WO2020194385A1 - Electrode, battery and battery pack - Google Patents

Electrode, battery and battery pack Download PDF

Info

Publication number
WO2020194385A1
WO2020194385A1 PCT/JP2019/012132 JP2019012132W WO2020194385A1 WO 2020194385 A1 WO2020194385 A1 WO 2020194385A1 JP 2019012132 W JP2019012132 W JP 2019012132W WO 2020194385 A1 WO2020194385 A1 WO 2020194385A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
battery
binder
conductive agent
Prior art date
Application number
PCT/JP2019/012132
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 渡邉
佑介 並木
駿忠 中澤
哲郎 鹿野
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2019/012132 priority Critical patent/WO2020194385A1/en
Priority to JP2021508368A priority patent/JP7106748B2/en
Publication of WO2020194385A1 publication Critical patent/WO2020194385A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to electrodes, batteries and battery packs.
  • Motoji Jimbo et al . "Particle Handbook”, First Edition, Asakura Shoten, September 1, 1991, p. 151-152 Hayakawa Sohachiro ed .: “Powder Physical Property Measurement Method”, First Edition, Asakura Shoten, October 15, 1973, p. 257-259
  • electrodes are provided.
  • the electrode comprises an active material-containing layer.
  • the active material-containing layer contains active material particles, a binder, and a conductive agent.
  • the binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less is 0.035 mL / g or more and 0.050 mL / g or less.
  • the amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less.
  • This battery includes an electrode according to the first embodiment as a positive electrode, a negative electrode, and an electrolyte.
  • a battery pack is provided.
  • This battery pack comprises the battery according to the second embodiment.
  • FIG. 1 is an integrated pore volume distribution of the active material-containing layer of the electrode of the example according to the first embodiment.
  • FIG. 2 is a conceptual diagram showing a cross section of an active material-containing layer included in an example electrode according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing the outer peripheral portion of the active material particles in the active material-containing layer of FIG. 2 and the N atoms existing on the surface of the active material particles.
  • FIG. 4 is a conceptual diagram showing the outer peripheral length of the portion of the surface of the active material particles in the active material-containing layer of FIG. 3 in which the N element is present.
  • FIG. 5 is a schematic cross-sectional view of an example electrode according to the first embodiment.
  • FIG. 6 is a schematic notched perspective view of the non-aqueous electrolyte battery of the first example according to the second embodiment.
  • FIG. 7 is a schematic enlarged cross-sectional view of part A in FIG.
  • FIG. 8 is a schematic notched perspective view of the non-aqueous electrolyte battery of the second example according to the second embodiment.
  • FIG. 9 is a schematic exploded perspective view of an example battery pack according to the third embodiment.
  • FIG. 10 is a block diagram showing an electric circuit of the battery pack of FIG.
  • each figure is a schematic view for explaining the embodiment and promoting its understanding, and there are some differences in its shape, dimensions, ratio, etc. from the actual device, but these are described below and known techniques. The design can be changed as appropriate by taking into consideration.
  • electrodes are provided.
  • the electrode comprises an active material-containing layer.
  • the active material-containing layer contains active material particles, a binder, and a conductive agent.
  • the binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less is 0.035 mL / g or more and 0.050 mL / g or less.
  • the amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less.
  • the impurities brought into the battery tend to increase. For example, during a battery charge / discharge cycle or during long-term tests such as battery storage, impurities may react with the active material, resulting in increased battery resistance. This problem is particularly remarkable in a battery containing a high nickel-based positive electrode active material having a large residual alkaline component.
  • the surface of the active material particles may be coated with a binder at a coverage of 80% or more and less than 99%.
  • the frequency of contact between the active material particles and the conductive agent in the active material-containing layer decreases.
  • the initial resistance increases.
  • measures such as increasing the amount of the conductive agent or using a conductive agent having a large specific surface area can be considered.
  • the conductive agent tends to aggregate due to the hydrophobic interaction of carbon. Therefore, even with such measures, the frequency of contact between the active material particles and the conductive agent does not actually increase as expected.
  • the inventors have realized the electrode according to the first embodiment.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less in the integrated pore volume distribution by the mercury injection method of the active material-containing layer is an index of the dispersed state of the conductive agent in the active material-containing layer.
  • the pore volume is 0.035 mL / g or more and less than 0.050 mL / g, it means that the conductive agent is sufficiently and uniformly dispersed around the active material particles.
  • the contact frequency between the active material particles and the conductive agent can be increased while showing a high coverage by the binder.
  • Such electrodes can enhance electrical conduction between active material particles in the active material-containing layer.
  • the electrode according to the first embodiment can suppress deterioration of the active material particles due to expansion and / or contraction during charging / discharging.
  • the electrode according to the first embodiment can prevent a local overvoltage from being generated in the active material-containing layer and deterioration of the active material particles.
  • the electrodes according to the first embodiment can realize excellent input / output performance and excellent life characteristics.
  • the coverage of the binder is preferably 85% or more and 95% or less, and more preferably 90% or more and 95% or less.
  • the conductive agent contained in the active material-containing layer is excessively aggregated, and the active material. Insufficient contact between the particles and the conductive agent. As a result, this electrode exhibits high resistance and cannot achieve excellent input / output performance.
  • the conductive agent contained in the active material-containing layer is in a hyperdispersed state.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less is preferably 0.037 mL / g or more and 0.047 mL / g or less, and 0.040 mL / g or more and 0.047 mL / g. It is more preferably g or less.
  • the binder can contain a carbonyl group.
  • the binder may contain polyvinylidene fluoride containing a carbonyl group.
  • the active material particles may contain a carbonyl group on the surface. The carbonyl group may be attached to the surface of the active material particles. It can be said that such a carbonyl group modifies the surface of the active material particles, for example.
  • Electrodes that generate less than 9 mL / g of carbon dioxide from the active material-containing layer by pyrolysis gas chromatography from 150 ° C to 600 ° C do not sufficiently contain components that can hydrogen bond with the surface of the conductive agent. .. Therefore, such an electrode cannot sufficiently suppress the aggregation of the conductive agent. Electrodes that generate more than 10 mL / g of carbon dioxide contain too much carbon dioxide-generating component. Such an electrode generates a large amount of gas when stored at a high temperature, and its life characteristic is significantly deteriorated.
  • the amount of carbon dioxide generated from the active material-containing layer is preferably 9.3 mL / g or more and 10 mL / g or less, and more preferably 9.4 mL / g or more and 9.8 mL / g or less.
  • the electrode according to the first embodiment includes an active material-containing layer.
  • the electrode according to the first embodiment may further include a current collector.
  • the current collector can have, for example, a strip-shaped planar shape.
  • the current collector can have, for example, a first surface and a second surface as the opposite surface of the first surface.
  • the active material-containing layer can be formed on one surface of the current collector or on both surfaces.
  • the active material-containing layer may be formed on either the first surface or the second surface of the current collector, or both the first surface and the second surface of the current collector. May be formed in.
  • the current collector may include a portion that does not support the active material-containing layer. This portion can be used, for example, as a current collecting tab.
  • the electrode according to the first embodiment may include a current collector tab separate from the current collector.
  • the active material-containing layer contains active material particles, a binder, and a conductive agent.
  • the active material particles and the binder that covers the surface of the active material particles can form, for example, a complex. That is, the active material-containing layer can include, for example, a composite containing active material particles and a binder that covers the surface of the active material particles with a coverage of 80% or more and less than 99%.
  • the complex can include active material particles and a binder that covers the surface of some of the active material particles.
  • the electrodes according to the first embodiment can be used in a battery.
  • the electrode according to the first embodiment can be used as, for example, a positive electrode in a battery.
  • the battery can be, for example, a secondary battery that can be repeatedly charged and discharged.
  • An example of a secondary battery is a non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte.
  • a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent can be mentioned.
  • a sheet containing a material having high electrical conductivity can be used.
  • an aluminum foil or an aluminum alloy foil can be used as the current collector.
  • the thickness thereof is, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • the aluminum alloy foil can include magnesium, zinc, silicon and the like. Further, the content of transition metals such as iron, copper, nickel and chromium contained in the aluminum alloy foil is preferably 1% or less.
  • the active material particles are, for example, positive electrode active material particles.
  • the positive electrode active material include lithium cobalt composite oxide (lithium cobalt oxide; LCO), lithium nickel cobalt manganese composite oxide (NCM), lithium nickel cobalt aluminum composite oxide (NCA), and lithium manganese having a layered rock salt structure.
  • Composite oxide (lithium manganate; LMO), lithium nickel-manganese composite oxide (LNMO), lithium iron phosphate (LFP) having an olivine-type crystal structure, manganese-containing iron lithium phosphate (LMP), lithium nickel composite oxidation Things (LNO), lithium nickel cobalt composite oxide (LNCO) and lithium manganese cobalt composite oxide (LMCO) can be mentioned.
  • the active material particles preferably contain at least one selected from the group consisting of these composite oxides.
  • the lithium cobalt composite oxide can have, for example, a composition represented by the general formula Li a CoO 2 (the subscript a is in the range of 0.9 ⁇ a ⁇ 1.2).
  • Lithium manganese composite oxide for example, the general formula Li d Mn 2 O 4 or Li e MnO 2 (subscript d is in the range of 0.9 ⁇ d ⁇ 1.2, the subscript e is 0.9 ⁇ It can have a composition represented by (within the range of e ⁇ 1.2).
  • Lithium-manganese composite oxide having a composition represented by the general formula Li d Mn 2 O 4, for example, it may have a spinel structure.
  • the lithium nickel-manganese composite oxide is, for example, the general formula Li f Ni 1-x Mn x O 2 (the subscript x satisfies 0 ⁇ x ⁇ 1, and the subscript f is within the range of 0.9 ⁇ f ⁇ 1.2.
  • Lithium iron phosphate for example, the general formula Li g FePO 4 (subscript g is in the range of 0.9 ⁇ g ⁇ 1.2) can have a composition represented by.
  • the manganese-containing iron phosphate is, for example, the general formula Li h Mn x Fe 1-x PO 4 (LFP): the subscript h is in the range of 0.9 ⁇ h ⁇ 1.2, and the subscript x is 0 ⁇ . It can have a composition represented by (within the range of x ⁇ 1).
  • the lithium nickel composite oxide can have, for example, a composition represented by the general formula Li i NiO 2 (the subscript i is in the range of 0.9 ⁇ i ⁇ 1.2).
  • the lithium nickel-cobalt composite oxide is, for example, the general formula Li j Ni 1-x Co x O 2 (the subscript j is in the range of 0.9 ⁇ j ⁇ 1.2, and the subscript x is 0 ⁇ x ⁇ . It can have a composition represented by (within the range of 1).
  • the lithium manganese-cobalt composite oxide is, for example, the general formula Li k Mn x Co 1-x O 2 (the subscript k is in the range of 0.9 ⁇ k ⁇ 1.2, and the subscript x is 0 ⁇ x ⁇ . It can have a composition represented by (within the range of 1).
  • the content of nickel in the transition metal in the active material particles is preferably 40 mol% or more. Although such active material particles can realize a high charge / discharge capacity, they can avoid deterioration due to expansion and / or contraction during charge / discharge for the reason described above, and have excellent input / output performance. Life characteristics and can be maintained.
  • the content of nickel in the transition metal in the active material particles is, for example, 95 mol% or less.
  • the active material particles may exist as primary particles, or may be secondary particles formed by agglomeration of primary particles. Alternatively, it may be a mixture of primary particles and secondary particles.
  • the average primary particle size of the active material particles is preferably 0.05 ⁇ m or more and 1 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the average secondary particle diameter of the active material particles is preferably 3 ⁇ m or more and 12 ⁇ m or less, and more preferably 3 ⁇ m or more and 6 ⁇ m or less.
  • the active material particles contain a carbonyl group on the surface.
  • the carbonyl group may be attached to the surface of the active material particles, such as a portion of the surface.
  • the carbonyl group may be attached to the surface of the secondary particles, or may be attached to the surface of at least some of the primary particles constituting the secondary particles. Good. The method for producing an electrode containing active material particles containing a carbonyl group on the surface will be described in detail later.
  • the conductive agent can play a role of assisting electrical conduction between the active material particles and a role of assisting electrical conduction from the active material particles to the current collector, for example, in the active material-containing layer.
  • the conductive agent can contain a carboxyl group and / or a hydroxyl group.
  • Carboxyl groups and / or hydroxyl groups can be included, for example, on the surface of the conductive agent.
  • the carboxyl group and / or the hydroxyl group can be introduced into the conductive agent by the treatment with a strong acid described later.
  • the carbonyl group that can be contained on the surface of the active material particles can also be hydrogen bonded to the carboxyl group and / or the hydroxyl group that can be contained in the conductive agent.
  • a carbon substance such as acetylene black, ketjen black, lamp black, furnace black, graphite, carbon fiber, graphene can be used.
  • the conductive agent preferably contains Ketjen Black.
  • Ketjen Black can have, for example, a specific surface area of 200 m 2 / g or more and 500 m 2 / g or less. By using Ketjen black, the frequency of contact with the active material particles can be further increased.
  • the conductive agent one of the above-mentioned materials may be used, or a mixture of two or more kinds may be used.
  • the average particle size of the conductive agent is, for example, 20 nm or more and 50 nm or less.
  • the binder can exhibit the function of binding the active material and the current collector.
  • binders are mainly polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber (SBR), polypropylene (PP), polyethylene (PE), and acrylic copolymers.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • PP polypropylene
  • PE polyethylene
  • acrylic copolymers acrylic copolymers.
  • the binder for example, polyacrylonitrile (PAN)
  • PAN polyacrylonitrile
  • CMC carboxymethyl cellulose
  • the binder comprises PVdF containing a carbonyl group and / or an acrylic copolymer containing a carbonyl group.
  • the carbonyl group is included, for example, in the functional group of each binder.
  • the binder may be, for example, one of the materials listed above, or a mixture of two or more.
  • the binder may include a first binder that covers the active material particles and a second binder that is different from the first binder.
  • the second binder can bind the composites containing the active material particles and the first binder to each other, and can also bind these composites to the current collector.
  • the second binder may contain the same material as the material of the first binder.
  • the ratio (blending ratio) of the active material particles, the conductive agent and the binder in the active material-containing layer is 75% by weight or more and 96% by weight or less, 3% by weight or more and 15% by weight or less, and 1% by weight or more and 10% by weight or less, respectively. It is preferably 90% by weight or more and 95% by weight or less, 3% by weight or more and 5% by weight or less, and 2% by weight or more and 5% by weight or less.
  • the electrode according to the first embodiment can be manufactured, for example, by the method described below.
  • Preparation of electrode paint ⁇ Preparation of pre-dispersion liquid A> Prepare the active material particles and a binder containing a carbonyl group. These are added to a suitable solvent, such as N-methylpyrrolidone, to give a mixture. The resulting mixture is further mixed in a disperser capable of applying a high shear force. Examples of such a disperser include a disperser using media. Examples of the disperser using the media include a ball mill and a bead mill. By such dispersion, the pre-dispersion liquid A is obtained.
  • the pre-dispersion liquid A contains a complex containing the active material particles and a binder covering the surface of the active material particles.
  • Preparation of pre-dispersion liquid B Prepare the conductive agent and the binder.
  • the conductive agent one treated with a strong acid is used.
  • the strong acid include concentrated sulfuric acid. Treatment with a strong acid allows sufficient introduction of carboxyl groups and / or hydroxyl groups on the surface of the conductive agent.
  • the binder prepared here may or may not contain a carbonyl group. These are then charged into a suitable solvent, such as N-methylpyrrolidone, to give a mixture. The resulting mixture is further mixed, for example, in a bead mill disperser. Thus, the pre-dispersion liquid B is obtained.
  • a suitable solvent such as N-methylpyrrolidone
  • the pre-dispersion liquid A and the pre-dispersion liquid B are mixed.
  • the resulting mixture is further mixed and dispersed, for example in a roll mill device.
  • an electrode paint is obtained.
  • the pre-dispersion liquid A containing the active material particles and the pre-dispersion liquid B containing the conductive agent are separately first dispersed.
  • the active material particle having a large particle size and a large amount and a conductive agent having a small particle size and a small amount as compared with the active material particle are dispersed together with a binder, the active material particle having a large volume becomes conductive with a small volume. Inhibits the dispersion of the agent.
  • the conductive agent is dispersed together with the binder before being mixed with the active material particles, the factors that hinder the dispersion of the conductive agent can be reduced.
  • the pre-dispersion liquid B obtained by pre-dispersing the conductive agent is excellent in the dispersed state of the conductive agent.
  • an electrode coating material having an excellent dispersion of the conductive agent can be prepared.
  • the pre-dispersion liquid B containing the conductive agent subjected to the strong acid treatment is prepared.
  • the carboxyl group and / or hydroxyl group contained in this conductive agent can be hydrogen-bonded to the carbonyl group of the complex contained in the pre-dispersion liquid A when the pre-dispersion liquid A and the pre-dispersion liquid B are mixed. This hydrogen bond helps prevent agglomeration of the conductive agent.
  • a sufficient amount of carboxyl groups and / or hydroxyl groups can be introduced into the conductive agent by the strong acid treatment, so that aggregation of the conductive agent can be more sufficiently prevented.
  • the conductive agent can be more uniformly dispersed around the active material particles.
  • the electrode paint thus obtained is applied to the surface of the current collector.
  • the coating is then dried.
  • the coating film is pressed together with the current collector.
  • the electrode density after pressing (density of the active material-containing layer that does not include the current collector) is, for example, 2.5 g / cm 3 or more and 3.5 g / cm 3 or less.
  • the density is preferably 2.8 g / cm 3 or more and 3.3 g / cm 3 or less, and more preferably 3.0 g / cm 3 or more and 3.3 g / cm 3 or less.
  • the specific surface area of the conductive agent differs depending on the type.
  • the integrated pore volume distribution also changes depending on the pressing conditions. Therefore, for example, the type of the conductive agent (particularly the specific surface area), the dispersion condition of the pre-dispersion liquid, the dispersion condition of the electrode coating material, the compounding ratio of the active material particles, the conductive agent and the binder, and the pressing condition of the coating film are combined and adjusted. Thereby, the integrated pore volume distribution can be adjusted. Specific examples of combinations of these conditions will be shown in the subsequent examples.
  • the amount of the binder containing a carbonyl group used in the preparation of the electrode coating material and the content of the carbonyl group contained in the binder are combined and adjusted.
  • the amount of carbon dioxide generated from the active material-containing layer of the obtained electrode can be adjusted. Specific examples of combinations of these conditions will be shown in the subsequent examples.
  • the production method of the second example is the same as the production method of the first example except for the method of preparing the pre-dispersion liquid A.
  • active material particles active material particles stored for 24 hours or more in an atmospheric environment where the dew point is not controlled are used.
  • Such active material particles can contain lithium carbonate (Li 2 CO 3 ) on the surface. That is, such active material particles can contain a carbonyl group on the surface.
  • Storage in an air environment is preferably 12 hours or more and 48 hours or less, and more preferably 24 hours or more and 36 hours or less.
  • a binder containing a carbonyl group may or may not be used in the preparation of the pre-dispersion liquid A and / or the pre-dispersion liquid B.
  • the amount of carbon dioxide generated from the active material-containing layer of the obtained electrode is adjusted by adjusting the composition of the active material particles and the storage time in an atmospheric environment in combination. can do.
  • a binder containing a carbonyl group is used in the preparation of the pre-dispersion liquid A and / or the pre-dispersion liquid B, in addition to the above conditions, the amount of the binder containing the carbonyl group and the carbonyl group contained in the binder The content is also adjusted in combination. Specific examples of combinations of these conditions will be shown in the subsequent examples. (Third example)
  • a third example another example of a method for producing an electrode containing active material particles containing a carbonyl group on the surface will be described.
  • the production method of the third example is the same as the production method of the first example except for the method of preparing the pre-dispersion liquid A.
  • an additive is further used when preparing the pre-dispersion liquid A.
  • the additive include substances containing a carboxyl group such as acetic acid, oxalic acid, phthalic acid, and maleic acid.
  • the atmosphere of the predisperse A is preferably an air atmosphere at normal temperature and pressure. It is more preferable to leave it while stirring in this atmosphere.
  • a binder containing a carbonyl group may or may not be used in the preparation of the pre-dispersion liquid A and / or the pre-dispersion liquid B.
  • the active material particles are used as active material particles for 24 hours or more in an air environment where dew point control is not performed. Stored active material particles can also be used.
  • the type and amount of the electrode additive and the leaving time of the pre-dispersion liquid A for reacting the additive with the surface of the active material particles are adjusted in combination.
  • the amount of carbon dioxide generated from the active material-containing layer of the electrode to be formed can be adjusted.
  • the amount of the binder containing the carbonyl group and the carbonyl group contained in the binder is also adjusted in combination.
  • active material particles stored for 24 hours or more in an air environment without dew point control are used as the active material particles
  • the composition of the active material particles and the storage time in the air environment are also adjusted in combination. Specific examples of combinations of these conditions will be shown in the subsequent examples.
  • the electrodes obtained as described above may be cut to a predetermined size. Further, a current collector tab separate from the current collector may be connected to the current collector by welding, for example.
  • Electrodes incorporated in the non-aqueous electrolyte battery are pretreated according to the following procedure. First, the non-aqueous electrolyte battery is disassembled in a glove box filled with argon, and the electrode to be measured is taken out from the non-aqueous electrolyte battery. The removed electrodes are then washed with methyl ethyl carbonate (MEC). The washed electrodes are then dried in an atmosphere of 25 ° C. and a gauge pressure of ⁇ 90 Pa. The dried electrodes are the subject of each analysis described below. Hereinafter, the electrode to be measured is simply referred to as an “electrode”.
  • MEC methyl ethyl carbonate
  • the pore distribution measuring device for example, Shimadzu Autopore 9520 type can be used.
  • one tip sample is cut into a size of about 25 mm width, folded, taken in a standard cell, and inserted into a measuring chamber.
  • the measurement is performed under the conditions of an initial pressure of 20 kPa (about 3 psia, equivalent to a pore diameter of about 60 ⁇ m) and a final pressure of 414000 kPa (about 60,000 psia, equivalent to a pore diameter of about 0.003 ⁇ m).
  • the average value of the three samples is used as the measurement result.
  • the pore specific surface area is calculated by assuming that the shape of the pore is a cylinder.
  • P is the applied pressure
  • D is the pore diameter
  • is the surface tension of mercury (480 dyne ⁇ cm -1 )
  • is the contact angle between mercury and the wall surface of the pores, which is 140 °. Since ⁇ and ⁇ are constants, the relationship between the applied pressure P and the pore diameter D can be obtained from the Washburn equation, and the pore diameter and its volume distribution can be derived by measuring the mercury intrusion volume at that time. Can be done.
  • the integrated pore volume distribution of the active material-containing layer can be obtained.
  • the integrated pore volume distribution obtained by the above procedure reflects not only the pore diameter of the active material-containing layer but also the pore diameter of the current collector. However, the pore diameter of the current collector is sufficiently smaller than the pore diameter of the active material-containing layer, and the abundance ratio is small, so that it can be ignored. From the obtained distribution, the pore volume (mL / g) of the region where the pore diameter is 0.1 ⁇ m or less can be determined.
  • the reference weight here is the weight (g) of the active material-containing layer used for the measurement.
  • FIG. 1 shows the integrated pore volume distribution of the active material-containing layer of the electrode of the example according to the first embodiment.
  • the integrated pore volume distribution shown in FIG. 1 is the integrated pore volume distribution for the electrode of Example 6 shown in the latter part.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less is 0.047 mL / g.
  • a pyrolysis gas chromatography mass spectrometer (Pyro-GC / MS) is used for the analysis.
  • a pyrolyzer manufactured by Frontier Lab Co., Ltd. can be used. In this device, the pyrolyzer holds the electrodes at 40 ° C. for 8 minutes. The electrode is then heated to 600 ° C. at a rate of 5 ° C./min. By this treatment, among the components contained in the active material-containing layer, the components that decompose at a temperature of 600 ° C. can be thermally decomposed. Then, by using the gas chromatograph mass spectrometer of this apparatus, it is possible to identify the components generated by thermal decomposition. In this analysis, the temperature of the gas chromatograph mass spectrometer is controlled to be constant at 250 ° C.
  • the active material-containing layer is peeled off from the current collector.
  • the weight of the current collector thus obtained is measured.
  • the weight of the current collector is subtracted from the weight of the electrode measured earlier to obtain the weight of the active material-containing layer.
  • the amount of carbon dioxide generated is the amount of carbon dioxide generated per 1 g of the active material-containing layer.
  • the method for producing the cross section for observation is not limited as long as the cross section can be obtained, and is appropriately selected depending on the ease of processing the electrode.
  • the electrode may be processed as it is, or if necessary, the electrode may be processed in which the pores of the active material-containing layer are filled with a filler such as resin. These electrodes are cut to obtain a sample with the cut surface exposed. Examples of the cutting method include cutting with a razor or a microtome, cutting in liquid nitrogen, cutting with an Ar ion beam or a Ga ion beam, and the like.
  • the sample is introduced into the sample chamber while being maintained in an inert atmosphere.
  • the cross section of the active material-containing layer is observed by FE-SEM at a magnification of 30,000 times.
  • mapping images of constituent elements peculiar to the active material particles such as metal elements such as Ni, Mn, Co and Fe, are obtained.
  • a mapping image for a binder-specific constituent element for example, an element of F (for example, polyvinylidene fluoride) or N (for example, polyacrylonitrile) is obtained.
  • Images can be obtained by staining styrene-butadiene rubber (SBR) with osmium tetroxide (OsO 4 ) and mapping for the elements of Os.
  • SBR styrene-butadiene rubber
  • OsO 4 osmium tetroxide
  • the largest particles and the smallest particles are excluded.
  • the mapping image of the constituent elements of the binder in the outer peripheral portion of the particles is binarized, and the abundance ratio of the elements is obtained.
  • the value obtained as a result is defined as the binder coverage (%) on the surface of the active material particles.
  • the binarization threshold is set as follows. In the case of the F element mapping image, it is determined that the F element is present at a position where the fluorine concentration obtained from the F—Ka spectrum of SEM-EDX is 1.5% by weight or more and 3% by weight or less. In the case of the N element mapping image, it is determined that the N element is present at a position where the nitrogen concentration obtained from the N-Ka spectrum of SEM-EDX is 1.5% by weight or more and 5% by weight or less.
  • FIG. 2 is a conceptual diagram showing a cross section of the active material-containing layer included in the electrode of the example according to the first embodiment.
  • FIG. 3 is a conceptual diagram showing the outer peripheral portion of the active material particles in the active material-containing layer of FIG. 2 and the N atoms existing on the surface of the active material particles.
  • FIG. 4 is a conceptual diagram showing the outer peripheral length of the portion of the surface of the active material particles in the active material-containing layer of FIG. 3 in which the N element is present.
  • FIG. 2 schematically shows the active material particles 10 and the binder molecules 11 confirmed when the cross section of the active material-containing layer is observed by the FE-SEM measurement described above. Further, FIG. 2 more schematically shows the N element 12 confirmed from the mapping image of the nitrogen (N) element obtained by subjecting the cross section of the active material-containing layer to the EDX analysis described above.
  • the active material-containing layer of the electrode of this example contains a first binder containing N atoms. Therefore, in FIG. 2, the distribution of the binder molecule 11 and the distribution of the N element 12 overlap. Further, for simplification of the description, in FIG. 2, all the active material particles 10 are represented as primary particles. On the other hand, the conductive agent is not shown.
  • the N element 12 existing (adjacent) on the outer peripheral portion 10a and the outer peripheral portion 10a of the surface of the active material particle 10 is extracted from the cross section shown in FIG.
  • FIG. 4 shows an N-adjacent outer peripheral portion 10b, which is a portion of the outer peripheral portion 10a shown in FIG. 3 to which the N element 12 is adjacent.
  • the length of the N-adjacent outer peripheral portion 10b can be calculated based on the number of points of the N element 12 shown in FIG.
  • the coverage of the active material particles with a binder for example, a nitrogen atom can be calculated.
  • Coverage (%) (length of outer peripheral portion 10b adjacent to N on the surface of active material particles 10) / (length of outer peripheral portion 10a on the surface of active material particles 10) ⁇ 100% (E) Average particle diameters of active material particles and conductive agent 30 active materials and conductive agents are arbitrarily searched from the SEM images of a plurality of fields of view obtained at the same time during the SEM observation and EDX analysis described above. The average value of the particle diameters of these particles is taken as the average particle diameter.
  • FIG. 5 is a schematic cross-sectional view of an example electrode according to the first embodiment.
  • the positive electrode 3 shown in FIG. 5 includes a current collector 3a and an active material-containing layer 3b formed on the surfaces of both the current collectors 3a.
  • the current collector 3a has a band shape.
  • the current collector 3a includes a portion that does not support the active material-containing layer 3b on any surface. This part can act as a current collector tab.
  • the active material-containing layer included in the electrode according to the first embodiment contains active material particles, a binder, and a conductive agent.
  • the binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less is 0.035 mL / g or more and 0.050 mL / g or less.
  • the amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less.
  • the binder covers the surface of the active material particles with a high coverage, but the conductive agent can be uniformly present around the active material particles in a sufficient amount. Therefore, in this active material-containing layer, the active material particles and the conductive agent can exhibit a high contact frequency. As a result, the electrode according to the first embodiment can realize a battery capable of exhibiting excellent input / output performance and excellent life characteristics.
  • This battery includes an electrode according to the first embodiment as a positive electrode, a negative electrode, and an electrolyte.
  • the battery according to the second embodiment includes the electrodes according to the first embodiment, it can exhibit excellent input / output performance and excellent life characteristics.
  • the battery according to the second embodiment can be repeatedly charged and discharged, for example. Therefore, the battery according to the second embodiment can be said to be a secondary battery.
  • the battery according to the second embodiment is, for example, a non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte.
  • the battery according to the second embodiment may be a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent.
  • the battery according to the second embodiment includes an electrode according to the first embodiment as a positive electrode. Therefore, the positive electrode included in the battery according to the second embodiment includes the active material-containing layer provided by the electrode according to the first embodiment. Further, the positive electrode can be provided with a current collector that can be provided by the electrode according to the first embodiment.
  • the current collector, the active material-containing layer, the current collecting tab, and the active material particles which can be provided by the electrode according to the first embodiment, are each subjected to positive electrode current collection. It is called a body, a positive electrode active material-containing layer, a positive electrode current collecting tab, and a positive electrode active material particle.
  • the positive electrode refer to the description of the electrode according to the first embodiment.
  • the battery according to the second embodiment further includes a negative electrode.
  • the negative electrode can include, for example, a negative electrode current collector and a negative electrode active material-containing layer formed on the negative electrode current collector.
  • the negative electrode active material-containing layer may be provided on the surface of either one of the negative electrode current collectors, or may be provided on both surfaces.
  • the negative electrode active material-containing layer can contain a negative electrode active material, a conductive auxiliary agent, and a binder.
  • the negative electrode current collector can also include a portion that does not support a negative electrode active material-containing layer on the surface. This portion can also serve, for example, as a negative electrode current collector tab. Alternatively, the negative electrode may include a negative electrode current collector tab that is separate from the negative electrode current collector.
  • the negative electrode can be manufactured by the following procedure, for example. First, the negative electrode active material, the conductive agent and the binder are dissolved in a suitable solvent such as N-methylpyrrolidone and mixed. The resulting mixture is subjected to dispersion with a bead mill to prepare a paste-like negative electrode paint. This negative electrode paint is applied to a band-shaped negative electrode current collector, and the coating film is dried. Then, the dried coating film is pressed together with the negative electrode current collector. Thus, a negative electrode can be obtained. The obtained negative electrode may be cut to a predetermined size. Further, a negative electrode current collector tab separate from the negative electrode current collector may be connected to the negative electrode current collector by welding, for example.
  • a suitable solvent such as N-methylpyrrolidone
  • the positive electrode and the negative electrode can be arranged so that the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other to form an electrode group.
  • a member that allows lithium ions to permeate but does not conduct electricity, such as a separator, can be arranged between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
  • the electrode group can have various structures.
  • the electrode group may have a stack type structure or a wound type structure.
  • the stack type structure has, for example, a structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated with a separator sandwiched between the negative electrode and the positive electrode.
  • the electrode group of the wound type structure may be, for example, a can-shaped structure in which a negative electrode and a positive electrode are laminated with a separator sandwiched between them, or by pressing the can-shaped structure.
  • the obtained flat structure may be used.
  • the battery according to the second embodiment may further include a positive electrode terminal and a negative electrode terminal.
  • the positive electrode current collector tab can be electrically connected to the positive electrode terminal.
  • the negative electrode current collector tab can be electrically connected to the negative electrode terminal.
  • the positive electrode terminal and the negative electrode terminal can extend from the electrode group.
  • the non-aqueous electrolyte battery which is an example of the battery according to the second embodiment
  • the non-aqueous electrolyte can be held, for example, in a state of being impregnated in the electrode group.
  • the electrolytic solution containing the electrolyte can be held, for example, in a state of being impregnated in the electrode group.
  • the battery according to the second embodiment may further include an exterior member.
  • the exterior member can accommodate, for example, a group of electrodes and an electrolyte.
  • the exterior member may have a structure capable of extending a part of the positive electrode terminal and a part of the negative electrode terminal to the outside thereof.
  • the exterior member may include two external terminals, each of which is electrically connected to each of the positive electrode terminal and the negative electrode terminal.
  • the exterior member itself can act as either a positive electrode terminal or a negative electrode terminal.
  • Electrode For the positive electrode, refer to the description of the electrode according to the first embodiment.
  • the negative electrode current collector a sheet containing a material having high electrical conductivity and capable of suppressing corrosion in the working potential range of the negative electrode can be used.
  • an aluminum foil or an aluminum alloy foil can be used as the negative electrode current collector.
  • the thickness thereof is, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • the aluminum alloy foil can include magnesium, zinc, silicon and the like. Further, the content of transition metals such as iron, copper, nickel and chromium contained in the aluminum alloy foil is preferably 1% or less.
  • the negative electrode active material for example, a metal, a metal alloy, a metal oxide, a metal sulfide, a metal nitride, a graphitic material, a carbonaceous material, or the like can be used.
  • the metal oxide include compounds containing titanium such as titanium dioxide having a monoclinic crystal structure (for example, TiO 2 (B)) and lithium titanium composite oxide.
