JP2003007354A - Method and equipment for evaluating charasteristics of secondary lithium battery - Google Patents

Method and equipment for evaluating charasteristics of secondary lithium battery

Info

Publication number
JP2003007354A
JP2003007354A JP2001190880A JP2001190880A JP2003007354A JP 2003007354 A JP2003007354 A JP 2003007354A JP 2001190880 A JP2001190880 A JP 2001190880A JP 2001190880 A JP2001190880 A JP 2001190880A JP 2003007354 A JP2003007354 A JP 2003007354A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium secondary
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001190880A
Other languages
Japanese (ja)
Inventor
Hirofumi Iizaka
浩文 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001190880A priority Critical patent/JP2003007354A/en
Publication of JP2003007354A publication Critical patent/JP2003007354A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide the method and equipment for quickly and conveniently evaluating the performance of the cathode active material applied to a secondary lithium battery. SOLUTION: The method for evaluating the property of the secondary lithium battery of this invention includes a step for measuring the electrical conductivity of the cathode active material used in the battery by changing the measuring temperature in a fixed temperature range, a step for approximating the relation between the reverse number (x) of the measured temperature and the logarithmic value (y) of the electric conductivity of the cathode active material by two lines on a xy plane, and a step for judging the character of the lithium secondary battery from the difference of the inclination of the two lines.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の特性評価方法及び特性評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a characteristic evaluation method and a characteristic evaluation device for a lithium secondary battery.

【0002】[0002]

【従来の技術】パソコン、ビデオカメラ、携帯電話等の
小型化に伴い、情報関連機器、通信機器の分野では、こ
れらの機器に用いる電源として、高エネルギー密度であ
るという理由から、リチウム二次電池が実用化され広く
普及するに至っている。また一方で、自動車の分野にお
いても、環境問題、資源問題から電気自動車の開発が急
がれており、この電気自動車用の電源としても、リチウ
ム二次電池が検討されている。
2. Description of the Related Art With the miniaturization of personal computers, video cameras, mobile phones, etc., in the field of information-related equipment and communication equipment, lithium secondary batteries are used as a power source for these equipment because of their high energy density. Has been put into practical use and has become widespread. On the other hand, also in the field of automobiles, the development of electric vehicles has been rushed due to environmental problems and resource problems, and lithium secondary batteries are also being considered as a power source for these electric vehicles.

【0003】リチウム二次電池には、4V級の作動電圧
が得られるものとして、層状岩塩構造のLiCoO2
LiNiO2、スピネル構造のLiMn24及びそれら
の一部を他元素で置換したリチウム遷移金属複合酸化物
等の正極活物質がよく知られている。これらの中でも、
合成の容易である、最も高い作動電圧が得られる等の理
由から、現在では、LiCoO2系のリチウム遷移金属
複合酸化物を正極活物質に用いる電池が主流を占めてい
る。
Lithium secondary batteries have a layered rock salt structure of LiCoO 2 , which can provide an operating voltage of 4V.
Positive electrode active materials such as LiNiO 2 , LiMn 2 O 4 having a spinel structure, and lithium transition metal composite oxides in which some of them are substituted with other elements are well known. Among these,
Batteries using LiCoO 2 -based lithium-transition metal composite oxides as the positive electrode active material are now predominant because they are easy to synthesize and obtain the highest operating voltage.

【0004】ところで、これらのリチウム遷移金属複合
酸化物等の正極活物質は、合成条件の微妙な変動、例え
ば、原料の組成配合、熱処理温度、雰囲気(酸素温度や
露点やCO2含有量)、時間等で、その結晶構造が変化
してしまう。結晶構造が変化した正極活物質は、同程度
の組成比であっても、リチウムの吸蔵・脱離の様子が大
きく異なり、電池に適用した場合の性能が大きく異なっ
てくる。
By the way, these positive electrode active materials such as lithium-transition metal composite oxides have slight variations in synthesis conditions, such as composition of raw materials, heat treatment temperature, atmosphere (oxygen temperature, dew point and CO 2 content), Its crystal structure changes with time. Even if the composition ratio of the positive electrode active material having a changed crystal structure is similar, the manner of occlusion / desorption of lithium is greatly different, and the performance when applied to a battery is greatly different.

【0005】したがって、製造したリチウム遷移金属複
合酸化物等の正極活物質を用いて電池を構成する前に、
各製造ロット毎に、その結晶構造を判定し、電池に用い
た場合に適正な特性を有するものか否かについて評価す
ることが必要となってくる。
Therefore, before constructing a battery using the produced positive electrode active material such as lithium transition metal composite oxide,
It is necessary to determine the crystal structure of each production lot and evaluate whether or not it has appropriate characteristics when used in a battery.

【0006】正極活物質を評価する方法として、従来
は、粉末X線回折、ICP発光分光分析等による組
成分析、磁気的性質の測定(特開平9−180722
号公報)、小型電池による電極性能試験等を用いてお
り、これらを単独で、あるいは併用することにより、そ
の正極活物質の特性を評価していた。
As a method for evaluating a positive electrode active material, conventionally, composition analysis by powder X-ray diffraction, ICP emission spectroscopic analysis, etc., and measurement of magnetic properties (Japanese Patent Laid-Open No. 9-180722).
No.), an electrode performance test using a small battery and the like are used, and the characteristics of the positive electrode active material are evaluated by using these alone or in combination.

【0007】[0007]

【発明が解決しようとする課題】しかし、通常の粉末
X線回折では、Li及び酸素のX線の散乱断面積が小さ
くX線の反射・回折強度が弱いので、長時間の測定と精
密な構造解析が必要である。粉末X線回折のこれらの欠
点は、中性子回折を行うことである程度解決される。し
かし、中性子源には原子炉が必要なので、中性子回折を
汎用することは極めて困難であり、ロット検査のような
用途には適さない。さらに試料内で元素が不均一に分布
している場合は、その内部構造の見積りには大きな誤差
が伴う。また、組成分析は、試料中の元素組成は求ま
るが、結晶構造内における組成元素の詳細は判定できず
電池特性に関係するリチウムと、関係しないリチウムと
を区別することができない。磁気的性質の測定は、あ
る程度簡便に評価を行えるものの、正極活物質単体での
評価が行えるのみで電池の正極とした場合の性能につい
て評価することができない。これは及びについても
同様である。したがって、電池に適用した場合の正極の
性能を評価するには、電極性能試験を行うことが一番
確実である。しかしながら、電極性能試験は、粉末X
線回折や組成分析よりは信頼できる検査法ではあるが、
小型とはいえ電池を製作するので、かなりの煩雑さが伴
い、また種々の特性評価を行うためには長時間試験を行
う必要もある。つまりロット検査のような用途への適用
は困難が付きまとう。
However, in ordinary powder X-ray diffraction, since the X-ray scattering cross-section of Li and oxygen is small and the X-ray reflection / diffraction intensity is weak, long-time measurement and precise structure are possible. Analysis is needed. These drawbacks of powder X-ray diffraction are solved to some extent by performing neutron diffraction. However, since a neutron source requires a nuclear reactor, it is extremely difficult to use neutron diffraction in general, and it is not suitable for applications such as lot inspection. Further, when the elements are non-uniformly distributed in the sample, a large error is involved in the estimation of the internal structure. In addition, although the compositional analysis can determine the elemental composition in the sample, the details of the compositional elements in the crystal structure cannot be determined, and lithium that is related to battery characteristics and lithium that is not related to the battery characteristics cannot be distinguished. Although the magnetic properties can be evaluated to some extent easily, the performance of the positive electrode active material alone cannot be evaluated, but only the performance of the positive electrode active material can be evaluated. This also applies to and. Therefore, the electrode performance test is the most reliable method for evaluating the performance of the positive electrode when applied to a battery. However, the electrode performance test is for powder X
Although it is a more reliable inspection method than line diffraction and composition analysis,
Since a battery is manufactured even though it is small in size, it is considerably complicated, and it is necessary to perform a long-term test in order to evaluate various characteristics. In other words, application to applications such as lot inspection is difficult.

【0008】したがって、本発明では、リチウム二次電
池に適用した場合の正極活物質の性能を迅速・簡便に評
価する方法を提供することを解決すべき課題とする。ま
た、本発明では、リチウム二次電池に適用した場合の正
極活物質の性能を迅速・簡便に評価する装置を提供する
ことも解決すべき課題とする。
Therefore, it is an object of the present invention to provide a method for quickly and simply evaluating the performance of a positive electrode active material when applied to a lithium secondary battery. Another object of the present invention is to provide a device for quickly and simply evaluating the performance of a positive electrode active material when applied to a lithium secondary battery.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する目的
で、本発明者は鋭意研究を行った結果、以下の知見を得
た。すなわち、本発明者は、正極活物質の導電性が、ニ
ッケル酸、コバルト酸等の遷移金属酸化物中にリチウム
イオンが含まれていることで、遷移金属複合酸化物中の
伝導帯と価電子帯との間の禁制帯にリチウムイオンに由
来する伝導帯を形成することで発揮されることから、正
極活物質は、リチウムイオンが不純物として働く不純物
性半導体と考えた。つまり、ニッケル酸を例に挙げて説
明すると、純粋なニッケル酸はその価電子帯と伝導帯と
の間の禁制帯のエネルギーギャップが4eV程度と広く
本来絶縁体である。そのニッケル酸の結晶格子内にリチ
ウムイオンがインターカレートする(LiXNiO2とな
る)ことでその禁制帯にリチウムイオン由来の不純物準
位が形成される。そして、その不純物準位は価電子帯か
ら数meV程度しか離れていないので、電子が熱エント
ロピー・エネルギーにより励起できニッケル酸由来の価
電子帯に自由正孔が形成される結果、導電性が生じてい
る。
Means for Solving the Problems In order to solve the above problems, the present inventor has earnestly studied, and as a result, obtained the following findings. That is, the present inventor has found that the conductivity of the positive electrode active material is such that the transition metal oxide and the valence electrons in the transition metal composite oxide are determined by including lithium ions in the transition metal oxide such as nickel acid and cobalt acid. The positive electrode active material was considered to be an impurity semiconductor in which lithium ions act as impurities because it is exhibited by forming a conduction band derived from lithium ions in the forbidden band between the positive electrode active material and the band. That is, taking nickelic acid as an example, pure nickelic acid is essentially an insulator with a wide energy gap of about 4 eV in the forbidden band between its valence band and conduction band. Lithium ions are intercalated (become Li X NiO 2 ) in the crystal lattice of nickel acid, so that an impurity level derived from lithium ions is formed in the forbidden band. Since the impurity level is separated from the valence band by only a few meV, electrons can be excited by thermal entropy energy and free holes are formed in the valence band derived from nickel acid, resulting in conductivity. ing.

