である。しかし、実際には図3Cに示す
ような平坦な加工面は得られず、特にメモリセル部のよ
うなパターン密度の高い領域では、他の領域に比べパタ
ーン、層間絶縁膜共に薄くなる、いわゆるエロージョン
(オーバー加工による膜厚の目減り)が生じ、図3Dに
示すようにパターン密度の低い領域と高い領域とで膜減
り量のばらつきが大きくなり、段差が生じるのが一般的
である。
If the polishing by the CMP method is performed uniformly here, a contact plug having a flat surface as shown in FIG. 3C should be obtained. However, in reality, a flat processed surface as shown in FIG. 3C cannot be obtained, and particularly in a region having a high pattern density such as a memory cell portion, both the pattern and the interlayer insulating film become thinner than other regions, so-called erosion. (Draining of the film thickness due to over-processing) occurs, and as shown in FIG. 3D, the variation in the film reduction amount becomes large between a region having a low pattern density and a region having a high pattern density, and a step is generally generated.

【0007】その結果、パターン密度の高い領域と低い
領域では段差が生じるため平坦性が劣化し、素子の特性
や歩留まり、及びショート不良等信頼性の低下を招くこ
とになる。
As a result, a level difference is generated in a region having a high pattern density and a region having a low pattern density, so that the flatness is deteriorated and the characteristics of the element, the yield, and the reliability such as a short circuit are lowered.

【0008】[0008]

【発明が解決しようとする課題】この現象はパターンの
上部をポリシリコン3を研磨で除去した後に、絶縁膜表
面の凹部(パターン)に残った導電体材料(ポリシリコ
ン)の一部を、オーバー研磨で除去する際に生じ、その
理由は、充填材料(ポリシリコン)と下地絶縁膜の研磨
選択比つまり研磨速度の差によるものである。そこで、
本発明の目的は、パターン密度の高い領域と低い領域で
研磨速度の差に応じた段差が生じないようにして、CM
Pにより平坦性の高い研磨面を作成することである。
This phenomenon is caused by partially removing the conductive material (polysilicon) remaining in the recesses (pattern) on the surface of the insulating film after the polysilicon 3 is removed by polishing the upper portion of the pattern. It occurs when removing by polishing, and the reason is due to the difference in polishing selection ratio between the filling material (polysilicon) and the base insulating film, that is, the polishing rate. Therefore,
An object of the present invention is to prevent a step corresponding to a difference in polishing rate from occurring in a region having a high pattern density and a region having a low pattern density.
P is to create a polished surface with high flatness.

【0009】[0009]

【課題を解決するための手段】本願発明の目的は、充填
材料(ポリシリコン)と下地絶縁膜との研磨選択比を実
質上なくすようにすることで達成される。具体的には、
請求項1の発明は、基板上に形成された絶縁層に孔又は
溝パターンを形成する工程、 前記孔又は溝パターン形
成面の全面を覆い絶縁層上に導電層を形成する工程、前
記孔又は溝パターン密度の低い領域に形成された導電層
に導電層よりも研磨速度が大きい不純物をイオン注入す
る工程、その後に導電層を研磨除去する工程を有するこ
とを特徴とする半導体装置の製造方法である。
The object of the present invention is achieved by substantially eliminating the polishing selection ratio between the filling material (polysilicon) and the underlying insulating film. In particular,
The invention of claim 1 comprises the step of forming a hole or groove pattern in an insulating layer formed on a substrate, the step of forming a conductive layer on the insulating layer so as to cover the entire surface of the hole or groove pattern formation surface, the hole or A method for manufacturing a semiconductor device, comprising a step of ion-implanting an impurity having a polishing rate higher than that of a conductive layer into a conductive layer formed in a region having a low groove pattern density, and then polishing and removing the conductive layer. is there.