  • the metal sulfide include titanium sulfide such as TiS 2 , molybdenum sulfide such as MoS 2 , FeS, FeS 2 , and Li l FeS 2 (subscript h is 0.9 ⁇ l ⁇ 1.2). Such as iron sulfide.
  • Examples of the graphitic material and the carbonaceous material include natural graphite, artificial graphite, coke, vapor-grown carbon fiber, mesophase pitch-based carbon fiber, spherical carbon, and resin calcined carbon. It is also possible to mix and use a plurality of different negative electrode active materials.
  • spinel-type lithium titanate lithium titanate having a spinel-type crystal structure
  • This compound has a composition represented by the general formula Li 4 + w Ti 5 O 12 , 0 ⁇ w ⁇ 3, and has a spinel-type crystal structure.
  • the spinel-type lithium titanate exhibits electron conductivity in a state where lithium is inserted (w> 0), and the electron conductivity improves as the amount of lithium inserted increases.
  • lithium titanium composite oxide examples include a niobium titanium composite oxide having a monoclinic crystal structure and a titanium-containing composite oxide having an orthorhombic crystal structure. Can be mentioned.
  • niobium-titanium composite oxide having a monoclinic-type crystal structure is the general formula Li m Ti 1-n M1 n Nb 2-o M2 o O 7 + ⁇ .
  • M1 is at least one selected from the group consisting of Zr, Si and Sn.
  • M2 is at least one selected from the group consisting of V, Ta and Bi.
  • Each subscript in the general formula is 0 ⁇ m ⁇ 5, 0 ⁇ n ⁇ 1, 0 ⁇ o ⁇ 2, ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • Specific examples of the monoclinic niobium titanium composite oxide can include a composite oxide having a composition represented by the general formula Li m Nb 2 TiO 7 (0 ⁇ m ⁇ 5).
  • monoclinic niobium titanium composite oxide a compound represented by the general formula Li p Ti 1-q M3 q + r Nb 2-r O 7- ⁇ and the like.
  • M3 is at least one selected from Mg, Fe, Ni, Co, W, Ta, and Mo.
  • Each subscript in the composition formula is 0 ⁇ p ⁇ 5, 0 ⁇ q ⁇ 1, 0 ⁇ r ⁇ 2, ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • titanium-containing composite oxide having an orthorhombic crystal structure is the general formula Li 2 + s M (I) 2-t Ti 6-u M (II) v.
  • examples thereof include compounds represented by O 14 + ⁇ .
  • M (I) is at least one selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs, Rb and K.
  • M (II) is at least one selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Y, Fe, Co, Cr, Mn, Ni and Al.
  • Each subscript in the composition formula is 0 ⁇ s ⁇ 6, 0 ⁇ t ⁇ 2, 0 ⁇ u ⁇ 6, 0 ⁇ v ⁇ 6, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5.
  • Specific examples of the orthorhombic titanium-containing composite oxide include compounds having a composition represented by the general formula Li 2 + s Na 2 Ti 6 O 14 (0 ⁇ s ⁇ 6).
  • the negative electrode active material it is preferable to use a titanium-containing oxide having a small expansion and contraction of the active material during charging and discharging. It is more preferable that the negative electrode active material contains lithium titanate having a composition represented by the composition formula Li 4 Ti 5 O 12 , which has the characteristic of being distortion-free without expansion and contraction of the active material during charging and discharging.
  • the negative electrode active material contains lithium titanate having a composition represented by the composition formula Li 4 Ti 5 O 12 , which has the characteristic of being distortion-free without expansion and contraction of the active material during charging and discharging.
  • the conductive agent can play a role of assisting electrical conduction between the negative electrode active materials and a role of assisting electrical conduction from the negative electrode active material to the negative electrode current collector, for example, in the negative electrode active material-containing layer.
  • carbon black such as acetylene black or a carbon substance such as graphite, carbon fiber or graphene can be used.
  • the binder can show the function of binding the active material and the current collector.
  • the binder of the negative electrode for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or fluorine-based rubber can be used.
  • the proportions (blending ratio) of the negative electrode active material, the conductive agent, and the binder contained in the negative electrode active material-containing layer are preferably 70 to 95% by weight, 0 to 25% by weight, and 2 to 10% by weight, respectively. More preferably, it is 85 to 95% by weight, 3 to 10% by weight and 2 to 5% by weight.
  • the separator is not particularly limited as long as it has insulating properties.
  • a porous film or non-woven fabric made of a polymer such as polyolefin, cellulose, polyethylene terephthalate, polyamide, polyamideimide and vinylon can be used.
  • the material of the separator may be one kind, or two or more kinds may be used in combination.
  • Non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte (electrolyte salt) dissolved in the non-aqueous solvent.
  • lithium hexafluorophosphate LiPF 6
  • lithium tetrafluoroborate LiBF 4
  • lithium perchlorate LiClO 4
  • Non-aqueous solvents include, for example, propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeHF), 1,3-Dioxolane, sulfolane, acetonitrile (AN), diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC) can be used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DME 1,2-dimethoxyethane
  • GBL ⁇ -butyrolactone
  • THF tetrahydrofuran
  • 2-MeHF 2-methyltetrahydrofuran
  • 1,3-Dioxolane 1,3-Dioxolane
  • sulfolane 1,3-Dioxolane
  • sulfolane
  • the negative electrode current collecting tab, the positive electrode current collecting tab, the negative electrode terminal, and the positive electrode terminal are preferably formed of a material having high electrical conductivity. When connected to a current collector, these members are preferably made of the same material as the current collector in order to reduce contact resistance.
  • Exterior member for example, a metal container or a laminated film container can be used, but is not particularly limited.
  • a metal container as the exterior member, it is possible to realize a battery with excellent impact resistance and long-term reliability.
  • a container made of a laminated film as the exterior member, it is possible to realize a battery having excellent corrosion resistance and to reduce the weight of the battery.
  • the metal container for example, a container having a wall thickness within the range of 0.2 to 5 mm can be used. It is more preferable that the wall thickness of the metal container is 0.5 mm or less.
  • the metal container preferably contains at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al.
  • the metal container can be made of, for example, aluminum or an aluminum alloy.
  • the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc and silicon.
  • the alloy contains a transition metal such as iron, copper, nickel, and chromium, the content thereof is preferably 1% by weight or less.
  • the container made of a laminated film can be produced, for example, by using a laminated film having a thickness in the range of 0.1 to 2 mm.
  • the thickness of the laminated film is more preferably 0.2 mm or less.
  • a multilayer film including a metal layer and a resin layer sandwiching the metal layer is used.
  • the metal layer preferably contains a metal containing at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, or polyethylene terephthalate (PET) can be used.
  • the laminated film can be sealed into the shape of an exterior member by heat fusion.
  • the shape of the exterior member examples include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • the exterior member can have various dimensions depending on the application. For example, when the battery according to the second embodiment is used for a portable electronic device, the exterior member can be made smaller according to the size of the mounted electronic device.
  • the container may be a container for a large battery.
  • FIG. 6 is a schematic notched perspective view of the battery of the first example according to the second embodiment.
  • FIG. 7 is a schematic enlarged cross-sectional view of part A in FIG.
  • the battery 100 shown in FIGS. 6 and 7 includes a flat electrode group 1.
  • the flat electrode group 1 includes a negative electrode 2, a positive electrode 3, and a separator 4.
  • the negative electrode 2 includes a negative electrode current collector 2a and a negative electrode active material-containing layer 2b supported on the negative electrode current collector 2a.
  • the negative electrode active material-containing layer 2b is provided only on one surface of the negative electrode current collector 2a.
  • the negative electrode active material-containing layer 2b is provided on both surfaces of the negative electrode current collector 2a.
  • the positive electrode 3 includes a positive electrode current collector 3a and a positive electrode active material-containing layer 3b supported on the surfaces of both the positive electrode current collectors 3a. That is, the positive electrode 3 has the same structure as the electrode 3 of the example according to the first embodiment shown in FIG.
  • the negative electrode 2 and the positive electrode 3 are laminated with the separator 4 interposed between the negative electrode active material-containing layer 2b and the positive electrode active material-containing layer 3b.
  • Such an electrode group 1 can be obtained by the following procedure. First, one flat plate-shaped negative electrode 2 and one flat plate-shaped positive electrode 3 are laminated with a separator 4 interposed therebetween. Next, another separator 4 is laminated on the positive electrode active material-containing layer 3b that does not face the negative electrode 2 to form a laminated body. This laminate is wound with the negative electrode 2 on the outside. Then, after pulling out the winding core, press it to make it flat. Thus, the electrode group 1 shown in FIGS. 6 and 7 can be obtained.
  • a band-shaped negative electrode terminal 5 is electrically connected to the negative electrode 2.
  • a band-shaped positive electrode terminal 6 is electrically connected to the positive electrode 3.
  • the battery 100 shown in FIGS. 6 and 7 further includes an outer bag 7 made of a laminated film as a container.
  • the electrode group 1 is housed in an outer bag 7 made of a laminated film in a state in which the ends of the negative electrode terminal 5 and the positive electrode terminal 6 extend from the outer bag 7.
  • a non-aqueous electrolyte (not shown) is housed in the laminated film outer bag 7. That is, the battery 100 shown in FIGS. 6 and 7 is a non-aqueous electrolyte battery.
  • the non-aqueous electrolyte is impregnated in the electrode group 1.
  • the peripheral portion of the outer bag 7 is heat-sealed, thereby sealing the electrode group 1 and the non-aqueous electrolyte.
  • FIG. 8 is a partially cutaway perspective view of the battery of the second example according to the second embodiment.
  • the battery 100 shown in FIG. 8 is significantly different from the battery 100 of the first example in that the exterior material is composed of the metal container 7a and the sealing plate 7b.
  • the battery 100 shown in FIG. 8 includes an electrode group 1 similar to the electrode group 1 of the battery 100 of the first example.
  • the difference from the first example is that in the second example shown in FIG. 8, the member 5a used as the negative electrode terminal 5 in the first example is used as the negative electrode lead, and the positive electrode in the first example.
  • the point is that the member 6a used as the terminal 6 is used as the positive electrode lead.
  • such an electrode group 1 is housed in a metal container 7a.
  • the metal container 7a further houses the non-aqueous electrolyte.
  • the metal container 7a is sealed by a metal sealing plate 7b.
  • the sealing plate 7b is provided with a negative electrode terminal 5 and a positive electrode terminal 6.
  • An insulating member 7c is arranged between the positive electrode terminal 6 and the sealing plate 7b. As a result, the positive electrode terminal 6 and the sealing plate 7b are electrically insulated.
  • the negative electrode terminal 5 is connected to the negative electrode lead 5a as shown in FIG.
  • the positive electrode terminal 6 is connected to the positive electrode lead 6a.
  • the battery according to the second embodiment includes the electrodes according to the first embodiment, it can exhibit excellent input / output performance and excellent life characteristics.
  • a battery pack is provided.
  • This battery pack comprises the battery according to the second embodiment.
  • the battery pack according to the third embodiment may include a plurality of batteries. Multiple batteries can be electrically connected in series or electrically in parallel. Alternatively, a plurality of batteries can be connected in series and in parallel.
  • the battery pack according to the third embodiment may include a plurality of batteries according to the second embodiment. These batteries can be connected in series. Further, the batteries connected in series can form an assembled battery. That is, the battery pack according to the third embodiment may also include an assembled battery.
  • the battery pack according to the third embodiment can include a plurality of assembled batteries.
  • a plurality of assembled batteries can be connected in series, in parallel, or in a combination of series and parallel.
  • the battery pack 20 shown in FIGS. 9 and 10 includes a plurality of cell cells 21.
  • the battery shown in FIG. 8 can be used as the cell 21.
  • the plurality of cell cells 21 composed of the battery 100 shown in FIG. 8 described above are laminated so that the negative electrode terminals 5 and the positive electrode terminals 6 extending to the outside are aligned in the same direction, and are fastened with adhesive tape 22. It constitutes the assembled battery 23. As shown in FIG. 10, these cell cells 21 are electrically connected in series with each other.
  • the printed wiring board 24 is arranged so as to face the side surface of the cell 21 on which the negative electrode terminal 5 and the positive electrode terminal 6 extend. As shown in FIG. 10, the printed wiring board 24 is equipped with a thermistor 25, a protection circuit 26, and a terminal 27 for energizing an external device. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 6 located at the bottom layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 5 located on the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and electrically connected. These connectors 29 and 31 are connected to the protection circuit 26 through the wirings 32 and 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the cell 21 and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the positive side wiring 34a and the negative side wiring 34b between the protection circuit 26 and the energizing terminal 27 to the external device under predetermined conditions.
  • the predetermined condition is, for example, when the detection temperature of the thermistor 25 becomes equal to or higher than the predetermined temperature. Further, the predetermined condition is when overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected.
  • the detection of overcharging or the like is performed for each individual cell 21 or the entire assembled battery 23. When detecting the individual cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each cell 21.
  • a wiring 35 for voltage detection is connected to each of the cell 21s, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • a protective sheet 36 made of rubber or resin is arranged on each of the three side surfaces of the assembled battery 23 except for the side surface on which the positive electrode terminal 6 and the negative electrode terminal 5 protrude.
  • the assembled battery 23 is stored in the storage container 37 together with the protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is arranged on both inner side surfaces in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is arranged on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat-shrinkable tape may be used instead of the adhesive tape 22 to fix the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat-shrinkable tape is circulated, and then the heat-shrinkable tape is heat-shrinked to bind the assembled battery.
  • the cells 21 are connected in series in FIGS. 9 and 10, they may be connected in parallel in order to increase the battery capacity.
  • the assembled battery packs can also be connected in series and / or in parallel.
  • the mode of the battery pack according to the third embodiment is appropriately changed depending on the intended use.
  • the battery pack according to the third embodiment is suitably used for applications in which excellent cycle characteristics are required when a large current is taken out. Specifically, it is used as a power source for a digital camera, or as an in-vehicle battery for vehicles such as trains, two-wheeled to four-wheeled hybrid electric vehicles, two-wheeled to four-wheeled electric vehicles, and assisted bicycles. In particular, it is suitably used as an in-vehicle battery.
  • the battery pack according to the third embodiment includes the battery according to the second embodiment, it can exhibit excellent input / output performance and excellent life characteristics.
  • Example 1 An electrode was produced by the following procedure.
  • pre-dispersion liquid A particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared. The particles were stored for 30 hours in an air environment with no dew point control. The particles obtained were a mixture of primary and secondary particles. The average primary particle size was 0.5 ⁇ m, and the average secondary particle size was 7 ⁇ m.
  • polyvinylidene fluoride was prepared as a binder.
  • acetylene black was prepared as a conductive agent. This acetylene black was heated in concentrated sulfuric acid at 200 ° C. By this treatment, the amount of functional groups on the surface of the conductive agent can be increased. In fact, the obtained conductive agent had a hydroxyl group and a carboxyl group on the surface. The average particle size of the conductive agent was 40 nm.
  • polyvinylidene fluoride was prepared as a binder.
  • the electrode paint C was uniformly applied to both surfaces of the current collector made of strip-shaped aluminum foil.
  • the coating film was dried to obtain a strip containing a current collector and an active material-containing layer provided on the surface of the current collector. Then, the strip containing the current collector and the active material-containing layer was subjected to a press.
  • Example 1 After pressing, the strip was cut and the current collector tab was welded to the current collector. Thus, the electrode of Example 1 was obtained.
  • Example 2 the electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure and the electrode coating material C was prepared by the following procedure.
  • particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared.
  • the particles were stored in a dry room and removed from the dry room immediately before use.
  • the particles were a mixture of primary and secondary particles.
  • the average primary particle size was 0.7 ⁇ m, and the average secondary particle size was 8 ⁇ m.
  • oxalic acid as an electrode additive and polyvinylidene fluoride as a binder were prepared.
  • the active material particles, the electrode additive and the binder were added to N-methylpyrrolidone at a weight ratio of 98: 1: 1 to obtain a mixture.
  • the obtained mixture was stirred with a ball mill for 60 minutes under an air atmosphere of normal temperature and pressure.
  • a paste-like pre-dispersion liquid A was obtained.
  • the obtained paste was stored in a state of being allowed to stand for 36 hours.
  • the pre-dispersion liquid B was obtained by the same procedure as in Example 1. Next, the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: conductive agent: binder: electrode additive was 85: 9: 5: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like electrode paint C was obtained.
  • Example 3 an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
  • the same lithium-containing nickel-cobalt-manganese composite oxide particles used in Example 2 were prepared as the active material particles.
  • polyvinylidene fluoride containing a functional group containing a carbonyl group in the side chain was prepared as a binder. The ratio of the molecular weight of the carbonyl group portion to the total molecular weight of this polyvinylidene fluoride was 3%.
  • Example 4 an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
  • the same lithium-containing nickel-cobalt-manganese composite oxide particles used in Example 2 were prepared as the active material particles.
  • a polyacrylonitrile binder containing a functional group containing a carbonyl group in the side chain was prepared as a binder.
  • the ratio of the molecular weight of the carbonyl group portion to the total molecular weight of this polyacrylonitrile was 3%.
  • Example 5 an electrode was prepared by the same procedure as in Example 3 except that the pre-dispersion liquid B was prepared by the following procedure.
  • Ketjen Black was prepared as a conductive agent. This Ketjen black was heated in concentrated sulfuric acid at 200 ° C. By this treatment, the amount of functional groups on the surface of the conductive agent can be increased. In fact, the obtained conductive agent had a hydroxyl group and a carboxyl group on the surface. The average particle size of the conductive agent was 35 nm.
  • Example 6 an electrode was prepared by the same procedure as in Example 5 except that the pre-dispersion liquid B was prepared by the following procedure.
  • Example 5 the same Ketjen black used in Example 5 was prepared as the conductive agent. This Ketjen black was treated with concentrated sulfuric acid in the same procedure as in Example 5.
  • the conductive agent and the binder were added to N-methylpyrrolidone at a weight ratio of 70:30 to obtain a mixture.
  • the obtained mixture was put into a bead type wet fine particle dispersion crusher "sand grinder" which is a bead mill disperser. Dispersion was carried out in this bead mill disperser for 60 minutes.
  • glass beads having a diameter of 2 mm were used as the dispersion medium.
  • the rotation speed of the wing was set to 800 rpm. Thus, a paste-like pre-dispersion liquid B was obtained.
  • Example 7 and 8 electrodes were produced by the same procedure as in Example 1 except that the electrode coating material C was prepared by the following procedure, respectively.
  • Example 7 the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: the conductive agent: the binder was 85: 8: 7 to obtain a mixture. The resulting mixture was then treated in the same manner as in Example 1. Thus, a paste-like electrode paint C was obtained.
  • Example 8 the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: the conductive agent: the binder was 85: 5: 10 to obtain a mixture. The resulting mixture was then treated in the same manner as in Example 1. Thus, a paste-like electrode paint C was obtained.
  • Example 9 an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
  • particles of a lithium-containing manganese composite oxide having a spinel-type crystal structure having a composition represented by the formula LiMn 2 O 4 were prepared.
  • the particles were stored for 36 hours in an air environment with no dew point control.
  • the particles obtained were a mixture of primary and secondary particles.
  • the average primary particle size was 1 ⁇ m, and the average secondary particle size was 10 ⁇ m.
  • polyvinylidene fluoride was prepared as a binder.
  • Example 10 an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
  • particles of lithium iron phosphate having an olivine-type crystal structure having a composition represented by the formula LiFePO 4 were prepared.
  • the particles were stored for 36 hours in an air environment with no dew point control.
  • the particles obtained were a mixture of primary and secondary particles.
  • the average primary particle size was 0.2 ⁇ m, and the average secondary particle size was 3 ⁇ m.
  • polyvinylidene fluoride was prepared as a binder.
  • Example 11 In Example 11, electrodes were produced in the same procedure as in Example 1.
  • Comparative Example 1 In Comparative Example 1, the electrode was prepared in the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure and the pre-dispersion liquid B was prepared by the following procedure.
  • the active material particles particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared.
  • the particles were stored in a dry room and removed from the dry room immediately before use.
  • the particles were a mixture of primary and secondary particles.
  • the average primary particle size was 0.7 ⁇ m, and the average secondary particle size was 8 ⁇ m. That is, in this example, the same active material particles as those used in Example 2 were used.
  • polyvinylidene fluoride was prepared as a binder.
  • acetylene black was prepared as a conductive agent. However, unlike Examples 1 to 4 and 7 to 11, the prepared acetylene black was not subjected to treatment with concentrated sulfuric acid. The average particle size of the conductive agent was 40 nm.
  • the pre-dispersion liquid B was prepared by the same procedure as in Example 1 except that this conductive agent was used.
  • Comparative Example 2 In Comparative Example 2, an electrode was prepared by the same procedure as in Comparative Example 1 except that the pre-dispersion liquid B was prepared by the following procedure.
  • Ketjen Black was prepared as a conductive agent. However, unlike Examples 5 and 6, the prepared Ketjen black was not treated with concentrated sulfuric acid. The average particle size of the conductive agent was 35 nm.
  • polyvinylidene fluoride was prepared as a binder.
  • Comparative Examples 3 and 4 In Comparative Examples 3 and 4, electrodes were produced by the same procedure as in Comparative Example 2 except that the electrode coating material C was prepared by the following procedure, respectively.
  • Comparative Example 5 an electrode was produced by the same procedure as in Example 1 except that the electrode paint D prepared in the following procedure was used instead of the electrode paint C.
  • particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared.
  • the particles were stored for 30 hours in an air environment with no dew point control.
  • the particles obtained were a mixture of primary and secondary particles.
  • the average primary particle size was 0.5 ⁇ m, and the average secondary particle size was 7 ⁇ m. That is, active material particles similar to those used in Example 1 were prepared.
  • a conductive agent the same acetylene black used in Comparative Example 1 was prepared. That is, in this example, acetylene black, which has not been treated with concentrated sulfuric acid, was used as the conductive agent. Further, as a binder, the same polyvinylidene fluoride as that used in Example 1 was prepared.
  • this suspension was put into a bead type wet fine particle dispersion crusher "sand grinder” which is a bead mill disperser. Dispersion was carried out in this bead mill disperser for 60 minutes. For dispersion, glass beads having a diameter of 2 mm were used as the dispersion medium. Moreover, the rotation speed of the wing was set to 800 rpm. Thus, a paste-like electrode coating material D was obtained.
  • Comparative Example 6 the electrode was prepared in the same procedure as in Example 9 except that the pre-dispersion liquid A was prepared by the following procedure and the pre-dispersion liquid B was prepared by the following procedure.
  • particles of a lithium-containing manganese composite oxide having a spinel-type crystal structure having a composition represented by the formula LiMn 2 O 4 were prepared.
  • the particles were stored in a dry room and removed from the dry room immediately before use.
  • the particles were a mixture of primary and secondary particles.
  • the average primary particle size was 1 ⁇ m, and the average secondary particle size was 10 ⁇ m.
  • polyvinylidene fluoride was prepared as a binder.
  • the same acetylene black used in Comparative Example 1 was prepared as the conductive agent. That is, in this example, acetylene black, which has not been treated with concentrated sulfuric acid, was used as the conductive agent.
  • the pre-dispersion liquid B was prepared by the same procedure as that of Comparative Example 1 except that this conductive agent was used.
  • Comparative Example 7 the electrode was prepared by the same procedure as in Example 10 except that the pre-dispersion liquid A was prepared by the following procedure and the pre-dispersion liquid B was prepared by the following procedure.
  • particles of lithium iron phosphate having an olivine-type crystal structure having a composition represented by the formula LiFePO 4 were prepared.
  • the particles were stored in a dry room and removed from the dry room immediately before use.
  • the particles were a mixture of primary and secondary particles.
  • the average primary particle size was 0.2 ⁇ m, and the average secondary particle size was 3 ⁇ m.
  • polyvinylidene fluoride was prepared as a binder.
  • the same acetylene black used in Comparative Example 1 was prepared as the conductive agent. That is, in this example, acetylene black, which has not been treated with concentrated sulfuric acid, was used as the conductive agent.
  • the pre-dispersion liquid B was prepared by the same procedure as that of Comparative Example 1 except that this conductive agent was used.
  • Comparative Example 8 In Comparative Example 8, an electrode was produced in the same procedure as in Comparative Example 1.
  • particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared.
  • the particles were stored in a dry room and removed from the dry room immediately before use.
  • the particles were a mixture of primary and secondary particles.
  • the average primary particle size was 0.7 ⁇ m, and the average secondary particle size was 8 ⁇ m. That is, in this example, the same active material particles as those used in Example 2 were used.
  • Ketjen Black was prepared as a conductive agent. No acid treatment was performed on this Ketjen black.
  • the average particle size of this conductive agent was 35 nm.
  • binder polyvinylidene fluoride similar to that used in Comparative Example 1 and polyacrylonitrile containing no carbonyl group were prepared. That is, the binder prepared in this example did not contain a carbonyl group.
  • the electrode paint E was uniformly applied to both surfaces of the current collector made of strip-shaped aluminum foil.
  • the coating film was dried to obtain a strip containing a current collector and an active material-containing layer provided on the surface of the current collector. Then, the strip containing the current collector and the active material-containing layer was subjected to a press.
  • lithium titanate having a spinel-type crystal structure and a composition represented by the formula Li 4 Ti 5 O 12 was prepared.
  • graphite as a conductive agent and polyvinylidene fluoride as a binder were prepared. These were added to N-methylpyrrolidone and mixed so that the weight ratio of the negative electrode active material, the conductive agent and the binder was 90: 5: 5. Thus, a paste-like negative electrode paint was prepared.
  • This paste-like negative electrode paint was uniformly applied to both surfaces of the negative electrode current collector made of strip-shaped aluminum foil. Next, the coating film was dried to obtain a strip containing a negative electrode current collector and a negative electrode active material-containing layer provided on the surface of the negative electrode current collector. Next, a strip containing the negative electrode current collector and the negative electrode active material-containing layer was subjected to a press.
  • Electrode group Two polyethylene resin separators were prepared. Next, one separator, a positive electrode, another separator, and a negative electrode were laminated in this order to form a laminate. Next, the laminate thus obtained was spirally wound so that the negative electrode was located on the outermost circumference. Then, the winding core was pulled out from the winding body. Then, the wound body was pressed while being heated. Thus, a flat-shaped wound electrode group was produced.
  • Terminals were connected to the positive electrode and the negative electrode of the wound electrode group obtained as described above, respectively.
  • the electrode group was housed in a square container (exterior member) made of aluminum.
  • the above-mentioned non-aqueous electrolyte was injected into this container.
  • the batteries of each example were obtained.
  • Example 11 and Comparative Example 8 In each of Example 11 and Comparative Example 8, the same procedure as in Example 1 was performed except that the negative electrode was prepared by the following procedure and each electrode of Example 11 and Comparative Example 8 was used as the positive electrode. A battery was manufactured.
  • a niobium-titanium composite oxide having a monoclinic crystal structure and a composition represented by the formula TiNb 2 O 7 was prepared as the negative electrode active material.
  • a negative electrode was prepared by the same procedure as in Example 1 except that this niobium-titanium composite oxide was used as the negative electrode active material.
  • Tables 1 and 2 below show the manufacturing conditions for the batteries of each example.
  • the battery was discharged at a current value of 1 C from a state of a charge rate of 100% (SOC 100%) to a charge rate of 0% (SOC 0%) in a temperature environment of 25 ° C.
  • the battery was subjected to constant current and constant voltage charging under the same conditions as above under a temperature environment of 25 ° C.
  • the battery was discharged at a current value of 10 C from a state of a charge rate of 100% (SOC 100%) to a charge rate of 0% (SOC 0%) in a temperature environment of 25 ° C.
  • the ratio C (10C) / C (1C) of the discharge capacity obtained when discharging at each current value was determined as the rate capacity retention rate.
  • the rate capacity retention rate is an index of output performance.
  • a battery having a high rate capacity retention rate can exhibit excellent output performance. Further, a battery capable of exhibiting excellent output performance can also exhibit excellent input performance because the internal resistance of the battery is low.
  • the battery was placed in a temperature environment of 45 ° C.
  • the battery was charged with a constant current value of 2C until the battery voltage reached 2.8V.
  • the battery was then discharged at a constant current value of 2C until the battery voltage reached 1.5V.
  • This charge / discharge set was regarded as one charge / discharge cycle.
  • the battery was then subjected to 500 charge / discharge cycles.
  • the resistance value R 500 after 500 cycles of the battery was calculated by the same procedure as the measurement of the resistance value R1 before the cycle.
  • the resistance increase rate is an index of battery life performance.
  • a battery having a low rate of increase in resistance can exhibit excellent life characteristics.
  • Table 3 below shows the rate capacity maintenance rate and resistance increase rate of each battery.
  • the integrated pore volume distribution of the positive electrode active material-containing layer (positive electrode active material-containing layer) of each battery was obtained by the procedure described above.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less in the integrated pore volume distribution obtained for each battery is shown in Table 4 below.
  • the positive electrode active material-containing layer (positive electrode active material-containing layer) of each battery was subjected to analysis by thermal decomposition chromatography according to the procedure described above.
  • the amount of carbon dioxide generated from the active material-containing layer obtained by this analysis is shown in Table 4 below.
  • the batteries of Comparative Example 1 had lower output performance than the batteries of Examples 1 to 11. It is probable that at the positive electrode of the battery of Comparative Example 1, the conductive agent was aggregated and could not be uniformly dispersed around the active material particles. Therefore, it is considered that the active material particles and the conductive agent could not sufficiently contact each other at the positive electrode of the battery of Comparative Example 1, and as a result, the battery of Comparative Example 1 showed poor output performance.
  • the electrode of Comparative Example 2 is different from Comparative Example 1 in that Ketjen Black is used instead of acetylene black as the conductive agent. From the results of Comparative Examples 1 and 2, even if Ketjen Black having a small particle diameter, that is, a large specific surface area was used in the electrode of Comparative Example 1, the contact frequency between the active material particles and the conductive agent was sufficiently improved. I know I can't.
  • the batteries of Comparative Example 3 had lower output performance than the batteries of Examples 1 to 11. It is considered that the conductive agent was not sufficiently present around the active material particles in the positive electrode of the battery of Comparative Example 3. Therefore, it is considered that the active material particles and the conductive agent could not sufficiently contact each other at the positive electrode of the battery of Comparative Example 3, and as a result, the battery of Comparative Example 3 showed poor output performance. From this result, even if the amount of carbon dioxide generated from the active material-containing layer by thermal decomposition gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less, mercury injection of the active material-containing layer is performed. It can be seen that if the pore volume in the region where the pore diameter is 0.1 ⁇ m or less in the integrated pore volume distribution by the method is less than 0.035 mL / g, excellent output performance cannot be realized.
  • the batteries of Comparative Example 4 were inferior in life characteristics to the batteries of Examples 1 to 11.
  • the coverage of the binder with respect to the active material particles was too low, and the side reaction between the active material and the non-aqueous electrolyte, impurities, etc. could not be suppressed.
  • the batteries of Comparative Example 5 had lower output performance than the batteries of Examples 1 to 11. It is considered that the conductive agent was not uniformly present around the active material particles in the positive electrode of the battery of Comparative Example 5. Therefore, it is considered that the active material particles and the conductive agent could not sufficiently come into contact with each other at the positive electrode of the battery of Comparative Example 5, and as a result, the battery of Comparative Example 5 showed poor output performance. From this result, even if the amount of carbon dioxide generated from the active material-containing layer by thermal decomposition gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less, mercury injection of the active material-containing layer is performed. It can be seen that if the pore volume in the region where the pore diameter is 0.1 ⁇ m or less in the integrated pore volume distribution by the method is less than 0.035 mL / g, excellent output performance cannot be realized.
  • Comparative Examples 6 and 7 were also inferior in output performance as the batteries of Comparative Example 1.
  • Comparative Examples 1, 6 and 7 are examples in which the positive electrode active materials are different from each other. From the results of these Comparative Examples, it can be seen that the poor output performance of the batteries of Comparative Examples 1, 6 and 7 does not depend on the type of the positive electrode active material.
  • the set of Example 1 and Comparative Example 1, the set of Example 9 and Comparative Example 6, and the set of Example 10 and Comparative Example 7 have the same composition of the prepared positive electrode active material, respectively. From the results of these examples, it can be seen that the batteries of each example were able to exhibit superior output performance and superior life characteristics as compared with the batteries of the corresponding comparative examples.
  • the battery of Comparative Example 8 was inferior in output performance like the battery of Comparative Example 1.
  • the positive electrode of the battery of Comparative Example 8 is the same as that of Comparative Example 1. From the comparison of the results of Comparative Examples 1 and 8, it can be seen that the poor output performance of the battery of Comparative Example 8 does not depend on the type of the negative electrode active material. Further, from the results shown in Table 3, it can be seen that the battery of Example 11 was superior in output performance to the battery of Comparative Example 8 having the same negative electrode active material.
  • the battery of Comparative Example 9 was inferior in output performance like the battery of Comparative Example 1.
  • the coverage of the binder with respect to the active material particles was, for example, the same as that of Example 1.
  • Ketjen Black which is the conductive agent used in Comparative Example 9
  • the amount of carbon dioxide generated from the active material-containing layer was less than 9 mL / g, so that the conductive agent was aggregated.
  • the pore volume of the region where the pore diameter is 0.1 ⁇ m or less in the integrated pore volume distribution by the mercury intrusion method of the active material-containing layer was less than 0.035 mL / g. That is, in the battery of Comparative Example 9, 85% of the surface of the positive electrode active material particles was covered with a binder, and the conductive additive was aggregated. Therefore, in the active material-containing layer of the positive electrode of the battery of Comparative Example 9, the contact frequency between the active material particles and the conductive agent was low. As a result, it is considered that the battery of Comparative Example 9 showed poor output performance.
  • the electrodes of at least one of these embodiments or examples include an active material-containing layer.
  • This active material-containing layer contains active material particles, a binder, and a conductive agent.
  • the binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%.
  • the pore volume in the region where the pore diameter is 0.1 ⁇ m or less is 0.035 mL / g or more and 0.050 mL / g or less.
  • the amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C.
  • the binder covers the surface of the active material particles with a high coverage, but the conductive agent can be uniformly present around the active material particles in a sufficient amount. Therefore, in this active material-containing layer, the active material particles and the conductive agent can exhibit a high contact frequency. As a result, this electrode can realize a battery capable of exhibiting excellent input / output performance and excellent life characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is an electrode according to one embodiment of the present invention. This electrode is provided with an active material-containing layer. The active material-containing layer includes active material particles, a binder, and a conductive agent. The binder covers the surfaces of the active material particles at a coverage of at least 80% but below 99%. In a cumulative volume distribution of micropores in the active material-containing layer, measured by mercury porosimetry, the volume of the pores is 0.035-0.050 mL/g in a region in which the diameter of the pores is 0.1 µ or less. The amount of carbon dioxide generated from the active material-containing layer is 9-10 mL/g according to pyrolysis gas chromatography at a temperature of 150-600ºC.