【0010】ところで、リチウム二次電池の充放電は、
正極活物質を構成する結晶格子内にリチウムイオンが吸
蔵・脱離することにより進行する。つまり、正極活物質
の不純物準位はリチウムイオンの吸蔵に伴い満たされて
いく。したがって、正極活物質がリチウムイオンを吸蔵
・脱離する特性、言い換えれば、リチウム二次電池の特
性は前述の禁制帯に形成される不純物準位の状態(バン
ド幅)を測定することで判断することが可能である。
By the way, charge and discharge of the lithium secondary battery is
It progresses by occluding and desorbing lithium ions in the crystal lattice that constitutes the positive electrode active material. That is, the impurity level of the positive electrode active material is filled with the absorption of lithium ions. Therefore, the property of the positive electrode active material absorbing and desorbing lithium ions, in other words, the property of the lithium secondary battery is determined by measuring the state of the impurity level (bandwidth) formed in the above-mentioned forbidden band. It is possible.

【0011】正極活物質の不純物準位のバンド幅を測定
する方法として、本発明者は低温における電気伝導度に
着目した。すなわち、低温で測定することで価電子帯か
ら不純物準位に熱的に励起される電子の数は徐々に減少
し、それに伴って正極活物質の電気伝導度も低下する
が、そのときの電気伝導度(σ)と測定温度(T)との
関係はアレニウス則に従うことから、アレニウスの式
(ln σ=−Ea/RT+C、Ea;活性化エネルギ
ー、R;気体定数、C;定数)から活性化エネルギーと
して価電子帯から不純物準位への励起エネルギーが求め
られる。
As a method for measuring the band width of the impurity level of the positive electrode active material, the present inventor has focused on the electric conductivity at low temperature. That is, by measuring at low temperature, the number of electrons thermally excited from the valence band to the impurity level gradually decreases, and the electric conductivity of the positive electrode active material also decreases accordingly. Since the relationship between the conductivity (σ) and the measured temperature (T) follows the Arrhenius law, it is activated from the Arrhenius equation (ln σ = −Ea / RT + C, Ea; activation energy, R; gas constant, C; constant). The excitation energy from the valence band to the impurity level is required as the energy for conversion.

【0012】このアレニウスの式に基づくグラフ(アレ
ニウスプロット)は、不純物準位間の遷移や不純物準位
の中間部分に由来する微細構造も含むが、大きく分け
て、高温側の不純物準位の高エネルギー側のエネルギー
準位に由来する部分と、低温側の不純物準位の低エネル
ギー側のエネルギー準位に由来する部分で近似できる。
つまり、電気伝導度の測定により判定できる励起エネル
ギーは比較的高温度では不純物準位の高エネルギー側も
満たされる結果、不純物伝導帯の高エネルギー側のエネ
ルギー準位が電気伝導度に影響し、低温側数K〜数十
K)に行くに従って高エネルギー側が満たされ難くな
り、最終的には電気伝導度は不純物準位の低エネルギー
側のエネルギー準位に大きく依存するからである。
The graph (Arrhenius plot) based on this Arrhenius equation includes a fine structure derived from the transition between impurity levels and the intermediate portion of the impurity levels, but it is roughly classified into high impurity levels on the high temperature side. It can be approximated by a portion derived from the energy level on the energy side and a portion derived from the energy level on the low energy side of the impurity level on the low temperature side.
In other words, the excitation energy that can be determined by measuring the electric conductivity also fills the high energy side of the impurity level at a relatively high temperature, and as a result, the energy level of the high energy side of the impurity conduction band affects the electric conductivity and This is because as the number of sides increases from several K to several tens of K), it becomes difficult to fill the high energy side, and finally the electrical conductivity largely depends on the energy level on the low energy side of the impurity level.

【0013】したがって、この2つの線分の傾きの差を
求めることで、不純物準位のバンド幅を求めることが可
能となることを見出した。この不純物準位のバンド幅を
求めることでリチウム二次電池の特性を評価できる。た
とえば、正極活物質が吸蔵・脱離できるリチウムイオン
の量、すなわちその正極活物質を用いた正極から形成し
たリチウム二次電池の充放電容量を評価することができ
る。また、不純物準位のバンド幅が大きい方が、正極活
物質に対するリチウムイオンの吸蔵・脱離が速やかに進
行することを知見し、内部抵抗、低温出力についてもそ
のバンド幅から判定することが可能であることを見出し
た。
Therefore, it has been found that it is possible to obtain the band width of the impurity level by obtaining the difference between the inclinations of these two line segments. The characteristics of the lithium secondary battery can be evaluated by obtaining the band width of this impurity level. For example, the amount of lithium ions that the positive electrode active material can occlude / desorb, that is, the charge / discharge capacity of a lithium secondary battery formed from a positive electrode using the positive electrode active material can be evaluated. In addition, we found that the larger the impurity level bandwidth, the faster the absorption and desorption of lithium ions from the positive electrode active material, and the internal resistance and low-temperature output can also be determined from the bandwidth. I found that.

【0014】本発明者は上記知見に基づいて、所定の温
度範囲で測定温度を変化させてリチウム二次電池に用い
られる正極活物質の電気伝導度を測定する測定工程と、
所定の温度範囲における測定温度の逆数(x)と該正極
活物質の電気伝導度の対数値(y)との関係をxy平面
上で2本の線分により近似する近似工程と、該2本の線
分の傾きの差から前記リチウム二次電池の特性を判定す
る判定工程と、を有することを特徴とするリチウム二次
電池の特性評価方法を発明した。
The present inventor, based on the above findings, a measurement step of changing the measurement temperature in a predetermined temperature range to measure the electric conductivity of the positive electrode active material used in the lithium secondary battery,
An approximation step of approximating the relationship between the reciprocal (x) of the measured temperature in a predetermined temperature range and the logarithmic value (y) of the electric conductivity of the positive electrode active material by two line segments on the xy plane; And a determination step of determining the characteristics of the lithium secondary battery from the difference in the slope of the line segment.

【0015】この判定工程では、充放電容量、内部抵抗
及び低温出力の判定を好適に行うことができるので、判
定工程で判定される特性はこれらのうちの少なくともい
ずれか1つとすることができる。
In this determination step, the charge / discharge capacity, internal resistance and low temperature output can be suitably determined, so that the characteristic determined in the determination step can be at least one of these.

【0016】ところで、リチウム二次電池の出力を向上
させるために内部抵抗を低下させることは重要なことで
ある。内部抵抗は前述の特性評価方法でも評価可能であ
るが、簡便に評価可能な方法であるならば、より詳細に
評価できることに越したことはない。また、前述の評価
方法では正極活物質に基づく内部抵抗を判定可能である
が、内部抵抗の一部は導電材等の抵抗及び正極活物質と
集電体とを電気的に接続する導電材との接触抵抗等(正
極中の正極活物質以外の要素による抵抗)によっても影
響される。したがって、正極中の正極活物質以外の要素
による内部抵抗(電気伝導度)を測定することは電池性
能を評価する上で重要である。
By the way, it is important to reduce the internal resistance in order to improve the output of the lithium secondary battery. The internal resistance can be evaluated by the above-mentioned characteristic evaluation method, but if the method can be simply evaluated, it is better to be able to evaluate it in more detail. Further, in the evaluation method described above, it is possible to determine the internal resistance based on the positive electrode active material, but a part of the internal resistance is a resistance such as a conductive material and a conductive material that electrically connects the positive electrode active material and the current collector. It is also affected by the contact resistance of (the resistance of elements other than the positive electrode active material in the positive electrode). Therefore, measuring the internal resistance (electrical conductivity) due to elements other than the positive electrode active material in the positive electrode is important in evaluating the battery performance.

【0017】ここで、正極の電気伝導度(σ)はMax
wellの二層電気伝導度を示す次式で表される。σ=
σm(σc+Kc・σm+Kc(σc−σm))/(σ
c+Kc・σm−φ(σc−σm))、ここでσmは正
極活物質以外に由来する電気伝導度、σcは正極活物質
に由来する電気伝導度、Kcは正極活物質の形状係数、
φは正極活物質の体積分率である。
Here, the electric conductivity (σ) of the positive electrode is Max.
It is expressed by the following equation showing the two-layer electric conductivity of the well. σ =
σm (σc + Kc · σm + Kc (σc−σm)) / (σ
c + Kc.sigma.m-.phi. (. sigma.c-.sigma.m)), where .sigma.m is the electrical conductivity derived from materials other than the positive electrode active material, .sigma.c is the electrical conductivity derived from the positive electrode active material, and Kc is the shape factor of the positive electrode active material.
φ is the volume fraction of the positive electrode active material.

【0018】ところで、正極活物質は前述のように半導
体であるので、温度を下げるほどその電気伝導度は低下
する。それに対して、正極活物質以外で正極を構成する
電気伝導度への寄与が大きい要素である導電材(一般的
には黒鉛等の炭素材料を用いる)や集電体は良伝導体で
あり温度が低下するにつれてその電気伝導度は向上す
る。したがって、極めて低い温度では、σm≫σcとな
って、次の近似式のように正極活物質以外の要素が正極
の電気伝導度(σ)を支配する。 σ≒σm(Kc(1−φ))/(Kc+φ) したがって、低温における正極の電気伝導度を測定する
ことで、正極の電気伝導度のうち正極活物質以外に由来
する電気伝導度を測定することができることを見出し
た。
By the way, since the positive electrode active material is a semiconductor as described above, its electric conductivity is lowered as the temperature is lowered. On the other hand, other than the positive electrode active material, the conductive material (generally a carbon material such as graphite is used) and the current collector, which are elements that make a large contribution to the electric conductivity of the positive electrode, are good conductors and have a high temperature. The electrical conductivity increases as is decreased. Therefore, at an extremely low temperature, σm >> σc holds, and the elements other than the positive electrode active material dominate the electric conductivity (σ) of the positive electrode as in the following approximate expression. σ≈σm (Kc (1−φ)) / (Kc + φ) Therefore, by measuring the electric conductivity of the positive electrode at a low temperature, the electric conductivity of the positive electrode derived from sources other than the positive electrode active material is measured. I found that I can.