【0010】請求項2の発明は、基板上に形成された層
間絶縁層に孔又は溝を形成する工程と、前記基板の前記
孔又は溝形成面の全面を覆い層間絶縁層上に導電層を形
成する工程と、前記孔又は溝が形成された前記導電層上
にレジスト層を形成する工程と、前記レジスト層形成部
以外の部分の前記導電層に導電層よりも研磨速度が大き
い不純物を注入して不純物注入層を形成する工程と、前
記レジスト層を除去した後、前記導電層が孔又は溝内の
みに充填された状態までCMP研磨するCMP研磨工程
と、を有することを特徴とする半導体装置の製造方法で
ある。
According to a second aspect of the present invention, a step of forming a hole or a groove in the interlayer insulating layer formed on the substrate, and a step of forming a conductive layer on the interlayer insulating layer covering the entire surface of the hole or groove of the substrate. Forming step, forming a resist layer on the conductive layer in which the holes or grooves are formed, and implanting an impurity having a polishing rate higher than that of the conductive layer into the conductive layer other than the resist layer forming portion To form an impurity injection layer, and a CMP polishing step of removing the resist layer and then CMP polishing the conductive layer to fill only holes or grooves. It is a method of manufacturing a device.

【0011】請求項3の発明は、請求項1又は2に記載
された研磨加工方法において、前記導電体材料はポリシ
リコンであることを特徴とする半導体装置の製造方法で
ある。
A third aspect of the present invention is the method of manufacturing a semiconductor device according to the first or second aspect, wherein the conductive material is polysilicon.

【0012】請求項4の発明は、請求項1又は2に記載
された研磨加工方法において、前記不純物はP、B、及
びAsの少なくとも一つから成り、イオン注入の探さが導
電層の膜厚を超えないことを特徴とする半導体装置の製
造方法である。
According to a fourth aspect of the present invention, in the polishing method according to the first or second aspect, the impurity is at least one of P, B, and As, and the ion implantation probe has a film thickness of the conductive layer. It is a method of manufacturing a semiconductor device, characterized in that

【0013】[0013]

【発明の実施の形態】本発明の研磨方法を図面1A乃至
Eに示された実施例を参考にして説明する。図1Aは、
パターン12が形成された層間絶縁膜11の断面構造を
示す図であって、図3Aと同様である。層間絶縁膜は、
通常のLSI処理を施したSi基板上に形成されてい
る。この構造は、既に述べたと同様に、例えば、フォト
リソグラフィー工程でパターンニングしたレジストをド
ライエッチングすることで、コンタクトホール径:0.
25μm、深さ:650nmの接続孔を形成することに
よって得ることできる(工程1)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The polishing method of the present invention will be described with reference to the embodiments shown in FIGS. 1A to 1E. Figure 1A
FIG. 3B is a diagram showing a cross-sectional structure of the interlayer insulating film 11 on which the pattern 12 is formed and is similar to FIG. 3A. The interlayer insulating film is
It is formed on a Si substrate that has been subjected to normal LSI processing. This structure is similar to the structure described above, for example, by dry-etching the resist patterned in the photolithography process, and the contact hole diameter: 0.
It can be obtained by forming a connection hole having a thickness of 25 μm and a depth of 650 nm (step 1).

【0014】次に、図1Aに示すように、孔(コンタク
トホール)又は溝(トレンチ)などのパターンを形成し
た層間絶縁膜11上にLPCVD法により膜厚:250
nmのポリシリコンを全域に成膜して、接続孔に充填す
ると共に全体を平坦な表面にする(工程2)。図1Bは
この状態を示す断面図である。
Next, as shown in FIG. 1A, a film thickness of 250 is formed by LPCVD on the interlayer insulating film 11 having a pattern of holes (contact holes) or grooves (trench) formed therein.
A polysilicon film having a thickness of nm is formed on the entire surface to fill the connection hole and to form a flat surface as a whole (step 2). FIG. 1B is a sectional view showing this state.