Description

電極、電池及び電池パックElectrodes, batteries and battery packs
 本発明の実施形態は、電極、電池及び電池パックに関する。 Embodiments of the present invention relate to electrodes, batteries and battery packs.
 近年、例えば12~48Vのマイルドハイブリッド車に搭載させるための自動車用リチウムイオン電池の開発が加速している。それに伴い、入出力性能の向上を目的とした電池開発が進んでいる。入出力性能を向上させるための施策として、具体的には、活物質粒子の粒子径を小さくすることや、電極合剤層の中に含まれる導電剤の量を増やすなどの、様々な工夫が検討されている。 In recent years, for example, the development of lithium-ion batteries for automobiles to be installed in mild hybrid vehicles of 12 to 48 V is accelerating. Along with this, battery development aimed at improving input / output performance is progressing. As measures to improve the input / output performance, specifically, various measures such as reducing the particle size of the active material particles and increasing the amount of the conductive agent contained in the electrode mixture layer have been taken. It is being considered.
日本国特表2013-510392号公報Japan Special Table 2013-510392 日本国特開2016-104848号公報Japanese Patent Application Laid-Open No. 2016-104848 国際公開第2014/088070号International Publication No. 2014/088070 国際公開第2016/068258号International Publication No. 2016/068258 日本国特開2014-194927号公報Japanese Patent Application Laid-Open No. 2014-194927 日本国特開平11-86846号公報Japanese Patent Application Laid-Open No. 11-86846 国際公開第2012/111813号International Publication No. 2012/111813 日本国特開2012-174416号公報Japanese Patent Application Laid-Open No. 2012-174416
 優れた入出力性能及び優れた寿命特性を示すことができる電池を実現できる電極、この電極を具備した電池、及びこの電池を具備した電池パックを提供することを目的とする。 It is an object of the present invention to provide an electrode capable of realizing a battery capable of exhibiting excellent input / output performance and excellent life characteristics, a battery equipped with this electrode, and a battery pack provided with this battery.
 第1の実施形態によると、電極が提供される。電極は、活物質含有層を具備する。活物質含有層は、活物質粒子と、バインダと、導電剤とを含む。バインダは、活物質粒子の表面を80%以上99%未満の被覆率で覆う。活物質含有層の水銀圧入法による積算細孔容積分布において、細孔径が0.1μm以下である領域の細孔体積が0.035mL/g以上0.050mL/g以下である。150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下である。 According to the first embodiment, electrodes are provided. The electrode comprises an active material-containing layer. The active material-containing layer contains active material particles, a binder, and a conductive agent. The binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%. In the integrated pore volume distribution of the active material-containing layer by the mercury intrusion method, the pore volume in the region where the pore diameter is 0.1 μm or less is 0.035 mL / g or more and 0.050 mL / g or less. The amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less.
 第2の実施形態によると、電池が提供される。この電池は、正極としての第1の実施形態に係る電極と、負極と、電解質とを具備する。 According to the second embodiment, batteries are provided. This battery includes an electrode according to the first embodiment as a positive electrode, a negative electrode, and an electrolyte.
 第3の実施形態によると、電池パックが提供される。この電池パックは、第2の実施形態に係る電池を具備する。 According to the third embodiment, a battery pack is provided. This battery pack comprises the battery according to the second embodiment.
図1は、第1の実施形態に係る一例の電極の活物質含有層の積算細孔容積分布である。FIG. 1 is an integrated pore volume distribution of the active material-containing layer of the electrode of the example according to the first embodiment. 図2は、第1の実施形態に係る一例の電極が含む活物質含有層の断面を表す概念図である。FIG. 2 is a conceptual diagram showing a cross section of an active material-containing layer included in an example electrode according to the first embodiment. 図3は、図2の活物質含有層における活物質粒子の外周部と活物質粒子の表面に存在するN原子とを表す概念図である。FIG. 3 is a conceptual diagram showing the outer peripheral portion of the active material particles in the active material-containing layer of FIG. 2 and the N atoms existing on the surface of the active material particles. 図4は、図3の活物質含有層における活物質粒子の表面のうちN元素が存在する部分の外周長さを表す概念図である。FIG. 4 is a conceptual diagram showing the outer peripheral length of the portion of the surface of the active material particles in the active material-containing layer of FIG. 3 in which the N element is present. 図5は、第1の実施形態に係る一例の電極の概略断面図である。FIG. 5 is a schematic cross-sectional view of an example electrode according to the first embodiment. 図6は、第2の実施形態に係る第1の例の非水電解質電池の概略切り欠き斜視図である。FIG. 6 is a schematic notched perspective view of the non-aqueous electrolyte battery of the first example according to the second embodiment. 図7は、図6のA部の概略拡大断面図である。FIG. 7 is a schematic enlarged cross-sectional view of part A in FIG. 図8は、第2の実施形態に係る第2の例の非水電解質電池の概略切り欠き斜視図である。FIG. 8 is a schematic notched perspective view of the non-aqueous electrolyte battery of the second example according to the second embodiment. 図9は、第3の実施形態に係る一例の電池パックの概略分解斜視図である。FIG. 9 is a schematic exploded perspective view of an example battery pack according to the third embodiment. 図10は、図9の電池パックの電気回路を示すブロック図である。FIG. 10 is a block diagram showing an electric circuit of the battery pack of FIG.
実施形態Embodiment
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 The embodiment will be described below with reference to the drawings. In addition, the same reference numerals are given to common configurations throughout the embodiment, and duplicate description will be omitted. In addition, each figure is a schematic view for explaining the embodiment and promoting its understanding, and there are some differences in its shape, dimensions, ratio, etc. from the actual device, but these are described below and known techniques. The design can be changed as appropriate by taking into consideration.
 (第1の実施形態)
 第1の実施形態によると、電極が提供される。電極は、活物質含有層を具備する。活物質含有層は、活物質粒子と、バインダと、導電剤とを含む。バインダは、活物質粒子の表面を80%以上99%未満の被覆率で覆う。活物質含有層の水銀圧入法による積算細孔容積分布において、細孔径が0.1μm以下である領域の細孔体積が0.035mL/g以上0.050mL/g以下である。150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下である。
(First Embodiment)
According to the first embodiment, electrodes are provided. The electrode comprises an active material-containing layer. The active material-containing layer contains active material particles, a binder, and a conductive agent. The binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%. In the integrated pore volume distribution of the active material-containing layer by the mercury intrusion method, the pore volume in the region where the pore diameter is 0.1 μm or less is 0.035 mL / g or more and 0.050 mL / g or less. The amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less.
 電池の入出力性能を向上させるために導電剤の量を増やすと、電池内部に持ち込まれる不純物が増加しやすい。例えば、電池が充放電サイクルに供されている間、又は電池の貯蔵などの長期試験の間、不純物が活物質と反応し、その結果、電池の抵抗が上昇するおそれがある。この課題は、特に、残留アルカリ成分が多い、ハイニッケル系正極活物質を含んだ電池において顕著である。 If the amount of conductive agent is increased in order to improve the input / output performance of the battery, the impurities brought into the battery tend to increase. For example, during a battery charge / discharge cycle or during long-term tests such as battery storage, impurities may react with the active material, resulting in increased battery resistance. This problem is particularly remarkable in a battery containing a high nickel-based positive electrode active material having a large residual alkaline component.
 長期試験における抵抗上昇を抑制する方法としては、例えば、活物質粒子の表面をバインダにより80%以上99%未満の被覆率で被覆することが挙げられる。このような対処により、活物質粒子と電解液や不純物との副反応を抑制することができる。 As a method of suppressing the increase in resistance in the long-term test, for example, the surface of the active material particles may be coated with a binder at a coverage of 80% or more and less than 99%. By such measures, side reactions between the active material particles and the electrolytic solution or impurities can be suppressed.
 一方で、活物質粒子への被覆率を80%以上とすると、活物質含有層中において、活物質粒子と導電剤とが接触する頻度が下がる。その結果、初期抵抗が増加する。活物質粒子と導電剤との接触頻度を増加するためには、導電剤の量を増やす、又は比表面積が大きな導電剤を利用するなどの施策が考えられる。しかしながら、導電剤は炭素の疎水性相互作用によって凝集しやすい。そのため、このような施策でも、実際には、活物質粒子と導電剤との接触頻度は、期待しているほどは増加しない。 On the other hand, when the coverage of the active material particles is 80% or more, the frequency of contact between the active material particles and the conductive agent in the active material-containing layer decreases. As a result, the initial resistance increases. In order to increase the contact frequency between the active material particles and the conductive agent, measures such as increasing the amount of the conductive agent or using a conductive agent having a large specific surface area can be considered. However, the conductive agent tends to aggregate due to the hydrophobic interaction of carbon. Therefore, even with such measures, the frequency of contact between the active material particles and the conductive agent does not actually increase as expected.
 発明者らは、このような問題を解決するために鋭意研究した結果、第1の実施形態に係る電極を実現した。 As a result of diligent research to solve such a problem, the inventors have realized the electrode according to the first embodiment.
 150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下である電極は、導電剤の表面と水素結合することができる成分を十分に含むことができる。この成分の存在により、第1の実施形態に係る電極は、導電剤の凝集を防ぐことができる。 An electrode in which the amount of carbon dioxide generated from the active material-containing layer by thermal decomposition gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less can be hydrogen-bonded to the surface of the conductive agent. It can contain enough ingredients. Due to the presence of this component, the electrode according to the first embodiment can prevent the agglomeration of the conductive agent.
 また、活物質含有層の水銀圧入法による積算細孔容積分布において細孔径が0.1μm以下である領域の細孔体積は、活物質含有層における導電剤の分散状態の指標である。この細孔体積が0.035mL/g以上0.050mL/g未満であることは、導電剤が、活物質粒子の周りに十分に且つ均一に分散していることを意味する。 Further, the pore volume in the region where the pore diameter is 0.1 μm or less in the integrated pore volume distribution by the mercury injection method of the active material-containing layer is an index of the dispersed state of the conductive agent in the active material-containing layer. When the pore volume is 0.035 mL / g or more and less than 0.050 mL / g, it means that the conductive agent is sufficiently and uniformly dispersed around the active material particles.
 その結果、第1の実施形態に係る電極では、バインダによる高い被覆率を示しながらも、活物質粒子と導電剤との接触頻度を高めることができる。このような電極は、活物質含有層において、活物質粒子間の電気的な導通を高めることができる。また、第1の実施形態に係る電極では、活物質と導電剤との接触頻度が高いため、仮に充放電中に活物質粒子が膨張及び/又は収縮を起こして活物質割れが生じても、導電剤による導電パスの切断を抑えることができる。それにより、第1の実施形態に係る電極は、充放電中の膨張及び/又は収縮を原因とした活物質粒子の劣化を抑えることができる。それにより、第1の実施形態に係る電極は、活物質含有層に局所的な過電圧が生じること、及び活物質粒子の劣化を防ぐことができる。 As a result, in the electrode according to the first embodiment, the contact frequency between the active material particles and the conductive agent can be increased while showing a high coverage by the binder. Such electrodes can enhance electrical conduction between active material particles in the active material-containing layer. Further, in the electrode according to the first embodiment, since the contact frequency between the active material and the conductive agent is high, even if the active material particles expand and / or contract during charging and discharging, the active material cracks occur. It is possible to suppress the cutting of the conductive path by the conductive agent. As a result, the electrode according to the first embodiment can suppress deterioration of the active material particles due to expansion and / or contraction during charging / discharging. As a result, the electrode according to the first embodiment can prevent a local overvoltage from being generated in the active material-containing layer and deterioration of the active material particles.
 以上説明した理由により、第1の実施形態に係る電極は、優れた入出力性能及び優れた寿命特性を実現することができる。 For the reasons described above, the electrodes according to the first embodiment can realize excellent input / output performance and excellent life characteristics.
 活物質粒子の表面に対するバインダの被覆率が99%以上であると、活物質粒子と導電剤との接触確率が低くなる。そのため、このような電極は、優れた入出力性能を実現することができない。バインダの被覆率が80%未満である電極では、活物質粒子と、例えば不純物などの他の成分との副反応を十分に抑制することができない。そのため、このような電極は、優れた寿命特性を示すことができない。バインダの被覆率は、85%以上95%以下であることが好ましく、90%以上95%以下であることがより好ましい。 When the coverage of the binder on the surface of the active material particles is 99% or more, the contact probability between the active material particles and the conductive agent becomes low. Therefore, such an electrode cannot realize excellent input / output performance. An electrode having a binder coverage of less than 80% cannot sufficiently suppress side reactions between the active material particles and other components such as impurities. Therefore, such an electrode cannot exhibit excellent life characteristics. The coverage of the binder is preferably 85% or more and 95% or less, and more preferably 90% or more and 95% or less.
 積算細孔容積分布において細孔径が0.1μm以下である領域の細孔体積が0.035mL/g未満の電極では、活物質含有層に含まれる導電剤が過剰に凝集しており、活物質粒子と導電剤との接触が不足している。その結果、この電極は、高い抵抗を示し、優れた入出力性能を実現することができない。一方、積算細孔容積分布において細孔径が0.1μm以下である領域の細孔体積が0.050mL/gを上回る電極では、活物質含有層に含まれる導電剤が過分散の状態にある。このような電極の活物質含有層では、孤立している活物質粒子や導電剤の量が多く、活物質粒子間の導電パスが切れた状態にある。そのため、このような電極は、高い抵抗を示し、優れた入出力性能を実現することができない。積算細孔容積分布において細孔径が0.1μm以下である領域の細孔体積は、0.037mL/g以上0.047mL/g以下であることが好ましく、0.040mL/g以上0.047mL/g以下であることがより好ましい。 In the electrode where the pore volume is less than 0.035 mL / g in the region where the pore diameter is 0.1 μm or less in the integrated pore volume distribution, the conductive agent contained in the active material-containing layer is excessively aggregated, and the active material. Insufficient contact between the particles and the conductive agent. As a result, this electrode exhibits high resistance and cannot achieve excellent input / output performance. On the other hand, in the electrode in which the pore volume in the region where the pore diameter is 0.1 μm or less in the integrated pore volume distribution exceeds 0.050 mL / g, the conductive agent contained in the active material-containing layer is in a hyperdispersed state. In the active material-containing layer of such an electrode, the amount of isolated active material particles and the conductive agent is large, and the conductive path between the active material particles is cut off. Therefore, such an electrode exhibits high resistance and cannot realize excellent input / output performance. In the integrated pore volume distribution, the pore volume in the region where the pore diameter is 0.1 μm or less is preferably 0.037 mL / g or more and 0.047 mL / g or less, and 0.040 mL / g or more and 0.047 mL / g. It is more preferably g or less.
 150℃から600℃までの熱分解ガスクロマトグラフィーによって活物質含有層から二酸化炭素を発生させる成分は、例えば、カルボニル基(C=O)を含んだ成分である。すなわち、活物質含有層は、カルボニル基を含んだ成分を含むことができる。例えば、バインダがカルボニル基を含むことができる。例えば、バインダは、カルボニル基を含むポリフッ化ビニリデンを含んでもよい。或いは、活物質粒子が表面にカルボニル基を含んでいてもよい。カルボニル基は、活物質粒子の表面に結合していても良い。このようなカルボニル基は、例えば、活物質粒子の表面を修飾している、ということができる。 The component that generates carbon dioxide from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is, for example, a component containing a carbonyl group (C = O). That is, the active material-containing layer can contain a component containing a carbonyl group. For example, the binder can contain a carbonyl group. For example, the binder may contain polyvinylidene fluoride containing a carbonyl group. Alternatively, the active material particles may contain a carbonyl group on the surface. The carbonyl group may be attached to the surface of the active material particles. It can be said that such a carbonyl group modifies the surface of the active material particles, for example.
 150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g未満である電極は、導電剤の表面と水素結合できる成分を十分に含んでいない。そのため、このような電極は、導電剤の凝集を十分に抑えることができない。二酸化炭素の発生量が10mL/gを超える電極では、二酸化炭素を発生させる成分の含有量が多過ぎる。このような電極は、高温貯蔵時おいてガス発生が多くなり、寿命特性が著しく低下する。活物質含有層からの二酸化炭素の発生量は、9.3mL/g以上10mL/g以下であることが好ましく、9.4mL/g以上9.8mL/g以下であることがより好ましい。 Electrodes that generate less than 9 mL / g of carbon dioxide from the active material-containing layer by pyrolysis gas chromatography from 150 ° C to 600 ° C do not sufficiently contain components that can hydrogen bond with the surface of the conductive agent. .. Therefore, such an electrode cannot sufficiently suppress the aggregation of the conductive agent. Electrodes that generate more than 10 mL / g of carbon dioxide contain too much carbon dioxide-generating component. Such an electrode generates a large amount of gas when stored at a high temperature, and its life characteristic is significantly deteriorated. The amount of carbon dioxide generated from the active material-containing layer is preferably 9.3 mL / g or more and 10 mL / g or less, and more preferably 9.4 mL / g or more and 9.8 mL / g or less.
 次に、第1の実施形態に係る電極を、より詳細に説明する。 Next, the electrodes according to the first embodiment will be described in more detail.
 第1の実施形態に係る電極は、活物質含有層を具備する。第1の実施形態に係る電極は、集電体を更に含むこともできる。集電体は、例えば、帯状の平面形状を有することができる。集電体は、例えば、第1の表面と、第1の表面の反対側の面としての第2の表面とを有することができる。 The electrode according to the first embodiment includes an active material-containing layer. The electrode according to the first embodiment may further include a current collector. The current collector can have, for example, a strip-shaped planar shape. The current collector can have, for example, a first surface and a second surface as the opposite surface of the first surface.
 活物質含有層は、集電体の一方の表面上、又は両方の表面上に形成され得る。例えば、活物質含有層は、集電体の第1の表面及び第2の表面の何れか一方に形成されてもよいし、或いは、集電体の第1の表面及び第2の表面の両方に形成されてもよい。集電体は、活物質含有層を担持していない部分を含んでもよい。この部分は、例えば、集電タブとして用いることができる。或いは、第1の実施形態に係る電極は、集電体とは別体の集電タブを含むこともできる。 The active material-containing layer can be formed on one surface of the current collector or on both surfaces. For example, the active material-containing layer may be formed on either the first surface or the second surface of the current collector, or both the first surface and the second surface of the current collector. May be formed in. The current collector may include a portion that does not support the active material-containing layer. This portion can be used, for example, as a current collecting tab. Alternatively, the electrode according to the first embodiment may include a current collector tab separate from the current collector.
 活物質含有層は、活物質粒子と、バインダと、導電剤とを含む。
 活物質粒子と、活物質粒子の表面を被覆するバインダとは、例えば、複合体を構成することができる。すなわち、活物質含有層は、例えば、活物質粒子と、活物質粒子の表面を80%以上99%未満の被覆率で覆うバインダとを含む複合体を含むことができる。言い換えると、複合体は、活物質粒子と、活物質粒子の一部の表面を覆うバインダとを含むことができる。
The active material-containing layer contains active material particles, a binder, and a conductive agent.
The active material particles and the binder that covers the surface of the active material particles can form, for example, a complex. That is, the active material-containing layer can include, for example, a composite containing active material particles and a binder that covers the surface of the active material particles with a coverage of 80% or more and less than 99%. In other words, the complex can include active material particles and a binder that covers the surface of some of the active material particles.
 第1の実施形態に係る電極は、電池において使用することができる。第1の実施形態に係る電極は、電池において、例えば、正極として用いることができる。電池は、例えば、充電及び放電を繰り返して行うことができる二次電池であり得る。二次電池の例としては、非水電解質電池を挙げることができる。非水電解質電池は非水電解質を含み、非水電解質は電解質を含む。二次電池の他の例としては、水系溶媒と、水系溶媒に溶解した電解質とを含んだ電解液を含んだ電池を挙げることができる。 The electrodes according to the first embodiment can be used in a battery. The electrode according to the first embodiment can be used as, for example, a positive electrode in a battery. The battery can be, for example, a secondary battery that can be repeatedly charged and discharged. An example of a secondary battery is a non-aqueous electrolyte battery. A non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte. As another example of the secondary battery, a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent can be mentioned.
 次に、第1の実施形態に係る電極において用いることができる材料の例を、具体的に説明する。 Next, an example of a material that can be used in the electrode according to the first embodiment will be specifically described.
 (集電体)
 集電体としては、電気伝導性の高い材料を含むシートを使用することができる。例えば、集電体としては、アルミニウム箔又はアルミニウム合金箔を使用することができる。アルミニウム箔又はアルミニウム合金箔を使用する場合、その厚さは、例えば20μm以下であり、好ましくは15μm以下である。アルミニウム合金箔には、マグネシウム、亜鉛、ケイ素等を含めることができる。また、アルミニウム合金箔に含まれる、鉄、銅、ニッケル、クロムといった遷移金属の含有量は1%以下であることが好ましい。
(Current collector)
As the current collector, a sheet containing a material having high electrical conductivity can be used. For example, an aluminum foil or an aluminum alloy foil can be used as the current collector. When an aluminum foil or an aluminum alloy foil is used, the thickness thereof is, for example, 20 μm or less, preferably 15 μm or less. The aluminum alloy foil can include magnesium, zinc, silicon and the like. Further, the content of transition metals such as iron, copper, nickel and chromium contained in the aluminum alloy foil is preferably 1% or less.
 (活物質粒子)
 活物質粒子は、例えば、正極活物質の粒子である。正極活物質としては、例えば、層状岩塩構造を有するリチウムコバルト複合酸化物(コバルト酸リチウム;LCO)、リチウムニッケルコバルトマンガン複合酸化物(NCM)、リチウムニッケルコバルトアルミニウム複合酸化物(NCA)、リチウムマンガン複合酸化物(マンガン酸リチウム;LMO)、リチウムニッケルマンガン複合酸化物(LNMO)、オリビン型の結晶構造を有するリチウムリン酸鉄(LFP)、マンガン含有リチウムリン酸鉄(LMP)、リチウムニッケル複合酸化物(LNO)、リチウムニッケルコバルト複合酸化物(LNCO)及びリチウムマンガンコバルト複合酸化物(LMCO)を挙げることができる。活物質粒子は、これらの複合酸化物からなる群より選択される少なくとも1種を含むことが好ましい。
(Active material particles)
The active material particles are, for example, positive electrode active material particles. Examples of the positive electrode active material include lithium cobalt composite oxide (lithium cobalt oxide; LCO), lithium nickel cobalt manganese composite oxide (NCM), lithium nickel cobalt aluminum composite oxide (NCA), and lithium manganese having a layered rock salt structure. Composite oxide (lithium manganate; LMO), lithium nickel-manganese composite oxide (LNMO), lithium iron phosphate (LFP) having an olivine-type crystal structure, manganese-containing iron lithium phosphate (LMP), lithium nickel composite oxidation Things (LNO), lithium nickel cobalt composite oxide (LNCO) and lithium manganese cobalt composite oxide (LMCO) can be mentioned. The active material particles preferably contain at least one selected from the group consisting of these composite oxides.
 リチウムコバルト複合酸化物は、例えば、一般式LiaCoO2(添字aは、0.9≦a≦1.2の範囲内にある)で表される組成を有することができる。リチウムニッケルコバルトマンガン複合酸化物は、例えば、一般式LibNixCoyMnz2(添字x及びyは、x+y+z=1を満たし、添字bは、0.9≦b≦1.2の範囲内にある)で表される組成を有することができる。リチウムニッケルコバルトアルミニウム複合酸化物は、例えば、一般式LiNixCoyAlz2(添字x及びyは、x+y+z=1を満たし、添字cは、0.9≦c≦1.2の範囲内にある)で表される組成を有することができる。リチウムマンガン複合酸化物は、例えば、一般式LiMn24又はLiMnO2(添字dは、0.9≦d≦1.2の範囲内にあり、添字eは、0.9≦e≦1.2の範囲内にある)で表される組成を有することができる。一般式LiMn24で表される組成を有するリチウムマンガン複合酸化物は、例えば、スピネル型構造を有することができる。リチウムニッケルマンガン複合酸化物は、例えば、一般式LiNi1-xMnx2(添字xは0<x<1を満たし、添字fは、0.9≦f≦1.2の範囲内にある)で表される組成を有することができる。リチウムリン酸鉄は、例えば、一般式LiFePO4(添字gは、0.9≦g≦1.2の範囲内にある)で表される組成を有することができる。マンガン含有リン酸鉄は、例えば、一般式LihMnxFe1-xPO4(LFP):添字hは、0.9≦h≦1.2の範囲内にあり、添字xは、0<x<1の範囲内にある)で表される組成を有することができる。リチウムニッケル複合酸化物は、例えば、一般式LiiNiO2(添字iは、0.9≦i≦1.2の範囲内にある)で表される組成を有することができる。リチウムニッケルコバルト複合酸化物は、例えば、一般式LijNi1-xCox2(添字jは、0.9≦j≦1.2の範囲内にあり、添字xは、0<x<1の範囲内にある)で表される組成を有することができる。リチウムマンガンコバルト複合酸化物は、例えば、一般式LikMnxCo1-x2(添字kは、0.9≦k≦1.2の範囲内にあり、添字xは、0<x<1の範囲内にある)で表される組成を有することができる。 The lithium cobalt composite oxide can have, for example, a composition represented by the general formula Li a CoO 2 (the subscript a is in the range of 0.9 ≦ a ≦ 1.2). Lithium-nickel-cobalt-manganese composite oxide, for example, the general formula Li b Ni x Co y Mn z O 2 ( subscripts x and y satisfy the x + y + z = 1, the subscript b is a 0.9 ≦ b ≦ 1.2 It can have a composition represented by) (within the range). Lithium-nickel-cobalt-aluminum composite oxide, for example, the general formula Li c Ni x Co y Al z O 2 ( subscripts x and y satisfy the x + y + z = 1, the subscript c is a 0.9 ≦ c ≦ 1.2 It can have a composition represented by) (within the range). Lithium manganese composite oxide, for example, the general formula Li d Mn 2 O 4 or Li e MnO 2 (subscript d is in the range of 0.9 ≦ d ≦ 1.2, the subscript e is 0.9 ≦ It can have a composition represented by (within the range of e ≦ 1.2). Lithium-manganese composite oxide having a composition represented by the general formula Li d Mn 2 O 4, for example, it may have a spinel structure. The lithium nickel-manganese composite oxide is, for example, the general formula Li f Ni 1-x Mn x O 2 (the subscript x satisfies 0 <x <1, and the subscript f is within the range of 0.9 ≦ f ≦ 1.2. Can have a composition represented by). Lithium iron phosphate, for example, the general formula Li g FePO 4 (subscript g is in the range of 0.9 ≦ g ≦ 1.2) can have a composition represented by. The manganese-containing iron phosphate is, for example, the general formula Li h Mn x Fe 1-x PO 4 (LFP): the subscript h is in the range of 0.9 ≦ h ≦ 1.2, and the subscript x is 0 <. It can have a composition represented by (within the range of x <1). The lithium nickel composite oxide can have, for example, a composition represented by the general formula Li i NiO 2 (the subscript i is in the range of 0.9 ≦ i ≦ 1.2). The lithium nickel-cobalt composite oxide is, for example, the general formula Li j Ni 1-x Co x O 2 (the subscript j is in the range of 0.9 ≦ j ≦ 1.2, and the subscript x is 0 <x <. It can have a composition represented by (within the range of 1). The lithium manganese-cobalt composite oxide is, for example, the general formula Li k Mn x Co 1-x O 2 (the subscript k is in the range of 0.9 ≦ k ≦ 1.2, and the subscript x is 0 <x <. It can have a composition represented by (within the range of 1).
 活物質粒子における遷移金属内のニッケルの含有量は、40mol%以上であることが好ましい。このような活物質粒子は、高い充放電容量を実現できるにもかかわらず、先に説明した理由により充放電中の膨張及び/又は収縮による劣化を回避することができ、優れた入出力性能と寿命特性とを維持することができる。活物質粒子における遷移金属内のニッケルの含有量は、例えば95mol%以下である。 The content of nickel in the transition metal in the active material particles is preferably 40 mol% or more. Although such active material particles can realize a high charge / discharge capacity, they can avoid deterioration due to expansion and / or contraction during charge / discharge for the reason described above, and have excellent input / output performance. Life characteristics and can be maintained. The content of nickel in the transition metal in the active material particles is, for example, 95 mol% or less.
 活物質粒子は、一次粒子で存在していてもよいし、又は一次粒子が凝集して形成された二次粒子であってもよい。或いは、一次粒子及び二次粒子の混合物であってもよい。 The active material particles may exist as primary particles, or may be secondary particles formed by agglomeration of primary particles. Alternatively, it may be a mixture of primary particles and secondary particles.
 活物質粒子の平均一次粒子径は、0.05μm以上1μm以下であることが好ましく、0.1μm以上0.5μm以下であることがより好ましい。活物質粒子の平均二次粒子径は、3μm以上12μm以下であることが好ましく、3μm以上6μm以下であることがより好ましい。 The average primary particle size of the active material particles is preferably 0.05 μm or more and 1 μm or less, and more preferably 0.1 μm or more and 0.5 μm or less. The average secondary particle diameter of the active material particles is preferably 3 μm or more and 12 μm or less, and more preferably 3 μm or more and 6 μm or less.
 1つの態様では、活物質粒子は、表面にカルボニル基を含む。例えば、カルボニル基は、活物質粒子の表面、例えば表面の一部に結合していてもよい。活物質粒子が二次粒子を含む場合、カルボニル基は、二次粒子の表面に結合していてもよいし、又は二次粒子を構成する少なくとも一部の一次粒子の表面に結合していてもよい。表面にカルボニル基を含んだ活物質粒子を含む電極の作製方法は、後段で詳細に説明する。 In one embodiment, the active material particles contain a carbonyl group on the surface. For example, the carbonyl group may be attached to the surface of the active material particles, such as a portion of the surface. When the active material particles contain secondary particles, the carbonyl group may be attached to the surface of the secondary particles, or may be attached to the surface of at least some of the primary particles constituting the secondary particles. Good. The method for producing an electrode containing active material particles containing a carbonyl group on the surface will be described in detail later.
 (導電剤)
 導電剤は、例えば、活物質含有層において、活物質粒子同士の電気的導通を助ける役割、及び活物質粒子から集電体への電気的導通を助ける役割を果たすことができる。
(Conducting agent)
The conductive agent can play a role of assisting electrical conduction between the active material particles and a role of assisting electrical conduction from the active material particles to the current collector, for example, in the active material-containing layer.
 導電剤は、カルボキシル基及び/又はヒドロキシル基を含むことができる。カルボキシル基及び/又はヒドロキシル基は、例えば、導電剤の表面に含まれ得る。例えば、カルボキシル基及び/又はヒドロキシル基は、後段で説明する強酸による処理により、導電剤に導入することができる。活物質粒子の表面に含まれ得るカルボニル基は、導電剤が含み得るカルボキシル基及び/又はヒドロキシル基と水素結合することもできる。 The conductive agent can contain a carboxyl group and / or a hydroxyl group. Carboxyl groups and / or hydroxyl groups can be included, for example, on the surface of the conductive agent. For example, the carboxyl group and / or the hydroxyl group can be introduced into the conductive agent by the treatment with a strong acid described later. The carbonyl group that can be contained on the surface of the active material particles can also be hydrogen bonded to the carboxyl group and / or the hydroxyl group that can be contained in the conductive agent.
 導電剤としては、例えば、アセチレンブラック、ケッチェンブラック、ランプブラック、ファーネスブラック、黒鉛、カーボンファイバー、グラフェン等の炭素物質を用いることができる。導電剤は、ケッチェンブラックを含むことが好ましい。ケッチェンブラックは、例えば、200m2/g以上500m2/g以下の比表面積を有することができる。ケッチェンブラックを用いることにより、活物質粒子との接触頻度を更に増やすことができる。導電剤としては、先に挙げた材料のうちの1種を用いてもよいし、又は2種以上の混合物を用いてもよい。 As the conductive agent, for example, a carbon substance such as acetylene black, ketjen black, lamp black, furnace black, graphite, carbon fiber, graphene can be used. The conductive agent preferably contains Ketjen Black. Ketjen Black can have, for example, a specific surface area of 200 m 2 / g or more and 500 m 2 / g or less. By using Ketjen black, the frequency of contact with the active material particles can be further increased. As the conductive agent, one of the above-mentioned materials may be used, or a mixture of two or more kinds may be used.
 導電剤の平均粒子径は、例えば、20nm以上50nm以下である。 The average particle size of the conductive agent is, for example, 20 nm or more and 50 nm or less.
 (バインダ)
 バインダは、活物質と集電体とを結合する働きを示すことができる。バインダの例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、ポリプロピレン(PP)、ポリエチレン(PE)、アクリル系共重合体を主成分とするバインダ(例えば、ポリアクリロニトリル(PAN))、及びカルボキシメチルセルロース(CMC)を挙げることができる。
(Binder)
The binder can exhibit the function of binding the active material and the current collector. Examples of binders are mainly polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluororubber, styrene-butadiene rubber (SBR), polypropylene (PP), polyethylene (PE), and acrylic copolymers. Examples of the binder (for example, polyacrylonitrile (PAN)) and carboxymethyl cellulose (CMC) as components can be mentioned.
 1つの態様では、バインダは、カルボニル基を含むPVdF及び/又はカルボニル基を含むアクリル系共重合体を含む。カルボニル基は、例えば、それぞれのバインダの官能基に含まれる。 In one embodiment, the binder comprises PVdF containing a carbonyl group and / or an acrylic copolymer containing a carbonyl group. The carbonyl group is included, for example, in the functional group of each binder.