【0019】そこで、本発明者は上記知見に基づいて、
リチウム二次電池に用いられる正極活物質を含む正極の
電気伝導度をその電気伝導度が概ね一定となるまで所定
の温度範囲で測定温度を変化させて測定する測定工程
と、該正極の電気伝導度の最低値から該正極の該正極活
物質に由来する電気伝導度とそれ以外に由来する電気伝
導度とを判定する判定工程と、を有することを特徴とす
るリチウム二次電池の特性評価方法を発明した。
Therefore, the present inventor, based on the above findings,
A measurement step of measuring the electric conductivity of a positive electrode containing a positive electrode active material used in a lithium secondary battery by changing the measurement temperature within a predetermined temperature range until the electric conductivity becomes substantially constant, and the electric conductivity of the positive electrode. And a determination step of determining the electrical conductivity of the positive electrode derived from the positive electrode active material and the electrical conductivity derived from other than the lowest value of the positive electrode, the characteristic evaluation method of the lithium secondary battery, Invented

【0020】これらのリチウム二次電池の特性評価方法
は、正極の電気伝導度を短時間測定するだけで迅速・簡
便にその正極を用いたリチウム二次電池の性能を評価で
きる。
In the method for evaluating the characteristics of these lithium secondary batteries, the performance of a lithium secondary battery using the positive electrode can be evaluated quickly and simply by simply measuring the electric conductivity of the positive electrode for a short time.

【0021】さらに、これら上述のリチウム二次電池の
特性評価方法を実施するための装置として本発明者は、
リチウム二次電池に用いられる正極若しくは正極活物質
の電気伝導度を測定する電気伝導度測定手段と、該正極
若しくは正極活物質を極低温付近の温度範囲にまで冷却
する冷却手段と、所定の温度範囲における測定温度の逆
数(x)と前記電気伝導度測定手段により測定した該正
極若しくは正極活物質の電気伝導度の対数値(y)との
関係をxy平面上で2本の線分の結合で近似する近似手
段と、該2本の線分の傾きの差から前記リチウム二次電
池の特性を判定する判定手段とをもつ演算手段と、を有
することを特徴とするリチウム二次電池の特性評価装置
を発明した。
Further, as an apparatus for carrying out the above-mentioned method for evaluating the characteristics of the lithium secondary battery, the present inventor has
An electric conductivity measuring means for measuring the electric conductivity of a positive electrode or a positive electrode active material used in a lithium secondary battery, a cooling means for cooling the positive electrode or the positive electrode active material to a temperature range near a cryogenic temperature, and a predetermined temperature. The relationship between the reciprocal (x) of the measured temperature in the range and the logarithmic value (y) of the electric conductivity of the positive electrode or the positive electrode active material measured by the electric conductivity measuring means is a combination of two line segments on the xy plane. The characteristic of the lithium secondary battery, comprising: an approximating means that approximates with the above; and a computing means that has a determining means that determines the characteristic of the lithium secondary battery from the difference between the inclinations of the two line segments. The evaluation device was invented.

【0022】[0022]

【発明の実施の形態】以下に、本発明のリチウム二次電
池の特性評価方法についての実施形態及びその特性評価
装置についての実施形態について、それぞれ説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method for evaluating characteristics of a lithium secondary battery and an embodiment of an apparatus for evaluating the characteristics of the present invention will be described below.

【0023】〈リチウム二次電池の特性評価方法〉本発
明のリチウム二次電池の特性評価方法が適用できる対象
は、半導体的な性質を持つ正極活物質である。具体的に
は、コバルト、ニッケル、マンガン等の遷移金属とリチ
ウムとの複合酸化物を含む一般的にリチウム二次電池に
用いられる正極活物質(層状岩塩構造LiCoO2、L
iNiO2、スピネル構造LiMn24等)は、ほぼす
べて半導体的な性質をもち、本発明方法の対象となる。
また、正極活物質は単一組成のものばかりでなく、複数
の組成をもつ正極活物質の混合物であってもよい。さら
に、その正極活物質を用いた正極に適用することもでき
る。本発明方法をリチウム二次電池に使用される形態の
正極に適用することで、正極活物質の特性評価だけでな
く正極としての特性評価も行うことができる。正極に本
発明方法を適用する場合には、そのままの形態で評価可
能である。たとえば、シート状の正極の場合、正極の厚
み方向の両面に電極を接触させて電気伝導度を測定する
ことができる。また、正極活物質に本発明方法を適用す
る場合には、正極活物質が粉末であることが多いので、
何らかの方法で導電性を保ったまま一定形態が保てるよ
うな形態にして評価することが好ましい。たとえば測定
用のセル内に正極活物質を充填したり、圧粉化した後に
電気伝導度を測定できる。
<Characteristic Evaluation Method of Lithium Secondary Battery> The target to which the characteristic evaluation method of the lithium secondary battery of the present invention can be applied is a positive electrode active material having semiconductor-like properties. Specifically, a positive electrode active material (layered rock salt structure LiCoO 2 , L containing a complex oxide of a transition metal such as cobalt, nickel, and manganese and a lithium, which is generally used in a lithium secondary battery.
iNiO 2 , spinel structure LiMn 2 O 4 and the like) have almost all semiconducting properties and are objects of the method of the present invention.
Further, the positive electrode active material is not limited to a single composition and may be a mixture of positive electrode active materials having a plurality of compositions. Further, it can be applied to a positive electrode using the positive electrode active material. By applying the method of the present invention to a positive electrode in a form used in a lithium secondary battery, not only the characteristics of the positive electrode active material but also the characteristics of the positive electrode can be evaluated. When the method of the present invention is applied to the positive electrode, it can be evaluated as it is. For example, in the case of a sheet-shaped positive electrode, the electrical conductivity can be measured by bringing the electrodes into contact with both surfaces in the thickness direction of the positive electrode. When the method of the present invention is applied to the positive electrode active material, the positive electrode active material is often a powder,
It is preferable to evaluate by a method such that a certain shape can be maintained while maintaining conductivity. For example, the electric conductivity can be measured after the positive electrode active material is filled in the measuring cell or after being pressed.

【0024】評価対象の正極は一般的な方法で製造した
ものをそのまま使用可能である。正極の製造方法の一例
を挙げると、評価対象の正極活物質に導電材および結着
材を混合し、適当な溶剤を加えてペースト状の正極合材
としたものを、アルミニウム等の金属箔製の集電体表面
に塗布、乾燥し、必要に応じて正極密度を高めるべく圧
縮して形成したものを用いることができる。この際の導
電材は、正極の電気伝導性を確保するためのものであ
り、カーボンブラック、アセチレンブラック、黒鉛等の
炭素物質粉状体の1種または2種以上を混合したものを
用いることができる。結着材は、活物質粒子および導電
材粒子を繋ぎ止める役割を果たすもので、ポリテトラフ
ルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等
の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱
可塑性樹脂を用いることができる。これら活物質、導電
材、結着剤を分散させる溶剤は、N−メチル−2−ピロ
リドン等の有機溶剤を用いることができる。
As the positive electrode to be evaluated, one manufactured by a general method can be used as it is. To give an example of the positive electrode manufacturing method, a positive electrode active material to be evaluated is mixed with a conductive material and a binder, and a suitable solvent is added to form a paste-like positive electrode mixture. What was formed by apply | coating on the collector surface of this, drying, and compressing in order to raise positive electrode density can be used. The conductive material at this time is for ensuring the electrical conductivity of the positive electrode, and it is preferable to use one kind or a mixture of two or more kinds of carbon substance powders such as carbon black, acetylene black, and graphite. it can. The binder plays a role of binding the active material particles and the conductive material particles together, and it is preferable to use a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. it can. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing the active material, the conductive material, and the binder.

【0025】本発明方法は不純物準位からリチウム二次
電池の特性を評価する方法であり測定工程と近似工程と
判定工程とをもつリチウム二次電池の充放電容量、内部
抵抗及び低温出力(以下適宜、「充放電容量等」と略
す)を評価する方法と、低温における電気伝導度の値か
らリチウム二次電池の特性を評価する方法であり測定工
程と判定工程とをもつリチウム二次電池の内部抵抗を評
価する方法とがある。
The method of the present invention is a method for evaluating the characteristics of a lithium secondary battery from the impurity level and has a charge / discharge capacity, an internal resistance and a low temperature output (hereinafter referred to as a charge / discharge capacity) of a lithium secondary battery having a measuring step, an approximating step and a judging step. Abbreviated as "charge / discharge capacity") and a method of evaluating the characteristics of the lithium secondary battery from the value of electric conductivity at low temperature, which has a measurement step and a determination step. There is a method of evaluating the internal resistance.

【0026】両方法とも測定工程としては、正極活物質
若しくはその正極活物質を用いた正極(以下適宜「正極
等」と略す)の伝導度を所定の温度範囲で測定する。充
放電容量等を評価する場合の所定の温度範囲としては、
測定した電気伝導度をアレニウスプロットした場合に少
なくとも変曲点を含む範囲とする。この所定の温度範囲
としては、液体He温度(4.15K)〜140Kで程
度とすることで不純物準位の高エネルギー側と低エネル
ギー側とを測定でき好ましい。下限としては液体He温
度が安価に達成できる低温であり、また、液体He温度
程度で充分だからである。そして、上限である140K
は、正極の電気電気伝導度の温度依存性の実験からアレ
ニウスプロットを行った場合に、200〜250K付近
に極大点をもち、その影響を排除する目的である。
In both measuring methods, the conductivity of a positive electrode active material or a positive electrode using the positive electrode active material (hereinafter abbreviated as "positive electrode or the like") is measured in a predetermined temperature range as a measuring step. The predetermined temperature range for evaluating charge / discharge capacity is
When the measured electrical conductivity is Arrhenius plotted, it shall be the range including at least the inflection point. As the predetermined temperature range, it is preferable to set the liquid He temperature (4.15K) to 140K so that the high energy side and the low energy side of the impurity level can be measured. This is because the lower limit is a low temperature at which the liquid He temperature can be inexpensively achieved, and the liquid He temperature is sufficient. And the upper limit of 140K
Is for the purpose of eliminating the influence by having a maximum point in the vicinity of 200 to 250 K when an Arrhenius plot is made from an experiment of the temperature dependence of the electric conductivity of the positive electrode.