【0015】続いて、レジスト膜14を塗布し、パター
ン密度の低い領域のレジスト膜が除去されるようパター
ニングを行う(工程3)。図1Cはこの状態を示す断面
図である。更に、図3に示す状態において、ポリシリコ
ン13が露出した区域つまりパターン密度の低い領域に
Pのイオン注入を行い、不純物注入層15を形成する
(工程4)。図1Dはこの状態を示したものである。こ
の時のPの注入探さは、ポリシリコン膜厚、本実施例に
おいては250nmを超えないものとする。尚、注入イ
オン種は、P(隣)、B(ホウ素)、又は、As(砒
素)の少なくとも一つであればよく、勿論これらを組み
合わせてイオン注入することも可能である。これらの不
純物の注入によりパターン密度の低い領域であるポリシ
リコン層の研磨レートは増進し、パターン密度の高い領
域のそれと同程度となる。なお、必要に応じて工程3に
おいて、不純物P、B、Asをポリシリコン層にドープ
することもできる。
Subsequently, a resist film 14 is applied, and patterning is performed so that the resist film in the region having a low pattern density is removed (step 3). FIG. 1C is a sectional view showing this state. Further, in the state shown in FIG. 3, P ion implantation is performed in an area where the polysilicon 13 is exposed, that is, a region having a low pattern density to form an impurity implantation layer 15 (step 4). FIG. 1D shows this state. At this time, the P implantation probe does not exceed the polysilicon film thickness, which is 250 nm in this embodiment. The ion species to be implanted may be at least one of P (adjacent), B (boron), and As (arsenic), and it is of course possible to perform ion implantation by combining these. By implanting these impurities, the polishing rate of the polysilicon layer, which is a region having a low pattern density, is increased and becomes approximately the same as that of the region having a high pattern density. If necessary, the polysilicon layer may be doped with impurities P, B, and As in step 3.

【0016】工程4においてポリシリコン層への不純物
のドープを行った後、アッシングによりレジスト膜14
を除去し(工程5)、その後CMP装置でポリシリコン
を研磨除去する(工程6)。以上の工程を実施すること
で、ポリシリコンはパターン密度の高い領域と低い領域
とで同様の研磨レートで研磨され、その結果、段差のな
い平坦面を得ることができる。図1Dはこの状態を表し
た断面図である。
After the polysilicon layer is doped with impurities in step 4, the resist film 14 is ashed.
Are removed (step 5), and then the polysilicon is removed by polishing with a CMP apparatus (step 6). By performing the above steps, the polysilicon is polished in the region having a high pattern density and the region having a low pattern density at the same polishing rate, and as a result, a flat surface having no step can be obtained. FIG. 1D is a sectional view showing this state.

【0017】実施例におけるCMP装置の研磨は以下の
条件で行った。CMP装置の動作温度を25〜30℃と
し、かつ、摩擦パッドとして、不織布と垂直発泡タイプ
のポリウレタンから形成されたスエードパッドとの積層
体(ロデール社製のSupreme RN−H)からなる摩擦パッ
ド5を使用し、定盤及び研磨ヘッドの回転数は、定盤、
研磨ヘッド共に50rpmとし、研磨圧力150g/c
で、スラリーはコライダルシリカ含有のアルカリ系
スラリーを用い、流量200mI/minで定盤1のパ
ッド5上に供給しながら研磨を行った。この研磨で接続
孔に充填されたもの以外の成膜されたポリシリコンを完
全に除去した。その結果、パターン密度の低い周辺回路
領域とパターン密度の高いメモリセル領域での膜減り量
の差は解消し、全体として平坦な研磨面が得られた。
Polishing of the CMP apparatus in the examples was carried out under the following conditions. The operating temperature of the CMP apparatus is 25 to 30 ° C., and the friction pad 5 is composed of a laminate of a non-woven fabric and a suede pad formed of vertically foamed polyurethane (Supreme RN-H manufactured by Rodel Co.) as a friction pad. The rotation speed of the platen and polishing head is
Both polishing heads at 50 rpm, polishing pressure 150 g / c
At m 2 , the slurry was an alkaline slurry containing colloidal silica, and polishing was performed while supplying the slurry on the pad 5 of the surface plate 1 at a flow rate of 200 mI / min. By this polishing, the deposited polysilicon other than that filled in the connection holes was completely removed. As a result, the difference in the film reduction amount between the peripheral circuit region having a low pattern density and the memory cell region having a high pattern density was eliminated, and a flat polished surface was obtained as a whole.

【0018】ところで、エロージョンの発生は、パター
ン密度が上昇すると指数関数的に上昇し、特にパターン
密度が60〜70%付近から顕著になることが判明して
いるので、本発明においては、パターン密度の高い領域
をパターン密度60〜70%以上、少なくとも70%以
上とし、パターン密度の低い領域をここではパターン密
度30〜40%以下、少なくとも30%以下の領域とす
ることができる。従って、本発明においてパターン密度
が高い領域或いは低い領域というときは、それぞれパタ
ーン密度が60%以上、或いは40%以下を言うものと
する。
By the way, it has been found that the occurrence of erosion increases exponentially as the pattern density increases, and in particular, the pattern density becomes remarkable from around 60 to 70%. The area having a high pattern density can be 60 to 70% or more and at least 70% or more, and the area having a low pattern density can be a region having a pattern density of 30 to 40% or less and at least 30% or less. Therefore, in the present invention, a region having a high pattern density or a region having a low pattern density means a pattern density of 60% or more or 40% or less, respectively.