 バインダは、例えば、先に挙げた材料のうちの1種でもよいし、又は2種以上の混合物でもよい。例えば、バインダは、活物質粒子を覆った第1のバインダと、第1のバインダとは異なる第2のバインダとを含んでもよい。第2のバインダは、活物質粒子と第1のバインダとを含んだ複合体同士を結着させることができると共に、これらの複合体を集電体に結着させることもできる。或いは、第2のバインダは、第1のバインダの材料と同じ材料を含んでいてもよい。 The binder may be, for example, one of the materials listed above, or a mixture of two or more. For example, the binder may include a first binder that covers the active material particles and a second binder that is different from the first binder. The second binder can bind the composites containing the active material particles and the first binder to each other, and can also bind these composites to the current collector. Alternatively, the second binder may contain the same material as the material of the first binder.
 (活物質含有層における配合割合)
 活物質含有層における活物質粒子、導電剤及びバインダの割合(配合割合)は、それぞれ、75重量%以上96重量%以下、3重量%以上15重量%以下、及び1重量%以上10重量%以下であることが好ましく、90重量%以上95重量%以下、3重量%以上5重量%以下、及び2重量%以上5重量%以下であることがより好ましい。
(Mixing ratio in active material-containing layer)
The ratio (blending ratio) of the active material particles, the conductive agent and the binder in the active material-containing layer is 75% by weight or more and 96% by weight or less, 3% by weight or more and 15% by weight or less, and 1% by weight or more and 10% by weight or less, respectively. It is preferably 90% by weight or more and 95% by weight or less, 3% by weight or more and 5% by weight or less, and 2% by weight or more and 5% by weight or less.
 [製造方法の例]
 第1の実施形態に係る電極は、例えば、以下に説明する方法で製造することができる。
[Example of manufacturing method]
The electrode according to the first embodiment can be manufactured, for example, by the method described below.
 (第1の例)
 第1の例として、カルボニル基を含んだバインダを含む電極の製造方法の例を説明する。
(First example)
As a first example, an example of a method for manufacturing an electrode containing a binder containing a carbonyl group will be described.
 [電極塗料の調製]
 <先分散液Aの調製>
 活物質粒子と、カルボニル基を含んだバインダとを準備する。これらを、適切な溶媒、例えばN-メチルピロリドンに投入して、混合物を得る。
 得られた混合物を、高い剪断力を与えることができる分散機で更に混合する。このような分散機としては、例えば、メディアを用いた分散機が挙げられる。メディアを用いた分散機としては、例えば、ボールミル及びビーズミルを挙げることができる。このような分散により、先分散液Aが得られる。先分散液Aは、活物質粒子と活物質粒子の表面を覆ったバインダとを含む複合体を含む。
[Preparation of electrode paint]
<Preparation of pre-dispersion liquid A>
Prepare the active material particles and a binder containing a carbonyl group. These are added to a suitable solvent, such as N-methylpyrrolidone, to give a mixture.
The resulting mixture is further mixed in a disperser capable of applying a high shear force. Examples of such a disperser include a disperser using media. Examples of the disperser using the media include a ball mill and a bead mill. By such dispersion, the pre-dispersion liquid A is obtained. The pre-dispersion liquid A contains a complex containing the active material particles and a binder covering the surface of the active material particles.
 <先分散液Bの調製>
 導電剤と、バインダとを準備する。
 導電剤は、強酸で処理したものを用いる。強酸としては、例えば、濃硫酸を挙げることができる。強酸での処理により、導電剤の表面に、カルボキシル基及び/又はヒドロキシル基を十分に導入することができる。
<Preparation of pre-dispersion liquid B>
Prepare the conductive agent and the binder.
As the conductive agent, one treated with a strong acid is used. Examples of the strong acid include concentrated sulfuric acid. Treatment with a strong acid allows sufficient introduction of carboxyl groups and / or hydroxyl groups on the surface of the conductive agent.
 ここで準備するバインダは、カルボニル基を含んでいてもよいし、又はカルボニル基を含んでいなくてもよい。
 次いで、これらを、適切な溶媒、例えばN-メチルピロリドンに投入し、混合物を得る。
 得られた混合物を、例えばビーズミル分散機で更に混合する。かくして、先分散液Bが得られる。
The binder prepared here may or may not contain a carbonyl group.
These are then charged into a suitable solvent, such as N-methylpyrrolidone, to give a mixture.
The resulting mixture is further mixed, for example, in a bead mill disperser. Thus, the pre-dispersion liquid B is obtained.
 <電極塗料の調製>
 次に、先分散液A及び先分散液Bを混合する。得られた混合物を例えばロールミル装置においてさらに混合して、分散させる。かくして、電極塗料が得られる。
<Preparation of electrode paint>
Next, the pre-dispersion liquid A and the pre-dispersion liquid B are mixed. The resulting mixture is further mixed and dispersed, for example in a roll mill device. Thus, an electrode paint is obtained.
 このように活物質粒子を含んだ先分散液Aと導電剤を含んだ先分散液Bとを別途先に分散する理由を以下に説明する。
 粒子径が大きく且つ量の多い活物質粒子と、活物質粒子に比べて粒子径が小さく且つ量の少ない導電剤とを、バインダとともに分散した場合、体積の大きな活物質粒子が、体積の小さな導電剤の分散を阻害する。一方、活物質粒子と混合する前に、導電剤をバインダと共に分散した場合では、導電剤の分散を阻害する要因を少なくすることができる。そのため、導電剤の先分散によって得られた先分散液Bは、導電剤の分散状態に優れる。導電剤の分散状態に優れる先分散液Bを、活物質粒子を含んだ先分散液Aとともに更に分散させることにより、導電剤の分散に優れた電極塗料を調製することができる。
The reason why the pre-dispersion liquid A containing the active material particles and the pre-dispersion liquid B containing the conductive agent are separately first dispersed will be described below.
When an active material particle having a large particle size and a large amount and a conductive agent having a small particle size and a small amount as compared with the active material particle are dispersed together with a binder, the active material particle having a large volume becomes conductive with a small volume. Inhibits the dispersion of the agent. On the other hand, when the conductive agent is dispersed together with the binder before being mixed with the active material particles, the factors that hinder the dispersion of the conductive agent can be reduced. Therefore, the pre-dispersion liquid B obtained by pre-dispersing the conductive agent is excellent in the dispersed state of the conductive agent. By further dispersing the pre-dispersion liquid B having an excellent dispersion state of the conductive agent together with the pre-dispersion liquid A containing the active material particles, an electrode coating material having an excellent dispersion of the conductive agent can be prepared.
 しかしながら、導電剤の総比表面積が大きい場合、上記先分散だけでは、導電剤の凝集を防止することが困難になることがある。 However, when the total specific surface area of the conductive agent is large, it may be difficult to prevent the conductive agent from agglomerating only by the above-mentioned prior dispersion.
 それに対し、この例の製造方法では、強酸処理に供した導電剤を含んだ先分散液Bを調製する。この導電剤に含まれるカルボキシル基及び/又はヒドロキシル基は、先分散液A及び先分散液Bを混合した際に、先分散液Aに含まれる複合体のカルボニル基と水素結合することができる。この水素結合は、導電剤の凝集を防止するのに役立つ。この例の製造方法では、強酸処理により十分な量のカルボキシル基及び/又はヒドロキシル基を導電剤に導入することができるので、導電剤の凝集をより十分に防止することができる。その結果、この例の製造方法では、活物質粒子の周りに、導電剤を更に均一に分散させることができる。 On the other hand, in the production method of this example, the pre-dispersion liquid B containing the conductive agent subjected to the strong acid treatment is prepared. The carboxyl group and / or hydroxyl group contained in this conductive agent can be hydrogen-bonded to the carbonyl group of the complex contained in the pre-dispersion liquid A when the pre-dispersion liquid A and the pre-dispersion liquid B are mixed. This hydrogen bond helps prevent agglomeration of the conductive agent. In the production method of this example, a sufficient amount of carboxyl groups and / or hydroxyl groups can be introduced into the conductive agent by the strong acid treatment, so that aggregation of the conductive agent can be more sufficiently prevented. As a result, in the production method of this example, the conductive agent can be more uniformly dispersed around the active material particles.
 [電極の作製]
 次に、かくして得られた電極塗料を、集電体の表面に塗布する。次いで、塗膜を乾燥させる。次に、塗膜を、集電体と共にプレスする。プレス後の電極密度(集電体を含まない、活物質含有層の密度)は、例えば、2.5g/cm3以上3.5g/cm3以下とする。密度は、2.8g/cm3以上3.3g/cm3以下であることが好ましく、3.0g/cm3以上3.3g/cm3以下であることがより好ましい。かくして、第1の実施形態に係る一例の電極が得られる。
[Preparation of electrodes]
Next, the electrode paint thus obtained is applied to the surface of the current collector. The coating is then dried. Next, the coating film is pressed together with the current collector. The electrode density after pressing (density of the active material-containing layer that does not include the current collector) is, for example, 2.5 g / cm 3 or more and 3.5 g / cm 3 or less. The density is preferably 2.8 g / cm 3 or more and 3.3 g / cm 3 or less, and more preferably 3.0 g / cm 3 or more and 3.3 g / cm 3 or less. Thus, an example electrode according to the first embodiment is obtained.
 導電剤は、種類に応じて、比表面積が異なる。また、プレス条件により、積算細孔容積分布も変化する。そのため、例えば、導電剤の種類(特に比表面積)、先分散液の分散条件、電極塗料の分散条件、活物質粒子、導電剤及びバインダの配合比、並びに塗膜のプレス条件を組み合わせて調整することにより、積算細孔容積分布を調整することができる。これらの条件の組み合わせの具体例を、後段の実施例に示す。 The specific surface area of the conductive agent differs depending on the type. In addition, the integrated pore volume distribution also changes depending on the pressing conditions. Therefore, for example, the type of the conductive agent (particularly the specific surface area), the dispersion condition of the pre-dispersion liquid, the dispersion condition of the electrode coating material, the compounding ratio of the active material particles, the conductive agent and the binder, and the pressing condition of the coating film are combined and adjusted. Thereby, the integrated pore volume distribution can be adjusted. Specific examples of combinations of these conditions will be shown in the subsequent examples.
 また、第1の例の製造方法では、例えば、電極塗料の調製の際に用いる、カルボニル基を含むバインダの量、及びこのバインダに含まれているカルボニル基の含有量を組み合わせて調整することにより、得られる電極の活物質含有層からの二酸化炭素の発生量を調整することができる。これらの条件の組み合わせの具体例を、後段の実施例に示す。 Further, in the production method of the first example, for example, the amount of the binder containing a carbonyl group used in the preparation of the electrode coating material and the content of the carbonyl group contained in the binder are combined and adjusted. The amount of carbon dioxide generated from the active material-containing layer of the obtained electrode can be adjusted. Specific examples of combinations of these conditions will be shown in the subsequent examples.
 (第2の例)
 第2の例として、表面にカルボニル基を含んだ活物質粒子を含む電極の製造方法の一例を説明する。
(Second example)
As a second example, an example of a method for manufacturing an electrode containing active material particles containing a carbonyl group on the surface will be described.
 第2の例の製造方法は、先分散液Aの調製方法以外は、第1の例の製造方法と同様である。 The production method of the second example is the same as the production method of the first example except for the method of preparing the pre-dispersion liquid A.
 第2の例では、活物質粒子として、露点管理をしていない大気環境下で24時間以上保管した活物質粒子を用いる。このような活物質粒子は、表面に炭酸リチウム(Li2CO3)を含むことができる。すなわち、このような活物質粒子は、表面にカルボニル基を含むことができる。大気環境下での保管は、12時間以上48時間以下とすることが好ましく、24時間以上36時間以下とすることがより好ましい。 In the second example, as the active material particles, active material particles stored for 24 hours or more in an atmospheric environment where the dew point is not controlled are used. Such active material particles can contain lithium carbonate (Li 2 CO 3 ) on the surface. That is, such active material particles can contain a carbonyl group on the surface. Storage in an air environment is preferably 12 hours or more and 48 hours or less, and more preferably 24 hours or more and 36 hours or less.
 なお、先分散液A及び/又は先分散液Bの調製の際に、カルボニル基を含んだバインダを用いてもよいし、又は用いなくてもよい。 Note that a binder containing a carbonyl group may or may not be used in the preparation of the pre-dispersion liquid A and / or the pre-dispersion liquid B.
 第2の例の製造方法では、例えば、活物質粒子の組成、及び大気環境下での保管時間を組み合わせて調整することにより、得られる電極の活物質含有層からの二酸化炭素の発生量を調整することができる。先分散液A及び/又は先分散液Bの調製の際にカルボニル基を含んだバインダを用いる場合、上記条件に加え、カルボニル基を含むバインダの量、及びこのバインダに含まれているカルボニル基の含有量も組み合わせて調整する。これらの条件の組み合わせの具体例を、後段の実施例に示す。
 (第3の例)
 第3の例として、表面にカルボニル基を含んだ活物質粒子を含む電極の製造方法の他の例を説明する。
In the production method of the second example, for example, the amount of carbon dioxide generated from the active material-containing layer of the obtained electrode is adjusted by adjusting the composition of the active material particles and the storage time in an atmospheric environment in combination. can do. When a binder containing a carbonyl group is used in the preparation of the pre-dispersion liquid A and / or the pre-dispersion liquid B, in addition to the above conditions, the amount of the binder containing the carbonyl group and the carbonyl group contained in the binder The content is also adjusted in combination. Specific examples of combinations of these conditions will be shown in the subsequent examples.
(Third example)
As a third example, another example of a method for producing an electrode containing active material particles containing a carbonyl group on the surface will be described.
 第3の例の製造方法は、先分散液Aの調製方法以外は、第1の例の製造方法と同様である。 The production method of the third example is the same as the production method of the first example except for the method of preparing the pre-dispersion liquid A.
 第3の例の製造方法では、先分散液Aの調製の際に、添加剤を更に用いる。添加剤としては、例えば、酢酸、シュウ酸、フタル酸、マレイン酸など、カルボキシル基を含む物質が挙げられる。 In the production method of the third example, an additive is further used when preparing the pre-dispersion liquid A. Examples of the additive include substances containing a carboxyl group such as acetic acid, oxalic acid, phthalic acid, and maleic acid.
 調製した先分散液Aを1日間塗液の状態で放置することにより、活物質粒子の表面と添加剤との反応が進み、活物質粒子の表面にカルボニル基を結合させることができる。先分散液Aの放置雰囲気は、常温常圧の大気雰囲気であることが好ましい。この雰囲気下で撹拌させながら放置することが、より好ましい。 By leaving the prepared pre-dispersion liquid A in the state of a coating liquid for one day, the reaction between the surface of the active material particles and the additive proceeds, and a carbonyl group can be bonded to the surface of the active material particles. The atmosphere of the predisperse A is preferably an air atmosphere at normal temperature and pressure. It is more preferable to leave it while stirring in this atmosphere.
 なお、先分散液A及び/又は先分散液Bの調製の際に、カルボニル基を含んだバインダを用いてもよいし、又は用いなくてもよい。 Note that a binder containing a carbonyl group may or may not be used in the preparation of the pre-dispersion liquid A and / or the pre-dispersion liquid B.
 また、第3の例の製造方法では、第2の例の製造方法と同様に、先分散液Aの調製の際に、活物質粒子として、露点管理をしていない大気環境下で24時間以上保管した活物質粒子を用いることもできる。 Further, in the production method of the third example, as in the production method of the second example, when the pre-dispersion liquid A is prepared, the active material particles are used as active material particles for 24 hours or more in an air environment where dew point control is not performed. Stored active material particles can also be used.
 第3の例の製造方法では、例えば、電極添加剤の種類及び量、並びに添加剤と活物質粒子の表面とを反応させるための先分散液Aの放置時間を組み合わせて調整することにより、得られる電極の活物質含有層からの二酸化炭素の発生量を調整することができる。先分散液A及び/又は先分散液Bの調製の際にカルボニル基を含んだバインダを用いる場合、上記条件に加え、カルボニル基を含むバインダの量、及びこのバインダに含まれているカルボニル基の含有量も組み合わせて調整する。同様に、活物質粒子として、露点管理をしていない大気環境下で24時間以上保管した活物質粒子を用いる場合、活物質粒子の組成、及び大気環境下での保管時間も組み合わせて調整する。これらの条件の組み合わせの具体例を、後段の実施例に示す。 In the production method of the third example, for example, the type and amount of the electrode additive and the leaving time of the pre-dispersion liquid A for reacting the additive with the surface of the active material particles are adjusted in combination. The amount of carbon dioxide generated from the active material-containing layer of the electrode to be formed can be adjusted. When a binder containing a carbonyl group is used in the preparation of the pre-dispersion liquid A and / or the pre-dispersion liquid B, in addition to the above conditions, the amount of the binder containing the carbonyl group and the carbonyl group contained in the binder The content is also adjusted in combination. Similarly, when active material particles stored for 24 hours or more in an air environment without dew point control are used as the active material particles, the composition of the active material particles and the storage time in the air environment are also adjusted in combination. Specific examples of combinations of these conditions will be shown in the subsequent examples.
 以上のようにして得られた電極は、所定の寸法に切断してもよい。また、集電体に、この集電体とは別体の集電タブを、例えば溶接により接続してもよい。 The electrodes obtained as described above may be cut to a predetermined size. Further, a current collector tab separate from the current collector may be connected to the current collector by welding, for example.
 [分析方法]
 次に、各種分析方法を説明する。
 (A)前処理
 非水電解質電池に組み込まれている電極に対しては、以下の手順で前処理を行う。 
 まず、非水電解質電池をアルゴンで満たしたグローブボックス内で分解し、測定対象たる電極を非水電解質電池から取り出す。次いで、取り出した電極を、メチルエチルカーボネート(MEC)で洗浄する。次いで、洗浄した電極を、25℃及びゲージ圧-90Paの雰囲気下で乾燥させる。乾燥させた電極を、以下に説明する各分析の対象とする。以下、測定対象の電極を、単に、「電極」と呼ぶ。
[Analysis method]
Next, various analysis methods will be described.
(A) Pretreatment The electrodes incorporated in the non-aqueous electrolyte battery are pretreated according to the following procedure.
First, the non-aqueous electrolyte battery is disassembled in a glove box filled with argon, and the electrode to be measured is taken out from the non-aqueous electrolyte battery. The removed electrodes are then washed with methyl ethyl carbonate (MEC). The washed electrodes are then dried in an atmosphere of 25 ° C. and a gauge pressure of −90 Pa. The dried electrodes are the subject of each analysis described below. Hereinafter, the electrode to be measured is simply referred to as an “electrode”.
 (B)水銀圧入法による活物質含有層の積算細孔容積分布の取得方法
 活物質含有層の積算細孔容積分布を水銀圧入法によって得る手順を以下に示す。
(B) Method of Obtaining Integrated Pore Volume Distribution of Active Material-Containing Layer by Mercury Intrusion Method The procedure for obtaining the integrated pore volume distribution of the active material-containing layer by the mercury injection method is shown below.
 細孔分布測定装置には、例えば島津オートポア9520型を用いることができる。測定に際しては、1枚の先の試料を約25mm巾のサイズに裁断し、これを折り畳み、標準セルに採り、測定室に挿入する。測定は、初期圧20kPa(約3psia、細孔径約60μm相当)及び終止圧414000kPa(約60000psia、細孔径約0.003μm相当)の条件で行う。3つの試料の平均値を測定結果として用いる。データ整理に当り、細孔比表面積は、細孔の形状を円筒形として計算する。なお、水銀圧入法の解析原理はWashburnの式:D=-4γcosθ/Pに基づく。ここで、Pは加える圧力、Dは細孔径、γは水銀の表面張力(480dyne・cm-1)、θは水銀と細孔壁面の接触角で140°である。γ及びθは定数であるから、Washburnの式より、加えた圧力Pと細孔径Dとの関係が求められ、そのときの水銀侵入体積を測定することにより、細孔径とその体積分布を導くことができる。測定法・原理等の詳細は、非特許文献1及び2などを参照されたい。 As the pore distribution measuring device, for example, Shimadzu Autopore 9520 type can be used. At the time of measurement, one tip sample is cut into a size of about 25 mm width, folded, taken in a standard cell, and inserted into a measuring chamber. The measurement is performed under the conditions of an initial pressure of 20 kPa (about 3 psia, equivalent to a pore diameter of about 60 μm) and a final pressure of 414000 kPa (about 60,000 psia, equivalent to a pore diameter of about 0.003 μm). The average value of the three samples is used as the measurement result. In organizing the data, the pore specific surface area is calculated by assuming that the shape of the pore is a cylinder. The analysis principle of the mercury intrusion method is based on Washburn's formula: D = -4γcosθ / P. Here, P is the applied pressure, D is the pore diameter, γ is the surface tension of mercury (480 dyne · cm -1 ), and θ is the contact angle between mercury and the wall surface of the pores, which is 140 °. Since γ and θ are constants, the relationship between the applied pressure P and the pore diameter D can be obtained from the Washburn equation, and the pore diameter and its volume distribution can be derived by measuring the mercury intrusion volume at that time. Can be done. For details of the measurement method, principle, etc., refer to Non-Patent Documents 1 and 2.
 この測定により、活物質含有層の積算細孔容積分布を得ることができる。なお、以上の手順により得られる積算細孔容積分布は、活物質含有層の細孔径だけでなく、集電体の細孔径も反映している。しかしながら、集電体の細孔径は活物質含有層の細孔径に比べて十分に小さく、存在割合も少ないため、無視することができる。得られた分布から、細孔径が0.1μm以下である領域の細孔体積(mL/g)を求めることができる。ここでの基準となる重量は、測定に用いた活物質含有層の重量(g)である。 By this measurement, the integrated pore volume distribution of the active material-containing layer can be obtained. The integrated pore volume distribution obtained by the above procedure reflects not only the pore diameter of the active material-containing layer but also the pore diameter of the current collector. However, the pore diameter of the current collector is sufficiently smaller than the pore diameter of the active material-containing layer, and the abundance ratio is small, so that it can be ignored. From the obtained distribution, the pore volume (mL / g) of the region where the pore diameter is 0.1 μm or less can be determined. The reference weight here is the weight (g) of the active material-containing layer used for the measurement.
 図1に、第1の実施形態に係る一例の電極の活物質含有層の積算細孔容積分布を示す。図1に示す積算細孔容積分布は、後段に示す、実施例6の電極についての積算細孔容積分布である。図1に示す積算細孔容積分布において、細孔径が0.1μm以下である領域の細孔体積は、0.047mL/gである。 FIG. 1 shows the integrated pore volume distribution of the active material-containing layer of the electrode of the example according to the first embodiment. The integrated pore volume distribution shown in FIG. 1 is the integrated pore volume distribution for the electrode of Example 6 shown in the latter part. In the integrated pore volume distribution shown in FIG. 1, the pore volume in the region where the pore diameter is 0.1 μm or less is 0.047 mL / g.
 (C)熱分解クロマトグラフィーを用いた分析
 次に、熱分解クロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量の分析手順を説明する。
(C) Analysis Using Pyrolysis Chromatography Next, the procedure for analyzing the amount of carbon dioxide generated from the active material-containing layer by pyrolysis chromatography will be described.
 分析に先立ち、分析に供する電極の重量を測定する。
 分析には、熱分解ガスクロマトグラフ質量分析装置(Pyrolysis Gas Chromatography Mass Spectrometer;Pyro-GC/MS)を用いる。例えば、フロンティア・ラボ株式会社製パイロライザーを用いることができる。この装置において、パイロライザーにより、電極を40℃で8分間保持する。次いで、電極を5℃/分の速度で600℃まで昇温する。この処理により、活物質含有層に含まれている成分のうち、600℃の温度で分解する成分を熱分解させることができる。そして、この装置のガスクロマトグラフ質量分析器を用いることで、熱分解して発生した成分を同定することができる。この分析において、ガスクロマトグラフ質量分析器の温度を、250℃で常に一定になるように制御する。
Prior to the analysis, the weight of the electrodes to be analyzed is measured.
A pyrolysis gas chromatography mass spectrometer (Pyro-GC / MS) is used for the analysis. For example, a pyrolyzer manufactured by Frontier Lab Co., Ltd. can be used. In this device, the pyrolyzer holds the electrodes at 40 ° C. for 8 minutes. The electrode is then heated to 600 ° C. at a rate of 5 ° C./min. By this treatment, among the components contained in the active material-containing layer, the components that decompose at a temperature of 600 ° C. can be thermally decomposed. Then, by using the gas chromatograph mass spectrometer of this apparatus, it is possible to identify the components generated by thermal decomposition. In this analysis, the temperature of the gas chromatograph mass spectrometer is controlled to be constant at 250 ° C.
 分析後、集電体から、活物質含有層を剥がし取る。かくして得られた集電体の重量を測定する。先に測定した電極の重量から集電体の重量を引き、活物質含有層の重量とする。 After the analysis, the active material-containing layer is peeled off from the current collector. The weight of the current collector thus obtained is measured. The weight of the current collector is subtracted from the weight of the electrode measured earlier to obtain the weight of the active material-containing layer.
 この分析において150℃~600℃の間に発生した二酸化炭素の量を、活物質含有層の重量で割ることにより、150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量(mL/g)を算出することができる。すなわち、二酸化炭素の発生量は、活物質含有層1gあたりの二酸化炭素の発生量である。 By dividing the amount of carbon dioxide generated between 150 ° C. and 600 ° C. by the weight of the active material-containing layer in this analysis, pyrolysis gas chromatography from 150 ° C. to 600 ° C. was performed from the active material-containing layer. The amount of carbon dioxide generated (mL / g) can be calculated. That is, the amount of carbon dioxide generated is the amount of carbon dioxide generated per 1 g of the active material-containing layer.
 (D)活物質含有層、導電剤及びバインダの確認方法
 活物質含有層に含まれている、活物質粒子及び導電剤の形状は、電界放射型走査電子顕微鏡(Field Emission Scanning Electron Microscope; FE-SEM)を用いて確認することができる。また、活物質含有層に含まれている活物質粒子、導電剤及びバインダの分布は、エネルギー分散型X線分析(Energy Dispersive X-ray spectrometry; EDX)により、判別することができる。
(D) Method for Confirming Active Material-Containing Layer, Conductive Agent and Binder The shape of the active material particles and conductive agent contained in the active material-containing layer is determined by the field emission scanning electron microscope (FE-). It can be confirmed using SEM). Further, the distribution of the active material particles, the conductive agent and the binder contained in the active material-containing layer can be discriminated by energy dispersive X-ray spectrometry (EDX).
 以下に、活物質含有層に含まれている活物質粒子、導電剤及びバインダの確認方法を具体的に説明する。 The method for confirming the active material particles, the conductive agent and the binder contained in the active material-containing layer will be specifically described below.
 まず、電極の断面を得る。観察用の断面の作製方法としては、断面を得ることができれば制限はなく、電極の加工のしやすさによって適宜選択される。この際、電極をそのまま加工してもよいし、必要に応じて、活物質含有層の細孔に樹脂等の充填剤を充填した電極を加工してもよい。こうした電極を切断して、その切断面を露出させた試料を得る。切断方法としては、例えば、剃刀やミクロトームでの切断、液体窒素中での割断、ArイオンビームやGaイオンビームでの切断などの方法が挙げられる。 First, obtain the cross section of the electrode. The method for producing the cross section for observation is not limited as long as the cross section can be obtained, and is appropriately selected depending on the ease of processing the electrode. At this time, the electrode may be processed as it is, or if necessary, the electrode may be processed in which the pores of the active material-containing layer are filled with a filler such as resin. These electrodes are cut to obtain a sample with the cut surface exposed. Examples of the cutting method include cutting with a razor or a microtome, cutting in liquid nitrogen, cutting with an Ar ion beam or a Ga ion beam, and the like.
 次に、試料をFE-SEMの試料台上に貼り付ける。この際、試料が試料台から剥がれたり浮いたりしないように、導電性テープなどを用いて処置を施す。また、必要であれば、試料を試料台に貼り付けるのに適切な大きさに切断してもよい。測定にあたっては、試料を不活性雰囲気に維持した状態で試料室に導入する。上述のように準備した試料について、FE-SEMにより、30000倍の倍率で、活物質含有層の断面を観察する。 Next, paste the sample on the sample table of FE-SEM. At this time, treatment is performed using a conductive tape or the like so that the sample does not come off or float from the sample table. If necessary, the sample may be cut to a size suitable for attaching to the sample table. In the measurement, the sample is introduced into the sample chamber while being maintained in an inert atmosphere. For the sample prepared as described above, the cross section of the active material-containing layer is observed by FE-SEM at a magnification of 30,000 times.
 更に、同分析範囲に対してEDXによる元素分析を実施する。これにより、FE-SEM像に映し出された活物質含有層の断面に含まれている、活物質粒子、導電剤及びバインダの構成元素のうち、周期表のホウ素B~ウランUまでの元素を確認することができる。 Furthermore, elemental analysis by EDX will be carried out for the same analysis range. As a result, among the constituent elements of the active material particles, the conductive agent and the binder contained in the cross section of the active material-containing layer projected on the FE-SEM image, the elements from boron B to uranium U in the periodic table are confirmed. can do.
 次いで、EDXによる元素分析結果から、活物質粒子固有の構成元素、例えばNi、Mn、Co及びFeなどの金属元素についてのマッピング画像を得る。同様に、EDXによる元素分析結果から、バインダ固有の構成元素、例えばF(例えばポリフッ化ビニリデン)又はN(例えばポリアクリロニトリル)の元素についてのマッピング画像を得る。スチレン-ブタジエンゴム(SBR)は、酸化オスミウム(OsO4)で染色して、Osの元素についてマッピングすることで画像を得ることができる。 Next, from the elemental analysis results by EDX, mapping images of constituent elements peculiar to the active material particles, such as metal elements such as Ni, Mn, Co and Fe, are obtained. Similarly, from the elemental analysis results by EDX, a mapping image for a binder-specific constituent element, for example, an element of F (for example, polyvinylidene fluoride) or N (for example, polyacrylonitrile) is obtained. Images can be obtained by staining styrene-butadiene rubber (SBR) with osmium tetroxide (OsO 4 ) and mapping for the elements of Os.
 次に、試料断面のSEM観察及びEDX分析から確認した活物質粒子の中で、最も大きな粒子と最も小さい粒子とを除外する。残りの活物質粒子について、粒子外周部分におけるバインダの構成元素についてのマッピング画像を2値化し、元素の存在比率を求める。この結果得られた値を、活物質粒子の表面に対するバインダの被覆率(%)とする。具体的な算出方法の例は、後述する。 Next, among the active material particles confirmed by SEM observation and EDX analysis of the sample cross section, the largest particles and the smallest particles are excluded. For the remaining active material particles, the mapping image of the constituent elements of the binder in the outer peripheral portion of the particles is binarized, and the abundance ratio of the elements is obtained. The value obtained as a result is defined as the binder coverage (%) on the surface of the active material particles. An example of a specific calculation method will be described later.
 2値化の閾値は、以下のように設定する。F元素のマッピング画像の場合、SEM-EDXのF-Kaスペクトルから求められるフッ素濃度が1.5重量%以上3重量%以下である箇所に、F元素が存在していると判断する。N元素のマッピング画像の場合、SEM-EDXのN-Kaスペクトルから求められる窒素濃度が1.5重量%以上5重量%以下である箇所に、N元素が存在していると判断する。 The binarization threshold is set as follows. In the case of the F element mapping image, it is determined that the F element is present at a position where the fluorine concentration obtained from the F—Ka spectrum of SEM-EDX is 1.5% by weight or more and 3% by weight or less. In the case of the N element mapping image, it is determined that the N element is present at a position where the nitrogen concentration obtained from the N-Ka spectrum of SEM-EDX is 1.5% by weight or more and 5% by weight or less.
 次に、模式図を参照しながら、第1の実施形態に係る一例の電極の活物質含有層における、バインダによる活物質粒子の表面の被覆状態を説明する。 Next, the state of coating the surface of the active material particles with the binder in the active material-containing layer of the electrode of the example according to the first embodiment will be described with reference to the schematic diagram.
 図2は、第1の実施形態に係る一例の電極が含む活物質含有層の断面を表す概念図である。図3は、図2の活物質含有層における活物質粒子の外周部と活物質粒子の表面に存在するN原子とを表す概念図である。図4は、図3の活物質含有層における活物質粒子の表面のうちN元素が存在する部分の外周長さを表す概念図である。 FIG. 2 is a conceptual diagram showing a cross section of the active material-containing layer included in the electrode of the example according to the first embodiment. FIG. 3 is a conceptual diagram showing the outer peripheral portion of the active material particles in the active material-containing layer of FIG. 2 and the N atoms existing on the surface of the active material particles. FIG. 4 is a conceptual diagram showing the outer peripheral length of the portion of the surface of the active material particles in the active material-containing layer of FIG. 3 in which the N element is present.
 図2では、活物質含有層の断面を、先に説明したFE-SEM測定により観察した際に確認される活物質粒子10及びバインダ分子11を模式的に示している。また、図2では、活物質含有層の断面を先に説明したEDX分析に供して得られた窒素(N)元素のマッピング画像から確認されるN元素12を更に模式的に示している。なお、この例の電極の活物質含有層は、N原子を含む第1のバインダを含んでいる。そのため、図2では、バインダ分子11の分布とN元素12の分布とが重なり合っている。また、説明の簡略化のため、図2では、全ての活物質粒子10を一次粒子として表している。一方で、導電剤は図示していない。 FIG. 2 schematically shows the active material particles 10 and the binder molecules 11 confirmed when the cross section of the active material-containing layer is observed by the FE-SEM measurement described above. Further, FIG. 2 more schematically shows the N element 12 confirmed from the mapping image of the nitrogen (N) element obtained by subjecting the cross section of the active material-containing layer to the EDX analysis described above. The active material-containing layer of the electrode of this example contains a first binder containing N atoms. Therefore, in FIG. 2, the distribution of the binder molecule 11 and the distribution of the N element 12 overlap. Further, for simplification of the description, in FIG. 2, all the active material particles 10 are represented as primary particles. On the other hand, the conductive agent is not shown.