【0027】そして、内部抵抗を評価する場合の所定の
温度範囲としては、20K以下のできるだけ低い温度と
する。好ましくは所定の温度範囲としては電気伝導度の
値がほぼ一定(プラトー領域)となる温度までである。
到達が比較的容易であることなどから、液体He温度付
近が好ましい。ただし、両方法とも、その理由は問わず
に、これらの所定の温度範囲以外の温度範囲について電
気伝導度を測定してもよい。
The predetermined temperature range for evaluating the internal resistance is as low as 20 K or less. Preferably, the predetermined temperature range is up to a temperature at which the value of electric conductivity is substantially constant (plateau region).
It is preferably around the liquid He temperature because it is relatively easy to reach. However, both methods may measure the electrical conductivity in a temperature range other than these predetermined temperature ranges for any reason.

【0028】また、両方法の測定工程は同時に行うこと
もできる。つまり、140K〜室温程度から、液体He
温度付近までの温度範囲について電気伝導度を測定する
ことで、充放電容量等と内部抵抗とを同時に評価でき、
好ましい。
The measuring steps of both methods can be performed simultaneously. In other words, from about 140 K to room temperature, liquid He
By measuring the electrical conductivity in the temperature range up to near temperature, it is possible to evaluate charge and discharge capacity and internal resistance at the same time,
preferable.

【0029】電気伝導度の測定は、直接的に電気伝導度
を測定する他に、抵抗を測定してその逆数を求めたり、
電圧と電流との関係その他関連する物理量を測定するこ
とで達成可能なことはいうまでもない。また、正極等を
低温とする方法は特に限定されず、必要な温度にまで正
極等を冷却可能な方法ならばどのような方法を用いても
よい。たとえば、クライオスタット、電子冷却器等が使
用できる。
The electric conductivity can be measured by directly measuring the electric conductivity, measuring the resistance, and obtaining the reciprocal thereof.
Needless to say, this can be achieved by measuring the relationship between voltage and current and other related physical quantities. The method of lowering the temperature of the positive electrode and the like is not particularly limited, and any method may be used as long as it can cool the positive electrode and the like to a required temperature. For example, a cryostat, a thermoelectric cooler, etc. can be used.

【0030】電気伝導度を測定する場合に正極等に測定
用の電極を接触させて測定するのが一般的であるが、そ
のときに正極等と測定用の電極との間の接触抵抗を低下
させるために正極等の表面に金被膜を蒸着等により生成
する工程と、その金被膜上にニッケル製フェルトからな
る電極を接触させた後に銀ペーストを含浸させ圧着する
工程とをもつことが好ましい。その場合に、測定用の電
極が正極等と接触する面積を変化させて電気伝導度を測
定することで正極等と電極との接触抵抗を求めて、正極
等の電気伝導度を補正することが好ましい。
When measuring the electric conductivity, it is general to make a measurement by contacting a positive electrode with a measuring electrode. At that time, the contact resistance between the positive electrode and the measuring electrode is lowered. For this purpose, it is preferable to have a step of forming a gold coating on the surface of the positive electrode or the like by vapor deposition or the like, and a step of contacting an electrode made of nickel felt on the gold coating and then impregnating with a silver paste and pressure bonding. In that case, the contact resistance between the positive electrode or the like and the electrode can be obtained by changing the area where the measurement electrode contacts the positive electrode or the like to measure the electric conductivity, and the electric conductivity of the positive electrode or the like can be corrected. preferable.

【0031】リチウム二次電池の充放電容量等を評価す
る場合にはリチウムに由来する不純物準位を推定するた
めに近似工程を行う。近似工程は、所定の温度範囲で測
定温度の逆数(x)と正極活物質の電気伝導度の対数値
(y)との関係をxy平面上にプロット(アレニウスプ
ロット)し、それを2本の線分により近似する工程であ
る。具体的にアレニウスプロットを2本の線分で近似す
るには、アレニウスプロットの変曲点の前後に分けて近
似することが好ましく、さらに液体He温度〜20Kの
温度範囲と、50〜140Kの温度範囲とでそれぞれ近
似することが好ましい。実験から20〜50Kにアレニ
ウスプロットの変曲点が存在することが多いことからそ
の範囲を除外したものである。この実験については後述
する実施例において詳述する。ここで線分の近似方法は
特に限定されず、たとえば、最小二乗法等が採用でき
る。
When the charge and discharge capacity of a lithium secondary battery is evaluated, an approximation step is performed to estimate the impurity level derived from lithium. In the approximation step, the relationship between the reciprocal of the measured temperature (x) and the logarithmic value (y) of the electric conductivity of the positive electrode active material in a predetermined temperature range is plotted on the xy plane (Arrhenius plot), and the two values are plotted. This is a step of approximating with a line segment. Specifically, in order to approximate the Arrhenius plot with two line segments, it is preferable to perform the approximation before and after the inflection point of the Arrhenius plot, and further, the liquid He temperature to the temperature range of 20K and the temperature of 50 to 140K. It is preferable that they are approximated by the range and respectively. Since the inflection point of the Arrhenius plot often exists at 20 to 50K from the experiment, the range is excluded. This experiment will be described in detail in Examples described later. Here, the approximation method of the line segment is not particularly limited, and for example, the least square method or the like can be adopted.

【0032】充放電容量等を評価する方法における判定
工程は、近似工程で得られた2本の線分それぞれの傾き
の差からリチウム二次電池の充放電容量等を判定する工
程である。正極活物質の組成が概ね同じ場合には、この
傾きの差が大きいほど充放電容量及び低温出力は大き
く、内部抵抗は小さい。つまり、この傾きの差が大きい
ほどリチウム二次電池の特性は良好である。
The determination step in the method of evaluating the charge / discharge capacity and the like is a step of determining the charge / discharge capacity and the like of the lithium secondary battery from the difference in the slopes of the two line segments obtained in the approximation step. When the composition of the positive electrode active material is approximately the same, the larger the difference in this gradient, the larger the charge / discharge capacity and the low-temperature output, and the smaller the internal resistance. That is, the larger the difference in the inclination, the better the characteristics of the lithium secondary battery.

【0033】そして、内部抵抗を評価する方法における
判定工程は、測定工程で得られたプラトー部分の電気伝
導度(電気伝導度の最低値)から正極の正極活物質以外
に由来する電気伝導度を導出し、次式に基づいて、その
値から正極活物質に由来する電気伝導度を導出する。
The determining step in the method for evaluating the internal resistance is based on the electric conductivity of the plateau portion (minimum electric conductivity) obtained in the measuring step, and the electric conductivity derived from other than the positive electrode active material of the positive electrode. Then, the electric conductivity derived from the positive electrode active material is derived from the value based on the following equation.

【0034】σ≒σm(Kc(1−φ))/(Kc+
φ)、なお、σmは正極活物質以外に由来する電気伝導
度、σcは正極活物質に由来する電気伝導度、Kcは正
極活物質の形状係数、φは正極活物質の体積分率であ
る。
Σ≈σm (Kc (1-φ)) / (Kc +
φ), σm is the electrical conductivity derived from other than the positive electrode active material, σc is the electrical conductivity derived from the positive electrode active material, Kc is the shape factor of the positive electrode active material, and φ is the volume fraction of the positive electrode active material. .

【0035】ここでKcの値は概ね2で近似できる。ま
た、φの値は集束ビーム−走査イオン顕微鏡による断面
構造観察によって測定可能である。
Here, the value of Kc can be approximated by approximately 2. The value of φ can be measured by observing the cross-sectional structure with a focused beam-scanning ion microscope.

【0036】実際の評価は、製造した正極等の製造ロッ
トごとに行なえばよく、製造ロットごとに評価する実施
形態とすれば、各製造ロットごとの正極活物質の微妙な
構造の変化及び正極の製造状態を迅速・簡便に検出で
き、逆に所定の制限値内のロットのみを製造・出荷・利
用することにより、最終製品であるリチウム二次電池の
充放電容量、内部抵抗等のバラツキを、電池構成前の段
階において効率的に抑えることができる。
The actual evaluation may be carried out for each manufacturing lot of the manufactured positive electrode or the like, and in the case where the manufacturing lot is evaluated for each manufacturing lot, a slight change in the structure of the positive electrode active material and the positive electrode The manufacturing state can be detected quickly and easily, and conversely, by manufacturing, shipping, and using only lots within the specified limit values, variations in the charge / discharge capacity, internal resistance, etc. of the final lithium secondary battery can be reduced. It can be efficiently suppressed in the stage before the battery configuration.

【0037】〈リチウム二次電池の特性評価装置〉本発
明装置は前述のリチウム二次電池の特性評価方法を行う
のに適した装置である。本発明装置は前述のリチウム二
次電池の特性評価方法の2つの方法のいずれをも行うこ
とができる。そして、本発明装置により特性評価可能な
被評価対象は前述のリチウム二次電池の特性評価方法の
対象と同様であるので、ここでの説明は省略する。
<Characteristic Evaluation Device for Lithium Secondary Battery> The device of the present invention is a device suitable for performing the above-mentioned characteristic evaluation method for lithium secondary batteries. The device of the present invention can perform any of the two methods of evaluating the characteristics of the lithium secondary battery described above. The object to be evaluated that can be evaluated by the device of the present invention is the same as the object of the method for evaluating the characteristics of the lithium secondary battery described above, and therefore the description thereof is omitted here.

【0038】本発明装置は電気伝導度測定手段と冷却手
段と演算手段とをもつ。電気伝導度測定手段と冷却手段
とで前述の特性評価方法の測定工程を行うことができ
る。すなわち、冷却手段により極低温付近にまで冷却さ
れた正極若しくは正極活物質を電気伝導度測定手段で電
気伝導度を測定する。測定した電気伝導度の値は何らか
の方法で保持され、後述する演算部に供される。電気伝
導度測定手段及び冷却手段ともに特に限定されるもので
はなく、一般的な電気伝導度を測定する手段及び冷却で
きる手段を採用可能である。具体的には前述のリチウム
二次電池の特性評価方法で説明した方法を実現できる手
段が適用可能である。
The device of the present invention has an electric conductivity measuring means, a cooling means and a computing means. The measuring step of the above-mentioned characteristic evaluation method can be performed by the electric conductivity measuring means and the cooling means. That is, the electric conductivity of the positive electrode or the positive electrode active material cooled to near the cryogenic temperature by the cooling means is measured by the electric conductivity measuring means. The measured value of the electric conductivity is held by some method and provided to the calculation unit described later. The electrical conductivity measuring means and the cooling means are not particularly limited, and general electrical conductivity measuring means and cooling means can be adopted. Specifically, means that can realize the method described in the characteristic evaluation method of the lithium secondary battery described above is applicable.