【0019】[0019]

【発明の効果】本発明によれば、パターンにを有するウ
エーハの研磨加工に於いて、パターン密度の低い領域に
不純物をイオン注入して、パターン密度の高い領域と低
い領域における研磨レート差を解消するため、CMP装
置で研磨を行う際にウエーハ表面に段差の発生が抑制さ
れ、研磨後の平坦性を向上することができる。また、こ
れにより、素子の特性、歩留まり及び信頼性が向上す
る。
According to the present invention, in polishing a wafer having a pattern, impurities are ion-implanted into a region having a low pattern density to eliminate a difference in polishing rate between a region having a high pattern density and a region having a low pattern density. Therefore, it is possible to suppress the occurrence of a step on the surface of the wafer when polishing with the CMP apparatus, and improve the flatness after polishing. Further, this improves the characteristics, yield and reliability of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の半導体装置の製造方法における各工
程を説明するための図である。
FIG. 1 is a diagram for explaining each step in a method for manufacturing a semiconductor device of the present invention.

【図2】 CMP装置を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a CMP apparatus.

【図3】 従来の半導体装置の製造方法における各工程
を説明するための図である。
FIG. 3 is a diagram for explaining each step in a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1・・・定盤、2・・・スラリー、3・・・ヘッド、4・・・ウエー
ハ、5・・・研磨パッド、6・・・スラリー供給ノズル、11
・・・層間絶縁膜、12・・・パターン、13・・・ポリシリコ
ン、14・・・レジスト膜、15・・・不純物注入層、
1 ... Surface plate, 2 ... Slurry, 3 ... Head, 4 ... Wafer, 5 ... Polishing pad, 6 ... Slurry supply nozzle, 11
... Interlayer insulating film, 12 ... Pattern, 13 ... Polysilicon, 14 ... Resist film, 15 ... Impurity injection layer,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された絶縁層に孔又は溝パ
ターンを形成する工程、 前記孔又は溝パターン形成面の全面を覆い絶縁層上に導
電層を形成する工程、 前記孔又は溝パターン密度の低い領域に形成された導電
層に導電層よりも研磨速度が大きい不純物をイオン注入
する工程、 その後に導電層を研磨除去する工程を有することを特徴
とする半導体装置の製造方法。
1. A step of forming a hole or groove pattern in an insulating layer formed on a substrate, a step of forming a conductive layer on the insulating layer so as to cover the entire surface of the hole or groove pattern formation surface, the hole or groove pattern A method of manufacturing a semiconductor device, comprising: a step of ion-implanting an impurity having a polishing rate higher than that of a conductive layer into a conductive layer formed in a region having a low density, and thereafter polishing and removing the conductive layer.
【請求項2】 基板上に形成された層間絶縁層に孔又は
溝を形成する工程と、 前記基板の前記孔又は溝形成面の全面を覆い層間絶縁層
上に導電層を形成する工程と、 前記孔又は溝が形成された前記導電層上にレジスト層を
形成する工程と、 前記レジスト層形成部以外の部分の前記導電層に導電層
よりも研磨速度が大きい不純物を注入して不純物注入層
を形成する工程と、 前記レジスト層を除去した後、前記導電層が孔又は溝内
のみに充填された状態までCMP研磨するCMP研磨工
程と、 を有することを特徴とする半導体装置の製造方法。
2. A step of forming a hole or a groove in an interlayer insulating layer formed on a substrate, a step of forming a conductive layer on the interlayer insulating layer so as to cover the entire surface of the hole or groove of the substrate. A step of forming a resist layer on the conductive layer in which the holes or grooves are formed, and an impurity injection layer by injecting an impurity having a polishing rate higher than that of the conductive layer into the conductive layer other than the resist layer forming portion And a CMP polishing step of performing CMP polishing until the conductive layer is filled only in the holes or trenches after the resist layer is removed.
【請求項3】 請求項1又は2に記載された研磨加工方
法において、 前記導電体材料はポリシリコンであることを特徴とする
半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the conductor material is polysilicon.
【請求項4】 請求項1又は2に記載された研磨加工方
法において、 前記不純物はP、B、及びAsの少なくとも一つから成
り、イオン注入の探さが導電層の膜厚を超えないことを
特徴とする半導体装置の製造方法。
4. The polishing processing method according to claim 1, wherein the impurity is composed of at least one of P, B, and As, and the ion implantation probe does not exceed the thickness of the conductive layer. A method for manufacturing a characteristic semiconductor device.
JP2001187119A 2001-06-20 2001-06-20 Manufacturing method of semiconductor device Pending JP2003007702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001187119A JP2003007702A (en) 2001-06-20 2001-06-20 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001187119A JP2003007702A (en) 2001-06-20 2001-06-20 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2003007702A true JP2003007702A (en) 2003-01-10