 図3では、活物質粒子10の表面の外周部分10a及び外周部分10aの表面に存在する(隣接する)N元素12を、図2に示した断面から抽出している。図4では、図3に示した外周部分10aのうちN元素12が隣接している部分であるN隣接外周部分10bを示している。例えば、図3に示すN元素12のポイントの数に基づいて、N隣接外周部分10bの長さを算出することができる。図3における外周部分10aの長さと図4から求められるN隣接外周部分10bの長さと下記の式に代入することで、バインダ、例えば窒素原子による活物質粒子の被覆率を算出することができる。 In FIG. 3, the N element 12 existing (adjacent) on the outer peripheral portion 10a and the outer peripheral portion 10a of the surface of the active material particle 10 is extracted from the cross section shown in FIG. FIG. 4 shows an N-adjacent outer peripheral portion 10b, which is a portion of the outer peripheral portion 10a shown in FIG. 3 to which the N element 12 is adjacent. For example, the length of the N-adjacent outer peripheral portion 10b can be calculated based on the number of points of the N element 12 shown in FIG. By substituting the length of the outer peripheral portion 10a in FIG. 3 and the length of the N adjacent outer peripheral portion 10b obtained from FIG. 4 into the following equation, the coverage of the active material particles with a binder, for example, a nitrogen atom can be calculated.
 被覆率(%)=(活物質粒子10の表面のN隣接外周部分10bの長さ)/(活物質粒子10の表面の外周部分10aの長さ)×100%
 (E)活物質粒子及び導電剤の平均粒子径
 先に説明したSEM観察及びEDX分析の際に同時に得られる複数視野のSEM画像から、30個の活物質と導電剤をそれぞれ任意で探索する。それらの粒子の粒子径の平均値を平均粒子径とする。
Coverage (%) = (length of outer peripheral portion 10b adjacent to N on the surface of active material particles 10) / (length of outer peripheral portion 10a on the surface of active material particles 10) × 100%
(E) Average particle diameters of active material particles and conductive agent 30 active materials and conductive agents are arbitrarily searched from the SEM images of a plurality of fields of view obtained at the same time during the SEM observation and EDX analysis described above. The average value of the particle diameters of these particles is taken as the average particle diameter.
 次に、第1の実施形態に係る電極を、図面を参照しながら具体的に説明する。 
 図5は、第1の実施形態に係る一例の電極の概略断面図である。 
 図5に示す正極3は、集電体3aと、集電体3aの両方の表面上に形成された活物質含有層3bとを含む。図示をしていないが、集電体3aは、帯状である。集電体3aは、いずれの表面にも活物質含有層3bを担持していない部分を含む。この部分は、集電タブとして働くことができる。
Next, the electrodes according to the first embodiment will be specifically described with reference to the drawings.
FIG. 5 is a schematic cross-sectional view of an example electrode according to the first embodiment.
The positive electrode 3 shown in FIG. 5 includes a current collector 3a and an active material-containing layer 3b formed on the surfaces of both the current collectors 3a. Although not shown, the current collector 3a has a band shape. The current collector 3a includes a portion that does not support the active material-containing layer 3b on any surface. This part can act as a current collector tab.
 第1の実施形態に係る電極が具備する活物質含有層は、活物質粒子と、バインダと、導電剤とを含む。バインダは、活物質粒子の表面を80%以上99%未満の被覆率で覆う。活物質含有層の水銀圧入法による積算細孔容積分布において、細孔径が0.1μm以下である領域の細孔体積が0.035mL/g以上0.050mL/g以下である。150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下である。この活物質含有層では、バインダが高い被覆率で活物質粒子の表面を覆っているが、導電剤が、活物質粒子の周りに、十分な量で均一に存在できる。そのため、この活物質含有層では、活物質粒子と導電剤とが、高い接触頻度を示すことができる。これらの結果、第1の実施形態に係る電極は、優れた入出力性能及び優れた寿命特性を示すことができる電池を実現できる。 The active material-containing layer included in the electrode according to the first embodiment contains active material particles, a binder, and a conductive agent. The binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%. In the integrated pore volume distribution of the active material-containing layer by the mercury intrusion method, the pore volume in the region where the pore diameter is 0.1 μm or less is 0.035 mL / g or more and 0.050 mL / g or less. The amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less. In this active material-containing layer, the binder covers the surface of the active material particles with a high coverage, but the conductive agent can be uniformly present around the active material particles in a sufficient amount. Therefore, in this active material-containing layer, the active material particles and the conductive agent can exhibit a high contact frequency. As a result, the electrode according to the first embodiment can realize a battery capable of exhibiting excellent input / output performance and excellent life characteristics.
 (第2の実施形態)
 第2の実施形態によると、電池が提供される。この電池は、正極としての第1の実施形態に係る電極と、負極と、電解質とを具備する。
(Second Embodiment)
According to the second embodiment, batteries are provided. This battery includes an electrode according to the first embodiment as a positive electrode, a negative electrode, and an electrolyte.
 第2の実施形態に係る電池は、第1の実施形態に係る電極を具備するので、優れた入出力性能及び優れた寿命特性を示すことができる。 Since the battery according to the second embodiment includes the electrodes according to the first embodiment, it can exhibit excellent input / output performance and excellent life characteristics.
 第2の実施形態に係る電池は、例えば、充電及び放電を繰り返し行うことができる。そのため、第2の実施形態に係る電池は、二次電池ということもできる。 The battery according to the second embodiment can be repeatedly charged and discharged, for example. Therefore, the battery according to the second embodiment can be said to be a secondary battery.
 第2の実施形態に係る電池は、例えば非水電解質電池である。非水電解質電池は非水電解質を含み、非水電解質は電解質を含む。或いは、第2の実施形態に係る電池は、水系溶媒と、水系溶媒に溶解した電解質とを含んだ電解液を含んだ電池であってもよい。 The battery according to the second embodiment is, for example, a non-aqueous electrolyte battery. A non-aqueous electrolyte battery contains a non-aqueous electrolyte, and a non-aqueous electrolyte contains an electrolyte. Alternatively, the battery according to the second embodiment may be a battery containing an electrolytic solution containing an aqueous solvent and an electrolyte dissolved in the aqueous solvent.
 次に、第2の実施形態に係る電池を、より詳細に説明する。 Next, the battery according to the second embodiment will be described in more detail.
 第2の実施形態に係る電池は、正極として、第1の実施形態に係る電極を具備する。そのため、第2の実施形態に係る電池が具備する正極は、第1の実施形態に係る電極が具備する活物質含有層を具備する。また、正極は、第1の実施形態に係る電極が具備することができる集電体を具備することができる。以下、負極の部材との区別のため、第1の実施形態に係る電極が具備することができる、集電体、活物質含有層、集電タブ、及び活物質粒子を、それぞれ、正極集電体、正極活物質含有層、正極集電タブ、及び正極活物質粒子と呼ぶ。なお、正極に関する詳細は、第1の実施形態に係る電極の説明を参照されたい。 The battery according to the second embodiment includes an electrode according to the first embodiment as a positive electrode. Therefore, the positive electrode included in the battery according to the second embodiment includes the active material-containing layer provided by the electrode according to the first embodiment. Further, the positive electrode can be provided with a current collector that can be provided by the electrode according to the first embodiment. Hereinafter, in order to distinguish from the member of the negative electrode, the current collector, the active material-containing layer, the current collecting tab, and the active material particles, which can be provided by the electrode according to the first embodiment, are each subjected to positive electrode current collection. It is called a body, a positive electrode active material-containing layer, a positive electrode current collecting tab, and a positive electrode active material particle. For details on the positive electrode, refer to the description of the electrode according to the first embodiment.
 第2の実施形態に係る電池は、負極を更に具備する。
 負極は、例えば、負極集電体と、負極集電体上に形成された負極活物質含有層とを含むことができる。
 負極活物質含有層は、負極集電体の何れか一方の表面上に設けられていてもよいし又はその両方の表面に設けられていてもよい。
The battery according to the second embodiment further includes a negative electrode.
The negative electrode can include, for example, a negative electrode current collector and a negative electrode active material-containing layer formed on the negative electrode current collector.
The negative electrode active material-containing layer may be provided on the surface of either one of the negative electrode current collectors, or may be provided on both surfaces.
 負極活物質含有層は、負極活物質、導電助剤及びバインダを含むことができる。 The negative electrode active material-containing layer can contain a negative electrode active material, a conductive auxiliary agent, and a binder.
 負極集電体は、表面に負極活物質含有層を担持していない部分を含むこともできる。この部分は、例えば、負極集電タブとして働くこともできる。或いは、負極は、負極集電体とは別体の負極集電タブを含むこともできる。 The negative electrode current collector can also include a portion that does not support a negative electrode active material-containing layer on the surface. This portion can also serve, for example, as a negative electrode current collector tab. Alternatively, the negative electrode may include a negative electrode current collector tab that is separate from the negative electrode current collector.
 負極は、例えば、以下の手順で作製できる。まず、負極活物質、導電剤及びバインダを適切な溶媒、例えばN-メチルピロリドンに溶解し、混合する。得られた混合物を、ビーズミルによる分散に供して、ペースト状の負極塗料を調整する。この負極塗料を、帯状の負極集電体の塗布し、塗膜を乾燥させる。次いで、乾燥させた塗膜を、負極集電体とともにプレスする。かくして、負極を得ることができる。得られた負極を、所定の寸法に切断してもよい。また、負極集電体に、この負極集電体とは別体の負極集電タブを、例えば溶接により接続してもよい。 The negative electrode can be manufactured by the following procedure, for example. First, the negative electrode active material, the conductive agent and the binder are dissolved in a suitable solvent such as N-methylpyrrolidone and mixed. The resulting mixture is subjected to dispersion with a bead mill to prepare a paste-like negative electrode paint. This negative electrode paint is applied to a band-shaped negative electrode current collector, and the coating film is dried. Then, the dried coating film is pressed together with the negative electrode current collector. Thus, a negative electrode can be obtained. The obtained negative electrode may be cut to a predetermined size. Further, a negative electrode current collector tab separate from the negative electrode current collector may be connected to the negative electrode current collector by welding, for example.
 正極及び負極は、正極活物質含有層と負極活物質含有層とが対向するように配置されて、電極群を構成することができる。正極活物質含有層と負極活物質含有層との間には、リチウムイオンは透過させるが電気を通さない部材、例えばセパレータを配置することができる。 The positive electrode and the negative electrode can be arranged so that the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other to form an electrode group. A member that allows lithium ions to permeate but does not conduct electricity, such as a separator, can be arranged between the positive electrode active material-containing layer and the negative electrode active material-containing layer.
 電極群は、様々な構造を有することができる。電極群は、スタック型構造を有していても良いし、又は捲回型構造を有していても良い。スタック型構造は、例えば、複数の負極及び複数の正極を、負極と正極との間にセパレータを挟んで積層させた構造を有する。捲回型構造の電極群は、例えば、負極及び正極をこれらの間にセパレータを挟んで積層させたものを捲回した缶型構造体でも良いし、又はこの缶型構造体をプレスすることによって得られる扁平型構造体でも良い。 The electrode group can have various structures. The electrode group may have a stack type structure or a wound type structure. The stack type structure has, for example, a structure in which a plurality of negative electrodes and a plurality of positive electrodes are laminated with a separator sandwiched between the negative electrode and the positive electrode. The electrode group of the wound type structure may be, for example, a can-shaped structure in which a negative electrode and a positive electrode are laminated with a separator sandwiched between them, or by pressing the can-shaped structure. The obtained flat structure may be used.
 第2の実施形態に係る電池は、正極端子及び負極端子を更に具備することができる。正極集電タブは、正極端子に電気的に接続することができる。同様に、負極集電タブは、負極端子に電気的に接続することができる。正極端子及び負極端子は、電極群から延出することができる。 The battery according to the second embodiment may further include a positive electrode terminal and a negative electrode terminal. The positive electrode current collector tab can be electrically connected to the positive electrode terminal. Similarly, the negative electrode current collector tab can be electrically connected to the negative electrode terminal. The positive electrode terminal and the negative electrode terminal can extend from the electrode group.
 第2の実施形態に係る電池の一例である非水電解質電池において、非水電解質は、例えば電極群に含浸された状態で保持され得る。或いは、第2の実施形態に係る他の例の電池では、電解質を含んだ電解液が、例えば電極群に含浸された状態で保持され得る。 In the non-aqueous electrolyte battery, which is an example of the battery according to the second embodiment, the non-aqueous electrolyte can be held, for example, in a state of being impregnated in the electrode group. Alternatively, in the battery of another example according to the second embodiment, the electrolytic solution containing the electrolyte can be held, for example, in a state of being impregnated in the electrode group.
 第2の実施形態に係る電池は、外装部材を更に具備することができる。外装部材は、例えば、電極群と、電解質とを収容することができる。 The battery according to the second embodiment may further include an exterior member. The exterior member can accommodate, for example, a group of electrodes and an electrolyte.
 外装部材は、正極端子の一部及び負極端子の一部をその外側に延出させることができるような構造を有していても良い。或いは、外装部材は、2つの外部端子を具備し、これらのそれぞれが正極端子及び負極端子のそれぞれに電気的に接続されるように構成されていても良い。或いは、外装部材自体が、正極端子又は負極端子の何れかとして働くこともできる。 The exterior member may have a structure capable of extending a part of the positive electrode terminal and a part of the negative electrode terminal to the outside thereof. Alternatively, the exterior member may include two external terminals, each of which is electrically connected to each of the positive electrode terminal and the negative electrode terminal. Alternatively, the exterior member itself can act as either a positive electrode terminal or a negative electrode terminal.
 次に、第2の実施形態に係る電池の一例である非水電解質電池が含むことができる各部材をより詳細に説明する。 Next, each member that can be included in the non-aqueous electrolyte battery, which is an example of the battery according to the second embodiment, will be described in more detail.
 (正極)
 正極については、第1の実施形態に係る電極の説明を参照されたい。
(Positive electrode)
For the positive electrode, refer to the description of the electrode according to the first embodiment.
 (負極)
 負極集電体としては、電気伝導性が高く、負極の作動電位範囲において腐食を抑えることができる材料を含むシートを使用することができる。例えば、負極集電体としては、アルミニウム箔又はアルミニウム合金箔を使用することができる。アルミニウム箔又はアルミニウム合金箔を使用する場合、その厚さは、例えば20μm以下であり、好ましくは15μm以下である。アルミニウム合金箔には、マグネシウム、亜鉛、ケイ素等を含めることができる。また、アルミニウム合金箔に含まれる、鉄、銅、ニッケル、クロムといった遷移金属の含有量は1%以下であることが好ましい。
(Negative electrode)
As the negative electrode current collector, a sheet containing a material having high electrical conductivity and capable of suppressing corrosion in the working potential range of the negative electrode can be used. For example, an aluminum foil or an aluminum alloy foil can be used as the negative electrode current collector. When an aluminum foil or an aluminum alloy foil is used, the thickness thereof is, for example, 20 μm or less, preferably 15 μm or less. The aluminum alloy foil can include magnesium, zinc, silicon and the like. Further, the content of transition metals such as iron, copper, nickel and chromium contained in the aluminum alloy foil is preferably 1% or less.
 負極活物質としては、例えば、金属、金属合金、金属酸化物、金属硫化物、金属窒化物、黒鉛質材料、炭素質材料などを用いることができる。金属酸化物としては、例えば、単斜晶型の結晶構造を有する二酸化チタン(例えば、TiO2(B))及びリチウムチタン複合酸化物のような、チタンを含む化合物を挙げることができる。金属硫化物としては、例えば、TiS2のような硫化チタン、MoS2のような硫化モリブデン、FeS、FeS2、及びLilFeS(添字hは、0.9≦l≦1.2)のような硫化鉄が挙げられる。黒鉛質材料及び炭素質材料としては、例えば、天然黒鉛、人造黒鉛、コークス、気相成長炭素繊維、メソフェーズピッチ系炭素繊維、球状炭素、樹脂焼成炭素を挙げることができる。なお、複数の異なった負極活物質を混合して用いることも可能である。 As the negative electrode active material, for example, a metal, a metal alloy, a metal oxide, a metal sulfide, a metal nitride, a graphitic material, a carbonaceous material, or the like can be used. Examples of the metal oxide include compounds containing titanium such as titanium dioxide having a monoclinic crystal structure (for example, TiO 2 (B)) and lithium titanium composite oxide. Examples of the metal sulfide include titanium sulfide such as TiS 2 , molybdenum sulfide such as MoS 2 , FeS, FeS 2 , and Li l FeS 2 (subscript h is 0.9 ≦ l ≦ 1.2). Such as iron sulfide. Examples of the graphitic material and the carbonaceous material include natural graphite, artificial graphite, coke, vapor-grown carbon fiber, mesophase pitch-based carbon fiber, spherical carbon, and resin calcined carbon. It is also possible to mix and use a plurality of different negative electrode active materials.
 チタンを含む化合物のより具体的な例としては、例えば、スピネル型チタン酸リチウム(スピネル型の結晶構造を有するチタン酸リチウム)を挙げることができる。この化合物は、一般式Li4+wTi512で表される組成を有し、0≦w≦3であり、スピネル型の結晶構造を有する化合物である。スピネル型チタン酸リチウムは、リチウムが挿入されている状態(w>0)で電子導電性を示し、リチウム挿入量の上昇に伴って電子導電性が向上する。 As a more specific example of the compound containing titanium, for example, spinel-type lithium titanate (lithium titanate having a spinel-type crystal structure) can be mentioned. This compound has a composition represented by the general formula Li 4 + w Ti 5 O 12 , 0 ≦ w ≦ 3, and has a spinel-type crystal structure. The spinel-type lithium titanate exhibits electron conductivity in a state where lithium is inserted (w> 0), and the electron conductivity improves as the amount of lithium inserted increases.
 リチウムチタン複合酸化物の他の具体例としては、単斜晶型の結晶構造を有するニオブチタン複合酸化物及び直方晶型(orthorhombic)の結晶構造を有するチタン含有複合酸化物などのリチウムチタン複合酸化物を挙げることができる。 Other specific examples of the lithium titanium composite oxide include a niobium titanium composite oxide having a monoclinic crystal structure and a titanium-containing composite oxide having an orthorhombic crystal structure. Can be mentioned.
 上記単斜晶型の結晶構造を有するニオブチタン複合酸化物(単斜晶型ニオブチタン複合酸化物)の例としては、一般式LimTi1-nM1nNb2-oM2o7+δで表される化合物が挙げられる。ここで、M1は、Zr、Si及びSnからなる群より選択される少なくとも1つである。M2は、V、Ta及びBiからなる群より選択される少なくとも1つである。一般式中のそれぞれの添字は、0≦m≦5、0≦n<1、0≦o<2、-0.3≦δ≦0.3である。単斜晶型ニオブチタン複合酸化物の具体例として、一般式LimNb2TiO7(0≦m≦5)で表される組成を有する複合酸化物を挙げることができる。 An example of the niobium-titanium composite oxide having a monoclinic-type crystal structure (monoclinic-type niobium-titanium composite oxide) is the general formula Li m Ti 1-n M1 n Nb 2-o M2 o O 7 + δ . Examples include the compounds represented. Here, M1 is at least one selected from the group consisting of Zr, Si and Sn. M2 is at least one selected from the group consisting of V, Ta and Bi. Each subscript in the general formula is 0 ≦ m ≦ 5, 0 ≦ n <1, 0 ≦ o <2, −0.3 ≦ δ ≦ 0.3. Specific examples of the monoclinic niobium titanium composite oxide can include a composite oxide having a composition represented by the general formula Li m Nb 2 TiO 7 (0 ≦ m ≦ 5).
 単斜晶型ニオブチタン複合酸化物の他の例としては、一般式LipTi1-qM3q+rNb2-r7-δで表される化合物が挙げられる。ここで、M3は、Mg,Fe,Ni,Co,W,Ta,及びMoより選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦p≦5、0≦q<1、0≦r<2、-0.3≦δ≦0.3である。 Other examples of monoclinic niobium titanium composite oxide, a compound represented by the general formula Li p Ti 1-q M3 q + r Nb 2-r O 7-δ and the like. Here, M3 is at least one selected from Mg, Fe, Ni, Co, W, Ta, and Mo. Each subscript in the composition formula is 0 ≦ p ≦ 5, 0 ≦ q <1, 0 ≦ r <2, −0.3 ≦ δ ≦ 0.3.
 直方晶型の結晶構造を有するチタン含有複合酸化物(直方晶型チタン含有複合酸化物)の例としては、一般式Li2+sM(I)2-tTi6-uM(II)v14+σで表される化合物が挙げられる。ここで、M(I)は、Sr、Ba、Ca、Mg、Na、Cs、Rb及びKからなる群より選択される少なくとも1つである。M(II)は、Zr、Sn、V、Nb、Ta、Mo、W、Y、Fe、Co、Cr、Mn、Ni及びAlからなる群より選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦s≦6、0≦t<2、0≦u<6、0≦v<6、-0.5≦σ≦0.5である。直方晶型チタン含有複合酸化物の具体例としては、一般式Li2+sNa2Ti614(0≦s≦6)で表される組成を有する化合物が挙げられる。 An example of a titanium-containing composite oxide having an orthorhombic crystal structure (orthorhombic titanium-containing composite oxide) is the general formula Li 2 + s M (I) 2-t Ti 6-u M (II) v. Examples thereof include compounds represented by O 14 + σ . Here, M (I) is at least one selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs, Rb and K. M (II) is at least one selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Y, Fe, Co, Cr, Mn, Ni and Al. Each subscript in the composition formula is 0 ≦ s ≦ 6, 0 ≦ t <2, 0 ≦ u <6, 0 ≦ v <6, −0.5 ≦ σ ≦ 0.5. Specific examples of the orthorhombic titanium-containing composite oxide include compounds having a composition represented by the general formula Li 2 + s Na 2 Ti 6 O 14 (0 ≦ s ≦ 6).
 負極活物質としては、充放電時の活物質の膨張収縮が小さいチタン含有酸化物を用いることが好ましい。負極活物質に、充放電時の活物質の膨張収縮がない無歪みの特徴を有する組成式Li4Ti512で表される組成を有するチタン酸リチウムを含むことがより好ましい。負極活物質として充放電時に膨張収縮が小さい活物質を用いることで、負極活物質の充放電時における膨張収縮の活物質粒子の割れを抑制することができる。 As the negative electrode active material, it is preferable to use a titanium-containing oxide having a small expansion and contraction of the active material during charging and discharging. It is more preferable that the negative electrode active material contains lithium titanate having a composition represented by the composition formula Li 4 Ti 5 O 12 , which has the characteristic of being distortion-free without expansion and contraction of the active material during charging and discharging. By using an active material having a small expansion and contraction during charging and discharging as the negative electrode active material, it is possible to suppress cracking of the active material particles due to expansion and contraction during charging and discharging of the negative electrode active material.
 導電剤は、例えば、負極活物質含有層において、負極活物質同士の電気的導通を助ける役割、及び負極活物質から負極集電体への電気的導通を助ける役割を果たすことができる。 The conductive agent can play a role of assisting electrical conduction between the negative electrode active materials and a role of assisting electrical conduction from the negative electrode active material to the negative electrode current collector, for example, in the negative electrode active material-containing layer.
 負極の導電剤としては、例えば、アセチレンブラックなどのカーボンブラック、黒鉛、カーボンファイバー、グラフェン等の炭素物質を用いることができる。 As the conductive agent for the negative electrode, for example, carbon black such as acetylene black or a carbon substance such as graphite, carbon fiber or graphene can be used.
 バインダは、活物質と集電体とを結合する働きを示すことができる。負極のバインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを用いることができる。 The binder can show the function of binding the active material and the current collector. As the binder of the negative electrode, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), or fluorine-based rubber can be used.
 負極活物質含有層に含まれる負極活物質、導電剤、及びバインダの割合(配合割合)は、それぞれ、70~95重量%、0~25重量%及び2~10重量%であることが好ましく、85~95重量%、3~10重量%及び2~5重量%であることがより好ましい。 The proportions (blending ratio) of the negative electrode active material, the conductive agent, and the binder contained in the negative electrode active material-containing layer are preferably 70 to 95% by weight, 0 to 25% by weight, and 2 to 10% by weight, respectively. More preferably, it is 85 to 95% by weight, 3 to 10% by weight and 2 to 5% by weight.
 (セパレータ)
 セパレータは、絶縁性を有するものであれば特に限定されない。例えば、セパレータとして、ポリオレフィン、セルロース、ポリエチレンテレフタレート、ポリアミド、ポリアミドイミド及びビニロンのようなポリマーで作られた多孔質フィルム又は不織布を用いることができる。セパレータの材料は、1種類であってもよく、或いは、2種類以上を組合せて用いてもよい。
(Separator)
The separator is not particularly limited as long as it has insulating properties. For example, as the separator, a porous film or non-woven fabric made of a polymer such as polyolefin, cellulose, polyethylene terephthalate, polyamide, polyamideimide and vinylon can be used. The material of the separator may be one kind, or two or more kinds may be used in combination.
 (非水電解質)
 非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質(電解質塩)とを含む。
(Non-aqueous electrolyte)
The non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte (electrolyte salt) dissolved in the non-aqueous solvent.
 電解質としては、例えば、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)などを用いることができる。非水溶媒は、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeHF)、1,3-ジオキソラン、スルホラン、アセトニトリル(AN)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)を用いることができる。 As the electrolyte, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ) and the like can be used. Non-aqueous solvents include, for example, propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), γ-butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeHF), 1,3-Dioxolane, sulfolane, acetonitrile (AN), diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC) can be used.
 (負極集電タブ、正極集電タブ、負極端子及び正極端子)
 負極集電タブ、正極集電タブ、負極端子及び正極端子は、電気伝導性の高い材料から形成されていることが好ましい。集電体に接続する場合、接触抵抗を低減させるために、これらの部材は、集電体と同様の材料からなるものであることが好ましい。
(Negative electrode current collecting tab, positive electrode current collecting tab, negative electrode terminal and positive electrode terminal)
The negative electrode current collecting tab, the positive electrode current collecting tab, the negative electrode terminal, and the positive electrode terminal are preferably formed of a material having high electrical conductivity. When connected to a current collector, these members are preferably made of the same material as the current collector in order to reduce contact resistance.
 (外装部材)
 外装部材としては、例えば金属製容器又はラミネートフィルム製容器を用いることができるが、特に限定されない。
(Exterior member)
As the exterior member, for example, a metal container or a laminated film container can be used, but is not particularly limited.
 外装部材として金属製容器を用いることにより、耐衝撃性及び長期信頼性に優れた電池を実現することができる。外装部材としてラミネートフィルム製容器を用いることにより、耐腐食性に優れた電池を実現することができると共に、電池の軽量化を図ることができる。 By using a metal container as the exterior member, it is possible to realize a battery with excellent impact resistance and long-term reliability. By using a container made of a laminated film as the exterior member, it is possible to realize a battery having excellent corrosion resistance and to reduce the weight of the battery.
 金属製容器は、例えば、壁厚が0.2~5mmの範囲内にあるものを用いることができる。金属製容器は、壁厚が0.5mm以下であることがより好ましい。 As the metal container, for example, a container having a wall thickness within the range of 0.2 to 5 mm can be used. It is more preferable that the wall thickness of the metal container is 0.5 mm or less.
 金属製容器は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種を含んでいることが好ましい。金属製容器は、例えば、アルミニウム又はアルミニウム合金等から作ることができる。アルミニウム合金は、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属を含む場合、その含有量は1重量%以下にすることが好ましい。これにより、高温環境下での長期信頼性及び耐衝撃性を飛躍的に向上させることができる。 The metal container preferably contains at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al. The metal container can be made of, for example, aluminum or an aluminum alloy. The aluminum alloy is preferably an alloy containing elements such as magnesium, zinc and silicon. When the alloy contains a transition metal such as iron, copper, nickel, and chromium, the content thereof is preferably 1% by weight or less. As a result, long-term reliability and impact resistance in a high temperature environment can be dramatically improved.
 ラミネートフィルム製容器は、例えば、厚さが0.1~2mmの範囲内にあるラミネートフィルムを用いて作製することができる。ラミネートフィルムの厚さは0.2mm以下であることがより好ましい。
 ラミネートフィルムは、金属層と、この金属層を挟み込んだ樹脂層を含む多層フィルムが用いられる。金属層は、Fe、Ni、Cu、Sn及びAlからなる群より選択される少なくとも1種を含む金属を含むことが好ましい。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。
The container made of a laminated film can be produced, for example, by using a laminated film having a thickness in the range of 0.1 to 2 mm. The thickness of the laminated film is more preferably 0.2 mm or less.
As the laminate film, a multilayer film including a metal layer and a resin layer sandwiching the metal layer is used. The metal layer preferably contains a metal containing at least one selected from the group consisting of Fe, Ni, Cu, Sn and Al. The metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction. As the resin layer, for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, or polyethylene terephthalate (PET) can be used. The laminated film can be sealed into the shape of an exterior member by heat fusion.
 外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。外装部材は、用途に応じて様々な寸法を採ることができる。例えば、第2の実施形態に係る電池が携帯用電子機器の用途に用いられる場合は、外装部材は搭載する電子機器の大きさに合わせて小型のものにすることができる。或いは、二輪乃至四輪の自動車等に積載される非水電解質電池である場合、容器は大型電池用容器であり得る。 Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type. The exterior member can have various dimensions depending on the application. For example, when the battery according to the second embodiment is used for a portable electronic device, the exterior member can be made smaller according to the size of the mounted electronic device. Alternatively, in the case of a non-aqueous electrolyte battery loaded on a two-wheeled to four-wheeled automobile or the like, the container may be a container for a large battery.
 次に、第2の実施形態に係る電池の例を、図面を参照しながら更に詳細に説明する。 Next, an example of the battery according to the second embodiment will be described in more detail with reference to the drawings.
 図6は、第2の実施形態に係る第1の例の電池の概略切り欠き斜視図である。図7は、図6のA部の概略拡大断面図である。 FIG. 6 is a schematic notched perspective view of the battery of the first example according to the second embodiment. FIG. 7 is a schematic enlarged cross-sectional view of part A in FIG.
 図6及び図7に示す電池100は、扁平型の電極群1を具備する。扁平型の電極群1は、負極2と、正極3と、セパレータ4とを含む。 The battery 100 shown in FIGS. 6 and 7 includes a flat electrode group 1. The flat electrode group 1 includes a negative electrode 2, a positive electrode 3, and a separator 4.
 負極2は、図7に示すように、負極集電体2aと、負極集電体2a上に担持された負極活物質含有層2bとを具備する。負極2の最も外側の部分では、負極集電体2aの一方の表面のみに、負極活物質含有層2bが設けられている。その他の部分では、負極集電体2aの両方の表面上に、負極活物質含有層2bが設けられている。正極3は、図7に示すように、正極集電体3aと、正極集電体3aの両方の表面上に担持された正極活物質含有層3bとを具備する。すなわち、正極3は、図5に示す第1の実施形態に係る一例の電極3と同様の構造を有している。 As shown in FIG. 7, the negative electrode 2 includes a negative electrode current collector 2a and a negative electrode active material-containing layer 2b supported on the negative electrode current collector 2a. In the outermost portion of the negative electrode 2, the negative electrode active material-containing layer 2b is provided only on one surface of the negative electrode current collector 2a. In other parts, the negative electrode active material-containing layer 2b is provided on both surfaces of the negative electrode current collector 2a. As shown in FIG. 7, the positive electrode 3 includes a positive electrode current collector 3a and a positive electrode active material-containing layer 3b supported on the surfaces of both the positive electrode current collectors 3a. That is, the positive electrode 3 has the same structure as the electrode 3 of the example according to the first embodiment shown in FIG.
 電極群1では、図7に示すように、負極2と正極3とが、負極活物質含有層2bと正極活物質含有層3bとの間にセパレータ4が介在した状態で積層されている。このような電極群1は、以下の手順により得ることができる。まず、一枚の平板状の負極2と一枚の平板状の正極3とを間にセパレータ4を介在させて積層させる。次に、もう一枚のセパレータ4を負極2に対向していない方の正極活物質含有層3bに積層させて、積層体を作る。この積層体を、負極2を外側にして巻回する。ついで、巻き芯を抜いたのち、プレスして、扁平形状にする。かくして、図6及び図7に示す電極群1を得ることができる。 In the electrode group 1, as shown in FIG. 7, the negative electrode 2 and the positive electrode 3 are laminated with the separator 4 interposed between the negative electrode active material-containing layer 2b and the positive electrode active material-containing layer 3b. Such an electrode group 1 can be obtained by the following procedure. First, one flat plate-shaped negative electrode 2 and one flat plate-shaped positive electrode 3 are laminated with a separator 4 interposed therebetween. Next, another separator 4 is laminated on the positive electrode active material-containing layer 3b that does not face the negative electrode 2 to form a laminated body. This laminate is wound with the negative electrode 2 on the outside. Then, after pulling out the winding core, press it to make it flat. Thus, the electrode group 1 shown in FIGS. 6 and 7 can be obtained.