【0039】電気伝導度測定手段は正極等に測定用の電
極を接触させて測定するのが一般的であるが、そのとき
に正極等と測定用の電極との間の接触抵抗を低下させる
ために正極等の表面に金被膜を蒸着等により生成させ、
その金被膜上にニッケル製フェルトからなる電極を接触
させた後に銀ペーストを含浸させ圧着することが好まし
い。
The electric conductivity measuring means is generally measured by bringing a measuring electrode into contact with a positive electrode or the like, but at that time, in order to reduce the contact resistance between the positive electrode or the like and the measuring electrode. To produce a gold coating on the surface of the positive electrode, etc.
It is preferable that an electrode made of a felt made of nickel is brought into contact with the gold coating, followed by impregnation with a silver paste and pressure bonding.

【0040】演算手段は前述のリチウム二次電池の特性
評価方法における近似工程及び判定工程を実現できる手
段である。たとえば、演算手段はコンピュータ上のロジ
ック等で実現できる。
The calculating means is a means that can realize the approximating step and the determining step in the above-mentioned characteristic evaluation method of the lithium secondary battery. For example, the arithmetic means can be realized by logic on a computer.

【0041】なお、これまでに説明した本発明のリチウ
ム二次電池の特性評価方法及び評価装置のそれぞれの実
施形態は例示に過ぎず、これらの実施形態は、上記実施
形態を始めとして、当業者の知識に基づいて種々の変
更、改良を施した形態とすることができる。
It should be noted that the respective embodiments of the method and apparatus for evaluating characteristics of a lithium secondary battery of the present invention described above are merely examples, and these embodiments are not limited to the above-described embodiments, and those skilled in the art will understand. It is possible to adopt a form in which various changes and improvements are made based on the knowledge of.

【0042】[0042]

【実施例】本発明のリチウム二次電池の特性評価方法の
優位性を証明すべく、種々のリチウム遷移金属複合酸化
物の正極活物質を用いた正極を作製し、それぞれの正極
の電気伝導度を測定し正極活物質及び正極としての特性
を評価するとともに、それらの正極を用いたリチウム二
次電池を作製し、その特性を実際に確認した。これらに
ついて、以下に、実施例として説明する。
EXAMPLES In order to prove the superiority of the method for evaluating the characteristics of the lithium secondary battery of the present invention, positive electrodes using positive electrode active materials of various lithium transition metal composite oxides were prepared, and the electric conductivity of each positive electrode was increased. Was measured to evaluate the characteristics of the positive electrode active material and the positive electrode, and a lithium secondary battery using these positive electrodes was manufactured and the characteristics were actually confirmed. These will be described below as examples.

【0043】〈リチウム二次電池の特性評価装置〉本実
施例の特性評価は以下の装置で行った。すなわち、本装
置は、図1に示すように、電気伝導度測定手段としての
電流発生器1、マルチメータ2、1組の銅電極3及び金
鉄クロメル熱電対4と、冷却手段としての液体Heデュ
ア5(入り口から最深部にかけて室温から液体He温度
までの温度勾配をもつキャビティCを有する)と、演算
手段としてのロジックを搭載したコンピュータ6とから
なる。銅電極3に狭持された試料は、銅電極3に付され
た金鉄クロメル熱電対4と共に液体Heデュア4のキャ
ビティC内へ徐々に挿入され冷却される。
<Characteristic Evaluation Device for Lithium Secondary Battery> The characteristic evaluation of this embodiment was carried out by the following device. That is, as shown in FIG. 1, the present apparatus comprises a current generator 1, a multimeter 2, a set of copper electrodes 3 and a gold-iron chromel thermocouple 4 as electric conductivity measuring means, and a liquid He as cooling means. It comprises a dual 5 (having a cavity C having a temperature gradient from room temperature to the liquid He temperature from the entrance to the deepest part), and a computer 6 equipped with a logic as a calculation means. The sample held between the copper electrodes 3 is gradually inserted into the cavity C of the liquid He deur 4 together with the gold-iron chromel thermocouple 4 attached to the copper electrodes 3 and cooled.

【0044】電流発生器1により生成される定電流
(A)が銅電極3を介して試料に印加される。そのとき
の銅電極3間の電圧(V)を測定し抵抗率を、同時に測
定した金鉄クロメル熱電対4からの起電力から試料温度
をそれぞれ測定する。抵抗率は電極の表面積を試料厚さ
で除した値に、電圧(V)を電流(A)で除した値を乗
じて求める。電気伝導度は求めた抵抗率の逆数として算
出する。試料温度は金鉄クロメル熱電対4の起電力に対
応する温度から求めるコンピュータ6を用いて、求めた
各測定温度における電気伝導度の値からアレニウスプロ
ットを作成し活性化エネルギーを算出する。
A constant current (A) generated by the current generator 1 is applied to the sample via the copper electrode 3. At that time, the voltage (V) between the copper electrodes 3 is measured to measure the resistivity, and the sample temperature is measured from the electromotive force from the gold-iron chromel thermocouple 4 measured at the same time. The resistivity is obtained by multiplying the value obtained by dividing the surface area of the electrode by the sample thickness and the value obtained by dividing the voltage (V) by the current (A). The electrical conductivity is calculated as the reciprocal of the obtained resistivity. The sample temperature is calculated from the temperature corresponding to the electromotive force of the gold-iron chromel thermocouple 4, and a computer 6 is used to generate an Arrhenius plot from the calculated values of electrical conductivity at each measured temperature to calculate activation energy.

【0045】〈リチウム遷移金属複合酸化物の試料の作
製〉水酸化リチウム1水和物(LiOH・H2O)と水
酸化ニッケル(Ni(OH)2)とのそれぞれの粒子粉
末をモル比でLi:Ni=1:1の割合になるようによ
く混合した。この混合粒子粉末を錠剤状に圧縮成形して
から、熱処理として650℃、24時間、酸素気流中で
保持した。得られた錠剤を粉砕機(インパクトミル)に
より比表面積を変化させて試料1(比表面積0.31m
2/g)、試料2(比表面積0.43m2/g)、試料3
(比表面積0.63m2/g)とした。
<Preparation of Sample of Lithium Transition Metal Complex Oxide> Particle powders of lithium hydroxide monohydrate (LiOH.H 2 O) and nickel hydroxide (Ni (OH) 2 ) in molar ratio. They were mixed well so that the ratio of Li: Ni was 1: 1. This mixed particle powder was compression-molded into a tablet and then heat-treated at 650 ° C. for 24 hours in an oxygen stream. The specific surface area of the obtained tablets was changed by a crusher (impact mill) to prepare Sample 1 (specific surface area 0.31 m
2 / g), sample 2 (specific surface area 0.43 m 2 / g), sample 3
(Specific surface area 0.63 m 2 / g).

【0046】水酸化リチウム1水和物(LiOH・H2
O)と二酸化マンガン(MnO2)とのそれぞれの粒子
粉末をモル比でLi:Mn=1:2の割合になるように
よく混合し、試料1〜3と同様の処理を行いリチウムマ
ンガン複合酸化物粉末とした。この粉末とリチウム−ニ
ッケル複合酸化物とを質量比で75:25で混合し試料
4とした。
Lithium hydroxide monohydrate (LiOH.H 2
O) and manganese dioxide (MnO 2 ) are mixed well in a molar ratio of Li: Mn = 1: 2, and the same treatment as in Samples 1 to 3 is performed to obtain lithium manganese composite oxide. Powder. This powder and a lithium-nickel composite oxide were mixed at a mass ratio of 75:25 to obtain Sample 4.

【0047】〈X線回折分析による結晶構造の決定〉作
製した上記各試料の結晶構造を粉末X線回折パターンの
リートベルト(Rietveld)解析により決定し
た。回折パターンは、2θ=0.004°のステップス
キャンで、最強の回折線強度が80000カウント以上
になるような条件で測定した。1試料当たりの測定時間
は約2時間だった。試料1〜3はすべて層状岩塩構造の
単一相であった。試料4では層状岩塩構造とスピネル構
造との2相の混合状態であった。
<Determination of Crystal Structure by X-Ray Diffraction Analysis> The crystal structure of each of the above-prepared samples was determined by Rietveld analysis of the powder X-ray diffraction pattern. The diffraction pattern was measured by a step scan of 2θ = 0.004 ° under the condition that the strongest diffraction line intensity was 80000 counts or more. The measurement time per sample was about 2 hours. Samples 1 to 3 were all single layers with a layered rock salt structure. Sample 4 had a two-phase mixed state of a layered rock salt structure and a spinel structure.

【0048】〈ICP発光分光分析による元素組成の決
定〉作製した上記各試料の元素組成を誘導結合プラズマ
(ICP)発光分光分析により測定した。結果を表1に
示す。なお、組成の残部は酸素である。
<Determination of Elemental Composition by ICP Optical Emission Spectroscopy> The elemental composition of each of the prepared samples was measured by inductively coupled plasma (ICP) optical emission spectroscopy. The results are shown in Table 1. The balance of the composition is oxygen.

【0049】[0049]

【表1】 [Table 1]

【0050】〈正極の作成〉試料1〜4の各正極活物質
85質量部に、導電材としてのグラファイト10質量
部、結着材としてのポリフッ化ビニリデン5質量部を混
合した後、N−メチル−2−ピロリドンを溶剤として加
えて正極合材ペーストを作製した。このペーストをアル
ミニウム箔からなる集電体の両面に塗布、乾燥、圧延し
シート状の正極を作成し試料1〜4の正極とした。
<Preparation of Positive Electrode> To 85 parts by mass of each positive electrode active material of Samples 1 to 4, 10 parts by mass of graphite as a conductive material and 5 parts by mass of polyvinylidene fluoride as a binder were mixed, and then N-methyl was added. 2-Pyrrolidone was added as a solvent to prepare a positive electrode mixture paste. This paste was applied to both sides of a current collector made of aluminum foil, dried, and rolled to form sheet-shaped positive electrodes, which were used as positive electrodes of Samples 1 to 4.