Family

ID=19026461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001187119A Pending JP2003007702A (en) 2001-06-20 2001-06-20 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2003007702A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001018A (en) * 2003-06-09 2005-01-06 Kao Corp Method of manufacturing substrate
JP2005001019A (en) * 2003-06-09 2005-01-06 Kao Corp Method of manufacturing substrate
JP2012182427A (en) * 2011-02-09 2012-09-20 Canon Inc Method of manufacturing semiconductor device
JP2017228785A (en) * 2017-08-10 2017-12-28 東芝メモリ株式会社 Method of manufacturing semiconductor device, and semiconductor manufacturing device
CN108597995A (en) * 2018-05-24 2018-09-28 睿力集成电路有限公司 The grinding method of semiconductor integrated circuit structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001018A (en) * 2003-06-09 2005-01-06 Kao Corp Method of manufacturing substrate
JP2005001019A (en) * 2003-06-09 2005-01-06 Kao Corp Method of manufacturing substrate
JP2012182427A (en) * 2011-02-09 2012-09-20 Canon Inc Method of manufacturing semiconductor device
JP2017228785A (en) * 2017-08-10 2017-12-28 東芝メモリ株式会社 Method of manufacturing semiconductor device, and semiconductor manufacturing device
CN108597995A (en) * 2018-05-24 2018-09-28 睿力集成电路有限公司 The grinding method of semiconductor integrated circuit structure
CN108597995B (en) * 2018-05-24 2023-11-07 长鑫存储技术有限公司 Polishing method for semiconductor integrated circuit structure

Similar Documents

Publication Publication Date Title
KR100428805B1 (en) Structure of Trench Isolation and Method of Forming The Same
JP3344615B2 (en) Method for manufacturing semiconductor device
JP2001176959A (en) Semiconductor device and method of fabrication
JP3632804B2 (en) Device isolation method for semiconductor devices
JPH09107028A (en) Element isolation method for semiconductor device
US6136713A (en) Method for forming a shallow trench isolation structure
KR100256056B1 (en) A method of forming contact plug of semiconductor device
WO2000002235A1 (en) Method of planarizing integrated circuits
CN107808882A (en) Semiconductor integrated circuit structure and preparation method thereof
JPH11214499A (en) Fabrication of semiconductor device
KR100753155B1 (en) Semiconductor device and methods of forming the same
US20080213967A1 (en) Trench capacitor and method for manufacturing the same
JP2003007702A (en) Manufacturing method of semiconductor device
KR100518536B1 (en) Method of planarizing the surface of semiconductor device and semiconductor device manufactured by the same
JP2008004881A (en) Method of manufacturing element isolation structure section
US6087262A (en) Method for manufacturing shallow trench isolation structure
KR100356798B1 (en) Method of manufacturing semiconductor device
KR100390838B1 (en) Method for forming landing plug contact in semiconductor device
KR19990070614A (en) Bit line planarization method of semiconductor device
KR20070092028A (en) Method for forming landing contact plug in semiconductor device
JP3838590B2 (en) Manufacturing method of semiconductor device
JP3147880B2 (en) Interlayer film formation method
KR20080010996A (en) Method for forming landing plug of semiconductor device
KR100318455B1 (en) Method for fabricating capacitor in semiconductor device
KR100709447B1 (en) A method for forming a semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040618