 負極2には帯状の負極端子5が電気的に接続されている。正極3には帯状の正極端子6が電気的に接続されている。 A band-shaped negative electrode terminal 5 is electrically connected to the negative electrode 2. A band-shaped positive electrode terminal 6 is electrically connected to the positive electrode 3.
 図6及び図7に示す電池100は、容器としてのラミネートフィルム製の外装袋7を更に具備している。 The battery 100 shown in FIGS. 6 and 7 further includes an outer bag 7 made of a laminated film as a container.
 電極群1は、ラミネートフィルム製の外装袋7内に、負極端子5及び正極端子6の端部を外装袋7から延出させた状態で収容されている。 The electrode group 1 is housed in an outer bag 7 made of a laminated film in a state in which the ends of the negative electrode terminal 5 and the positive electrode terminal 6 extend from the outer bag 7.
 ラミネートフィルム製外装袋7内には、図示しない非水電解質が収容されている。すなわち、図6及び図7に示す電池100は、非水電解質電池である。非水電解質は、電極群1に含浸されている。外装袋7は、周縁部がヒートシールされており、それにより、電極群1及び非水電解質を封止している。 A non-aqueous electrolyte (not shown) is housed in the laminated film outer bag 7. That is, the battery 100 shown in FIGS. 6 and 7 is a non-aqueous electrolyte battery. The non-aqueous electrolyte is impregnated in the electrode group 1. The peripheral portion of the outer bag 7 is heat-sealed, thereby sealing the electrode group 1 and the non-aqueous electrolyte.
 次に、第2の実施形態に係る電池の第2の例を、図8を参照しながら詳細に説明する。 Next, a second example of the battery according to the second embodiment will be described in detail with reference to FIG.
 図8は、第2の実施形態に係る第2の例の電池の一部切欠き斜視図である。 FIG. 8 is a partially cutaway perspective view of the battery of the second example according to the second embodiment.
 図8に示す電池100は、外装材が金属製容器7a及び封口板7bから構成されている点で、第1の例の電池100と大きく異なる。 The battery 100 shown in FIG. 8 is significantly different from the battery 100 of the first example in that the exterior material is composed of the metal container 7a and the sealing plate 7b.
 図8に示す電池100は、第1の例の電池100の電極群1と同様の電極群1を具備する。第1の例との相違点は、図8に示す第2の例では、第1の例で負極端子5として用いていた部材5aを負極リードとして用いている点と、第1の例で正極端子6として用いていた部材6aを正極リードとして用いている点とにある。 The battery 100 shown in FIG. 8 includes an electrode group 1 similar to the electrode group 1 of the battery 100 of the first example. The difference from the first example is that in the second example shown in FIG. 8, the member 5a used as the negative electrode terminal 5 in the first example is used as the negative electrode lead, and the positive electrode in the first example. The point is that the member 6a used as the terminal 6 is used as the positive electrode lead.
 図8に示す電池100では、このような電極群1が、金属製容器7aの中に収容されている。金属製容器7aは、非水電解質を更に収納している。金属製容器7aは、金属製の封口板7bにより封止されている。 In the battery 100 shown in FIG. 8, such an electrode group 1 is housed in a metal container 7a. The metal container 7a further houses the non-aqueous electrolyte. The metal container 7a is sealed by a metal sealing plate 7b.
 封口板7bには、負極端子5及び正極端子6が備え付けられている。正極端子6と封口板7bとの間には、絶縁部材7cが配されている。それにより、正極端子6と封口板7bとが電気的に絶縁されている。 The sealing plate 7b is provided with a negative electrode terminal 5 and a positive electrode terminal 6. An insulating member 7c is arranged between the positive electrode terminal 6 and the sealing plate 7b. As a result, the positive electrode terminal 6 and the sealing plate 7b are electrically insulated.
 負極端子5は、図8に示すように、負極リード5aに接続されている。同様に、正極端子6は、正極リード6aに接続されている。 The negative electrode terminal 5 is connected to the negative electrode lead 5a as shown in FIG. Similarly, the positive electrode terminal 6 is connected to the positive electrode lead 6a.
 第2の実施形態に係る電池は、第1の実施形態に係る電極を具備するので、優れた入出力性能及び優れた寿命特性を示すことができる。 Since the battery according to the second embodiment includes the electrodes according to the first embodiment, it can exhibit excellent input / output performance and excellent life characteristics.
 (第3の実施形態)
 第3の実施形態によると、電池パックが提供される。この電池パックは、第2の実施形態に係る電池を具備する。
(Third Embodiment)
According to a third embodiment, a battery pack is provided. This battery pack comprises the battery according to the second embodiment.
 第3の実施形態に係る電池パックは、複数の電池を備えることもできる。複数の電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の電池を、直列及び並列の組み合わせで接続することもできる。 The battery pack according to the third embodiment may include a plurality of batteries. Multiple batteries can be electrically connected in series or electrically in parallel. Alternatively, a plurality of batteries can be connected in series and in parallel.
 例えば、第3の実施形態に係る電池パックは、第2の実施形態に係る電池を複数個具備することもできる。これらの電池は、直列に接続されることができる。また、直列に接続された電池は、組電池を構成することができる。すなわち、第3の実施形態に係る電池パックは、組電池を具備することもできる。 For example, the battery pack according to the third embodiment may include a plurality of batteries according to the second embodiment. These batteries can be connected in series. Further, the batteries connected in series can form an assembled battery. That is, the battery pack according to the third embodiment may also include an assembled battery.
 第3の実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。 The battery pack according to the third embodiment can include a plurality of assembled batteries. A plurality of assembled batteries can be connected in series, in parallel, or in a combination of series and parallel.
 第3の実施形態に係る電池パックの一例を、図9及び図10を参照して詳細に説明する。図9及び図10に示す電池パック20は、複数の単電池21を含む。単電池21には、図8に示す電池を使用することができる。 An example of the battery pack according to the third embodiment will be described in detail with reference to FIGS. 9 and 10. The battery pack 20 shown in FIGS. 9 and 10 includes a plurality of cell cells 21. The battery shown in FIG. 8 can be used as the cell 21.
 前述した図8に示す電池100から構成される複数の単電池21は、外部に延出した負極端子5及び正極端子6が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図10に示すように互いに電気的に直列に接続されている。 The plurality of cell cells 21 composed of the battery 100 shown in FIG. 8 described above are laminated so that the negative electrode terminals 5 and the positive electrode terminals 6 extending to the outside are aligned in the same direction, and are fastened with adhesive tape 22. It constitutes the assembled battery 23. As shown in FIG. 10, these cell cells 21 are electrically connected in series with each other.
 プリント配線基板24は、負極端子5及び正極端子6が延出する単電池21側面と対向して配置されている。プリント配線基板24には、図10に示すようにサーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、組電池23と対向するプリント配線基板24の面には組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。 The printed wiring board 24 is arranged so as to face the side surface of the cell 21 on which the negative electrode terminal 5 and the positive electrode terminal 6 extend. As shown in FIG. 10, the printed wiring board 24 is equipped with a thermistor 25, a protection circuit 26, and a terminal 27 for energizing an external device. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
 正極側リード28は、組電池23の最下層に位置する正極端子6に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子5に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び33を通して保護回路26に接続されている。 The positive electrode side lead 28 is connected to the positive electrode terminal 6 located at the bottom layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected. The negative electrode side lead 30 is connected to the negative electrode terminal 5 located on the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and electrically connected. These connectors 29 and 31 are connected to the protection circuit 26 through the wirings 32 and 33 formed on the printed wiring board 24.
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21若しくは組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図9及び図10の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。 The thermistor 25 detects the temperature of the cell 21 and the detection signal is transmitted to the protection circuit 26. The protection circuit 26 can cut off the positive side wiring 34a and the negative side wiring 34b between the protection circuit 26 and the energizing terminal 27 to the external device under predetermined conditions. The predetermined condition is, for example, when the detection temperature of the thermistor 25 becomes equal to or higher than the predetermined temperature. Further, the predetermined condition is when overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected. The detection of overcharging or the like is performed for each individual cell 21 or the entire assembled battery 23. When detecting the individual cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each cell 21. In the case of FIGS. 9 and 10, a wiring 35 for voltage detection is connected to each of the cell 21s, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
 正極端子6及び負極端子5が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。 A protective sheet 36 made of rubber or resin is arranged on each of the three side surfaces of the assembled battery 23 except for the side surface on which the positive electrode terminal 6 and the negative electrode terminal 5 protrude.
 組電池23は、各保護シート36及びプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36及びプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。 The assembled battery 23 is stored in the storage container 37 together with the protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is arranged on both inner side surfaces in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is arranged on the inner side surface on the opposite side in the short side direction. The assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24. The lid 38 is attached to the upper surface of the storage container 37.
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。 A heat-shrinkable tape may be used instead of the adhesive tape 22 to fix the assembled battery 23. In this case, protective sheets are arranged on both side surfaces of the assembled battery, the heat-shrinkable tape is circulated, and then the heat-shrinkable tape is heat-shrinked to bind the assembled battery.
 図9及び図10では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列及び/又は並列に接続することもできる。 Although the cells 21 are connected in series in FIGS. 9 and 10, they may be connected in parallel in order to increase the battery capacity. The assembled battery packs can also be connected in series and / or in parallel.
 また、第3の実施形態に係る電池パックの態様は、用途により適宜変更される。第3の実施形態に係る電池パックは、大電流を取り出したときにサイクル特性が優れていることが要求される用途に好適に用いられる。具体的には、デジタルカメラの電源として、又は、例えば列車、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、及び、アシスト自転車等の車両の車載用電池として用いられる。特に、車載用電池として好適に用いられる。 Further, the mode of the battery pack according to the third embodiment is appropriately changed depending on the intended use. The battery pack according to the third embodiment is suitably used for applications in which excellent cycle characteristics are required when a large current is taken out. Specifically, it is used as a power source for a digital camera, or as an in-vehicle battery for vehicles such as trains, two-wheeled to four-wheeled hybrid electric vehicles, two-wheeled to four-wheeled electric vehicles, and assisted bicycles. In particular, it is suitably used as an in-vehicle battery.
 第3の実施形態に係る電池パックは、第2の実施形態に係る電池を具備するので、優れた入出力性能及び優れた寿命特性を示すことができる。 Since the battery pack according to the third embodiment includes the battery according to the second embodiment, it can exhibit excellent input / output performance and excellent life characteristics.
 [実施例]
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に掲載される実施例に限定されるものでない。
[Example]
Examples will be described below, but the present invention is not limited to the examples described below as long as the gist of the present invention is not exceeded.
 [電極の作製]
 (実施例1)
 実施例1では、以下の手順で電極を作製した。
[Preparation of electrodes]
(Example 1)
In Example 1, an electrode was produced by the following procedure.
 (先分散液Aの調製)
 まず、活物質粒子として、式LiNi0.6Co0.2Mn0.22で表される組成を有するリチウム含有ニッケルコバルトマンガン複合酸化物の粒子を準備した。この粒子を、露点管理していない大気環境下で、30時間保管した。得られた粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は0.5μmであり、平均二次粒子径は7μmであった。
(Preparation of pre-dispersion liquid A)
First, as active material particles, particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared. The particles were stored for 30 hours in an air environment with no dew point control. The particles obtained were a mixture of primary and secondary particles. The average primary particle size was 0.5 μm, and the average secondary particle size was 7 μm.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、活物質粒子及びバインダを、99:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 99: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid A was obtained.
 (先分散液Bの調製)
 まず、導電剤として、アセチレンブラックを準備した。このアセチレンブラックを、濃硫酸中で、200℃で加熱した。この処理により、導電剤の表面の官能基の量を増やすことができる。実際、得られた導電剤は、表面にヒドロキシル基とカルボキシル基とを有していた。導電剤の平均粒子径は、40nmであった。
(Preparation of pre-dispersion liquid B)
First, acetylene black was prepared as a conductive agent. This acetylene black was heated in concentrated sulfuric acid at 200 ° C. By this treatment, the amount of functional groups on the surface of the conductive agent can be increased. In fact, the obtained conductive agent had a hydroxyl group and a carboxyl group on the surface. The average particle size of the conductive agent was 40 nm.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、導電剤及びバインダを、70:30の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Bを得た。 Next, the conductive agent and the binder were added to N-methylpyrrolidone at a weight ratio of 70:30 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid B was obtained.
 (電極塗料Cの調製)
 次に、先分散液A及び先分散液Bを、活物質粒子:導電剤:バインダの重量比が85:10:5となるように混合し、混合物を得た。次に、得られた混合物を、ロールミルで60分間撹拌した。かくして、ペースト状の電極塗料Cを得た。
(Preparation of electrode paint C)
Next, the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: the conductive agent: the binder was 85:10: 5 to obtain a mixture. The resulting mixture was then stirred on a roll mill for 60 minutes. Thus, a paste-like electrode paint C was obtained.
 (電極の完成)
 次に、電極塗料Cを、帯状のアルミニウム箔からなる集電体の両方の表面に均一に塗布した。次に、塗膜を乾燥させて、集電体とそれの表面上に設けられた活物質含有層とを含む帯状体を得た。次いで、集電体と活物質含有層とを含む帯状体を、プレスに供した。
(Completion of electrode)
Next, the electrode paint C was uniformly applied to both surfaces of the current collector made of strip-shaped aluminum foil. Next, the coating film was dried to obtain a strip containing a current collector and an active material-containing layer provided on the surface of the current collector. Then, the strip containing the current collector and the active material-containing layer was subjected to a press.
 プレス後、帯状体を切断し、集電体に集電タブを溶接した。かくして、実施例1の電極を得た。 After pressing, the strip was cut and the current collector tab was welded to the current collector. Thus, the electrode of Example 1 was obtained.
 (実施例2)
 実施例2では、以下の手順で先分散液Aの調製したこと、及び以下の手順で電極塗料Cを調製したこと以外は実施例1の手順と同様の手順により、電極を作製した。
(Example 2)
In Example 2, the electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure and the electrode coating material C was prepared by the following procedure.
 この例では、活物質粒子として、式LiNi0.6Co0.2Mn0.22で表される組成を有するリチウム含有ニッケルコバルトマンガン複合酸化物の粒子を準備した。この粒子をドライルームに保管し、使用直前にドライルームから取り出した。この粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は0.7μmであり、平均二次粒子径は8μmであった。 In this example, as the active material particles, particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared. The particles were stored in a dry room and removed from the dry room immediately before use. The particles were a mixture of primary and secondary particles. The average primary particle size was 0.7 μm, and the average secondary particle size was 8 μm.
 また、電極添加剤としてのシュウ酸、及びバインダとしてのポリフッ化ビニリデンを準備した。 In addition, oxalic acid as an electrode additive and polyvinylidene fluoride as a binder were prepared.
 次いで、活物質粒子、電極添加剤及びバインダを、98:1:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、常温常圧の大気雰囲気下で、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。得られたペーストを36時間静置した状態で保管した。 Next, the active material particles, the electrode additive and the binder were added to N-methylpyrrolidone at a weight ratio of 98: 1: 1 to obtain a mixture. Next, the obtained mixture was stirred with a ball mill for 60 minutes under an air atmosphere of normal temperature and pressure. Thus, a paste-like pre-dispersion liquid A was obtained. The obtained paste was stored in a state of being allowed to stand for 36 hours.
 一方で、実施例1と同様の手順で、先分散液Bを得た。次に、先分散液Aと先分散液Bとを、活物質粒子:導電剤:バインダ:電極添加剤の重量比が85:9:5:1となるように混合し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の電極塗料Cを得た。 On the other hand, the pre-dispersion liquid B was obtained by the same procedure as in Example 1. Next, the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: conductive agent: binder: electrode additive was 85: 9: 5: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like electrode paint C was obtained.
 (実施例3)
 実施例3では、以下の手順で先分散液Aを調製したこと以外は実施例1の手順と同様の手順により、電極を作製した。
(Example 3)
In Example 3, an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
 この例では、活物質粒子として、実施例2で用いたのと同様のリチウム含有ニッケルコバルトマンガン複合酸化物の粒子を準備した。また、バインダとして、カルボニル基を含んだ官能基を側鎖に含むポリフッ化ビニリデンを準備した。このポリフッ化ビニリデンの全体の分子量に対する、カルボニル基の部分の分子量の比率は、3%であった。 In this example, the same lithium-containing nickel-cobalt-manganese composite oxide particles used in Example 2 were prepared as the active material particles. In addition, as a binder, polyvinylidene fluoride containing a functional group containing a carbonyl group in the side chain was prepared. The ratio of the molecular weight of the carbonyl group portion to the total molecular weight of this polyvinylidene fluoride was 3%.
 次いで、活物質粒子及びバインダを、99:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 99: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid A was obtained.
 (実施例4)
 実施例4では、以下の手順で先分散液Aを調製したこと以外は実施例1の手順と同様の手順により、電極を作製した。
(Example 4)
In Example 4, an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
 この例では、活物質粒子として、実施例2で用いたのと同様のリチウム含有ニッケルコバルトマンガン複合酸化物の粒子を準備した。また、バインダとして、カルボニル基を含んだ官能基を側鎖に含むポリアクリロニトリルバインダを準備した。このポリアクリロニトリルの全体の分子量に対する、カルボニル基の部分の分子量の比率は、3%であった。 In this example, the same lithium-containing nickel-cobalt-manganese composite oxide particles used in Example 2 were prepared as the active material particles. In addition, as a binder, a polyacrylonitrile binder containing a functional group containing a carbonyl group in the side chain was prepared. The ratio of the molecular weight of the carbonyl group portion to the total molecular weight of this polyacrylonitrile was 3%.
 次いで、活物質粒子及びバインダを、99:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 99: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid A was obtained.
 (実施例5)
 実施例5では、以下の手順で先分散液Bを調製したこと以外は実施例3の手順と同様の手順により、電極を作製した。
(Example 5)
In Example 5, an electrode was prepared by the same procedure as in Example 3 except that the pre-dispersion liquid B was prepared by the following procedure.
 この例では、導電剤として、ケッチェンブラックを準備した。このケッチェンブラックを、濃硫酸中で、200℃で加熱した。この処理により、導電剤の表面の官能基の量を増やすことができる。実際、得られた導電剤は、表面にヒドロキシル基とカルボキシル基とを有していた。導電剤の平均粒子径は、35nmであった。 In this example, Ketjen Black was prepared as a conductive agent. This Ketjen black was heated in concentrated sulfuric acid at 200 ° C. By this treatment, the amount of functional groups on the surface of the conductive agent can be increased. In fact, the obtained conductive agent had a hydroxyl group and a carboxyl group on the surface. The average particle size of the conductive agent was 35 nm.
 また、バインダとして、実施例3で用いたものと同じポリフッ化ビニリデンを準備した。 Also, as a binder, the same polyvinylidene fluoride as that used in Example 3 was prepared.
 次いで、導電剤及びバインダを、70:30の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Bを得た。 Next, the conductive agent and the binder were added to N-methylpyrrolidone at a weight ratio of 70:30 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid B was obtained.
 (実施例6)
 実施例6では、以下の手順で先分散液Bを調製したこと以外は実施例5の手順と同様の手順により、電極を作製した。
(Example 6)
In Example 6, an electrode was prepared by the same procedure as in Example 5 except that the pre-dispersion liquid B was prepared by the following procedure.
 この例では、導電剤として、実施例5で用いたのと同様のケッチェンブラックを準備した。このケッチェンブラックを、実施例5の手順と同様の手順で、濃硫酸により処理をした。 In this example, the same Ketjen black used in Example 5 was prepared as the conductive agent. This Ketjen black was treated with concentrated sulfuric acid in the same procedure as in Example 5.
 また、バインダとして、実施例3で用いたものと同じポリフッ化ビニリデンを準備した。 Also, as a binder, the same polyvinylidene fluoride as that used in Example 3 was prepared.
 次いで、導電剤及びバインダを、70:30の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ビーズミル分散機であるビーズ式湿式微粒分散粉砕機「サンドグラインダー」に投入した。このビーズミル分散機において分散を60分間実施した。分散にあたり、分散メディアとして、径が2mmであるガラス製のビーズを用いた。また、羽の回転数を800rpmに設定した。かくして、ペースト状の先分散液Bを得た。 Next, the conductive agent and the binder were added to N-methylpyrrolidone at a weight ratio of 70:30 to obtain a mixture. Next, the obtained mixture was put into a bead type wet fine particle dispersion crusher "sand grinder" which is a bead mill disperser. Dispersion was carried out in this bead mill disperser for 60 minutes. For dispersion, glass beads having a diameter of 2 mm were used as the dispersion medium. Moreover, the rotation speed of the wing was set to 800 rpm. Thus, a paste-like pre-dispersion liquid B was obtained.
 (実施例7及び8)
 実施例7及び8では、それぞれ以下の手順で電極塗料Cを調製したこと以外は実施例1と同様の手順により、電極を作製した。
(Examples 7 and 8)
In Examples 7 and 8, electrodes were produced by the same procedure as in Example 1 except that the electrode coating material C was prepared by the following procedure, respectively.
 実施例7では、先分散液A及び先分散液Bを、活物質粒子:導電剤:バインダの重量比が85:8:7となるように混合し、混合物を得た。次に、得られた混合物を、実施例1と同様に処理した。かくして、ペースト状の電極塗料Cを得た。 In Example 7, the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: the conductive agent: the binder was 85: 8: 7 to obtain a mixture. The resulting mixture was then treated in the same manner as in Example 1. Thus, a paste-like electrode paint C was obtained.
 実施例8では、先分散液A及び先分散液Bを、活物質粒子:導電剤:バインダの重量比が85:5:10となるように混合し、混合物を得た。次に、得られた混合物を、実施例1と同様に処理した。かくして、ペースト状の電極塗料Cを得た。 In Example 8, the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: the conductive agent: the binder was 85: 5: 10 to obtain a mixture. The resulting mixture was then treated in the same manner as in Example 1. Thus, a paste-like electrode paint C was obtained.
 (実施例9)
 実施例9では、以下の手順で先分散液Aを調製したこと以外は実施例1と同様の手順により、電極を作製した。
(Example 9)
In Example 9, an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
 まず、活物質粒子として、式LiMn24で表される組成を有するスピネル型の結晶構造を有するリチウム含有マンガン複合酸化物の粒子を準備した。この粒子を、露点管理していない大気環境下で、36時間保管した。得られた粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は1μmであり、平均二次粒子径は10μmであった。 First, as active material particles, particles of a lithium-containing manganese composite oxide having a spinel-type crystal structure having a composition represented by the formula LiMn 2 O 4 were prepared. The particles were stored for 36 hours in an air environment with no dew point control. The particles obtained were a mixture of primary and secondary particles. The average primary particle size was 1 μm, and the average secondary particle size was 10 μm.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、活物質粒子及びバインダを、99:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 99: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid A was obtained.
 (実施例10)
 実施例10では、以下の手順で先分散液Aを調製したこと以外は実施例1と同様の手順により、電極を作製した。
(Example 10)
In Example 10, an electrode was prepared by the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure.
 まず、活物質粒子として、式LiFePO4で表される組成を有するオリビン型の結晶構造を有するリン酸鉄リチウムの粒子を準備した。この粒子を、露点管理していない大気環境下で、36時間保管した。得られた粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は0.2μmであり、平均二次粒子径は3μmであった。 First, as active material particles, particles of lithium iron phosphate having an olivine-type crystal structure having a composition represented by the formula LiFePO 4 were prepared. The particles were stored for 36 hours in an air environment with no dew point control. The particles obtained were a mixture of primary and secondary particles. The average primary particle size was 0.2 μm, and the average secondary particle size was 3 μm.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、活物質粒子及びバインダを、99:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 99: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid A was obtained.
 (実施例11)
 実施例11では、実施例1と同様の手順で電極を作製した。
(Example 11)
In Example 11, electrodes were produced in the same procedure as in Example 1.
 (比較例1)
 比較例1では、以下の手順で先分散液Aを調製したこと、及び以下の手順で先分散液Bを調製したこと以外は実施例1の手順と同様の手順で、電極を作製した。
(Comparative Example 1)
In Comparative Example 1, the electrode was prepared in the same procedure as in Example 1 except that the pre-dispersion liquid A was prepared by the following procedure and the pre-dispersion liquid B was prepared by the following procedure.
 この例では、活物質粒子として、式LiNi0.6Co0.2Mn0.22で表される組成を有するリチウム含有ニッケルコバルトマンガン複合酸化物の粒子を準備した。この粒子をドライルームに保管し、使用直前にドライルームから取り出した。この粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は0.7μmであり、平均二次粒子径は8μmであった。すなわち、この例では、実施例2で用いたのと同様の活物質粒子を用いた。 In this example, as the active material particles, particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared. The particles were stored in a dry room and removed from the dry room immediately before use. The particles were a mixture of primary and secondary particles. The average primary particle size was 0.7 μm, and the average secondary particle size was 8 μm. That is, in this example, the same active material particles as those used in Example 2 were used.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、活物質粒子及びバインダを、70:30の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、実施例1と同様に処理した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 70:30 to obtain a mixture. The resulting mixture was then treated in the same manner as in Example 1. Thus, a paste-like pre-dispersion liquid A was obtained.
 また、この例では、導電剤として、アセチレンブラックを準備した。ただし、実施例1~4、7~11とは異なり、準備したアセチレンブラックを、濃硫酸での処理に供さなかった。導電剤の平均粒子径は、40nmであった。この例では、この導電剤を用いたこと以外は実施例1の手順と同様の手順により、先分散液Bを調製した。 In this example, acetylene black was prepared as a conductive agent. However, unlike Examples 1 to 4 and 7 to 11, the prepared acetylene black was not subjected to treatment with concentrated sulfuric acid. The average particle size of the conductive agent was 40 nm. In this example, the pre-dispersion liquid B was prepared by the same procedure as in Example 1 except that this conductive agent was used.
 (比較例2)
 比較例2では、以下の手順で先分散液Bを調製したこと以外は比較例1と同様の手順により、電極を作製した。
(Comparative Example 2)
In Comparative Example 2, an electrode was prepared by the same procedure as in Comparative Example 1 except that the pre-dispersion liquid B was prepared by the following procedure.
 この例では、導電剤として、ケッチェンブラックを準備した。ただし、実施例5及び6とは異なり、準備したケッチェンブラックは、濃硫酸による処理に供さなかった。導電剤の平均粒子径は、35nmであった。 In this example, Ketjen Black was prepared as a conductive agent. However, unlike Examples 5 and 6, the prepared Ketjen black was not treated with concentrated sulfuric acid. The average particle size of the conductive agent was 35 nm.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、導電剤及びバインダを、70:30の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Bを得た。 Next, the conductive agent and the binder were added to N-methylpyrrolidone at a weight ratio of 70:30 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid B was obtained.
 (比較例3及び4)
 比較例3及び4では、それぞれ以下の手順で電極塗料Cを調製したこと以外は比較例2と同様の手順により、電極を作製した。
(Comparative Examples 3 and 4)
In Comparative Examples 3 and 4, electrodes were produced by the same procedure as in Comparative Example 2 except that the electrode coating material C was prepared by the following procedure, respectively.
 比較例3では、先分散液A及び先分散液Bを、活物質粒子:導電剤:バインダの重量比が94:1:5となるように混合し、混合物を得た。次に、得られた混合物を、実施例1と同様に処理した。かくして、ペースト状の電極塗料Cを得た。 In Comparative Example 3, the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: conductive agent: binder was 94: 1: 5 to obtain a mixture. The resulting mixture was then treated in the same manner as in Example 1. Thus, a paste-like electrode paint C was obtained.
 比較例4では、先分散液A及び先分散液Bを、活物質粒子:導電剤:バインダの重量比が75:20:5となるように混合し、混合物を得た。次に、得られた混合物を、実施例1と同様に処理した。かくして、ペースト状の電極塗料Cを得た。 In Comparative Example 4, the pre-dispersion liquid A and the pre-dispersion liquid B were mixed so that the weight ratio of the active material particles: the conductive agent: the binder was 75:20: 5 to obtain a mixture. The resulting mixture was then treated in the same manner as in Example 1. Thus, a paste-like electrode paint C was obtained.
 (比較例5)
 比較例5では、電極塗料Cの代わりに、以下の手順で調製した電極塗料Dを用いたこと以外は実施例1の手順と同様の手順により、電極を作製した。
(Comparative Example 5)
In Comparative Example 5, an electrode was produced by the same procedure as in Example 1 except that the electrode paint D prepared in the following procedure was used instead of the electrode paint C.
 この例では、まず、活物質粒子として、式LiNi0.6Co0.2Mn0.22で表される組成を有するリチウム含有ニッケルコバルトマンガン複合酸化物の粒子を準備した。この粒子を、露点管理していない大気環境下で、30時間保管した。得られた粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は0.5μmであり、平均二次粒子径は7μmであった。すなわち、実施例1で用いたものと同様の活物質粒子を準備した。 In this example, first, as the active material particles, particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared. The particles were stored for 30 hours in an air environment with no dew point control. The particles obtained were a mixture of primary and secondary particles. The average primary particle size was 0.5 μm, and the average secondary particle size was 7 μm. That is, active material particles similar to those used in Example 1 were prepared.
 次に、導電剤として、比較例1で用いたのと同様のアセチレンブラックを準備した。すなわち、この例では、濃硫酸での処理に供していないアセチレンブラックを導電剤として用いた。また、バインダとして、実施例1で用いたのと同様のポリフッ化ビニリデンを準備した。 Next, as a conductive agent, the same acetylene black used in Comparative Example 1 was prepared. That is, in this example, acetylene black, which has not been treated with concentrated sulfuric acid, was used as the conductive agent. Further, as a binder, the same polyvinylidene fluoride as that used in Example 1 was prepared.
 次に、これらを、活物質粒子:導電剤:バインダの重量比が85:10:5となるように混合し、混合物を得た。次に、得られた混合物を、N-メチルピロリドンに投入し、懸濁液を得た。 Next, these were mixed so that the weight ratio of active material particles: conductive agent: binder was 85:10: 5 to obtain a mixture. The resulting mixture was then charged into N-methylpyrrolidone to give a suspension.
 次に、この懸濁液をビーズミル分散機であるビーズ式湿式微粒分散粉砕機「サンドグラインダー」に投入した。このビーズミル分散機において分散を60分間実施した。分散にあたり、分散メディアとして、径が2mmであるガラス製のビーズを用いた。また、羽の回転数を800rpmに設定した。かくして、ペースト状の電極塗料Dを得た。 Next, this suspension was put into a bead type wet fine particle dispersion crusher "sand grinder" which is a bead mill disperser. Dispersion was carried out in this bead mill disperser for 60 minutes. For dispersion, glass beads having a diameter of 2 mm were used as the dispersion medium. Moreover, the rotation speed of the wing was set to 800 rpm. Thus, a paste-like electrode coating material D was obtained.