【0051】〈電気伝導度の測定及び活性化エネルギー
等の算出〉各試料の電気伝導度を測定した(測定工
程)。測定の前処理として、各試料を1.5×1.5c
mに切り取った後に、その両面に150Åの厚さで金蒸
着を行った。その後、その両面に銀ペーストを塗布し、
1.2×1.2cmのNiフェルトを貼り付けた。そし
て、銅電極3を試料両面に貼付し低温における電気伝導
度を測定した。電気伝導度は各試料の抵抗率を測定し導
出した。なお、ブランクとしてアルミニウム箔について
同様にして電気伝導度の温度依存性を測定した。測定温
度範囲としては液体He温度から室温まで行った。一例
として試料1についての抵抗率の測定結果を図2に示
す。
<Measurement of Electric Conductivity and Calculation of Activation Energy etc.> The electric conductivity of each sample was measured (measuring step). As a pretreatment for measurement, each sample is 1.5 × 1.5c
After cutting to m, gold was vapor-deposited on both sides with a thickness of 150Å. After that, apply silver paste on both sides,
A 1.2 × 1.2 cm Ni felt was attached. Then, the copper electrodes 3 were attached to both surfaces of the sample, and the electrical conductivity at low temperature was measured. The electrical conductivity was derived by measuring the resistivity of each sample. The temperature dependence of the electrical conductivity was measured in the same manner for the aluminum foil as a blank. The measurement temperature range was from liquid He temperature to room temperature. As an example, the measurement results of the resistivity of Sample 1 are shown in FIG.

【0052】そしてコンピュータ6に搭載したロジック
により、以下の処理を行った。まず、測定温度の逆数と
測定した電気伝導度の対数との関係をプロット(アレニ
ウスプロット)した。一例として試料1についてのアレ
ニウスプロットを図3に示す。ここでその他の試料につ
いてのアレニウスプロットは示さないが、試料1と同様
に、20〜50Kの間に変曲点を有していた。これは、
本実施例で示した試料以外の正極等についても同様であ
った。
The following processing was performed by the logic installed in the computer 6. First, the relationship between the reciprocal of the measured temperature and the logarithm of the measured electric conductivity was plotted (Arrhenius plot). As an example, an Arrhenius plot for Sample 1 is shown in FIG. Here, the Arrhenius plots of the other samples are not shown, but as in the case of sample 1, the sample had an inflection point between 20 and 50K. this is,
The same applies to positive electrodes and the like other than the samples shown in this example.

【0053】そしてそのアレニウスプロットの所定の温
度範囲として液体He温度〜140Kの測定値を取り出
し、その範囲について、2本の線分で近似した。具体的
には、液体He温度〜20Kの温度範囲から近似される
線分と、50〜140Kの温度範囲から近似される線分
とのそれぞれの傾きを求めた。その傾きをそれぞれアレ
ニウスの式(ln σ=−Ea/RT+C、Ea;活性
化エネルギー、R;気体定数、C;定数)に当てはめて
活性化エネルギー(エネルギー準位)を求めた。液体H
e温度〜20Kの温度範囲から近似される線分からは不
純物準位の下端のエネルギー準位が、50〜140Kの
温度範囲から近似される線分からは上端のエネルギー準
位がそれぞれ導き出せる。そして各試料の上端と下端と
のエネルギー準位の差を不純物準位のバンド幅とした。
Then, as the predetermined temperature range of the Arrhenius plot, the measured value of liquid He temperature to 140 K was taken out, and the range was approximated by two line segments. Specifically, the slopes of the line segment approximated from the temperature range of the liquid He to 20 K and the line segment approximated from the temperature range of 50 to 140 K were obtained. The activation energy (energy level) was determined by applying the slopes to the Arrhenius equation (ln σ = −Ea / RT + C, Ea; activation energy, R; gas constant, C; constant). Liquid H
The energy level at the lower end of the impurity level can be derived from the line segment approximated from the temperature range of e to 20 K, and the energy level at the upper end can be derived from the line segment approximated from the temperature range of 50 to 140 K. Then, the difference in energy level between the upper end and the lower end of each sample was defined as the band width of the impurity level.

【0054】次に、各試料を液体He温度としたときの
電気伝導度(σ)は、次式、σ≒σm(Kc(1−
φ))/(Kc+φ)、ここでσmは正極活物質以外に
由来する電気伝導度、Kcは正極活物質の形状係数、φ
は正極活物質の体積分率で近似され、正極活物質以外の
要素が支配的になる。そこで、各試料の液体He温度に
おける抵抗率から電気伝導度を求め、それを前式に当て
はめて正極活物質以外に由来する電気伝導度(σm)を
導出した。ここで、Kcは2とし、φは集束イオンビー
ム−走査イオン顕微鏡による断面構造観察により決定し
た。
Next, the electric conductivity (σ) when each sample is at the liquid He temperature is expressed by the following equation: σ≈σm (Kc (1-
φ)) / (Kc + φ), where σm is the electric conductivity derived from other than the positive electrode active material, Kc is the shape factor of the positive electrode active material, and φ
Is approximated by the volume fraction of the positive electrode active material, and elements other than the positive electrode active material are dominant. Therefore, the electric conductivity was obtained from the resistivity of each sample at the liquid He temperature, and the electric conductivity (σm) derived from other than the positive electrode active material was derived by applying the electric conductivity to the above equation. Here, Kc was set to 2, and φ was determined by observing a sectional structure with a focused ion beam-scanning ion microscope.

【0055】表2に各試料についてエネルギー準位、そ
のバンド幅、液体He温度での抵抗率及びσmを示す。
Table 2 shows the energy level, the band width, the resistivity at the liquid He temperature, and σm for each sample.

【0056】[0056]

【表2】 [Table 2]

【0057】〈リチウム二次電池の製作〉上記それぞれ
の試料を正極に用いて、リチウム二次電池を作製した。
作製したリチウム二次電池の構成を図4を参照しつつ説
明する。リチウム二次電池10は電池缶12内に正極と
負極をセパレ−タを介して渦巻き状に巻回して構成され
る電極体14を装着したものである。そして正極から引
き出された正極集電リード16は、電池缶12に被着さ
れるキャップ17に接続され、また負極から引き出され
た負極集電リード18は電池缶12に接続されている。
なお電池缶12の内底面および電極集合体14の上部に
はおのおの絶縁板20が装着される。
<Production of Lithium Secondary Battery> A lithium secondary battery was produced using each of the above samples as a positive electrode.
The structure of the manufactured lithium secondary battery will be described with reference to FIG. The lithium secondary battery 10 has an electrode body 14 in which a positive electrode and a negative electrode are spirally wound via a separator in a battery can 12. The positive electrode current collector lead 16 drawn from the positive electrode is connected to the cap 17 attached to the battery can 12, and the negative electrode current collector lead 18 drawn from the negative electrode is connected to the battery can 12.
An insulating plate 20 is attached to each of the inner bottom surface of the battery can 12 and the upper portion of the electrode assembly 14.

【0058】次にこの電池の作成方法について説明す
る。
Next, a method of making this battery will be described.

【0059】負極活物質には天然黒鉛を用いた。この負
極活物質92.5質量部に、結着剤としてポリフッ化ビ
ニリデン7.5質量部を混合した後、N−メチル−2−
ピロリドンを溶剤として加えて負極合材ペーストを作製
した。このペーストを銅箔からなる集電体の両面に塗
布、乾燥、圧延しシート状の負極を得た。
Natural graphite was used as the negative electrode active material. After mixing 92.5 parts by mass of this negative electrode active material with 7.5 parts by mass of polyvinylidene fluoride as a binder, N-methyl-2-
Pyrrolidone was added as a solvent to prepare a negative electrode mixture paste. This paste was applied on both sides of a current collector made of copper foil, dried and rolled to obtain a sheet-shaped negative electrode.

【0060】セパレ−タはポリプロピレンからなる多孔
性フィルムを正極板および負極板よりも幅広く裁断した
ものを用いた。正極板と負極板との間にセパレ−タを介
在させ、全体をロール状に捲回して電極体14を構成し
た。電極体14の下に絶縁板20を装着し、電池缶12
に収容して負極リード線18を電池缶12にスポット溶
接した。また電極体の上側にも絶縁板20を装着し、そ
の後、非水系電解液を注入した。
As the separator, a polypropylene porous film cut into a wider area than the positive electrode plate and the negative electrode plate was used. A separator was interposed between the positive electrode plate and the negative electrode plate, and the whole was wound into a roll to form the electrode body 14. An insulating plate 20 is attached under the electrode body 14, and the battery can 12
Then, the negative electrode lead wire 18 was spot-welded to the battery can 12. Also, the insulating plate 20 was attached to the upper side of the electrode body, and then the non-aqueous electrolyte solution was injected.

【0061】非水系電解液には、エチレンカーボネート
(EC)とジエチルカーボネート(DEC)とを体積比
で3:4に混合し、これに6フッ化リン酸リチウム(L
iPF6)を1mol/Lの濃度まで溶解させたものを
用いた。ガスケットを組み込んであるキャップ17と正
極リード線16をスポット溶接した後、キャップ17を
電池缶12に装着し、電池缶12の上部をかしめること
で電池内を密閉し、円筒型リチウム二次電池を完成させ
た。
In the non-aqueous electrolyte solution, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in a volume ratio of 3: 4, and this was mixed with lithium hexafluorophosphate (L).
iPF 6 ) was dissolved to a concentration of 1 mol / L and used. After spot welding the cap 17 incorporating the gasket and the positive electrode lead wire 16, the cap 17 is mounted on the battery can 12, and the upper part of the battery can 12 is caulked to hermetically seal the inside of the battery to form a cylindrical lithium secondary battery. Was completed.