 (比較例6)
 比較例6では、以下の手順で先分散液Aを調製したこと及び以下の手順で先分散液Bを調製したこと以外は実施例9と同様の手順で、電極を作製した。
(Comparative Example 6)
In Comparative Example 6, the electrode was prepared in the same procedure as in Example 9 except that the pre-dispersion liquid A was prepared by the following procedure and the pre-dispersion liquid B was prepared by the following procedure.
 まず、活物質粒子として、式LiMn24で表される組成を有するスピネル型の結晶構造を有するリチウム含有マンガン複合酸化物の粒子を準備した。この粒子をドライルームに保管し、使用直前にドライルームから取り出した。この粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は1μmであり、平均二次粒子径は10μmであった。 First, as active material particles, particles of a lithium-containing manganese composite oxide having a spinel-type crystal structure having a composition represented by the formula LiMn 2 O 4 were prepared. The particles were stored in a dry room and removed from the dry room immediately before use. The particles were a mixture of primary and secondary particles. The average primary particle size was 1 μm, and the average secondary particle size was 10 μm.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、活物質粒子及びバインダを、99:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 99: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid A was obtained.
 一方で、この例では、導電剤として、比較例1で用いたのと同様のアセチレンブラックを準備した。すなわち、この例では、濃硫酸での処理に供していないアセチレンブラックを導電剤として用いた。この例では、この導電剤を用いたこと以外は比較例1の手順と同様の手順により、先分散液Bを調製した。 On the other hand, in this example, the same acetylene black used in Comparative Example 1 was prepared as the conductive agent. That is, in this example, acetylene black, which has not been treated with concentrated sulfuric acid, was used as the conductive agent. In this example, the pre-dispersion liquid B was prepared by the same procedure as that of Comparative Example 1 except that this conductive agent was used.
 (比較例7)
 比較例7では、以下の手順で先分散液Aを調製したこと及び以下の手順で先分散液Bを調製したこと以外は実施例10と同様の手順により、電極を作製した。
(Comparative Example 7)
In Comparative Example 7, the electrode was prepared by the same procedure as in Example 10 except that the pre-dispersion liquid A was prepared by the following procedure and the pre-dispersion liquid B was prepared by the following procedure.
 まず、活物質粒子として、式LiFePO4で表される組成を有するオリビン型の結晶構造を有するリン酸鉄リチウムの粒子を準備した。この粒子をドライルームに保管し、使用直前にドライルームから取り出した。この粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は0.2μmであり、平均二次粒子径は3μmであった。 First, as active material particles, particles of lithium iron phosphate having an olivine-type crystal structure having a composition represented by the formula LiFePO 4 were prepared. The particles were stored in a dry room and removed from the dry room immediately before use. The particles were a mixture of primary and secondary particles. The average primary particle size was 0.2 μm, and the average secondary particle size was 3 μm.
 また、バインダとして、ポリフッ化ビニリデンを準備した。 In addition, polyvinylidene fluoride was prepared as a binder.
 次いで、活物質粒子及びバインダを、99:1の重量比で、N-メチルピロリドンに投入し、混合物を得た。次に、得られた混合物を、ボールミルで60分間撹拌した。かくして、ペースト状の先分散液Aを得た。 Next, the active material particles and the binder were added to N-methylpyrrolidone at a weight ratio of 99: 1 to obtain a mixture. The resulting mixture was then stirred in a ball mill for 60 minutes. Thus, a paste-like pre-dispersion liquid A was obtained.
 一方で、この例では、導電剤として、比較例1で用いたのと同様のアセチレンブラックを準備した。すなわち、この例では、濃硫酸での処理に供していないアセチレンブラックを導電剤として用いた。この例では、この導電剤を用いたこと以外は比較例1の手順と同様の手順により、先分散液Bを調製した。 On the other hand, in this example, the same acetylene black used in Comparative Example 1 was prepared as the conductive agent. That is, in this example, acetylene black, which has not been treated with concentrated sulfuric acid, was used as the conductive agent. In this example, the pre-dispersion liquid B was prepared by the same procedure as that of Comparative Example 1 except that this conductive agent was used.
 (比較例8)
 比較例8では、比較例1と同様の手順で電極を作製した。
(Comparative Example 8)
In Comparative Example 8, an electrode was produced in the same procedure as in Comparative Example 1.
 (比較例9)
 比較例9では、以下の手順で電極を作製した。
(Comparative Example 9)
In Comparative Example 9, an electrode was produced by the following procedure.
 まず、活物質粒子として、式LiNi0.6Co0.2Mn0.22で表される組成を有するリチウム含有ニッケルコバルトマンガン複合酸化物の粒子を準備した。この粒子をドライルームに保管し、使用直前にドライルームから取り出した。この粒子は、一次粒子と二次粒子との混合物であった。平均一次粒子径は0.7μmであり、平均二次粒子径は8μmであった。すなわち、この例では、実施例2で用いたのと同様の活物質粒子を用いた。
 また、導電剤として、ケッチェンブラックを準備した。このケッチェンブラックに対しては、酸処理を行わなかった。この導電剤の平均粒子径は、35nmであった。
First, as active material particles, particles of a lithium-containing nickel-cobalt-manganese composite oxide having a composition represented by the formula LiNi 0.6 Co 0.2 Mn 0.2 O 2 were prepared. The particles were stored in a dry room and removed from the dry room immediately before use. The particles were a mixture of primary and secondary particles. The average primary particle size was 0.7 μm, and the average secondary particle size was 8 μm. That is, in this example, the same active material particles as those used in Example 2 were used.
In addition, Ketjen Black was prepared as a conductive agent. No acid treatment was performed on this Ketjen black. The average particle size of this conductive agent was 35 nm.
 また、バインダとして、比較例1で用いたものと同様のポリフッ化ビニリデンと、カルボニル基を含んでいないポリアクリロニトリルとを準備した。すなわち、この例で準備したバインダは、カルボニル基を含んでいなかった。 Further, as a binder, polyvinylidene fluoride similar to that used in Comparative Example 1 and polyacrylonitrile containing no carbonyl group were prepared. That is, the binder prepared in this example did not contain a carbonyl group.
 次に、これらを、活物質粒子:導電剤:ポリフッ化ビニリデン:ポリアクリロニトリルの重量比が96:2:1.6:0.4となるように混合し、混合物を得た。次に、得られた混合物を、N-メチルピロリドンに投入し、懸濁液を得た。この懸濁液をプラネタリーミキサーにて撹拌し、ペースト状の電極塗料Eを得た。プラネタリーミキサーでの撹拌は、50rpmで60分間する条件であった。 Next, these were mixed so that the weight ratio of active material particles: conductive agent: polyvinylidene fluoride: polyacrylonitrile was 96: 2: 1.6: 0.4 to obtain a mixture. The resulting mixture was then charged into N-methylpyrrolidone to give a suspension. This suspension was stirred with a planetary mixer to obtain a paste-like electrode coating material E. Stirring with a planetary mixer was a condition of 50 rpm for 60 minutes.
 次いで、電極塗料Eを、帯状のアルミニウム箔からなる集電体の両方の表面に均一に塗布した。次に、塗膜を乾燥させて、集電体とそれの表面上に設けられた活物質含有層とを含む帯状体を得た。次いで、集電体と活物質含有層とを含む帯状体を、プレスに供した。 Next, the electrode paint E was uniformly applied to both surfaces of the current collector made of strip-shaped aluminum foil. Next, the coating film was dried to obtain a strip containing a current collector and an active material-containing layer provided on the surface of the current collector. Then, the strip containing the current collector and the active material-containing layer was subjected to a press.
 プレス後、帯状体を切断し、集電体に集電タブを溶接した。かくして、電極を得た。 After pressing, the strip was cut and the current collector tab was welded to the current collector. Thus, an electrode was obtained.
 [電池の作製]
 (実施例1~10、比較例1~7、比較例9)
 実施例1~10、比較例1~7、比較例9の各々では、以下の手順で各例の電池を作製した。なお、以下の説明においては、実施例1~10、比較例1~7、比較例9の各々の電極を「正極」と呼ぶ。
[Battery production]
(Examples 1 to 10, Comparative Examples 1 to 7, Comparative Example 9)
In each of Examples 1 to 10, Comparative Examples 1 to 7, and Comparative Example 9, the batteries of each example were produced by the following procedure. In the following description, the electrodes of Examples 1 to 10, Comparative Examples 1 to 7, and Comparative Example 9 are referred to as "positive electrodes".
 (負極の作製)
 まず、負極活物質として、スピネル型の結晶構造を有し且つ式Li4Ti512で表される組成を有するチタン酸リチウムを準備した。また、導電剤としてのグラファイト及びバインダとしてのポリフッ化ビニリデンを準備した。これらを、負極活物質、導電剤及びバインダの重量比が90:5:5となるように、N-メチルピロリドンに投入し、混合した。かくして、ペースト状の負極塗料を調製した。
(Preparation of negative electrode)
First, as a negative electrode active material, lithium titanate having a spinel-type crystal structure and a composition represented by the formula Li 4 Ti 5 O 12 was prepared. In addition, graphite as a conductive agent and polyvinylidene fluoride as a binder were prepared. These were added to N-methylpyrrolidone and mixed so that the weight ratio of the negative electrode active material, the conductive agent and the binder was 90: 5: 5. Thus, a paste-like negative electrode paint was prepared.
 このペースト状の負極塗料を、帯状のアルミニウム箔からなる負極集電体の両方の表面に均一に塗布した。次に、塗膜を乾燥させて、負極集電体とそれの表面上に設けられた負極活物質含有層とを含む帯状体を得た。次いで、負極集電体と負極活物質含有層とを含む帯状体を、プレスに供した。 This paste-like negative electrode paint was uniformly applied to both surfaces of the negative electrode current collector made of strip-shaped aluminum foil. Next, the coating film was dried to obtain a strip containing a negative electrode current collector and a negative electrode active material-containing layer provided on the surface of the negative electrode current collector. Next, a strip containing the negative electrode current collector and the negative electrode active material-containing layer was subjected to a press.
 プレス後、帯状体を切断し、負極集電体に負極集電タブを溶接した。かくして、負極を得た。 After pressing, the strip was cut and the negative electrode current collector tab was welded to the negative electrode current collector. Thus, a negative electrode was obtained.
 (電極群の作製)
 2枚のポリエチレン樹脂製セパレータを用意した。次に、1枚のセパレータ、正極、もう一枚のセパレータ及び負極をこの順で重ねて積層体を形成した。次いで、かくして得られた積層体を負極が最外周に位置するように渦巻き状に捲回した。次いで、捲回体から巻き芯を抜いた。次いで、この捲回体を加熱しながらプレスした。かくして、扁平形状の捲回型電極群を作製した。
(Preparation of electrode group)
Two polyethylene resin separators were prepared. Next, one separator, a positive electrode, another separator, and a negative electrode were laminated in this order to form a laminate. Next, the laminate thus obtained was spirally wound so that the negative electrode was located on the outermost circumference. Then, the winding core was pulled out from the winding body. Then, the wound body was pressed while being heated. Thus, a flat-shaped wound electrode group was produced.
 (非水電解質の調製)
 エチレンカーボネートとプロピレンカーボネートとを体積比1:2で混合し、非水溶媒を調製した。この非水溶媒に、電解質としての六フッ化リン酸リチウムLiPF6を1.0mol/Lの濃度で溶解させた。かくして、非水電解質を調製した。
(Preparation of non-aqueous electrolyte)
Ethylene carbonate and propylene carbonate were mixed at a volume ratio of 1: 2 to prepare a non-aqueous solvent. Lithium hexafluorophosphate LiPF 6 as an electrolyte was dissolved in this non-aqueous solvent at a concentration of 1.0 mol / L. Thus, a non-aqueous electrolyte was prepared.
 (電池の組み立て)
 上記のようにして得られた捲回型電極群の正極及び負極にそれぞれ端子を接続した。次いで、アルミニウム製の角形容器(外装部材)に電極群を収容した。この容器の中に、前述の非水電解質を注液した。かくして、各例の電池を得た。
(Battery assembly)
Terminals were connected to the positive electrode and the negative electrode of the wound electrode group obtained as described above, respectively. Next, the electrode group was housed in a square container (exterior member) made of aluminum. The above-mentioned non-aqueous electrolyte was injected into this container. Thus, the batteries of each example were obtained.
 (実施例11及び比較例8)
 実施例11及び比較例8の各々では、以下の手順で負極を作製したこと、及び実施例11及び比較例8の各々の電極を正極として用いたこと以外は実施例1と同様の手順により、電池を作製した。
(Example 11 and Comparative Example 8)
In each of Example 11 and Comparative Example 8, the same procedure as in Example 1 was performed except that the negative electrode was prepared by the following procedure and each electrode of Example 11 and Comparative Example 8 was used as the positive electrode. A battery was manufactured.
 これらの例では、負極活物質として、単斜晶型の結晶構造を有し且つ式TiNb27で表される組成を有するニオブチタン複合酸化物を準備した。これらの例では、負極活物質としてこのニオブチタン複合酸化物を用いたこと以外は実施例1の手順と同様の手順により、負極を作製した。 In these examples, as the negative electrode active material, a niobium-titanium composite oxide having a monoclinic crystal structure and a composition represented by the formula TiNb 2 O 7 was prepared. In these examples, a negative electrode was prepared by the same procedure as in Example 1 except that this niobium-titanium composite oxide was used as the negative electrode active material.
 以下の表1及び表2に、各例の電池の作製条件を示す。 Tables 1 and 2 below show the manufacturing conditions for the batteries of each example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [電池性能の評価]
 実施例及び比較例の各々の電池を、以下の手順で評価した。以下の説明では、各々の電池を単に電池と呼ぶ。
[Evaluation of battery performance]
Each of the batteries of Examples and Comparative Examples was evaluated by the following procedure. In the following description, each battery is simply referred to as a battery.
 (初回充放電)
 電池を、25℃の温度環境下において、0.2Cの定電流値で、電圧が2.8Vに達するまで定電流充電した。次いで、電池を、電流値が0.01Cの電流値となるまで定電圧充電した。すなわち、電池を定電流定電圧充電(CC-CV充電)に供した。次いで、50℃以上の高温下で保管した電池を、25℃の温度環境下において、5時間保管した。次いで、電池を、1Cの定電流値で、電圧が1.5Vに達するまで定電流放電した。この放電で得られた容量を検査容量とした。
(First charge / discharge)
The battery was charged at a constant current value of 0.2 C under a temperature environment of 25 ° C. until the voltage reached 2.8 V. The battery was then charged at a constant voltage until the current value reached a current value of 0.01C. That is, the battery was subjected to constant current constant voltage charging (CC-CV charging). Next, the batteries stored at a high temperature of 50 ° C. or higher were stored for 5 hours in a temperature environment of 25 ° C. The battery was then discharged at a constant current value of 1C until the voltage reached 1.5V. The capacity obtained by this discharge was used as the inspection capacity.
 (出力試験)
 電池を、25℃の温度環境下において、充電率100%(SOC100%)の状態から充電率0%(SOC0%)まで1Cの電流値で放電に供した。次いで、電池を、25℃の温度環境下において、先と同様の条件で定電流定電圧充電に供した。次いで、電池を、25℃の温度環境下において、充電率100%(SOC100%)の状態から充電率0%(SOC0%)まで10Cの電流値で放電に供した。それぞれの電流値で放電した際に得られた放電容量の比C(10C)/C(1C)を、レート容量維持率として求めた。レート容量維持率は、出力性能の指標である。レート容量維持率が高い電池は、優れた出力性能を示すことができる。また、優れた出力性能を示すことができる電池は、電池の内部抵抗が低いため、優れた入力性能を示すこともできる。
(Output test)
The battery was discharged at a current value of 1 C from a state of a charge rate of 100% (SOC 100%) to a charge rate of 0% (SOC 0%) in a temperature environment of 25 ° C. Next, the battery was subjected to constant current and constant voltage charging under the same conditions as above under a temperature environment of 25 ° C. Next, the battery was discharged at a current value of 10 C from a state of a charge rate of 100% (SOC 100%) to a charge rate of 0% (SOC 0%) in a temperature environment of 25 ° C. The ratio C (10C) / C (1C) of the discharge capacity obtained when discharging at each current value was determined as the rate capacity retention rate. The rate capacity retention rate is an index of output performance. A battery having a high rate capacity retention rate can exhibit excellent output performance. Further, a battery capable of exhibiting excellent output performance can also exhibit excellent input performance because the internal resistance of the battery is low.
 (寿命試験)
 電池を、以下の手順で、寿命試験に供した。
 まず、電池を、25℃の温度環境下においた。この環境下で、電池を充電率50%(SOC50%)の状態とした。この状態にある電池の開回路電圧(OCV)を測定し、放電開始前の開回路電圧V0とした。次いで、この電池を、10Cの電流値で10秒間放電し、電圧を測定した。この電圧を、10秒放電後の電圧V10とした。電圧V0と電圧V10との差分から、サイクル前抵抗値R0を算出した。具体的には、R0は、以下の式にV0及びV10の値を代入して求めた。R0=(V0-V10)/10C。
(Life test)
The batteries were subjected to a life test according to the following procedure.
First, the battery was placed in a temperature environment of 25 ° C. Under this environment, the battery was set to a state of a charge rate of 50% (SOC 50%). The open circuit voltage (OCV) of the battery in this state was measured and set to the open circuit voltage V 0 before the start of discharge. Next, the battery was discharged at a current value of 10 C for 10 seconds, and the voltage was measured. This voltage was defined as the voltage V 10 after discharging for 10 seconds. The pre-cycle resistance value R 0 was calculated from the difference between the voltage V 0 and the voltage V 10 . Specifically, R 0 was obtained by substituting the values of V 0 and V 10 into the following equation. R 0 = (V 0- V 10 ) / 10C.
 次に、電池を45℃の温度環境下においた。ここで、電池を2Cの定電流値で電池電圧が2.8Vに達するまで充電した。次いで、電池を2Cの定電流値で電池電圧が1.5Vに達するまで放電した。この充電及び放電の組を1つの充放電サイクルとした。次いで、電池を、500回の充放電サイクルに供した。 Next, the battery was placed in a temperature environment of 45 ° C. Here, the battery was charged with a constant current value of 2C until the battery voltage reached 2.8V. The battery was then discharged at a constant current value of 2C until the battery voltage reached 1.5V. This charge / discharge set was regarded as one charge / discharge cycle. The battery was then subjected to 500 charge / discharge cycles.
 次に、サイクル前抵抗値R1の測定と同様の手順で、電池の500回サイクル後の抵抗値R500を算出した。 Next, the resistance value R 500 after 500 cycles of the battery was calculated by the same procedure as the measurement of the resistance value R1 before the cycle.
 抵抗値R500を抵抗値R0で割ることにより、500回の充放電サイクルによる抵抗上昇率を求めた。 By dividing the resistance value R 500 by the resistance value R 0 , the resistance increase rate by 500 charge / discharge cycles was obtained.
 抵抗上昇率は、電池の寿命性能の指標である。抵抗上昇率が低い電池は、優れた寿命特性を示すことができる。 The resistance increase rate is an index of battery life performance. A battery having a low rate of increase in resistance can exhibit excellent life characteristics.
 各電池のレート容量維持率及び抵抗上昇率を、以下の表3に示す。 Table 3 below shows the rate capacity maintenance rate and resistance increase rate of each battery.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (活物質粒子に対するバインダの被覆率の測定)
 各電池の正極に含まれる活物質粒子(正極活物質粒子)に対するバインダの被覆率を、先に説明した手順で測定した。その結果を以下の表4に示す。
(Measurement of binder coverage on active material particles)
The coverage of the binder with respect to the active material particles (positive electrode active material particles) contained in the positive electrode of each battery was measured by the procedure described above. The results are shown in Table 4 below.
 (活物質含有層の積算細孔容積分布の測定)
 各電池の正極の活物質含有層(正極活物質含有層)の積算細孔容積分布を、先に説明した手順で得た。各電池について得られた積算細孔容積分布における、細孔径が0.1μm以下である領域の細孔体積を、以下の表4に示す。
(Measurement of integrated pore volume distribution of active material-containing layer)
The integrated pore volume distribution of the positive electrode active material-containing layer (positive electrode active material-containing layer) of each battery was obtained by the procedure described above. The pore volume in the region where the pore diameter is 0.1 μm or less in the integrated pore volume distribution obtained for each battery is shown in Table 4 below.
 (活物質含有層からの二酸化炭素の発生量の測定)
 各電池の正極の活物質含有層(正極活物質含有層)を、先に説明した手順で、熱分解クロマトグラフィーによる分析に供した。この分析によって得られた活物質含有層からの二酸化炭素の発生量を、以下の表4に示す。
(Measurement of carbon dioxide generation from active material-containing layer)
The positive electrode active material-containing layer (positive electrode active material-containing layer) of each battery was subjected to analysis by thermal decomposition chromatography according to the procedure described above. The amount of carbon dioxide generated from the active material-containing layer obtained by this analysis is shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示した結果から、実施例1~11の電極は、優れた出力性能と、優れた寿命特性を示すことができた電池を実現できたことが分かる。また、実施例1と、実施例9及び10との比較から、これらの実施例の電極は、正極活物質が異なっているが、同様に、優れた出力性能と優れた寿命特性とを示すことができた電池を実現できたことが分かる。また、実施例1と実施例11との比較から、これらの実施例の電池は、負極活物質が異なっているが、同様に、優れた出力性能と優れた寿命特性とを示すことができたことが分かる。 From the results shown in Table 3, it can be seen that the electrodes of Examples 1 to 11 were able to realize a battery capable of exhibiting excellent output performance and excellent life characteristics. Further, from the comparison between Example 1 and Examples 9 and 10, the electrodes of these Examples have different positive electrode active materials, but similarly exhibit excellent output performance and excellent life characteristics. It can be seen that the battery that was made was realized. Further, from the comparison between Example 1 and Example 11, although the batteries of these Examples have different negative electrode active materials, they were also able to show excellent output performance and excellent life characteristics. You can see that.
 一方、比較例1の電池は、実施例1~11の電池よりも、出力性能が低かった。比較例1の電池の正極では、導電剤が凝集してしまい、活物質粒子の周りに均一に分散できていなかったと考えられる。そのため、比較例1の電池の正極では、活物質粒子と導電剤とが十分に接触できず、結果として、比較例1の電池が乏しい出力性能を示したと考えられる。 On the other hand, the batteries of Comparative Example 1 had lower output performance than the batteries of Examples 1 to 11. It is probable that at the positive electrode of the battery of Comparative Example 1, the conductive agent was aggregated and could not be uniformly dispersed around the active material particles. Therefore, it is considered that the active material particles and the conductive agent could not sufficiently contact each other at the positive electrode of the battery of Comparative Example 1, and as a result, the battery of Comparative Example 1 showed poor output performance.
 比較例2の電極は、導電剤として、アセチレンブラックの代わりにケッチェンブラックを用いた点で比較例1と異なる。比較例1及び2の結果から、比較例1の電極において、粒子径が小さい、すなわち比表面積の大きなケッチェンブラックを用いても、活物質粒子と導電剤との接触頻度の向上を十分に達成できないことが分かる。 The electrode of Comparative Example 2 is different from Comparative Example 1 in that Ketjen Black is used instead of acetylene black as the conductive agent. From the results of Comparative Examples 1 and 2, even if Ketjen Black having a small particle diameter, that is, a large specific surface area was used in the electrode of Comparative Example 1, the contact frequency between the active material particles and the conductive agent was sufficiently improved. I know I can't.
 比較例3の電池は、実施例1~11の電池よりも、出力性能が低かった。比較例3の電池の正極では、活物質粒子の周りに導電剤が十分に存在していなかったと考えられる。そのため、比較例3の電池の正極では、活物質粒子と導電剤とが十分に接触できず、結果として、比較例3の電池が乏しい出力性能を示したと考えられる。この結果から、150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下であっても、活物質含有層の水銀圧入法による積算細孔容積分布における細孔径が0.1μm以下である領域の細孔体積が0.035mL/g未満であると、優れた出力性能を実現できないことが分かる。 The batteries of Comparative Example 3 had lower output performance than the batteries of Examples 1 to 11. It is considered that the conductive agent was not sufficiently present around the active material particles in the positive electrode of the battery of Comparative Example 3. Therefore, it is considered that the active material particles and the conductive agent could not sufficiently contact each other at the positive electrode of the battery of Comparative Example 3, and as a result, the battery of Comparative Example 3 showed poor output performance. From this result, even if the amount of carbon dioxide generated from the active material-containing layer by thermal decomposition gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less, mercury injection of the active material-containing layer is performed. It can be seen that if the pore volume in the region where the pore diameter is 0.1 μm or less in the integrated pore volume distribution by the method is less than 0.035 mL / g, excellent output performance cannot be realized.
 一方、比較例4の電池は、実施例1~11の電池よりも、寿命特性に劣っていた。比較例4の電池の正極では、活物質粒子に対するバインダの被覆率が低過ぎ、活物質と非水電解質や不純物などとの副反応を抑制できなかったと考えられる。 On the other hand, the batteries of Comparative Example 4 were inferior in life characteristics to the batteries of Examples 1 to 11. In the positive electrode of the battery of Comparative Example 4, it is considered that the coverage of the binder with respect to the active material particles was too low, and the side reaction between the active material and the non-aqueous electrolyte, impurities, etc. could not be suppressed.
 比較例5の電池は、実施例1~11の電池よりも、出力性能が低かった。比較例5の電池の正極では、活物質粒子の周りに導電剤が均一に存在していなかったと考えられる。そのため、比較例5の電池の正極では、活物質粒子と導電剤とが十分に接触できず、結果として、比較例5の電池が乏しい出力性能を示したと考えられる。この結果から、150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下であっても、活物質含有層の水銀圧入法による積算細孔容積分布における細孔径が0.1μm以下である領域の細孔体積が0.035mL/g未満であると、優れた出力性能を実現できないことが分かる。 The batteries of Comparative Example 5 had lower output performance than the batteries of Examples 1 to 11. It is considered that the conductive agent was not uniformly present around the active material particles in the positive electrode of the battery of Comparative Example 5. Therefore, it is considered that the active material particles and the conductive agent could not sufficiently come into contact with each other at the positive electrode of the battery of Comparative Example 5, and as a result, the battery of Comparative Example 5 showed poor output performance. From this result, even if the amount of carbon dioxide generated from the active material-containing layer by thermal decomposition gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less, mercury injection of the active material-containing layer is performed. It can be seen that if the pore volume in the region where the pore diameter is 0.1 μm or less in the integrated pore volume distribution by the method is less than 0.035 mL / g, excellent output performance cannot be realized.
 比較例6及び7の電池も、比較例1の電池と同様に、出力性能に劣っていた。比較例1、6及び7は、正極活物質が互いに異なる例である。これらの比較例の結果から、比較例1、6及び7の電池の乏しい出力性能は、正極活物質の種類に依存するものではないことがわかる。また、実施例1及び比較例1の組、実施例9及び比較例6の組、並びに実施例10及び比較例7の組は、それぞれ、準備した正極活物質の組成が同様である。これらの例の結果から、各実施例の電池は、対応する比較例の電池よりも、優れた出力性能及び優れた寿命特性を示すことができたことが分かる。 The batteries of Comparative Examples 6 and 7 were also inferior in output performance as the batteries of Comparative Example 1. Comparative Examples 1, 6 and 7 are examples in which the positive electrode active materials are different from each other. From the results of these Comparative Examples, it can be seen that the poor output performance of the batteries of Comparative Examples 1, 6 and 7 does not depend on the type of the positive electrode active material. Further, the set of Example 1 and Comparative Example 1, the set of Example 9 and Comparative Example 6, and the set of Example 10 and Comparative Example 7 have the same composition of the prepared positive electrode active material, respectively. From the results of these examples, it can be seen that the batteries of each example were able to exhibit superior output performance and superior life characteristics as compared with the batteries of the corresponding comparative examples.
 また、比較例8の電池は、比較例1の電池と同様に、出力性能に劣っていた。比較例8の電池の正極は、比較例1のそれと同様である。比較例1及び8の結果の比較から、比較例8の電池の乏しい出力性能は、負極活物質の種類に依存するものではないことがわかる。また、表3に示した結果から、実施例11の電池は、負極活物質が同様である比較例8の電池よりも出力性能に優れていたことが分かる。 Further, the battery of Comparative Example 8 was inferior in output performance like the battery of Comparative Example 1. The positive electrode of the battery of Comparative Example 8 is the same as that of Comparative Example 1. From the comparison of the results of Comparative Examples 1 and 8, it can be seen that the poor output performance of the battery of Comparative Example 8 does not depend on the type of the negative electrode active material. Further, from the results shown in Table 3, it can be seen that the battery of Example 11 was superior in output performance to the battery of Comparative Example 8 having the same negative electrode active material.
 比較例9の電池は、比較例1の電池と同様に、出力性能に劣っていた。比較例9の電池の正極の活物質含有層では、活物質粒子に対するバインダの被覆率が、例えば、実施例1のそれと同様であった。また、比較例9で用いた導電剤であるケッチェンブラックは、実施例1で用いた導電剤よりも小さな平均粒子径、すなわち大きな比表面積を有していた。しかしながら、比較例9の電池の正極の活物質含有層では、活物質含有層からの二酸化炭素の発生量が9mL/g未満であったため、導電剤が凝集していた。このことは、活物質含有層の水銀圧入法による積算細孔容積分布における細孔径が0.1μm以下である領域の細孔体積が0.035mL/g未満であったことからも明らかである。つまり、比較例9の電池では、正極活物質粒子の表面の85%がバインダによって被覆され、且つ導電助剤が凝集していた。そのため、比較例9の電池の正極の活物質含有層では、活物質粒子と導電剤との接触頻度が低くなった。その結果、比較例9の電池は、乏しい出力性能を示したと考えられる。 The battery of Comparative Example 9 was inferior in output performance like the battery of Comparative Example 1. In the active material-containing layer of the positive electrode of the battery of Comparative Example 9, the coverage of the binder with respect to the active material particles was, for example, the same as that of Example 1. Further, Ketjen Black, which is the conductive agent used in Comparative Example 9, had a smaller average particle diameter, that is, a larger specific surface area than the conductive agent used in Example 1. However, in the active material-containing layer of the positive electrode of the battery of Comparative Example 9, the amount of carbon dioxide generated from the active material-containing layer was less than 9 mL / g, so that the conductive agent was aggregated. This is also clear from the fact that the pore volume of the region where the pore diameter is 0.1 μm or less in the integrated pore volume distribution by the mercury intrusion method of the active material-containing layer was less than 0.035 mL / g. That is, in the battery of Comparative Example 9, 85% of the surface of the positive electrode active material particles was covered with a binder, and the conductive additive was aggregated. Therefore, in the active material-containing layer of the positive electrode of the battery of Comparative Example 9, the contact frequency between the active material particles and the conductive agent was low. As a result, it is considered that the battery of Comparative Example 9 showed poor output performance.
 これらの少なくとも1つの実施形態又は実施例の電極は、活物質含有層を具備する。この活物質含有層は、活物質粒子と、バインダと、導電剤とを含む。バインダは、活物質粒子の表面を80%以上99%未満の被覆率で覆う。活物質含有層の水銀圧入法による積算細孔容積分布において、細孔径が0.1μm以下である領域の細孔体積が0.035mL/g以上0.050mL/g以下である。150℃から600℃までの熱分解ガスクロマトグラフィーによる、活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下である。この活物質含有層では、バインダが高い被覆率で活物質粒子の表面を覆っているが、導電剤が、活物質粒子の周りに、十分な量で均一に存在できる。そのため、この活物質含有層では、活物質粒子と導電剤とが、高い接触頻度を示すことができる。これらの結果、この電極は、優れた入出力性能及び優れた寿命特性を示すことができる電池を実現できる。 The electrodes of at least one of these embodiments or examples include an active material-containing layer. This active material-containing layer contains active material particles, a binder, and a conductive agent. The binder covers the surface of the active material particles with a coverage of 80% or more and less than 99%. In the integrated pore volume distribution of the active material-containing layer by the mercury intrusion method, the pore volume in the region where the pore diameter is 0.1 μm or less is 0.035 mL / g or more and 0.050 mL / g or less. The amount of carbon dioxide generated from the active material-containing layer by pyrolysis gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less. In this active material-containing layer, the binder covers the surface of the active material particles with a high coverage, but the conductive agent can be uniformly present around the active material particles in a sufficient amount. Therefore, in this active material-containing layer, the active material particles and the conductive agent can exhibit a high contact frequency. As a result, this electrode can realize a battery capable of exhibiting excellent input / output performance and excellent life characteristics.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention as well as the invention described in the claims and the equivalent scope thereof.