【0062】〈比容量の測定〉試料1〜試料4を正極と
して用いたそれぞれの上記リチウム二次電池に対して、
まずコンディショニングを行った。コンディショニング
の条件は、25℃の環境温度下、電流密度0.25mA
/cm2の定電流で充電終止電圧4.1Vに到達するま
で充電を行いさらに4.1Vの定電圧で充電する合計充
電時間が6時間の定電流定電圧充電と、電流密度0.2
mA/cm2の定電流で放電終止電圧3Vに到達するま
での定電流放電とからなる充放電サイクルを1サイクル
行い、次いで、電流密度1mA/cm2の定電流で充電
終止電圧4.1Vに到達するまで充電を行いさらに4.
1Vの定電圧で充電する合計充電時間が2時間の定電流
定電圧充電と、電流密度1mA/cm2の定電流で放電
終止電圧3Vに到達するまでの定電流放電とからなる充
放電サイクルを5サイクル行うものとした。その最終サ
イクルにおける放電容量を測定し、その値を正極活物質
の質量で除した値を比容量とした。
<Measurement of Specific Capacity> For each of the above lithium secondary batteries using Sample 1 to Sample 4 as the positive electrode,
First, I did conditioning. Conditioning condition is 25 ℃ ambient temperature, current density 0.25mA
Constant-current constant-voltage charge of 6 hours and constant-current constant-charge with a total charge time of 6 hours at a constant current of / cm 2 until the end-of-charge voltage of 4.1V is reached and further charging at a constant voltage of 4.1V.
One charge / discharge cycle consisting of constant current discharge until reaching a discharge end voltage of 3 V at a constant current of mA / cm 2 was performed, and then a charge end voltage of 4.1 V was obtained at a constant current of current density of 1 mA / cm 2. 3. Charge the battery until it reaches the destination.
A charging / discharging cycle consisting of a constant current constant voltage charging with a total charging time of 2 hours for charging with a constant voltage of 1 V and a constant current discharging until a discharge end voltage of 3 V is reached with a constant current of a current density of 1 mA / cm 2. Five cycles were performed. The discharge capacity in the final cycle was measured, and the value obtained by dividing the value by the mass of the positive electrode active material was taken as the specific capacity.

【0063】〈内部抵抗の測定〉それぞれのリチウム二
次電池について25℃における内部抵抗を測定した。内
部抵抗の測定は電池に印加する電流の値を変化させたと
きの電池の端子電圧の値を測定し、各電流値と電圧値と
を結ぶ線の傾きから導出した。
<Measurement of Internal Resistance> The internal resistance of each lithium secondary battery at 25 ° C. was measured. The internal resistance was measured by measuring the value of the terminal voltage of the battery when the value of the current applied to the battery was changed and deriving from the slope of the line connecting each current value and the voltage value.

【0064】〈低温出力の測定〉それぞれのリチウム二
次電池について−30℃における出力を測定した。出力
の値は、満充電した各試験例の電池を−30℃に冷却し
た後に、10秒間での電圧降下量の電流依存性から電池
電圧が2.5Vとなる電流値I2.5(−30℃)を求
め、2.5×I2.5(W)を2.5Vカット10秒出力
値(−30℃)とした。
<Measurement of Low Temperature Output> The output at −30 ° C. was measured for each lithium secondary battery. The output value is a current value I 2.5 (−30 ° C.) at which the battery voltage becomes 2.5 V from the current dependency of the voltage drop amount in 10 seconds after the fully charged battery of each test example was cooled to −30 ° C. ) Was obtained and 2.5 × I 2.5 (W) was taken as the 2.5V cut 10 second output value (−30 ° C.).

【0065】〈実験結果の一覧およびリチウム二次電池
の特性評価〉上記一連の実験の結果について、下記表3
に、それぞれの試料のそれぞれのデータを一覧表の形式
で示す。
<List of Experimental Results and Characteristic Evaluation of Lithium Secondary Battery> The results of the above series of experiments are shown in Table 3 below.
The data of each sample are shown in the form of a list.

【0066】[0066]

【表3】 [Table 3]

【0067】また、表2に示したバンド幅と、表3に示
した比容量、内部抵抗及び低温出力とについて、最小二
乗法により線形近似した式を示す。比容量では(比容量
(mAh/g))=32.1×(不純物準位(me
V))+139.07,R2=0.999、内部抵抗で
は(内部抵抗(mΩ))=−0.5936×(不純物準
位(meV))+1.003,R2=0.989、低温
出力では(低温出力(W))=2.6347×(不純物
準位(meV))+1.3075,R2=0.9958
となった。いずれも、相関係数(R2)が極めて1に近
く、高い正の相関があることがわかる。
Further, the band width shown in Table 2 and the specific capacity, internal resistance and low temperature output shown in Table 3 are linearly approximated by the least square method. In specific capacity, (specific capacity (mAh / g)) = 32.1 × (impurity level (me
V)) + 139.07, R 2 = 0.999, for internal resistance (internal resistance (mΩ)) = − 0.5936 × (impurity level (meV)) + 1.003, R 2 = 0.989, low temperature In the output, (low temperature output (W)) = 2.6347 × (impurity level (meV)) + 1.3075, R 2 = 0.9995
Became. It can be seen that in all cases, the correlation coefficient (R 2 ) is extremely close to 1, and there is a high positive correlation.

【0068】内部抵抗は、表2に示した液体He温度で
の電気伝導度から導出した正極活物質以外に由来する抵
抗率の値に対する相関が高くなかったが、それは内部抵
抗を測定した25℃では正極活物質の電気伝導度が比較
的高く、正極活物質以外に由来する抵抗の影響が少なく
なったものと考えられる。ただし、正極活物質以外に由
来する抵抗率も低くすることが好ましいのはいうまでも
ない。その場合に本評価方法により正極活物質以外に由
来する抵抗率を判定可能である。
The internal resistance was not highly correlated with the value of the resistivity derived from other than the positive electrode active material derived from the electric conductivity at the liquid He temperature shown in Table 2, which was 25 ° C. when the internal resistance was measured. Therefore, it is considered that the positive electrode active material has a relatively high electric conductivity, and the influence of the resistance derived from other than the positive electrode active material is reduced. However, it goes without saying that it is preferable to lower the resistivity derived from other than the positive electrode active material. In that case, the resistivity derived from other than the positive electrode active material can be determined by this evaluation method.

【0069】[0069]

【発明の効果】本発明のリチウム二次電池の特性評価方
法は、正極若しくは正極活物質の特性を評価するのに適
した評価方法であり、その正極等の電気伝導度の温度依
存性を測定し、その値からその正極等を用いたリチウム
二次電池の特性(充放電容量、内部抵抗、低温出力等)
を判定するものである。このような手法によることで、
本発明のリチウム二次電池の特性評価方法は、リチウム
二次電池の特性を、高信頼度で、迅速、かつ簡便に評価
することのできる評価方法となる。
The method for evaluating the characteristics of the lithium secondary battery of the present invention is an evaluation method suitable for evaluating the characteristics of the positive electrode or the positive electrode active material, and the temperature dependence of the electrical conductivity of the positive electrode or the like is measured. The characteristics of the lithium secondary battery using the positive electrode, etc. (charge / discharge capacity, internal resistance, low temperature output, etc.)
Is determined. By such a method,
INDUSTRIAL APPLICABILITY The method for evaluating characteristics of a lithium secondary battery of the present invention is an evaluation method capable of evaluating characteristics of a lithium secondary battery with high reliability, quickly and easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例において正極の電気伝導度の測定に用
いた特性評価装置を示す概略図である。
FIG. 1 is a schematic view showing a characteristic evaluation device used for measuring the electric conductivity of a positive electrode in an example.

【図2】 実施例における試料1の正極の電気伝導度の
温度依存性を示したグラフである。
FIG. 2 is a graph showing the temperature dependence of the electrical conductivity of the positive electrode of Sample 1 in the example.

【図3】 実施例における試料1の正極の電気伝導度と
測定温度とのアレニウスプロットである。
FIG. 3 is an Arrhenius plot of the electric conductivity and the measurement temperature of the positive electrode of sample 1 in the example.

【図4】 実施例において作製したリチウム二次電池の
構成を示す図である。
FIG. 4 is a diagram showing a configuration of a lithium secondary battery manufactured in an example.

【符号の説明】[Explanation of symbols]

1:電流発生器 2:マルチメータ 3:銅電極 4:金鉄クロメル熱電対 5:液体Heデュア C:キャビティ 6:コンピュータ 10:リチウム二次電池 12:電池缶 14:電極体 16:正極集電リード 17:キャップ 18:負極集電リード 20:絶縁板 1: Current generator 2: Multimeter 3: Copper electrode 4: Gold-iron chromel thermocouple 5: Liquid Hedur C: Cavity 6: Computer 10: Lithium secondary battery 12: Battery can 14: Electrode body 16: Positive electrode current collecting lead 17: Cap 18: Negative electrode current collecting lead 20: Insulation plate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定の温度範囲で測定温度を変化させて
リチウム二次電池に用いられる正極活物質の電気伝導度
を測定する測定工程と、 測定温度の逆数(x)と該正極活物質の電気伝導度の対
数値(y)との関係をxy平面上で2本の線分により近
似する近似工程と、 該2本の線分の傾きの差から前記リチウム二次電池の特
性を判定する判定工程と、を有することを特徴とするリ
チウム二次電池の特性評価方法。
1. A measurement step of measuring the electric conductivity of a positive electrode active material used in a lithium secondary battery by changing the measurement temperature within a predetermined temperature range, the reciprocal of the measured temperature (x) and the positive electrode active material An approximation step of approximating the relationship with the logarithmic value (y) of the electrical conductivity by two line segments on the xy plane, and determining the characteristics of the lithium secondary battery from the difference in the slopes of the two line segments A method for evaluating characteristics of a lithium secondary battery, comprising: a determining step.
【請求項2】 前記判定工程で判定される前記特性は、
充放電容量、内部抵抗及び低温出力のうちの少なくとも
いずれか1つである請求項1に記載のリチウム二次電池
の特性評価方法。
2. The characteristic determined in the determination step is
The method for evaluating characteristics of a lithium secondary battery according to claim 1, wherein the method is at least one of charge / discharge capacity, internal resistance, and low-temperature output.
【請求項3】 前記測定工程は、前記正極活物質を含む
正極について電気伝導度を測定する工程である請求項1
又は2に記載のリチウム二次電池の特性評価方法。
3. The measuring step is a step of measuring electric conductivity of a positive electrode containing the positive electrode active material.
Alternatively, the method for evaluating characteristics of the lithium secondary battery according to item 2.
【請求項4】 前記所定の温度範囲が液体He温度〜1
40Kであり、 前記2本の線分の傾きが、液体He温度〜20Kの温度
範囲と、50〜140Kの温度範囲とでそれぞれ近似さ
れる請求項1〜3のいずれかに記載のリチウム二次電池
の特性評価方法。
4. The predetermined temperature range is a liquid He temperature of ˜1.
The secondary lithium according to any one of claims 1 to 3, wherein the inclination of the two line segments is approximated by a temperature range of liquid He temperature to 20K and a temperature range of 50 to 140K, respectively. Battery characteristics evaluation method.
【請求項5】 リチウム二次電池に用いられる正極活物
質を含む正極の電気伝導度をその電気伝導度が概ね一定
となるまで所定の温度範囲で測定温度を変化させて測定
する測定工程と、 該正極の電気伝導度の最低値から該正極の該正極活物質
に由来する電気伝導度とそれ以外に由来する電気伝導度
とを判定する判定工程と、を有することを特徴とするリ
チウム二次電池の特性評価方法。
5. A measurement step of measuring the electric conductivity of a positive electrode containing a positive electrode active material used in a lithium secondary battery by changing the measurement temperature in a predetermined temperature range until the electric conductivity becomes substantially constant, A lithium secondary comprising: a determination step of determining the electrical conductivity of the positive electrode derived from the positive electrode active material and the electrical conductivity of the other derived from the lowest value of the electrical conductivity of the positive electrode. Battery characteristics evaluation method.
【請求項6】 前記測定工程の前に前処理工程として、 前記正極の両面に金被膜を生成する工程と、該金被膜上
にニッケル製フェルトからなる電極を接触させた後に銀
ペーストを含浸させ圧着する工程と、をもつ請求項3〜
5のいずれかに記載のリチウム二次電池の特性評価方
法。
6. A pretreatment step before the measuring step, which is a step of forming a gold coating on both surfaces of the positive electrode, and an electrode made of nickel felt is brought into contact with the gold coating and then impregnated with a silver paste. And a step of crimping.
5. The method for evaluating characteristics of a lithium secondary battery according to any one of 5 above.
【請求項7】 リチウム二次電池に用いられる正極若し
くは正極活物質の電気伝導度を測定する電気伝導度測定
手段と、 該正極若しくは正極活物質を極低温付近の温度範囲にま
で冷却する冷却手段と、 所定の温度範囲における測定温度の逆数(x)と前記電
気伝導度測定手段により測定した該正極若しくは正極活
物質の電気伝導度の対数値(y)との関係をxy平面上
で2本の線分の結合で近似する近似手段と、該2本の線
分の傾きの差から前記リチウム二次電池の特性を判定す
る判定手段とをもつ演算手段と、を有することを特徴と
するリチウム二次電池の特性評価装置。
7. An electric conductivity measuring means for measuring the electric conductivity of a positive electrode or a positive electrode active material used in a lithium secondary battery, and a cooling means for cooling the positive electrode or the positive electrode active material to a temperature range near a cryogenic temperature. And the reciprocal (x) of the measured temperature in a predetermined temperature range and the logarithmic value (y) of the electric conductivity of the positive electrode or the positive electrode active material measured by the electric conductivity measuring means, two on the xy plane. Lithium, which has an approximating means for approximating the combination of the two line segments and a determining means for determining the characteristics of the lithium secondary battery from the difference in inclination between the two line segments. Characteristic evaluation device for secondary batteries.
JP2001190880A 2001-06-25 2001-06-25 Method and equipment for evaluating charasteristics of secondary lithium battery Pending JP2003007354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190880A JP2003007354A (en) 2001-06-25 2001-06-25 Method and equipment for evaluating charasteristics of secondary lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190880A JP2003007354A (en) 2001-06-25 2001-06-25 Method and equipment for evaluating charasteristics of secondary lithium battery

Publications (1)

Publication Number Publication Date
JP2003007354A true JP2003007354A (en) 2003-01-10

Family

ID=19029582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190880A Pending JP2003007354A (en) 2001-06-25 2001-06-25 Method and equipment for evaluating charasteristics of secondary lithium battery

Country Status (1)

Country Link
JP (1) JP2003007354A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047458A (en) * 2006-08-18 2008-02-28 Kri Inc Electrode for power storage device, and power storage device using it
JP2011501383A (en) * 2007-10-26 2011-01-06 サイオン パワー コーポレイション Battery electrode primer
WO2011070748A1 (en) * 2009-12-11 2011-06-16 パナソニック株式会社 Non-aqueous electrolyte secondary battery, and method for charging same
KR101555169B1 (en) 2012-10-30 2015-09-22 가부시키가이샤 엠티지 Implement for training facial muscle
CN105425158A (en) * 2015-11-12 2016-03-23 中国检验检疫科学研究院 Lithium ion battery low temperature performance detection method
US9616835B2 (en) 2013-03-21 2017-04-11 Denso Corporation Vehicle-mounted emergency report device
CN107290668A (en) * 2016-04-01 2017-10-24 中国电力科学研究院 The screening method for group matching that a kind of batteries of electric automobile echelon is utilized
CN107359370A (en) * 2017-07-11 2017-11-17 郑素珍 A kind of single fold method of lithium battery
CN111261905A (en) * 2020-01-21 2020-06-09 西安理工大学 Real-time monitoring method for electric quantity of single flow battery
CN115079015A (en) * 2022-08-22 2022-09-20 苏州时代华景新能源有限公司 Quality evaluation method and system for lithium battery
JP7345418B2 (en) 2020-03-27 2023-09-15 三井化学株式会社 Lithium ion secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047458A (en) * 2006-08-18 2008-02-28 Kri Inc Electrode for power storage device, and power storage device using it
JP2011501383A (en) * 2007-10-26 2011-01-06 サイオン パワー コーポレイション Battery electrode primer
US8871387B2 (en) 2007-10-26 2014-10-28 Sion Power Corporation Primer for battery electrode
US8968928B2 (en) 2007-10-26 2015-03-03 Sion Power Corporation Primer for battery electrode
WO2011070748A1 (en) * 2009-12-11 2011-06-16 パナソニック株式会社 Non-aqueous electrolyte secondary battery, and method for charging same
CN102356498A (en) * 2009-12-11 2012-02-15 松下电器产业株式会社 Non-aqueous electrolyte secondary battery, and method for charging same
KR101555169B1 (en) 2012-10-30 2015-09-22 가부시키가이샤 엠티지 Implement for training facial muscle
US9616835B2 (en) 2013-03-21 2017-04-11 Denso Corporation Vehicle-mounted emergency report device
CN105425158A (en) * 2015-11-12 2016-03-23 中国检验检疫科学研究院 Lithium ion battery low temperature performance detection method
CN105425158B (en) * 2015-11-12 2020-06-09 中国检验检疫科学研究院 Low-temperature performance detection method for lithium ion battery
CN107290668A (en) * 2016-04-01 2017-10-24 中国电力科学研究院 The screening method for group matching that a kind of batteries of electric automobile echelon is utilized
CN107359370A (en) * 2017-07-11 2017-11-17 郑素珍 A kind of single fold method of lithium battery
CN107359370B (en) * 2017-07-11 2019-08-16 徐州储盈电子科技有限公司 A kind of single fold method of lithium battery
CN111261905A (en) * 2020-01-21 2020-06-09 西安理工大学 Real-time monitoring method for electric quantity of single flow battery
CN111261905B (en) * 2020-01-21 2023-03-14 西安理工大学 Real-time monitoring method for electric quantity of single flow battery
JP7345418B2 (en) 2020-03-27 2023-09-15 三井化学株式会社 Lithium ion secondary battery
CN115079015A (en) * 2022-08-22 2022-09-20 苏州时代华景新能源有限公司 Quality evaluation method and system for lithium battery
CN115079015B (en) * 2022-08-22 2022-12-20 苏州时代华景新能源有限公司 Lithium battery quality evaluation method and system

Similar Documents

Publication Publication Date Title
Liu et al. Deterioration mechanism of LiNi 0.8 Co 0.15 Al 0.05 O 2/graphite–SiO x power batteries under high temperature and discharge cycling conditions
Chen et al. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate
Qiu et al. Electrochemical and electronic properties of LiCoO 2 cathode investigated by galvanostatic cycling and EIS
US11171326B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
US10784507B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP6323725B2 (en) Positive electrode active material used for lithium ion secondary battery
Wu et al. High-rate capability of lithium-ion batteries after storing at elevated temperature
JP2017152294A (en) Positive electrode active material and lithium ion secondary battery
EP1255319A2 (en) Electrode body evaluation method and lithium secondary cell using the same
US8900749B2 (en) Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode for capacitor, lithium ion secondary battery, and capacitor
JP2008021517A (en) Nonaqueous secondary battery
JP5002872B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
JP2003007354A (en) Method and equipment for evaluating charasteristics of secondary lithium battery
Bharathi et al. Electrochemical properties of Na 0.5 Bi 0.5 TiO 3 perovskite as an anode material for sodium ion batteries
JP2002343446A (en) Method for measuring amount of self-discharge of lithium ion secondary battery
JP2009087891A (en) Manufacturing method of positive-electrode active material, and manufacturing method of lithium secondary cell
CN106450425B (en) Nonaqueous electrolytic solution secondary battery
JP2009176533A (en) Lithium secondary cell inspecting method, and lithium secondary cell manufacturing method
Villevieille et al. A new ternary Li4FeSb2 structure formed upon discharge of the FeSb2/Li cell
Nordh Li4Ti5O12 as an anode material for Li ion batteries in situ XRD and XPS studies
WO2020194385A1 (en) Electrode, battery and battery pack
Cui et al. Effect of temperature on the electronic/ionic transport properties of porous LiNi0. 5Mn1. 5O4 with high voltage for lithium ion batteries
JP2003007341A (en) Characteristic evaluation method for secondary lithium battery
JP3683138B2 (en) Characterization method of lithium transition metal composite oxide for positive electrode active material of lithium secondary battery
Yuan et al. The phase structure and electrochemical performance of x Li 2 MnO 3·(1− x) LiNi 1/3 Co 1/3 Mn 1/3 O 2 during the synthesis and charge–discharge process