Claims (7)

  1.  活物質粒子と、
     前記活物質粒子の表面を80%以上99%未満の被覆率で覆うバインダと、
     導電剤と
    を含む活物質含有層を具備し、
     前記活物質含有層の水銀圧入法による積算細孔容積分布において、細孔径が0.1μm以下である領域の細孔体積が0.035mL/g以上0.050mL/g以下であり、
     150℃から600℃までの熱分解ガスクロマトグラフィーによる、前記活物質含有層からの二酸化炭素の発生量が9mL/g以上10mL/g以下である電極。
    Active material particles and
    A binder that covers the surface of the active material particles with a coverage of 80% or more and less than 99%.
    A layer containing an active material containing a conductive agent is provided.
    In the integrated pore volume distribution of the active material-containing layer by the mercury intrusion method, the pore volume in the region where the pore diameter is 0.1 μm or less is 0.035 mL / g or more and 0.050 mL / g or less.
    An electrode in which the amount of carbon dioxide generated from the active material-containing layer by thermal decomposition gas chromatography from 150 ° C. to 600 ° C. is 9 mL / g or more and 10 mL / g or less.
  2.  前記バインダがカルボニル基を含んでいる請求項1に記載の電極。 The electrode according to claim 1, wherein the binder contains a carbonyl group.
  3.  前記バインダが、カルボニル基を含むポリフッ化ビニリデンを含む請求項1又は2に記載の電極。 The electrode according to claim 1 or 2, wherein the binder contains polyvinylidene fluoride containing a carbonyl group.
  4.  前記活物質粒子は、表面にカルボニル基を含んでいる請求項1~3の何れか1項に記載の電極。 The electrode according to any one of claims 1 to 3, wherein the active material particles contain a carbonyl group on the surface.
  5.  前記導電剤がケッチェンブラックを含む請求項1~4の何れか1項に記載の電極。 The electrode according to any one of claims 1 to 4, wherein the conductive agent contains Ketjen black.
  6.  正極としての請求項1~5の何れか1項に記載の電極と、
     負極と、
     電解質と
    を具備した電池。
    The electrode according to any one of claims 1 to 5 as a positive electrode and
    With the negative electrode
    A battery equipped with an electrolyte.
  7.  請求項6に記載の電池を具備した電池パック。 A battery pack including the battery according to claim 6.
PCT/JP2019/012132 2019-03-22 2019-03-22 Electrode, battery and battery pack WO2020194385A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/012132 WO2020194385A1 (en) 2019-03-22 2019-03-22 Electrode, battery and battery pack
JP2021508368A JP7106748B2 (en) 2019-03-22 2019-03-22 Electrodes, batteries and battery packs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012132 WO2020194385A1 (en) 2019-03-22 2019-03-22 Electrode, battery and battery pack

Publications (1)

Publication Number Publication Date
WO2020194385A1 true WO2020194385A1 (en) 2020-10-01

Family

ID=72610378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012132 WO2020194385A1 (en) 2019-03-22 2019-03-22 Electrode, battery and battery pack

Country Status (2)

Country Link
JP (1) JP7106748B2 (en)
WO (1) WO2020194385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163013A1 (en) * 2022-02-25 2023-08-31 パナソニックエナジー株式会社 Method for producing positive electrode mixture slurry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101792133B1 (en) 2017-06-07 2017-10-31 주식회사 고리 Manufacture of all-in-one sealing trap and device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033957A (en) * 2008-07-30 2010-02-12 Toyo Ink Mfg Co Ltd Lithium secondary battery positive electrode mixture paste
JP2011028898A (en) * 2009-07-22 2011-02-10 Toyota Motor Corp Positive electrode for lithium secondary battery and method of manufacturing the same
JP2011184664A (en) * 2010-03-11 2011-09-22 Toyo Ink Sc Holdings Co Ltd Carbon black dispersion
JP2013196804A (en) * 2012-03-16 2013-09-30 Toyo Ink Sc Holdings Co Ltd Mixture slurry, manufacturing method thereof, electrode formed by mixture slurry, and battery
JP2014072090A (en) * 2012-09-28 2014-04-21 Nippon Chemicon Corp Electrode material and method for producing the same
WO2015133583A1 (en) * 2014-03-05 2015-09-11 日本ケミコン株式会社 Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
WO2015140984A1 (en) * 2014-03-20 2015-09-24 株式会社 東芝 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
JP2017168359A (en) * 2016-03-17 2017-09-21 株式会社東芝 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery including the same, and battery pack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033957A (en) * 2008-07-30 2010-02-12 Toyo Ink Mfg Co Ltd Lithium secondary battery positive electrode mixture paste
JP2011028898A (en) * 2009-07-22 2011-02-10 Toyota Motor Corp Positive electrode for lithium secondary battery and method of manufacturing the same
JP2011184664A (en) * 2010-03-11 2011-09-22 Toyo Ink Sc Holdings Co Ltd Carbon black dispersion
JP2013196804A (en) * 2012-03-16 2013-09-30 Toyo Ink Sc Holdings Co Ltd Mixture slurry, manufacturing method thereof, electrode formed by mixture slurry, and battery
JP2014072090A (en) * 2012-09-28 2014-04-21 Nippon Chemicon Corp Electrode material and method for producing the same
WO2015133583A1 (en) * 2014-03-05 2015-09-11 日本ケミコン株式会社 Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
WO2015140984A1 (en) * 2014-03-20 2015-09-24 株式会社 東芝 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
JP2017168359A (en) * 2016-03-17 2017-09-21 株式会社東芝 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery including the same, and battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163013A1 (en) * 2022-02-25 2023-08-31 パナソニックエナジー株式会社 Method for producing positive electrode mixture slurry

Also Published As

Publication number Publication date
JP7106748B2 (en) 2022-07-26
JPWO2020194385A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6696692B2 (en) Electrodes, non-aqueous electrolyte batteries, battery packs and vehicles
JP4346565B2 (en) Nonaqueous electrolyte secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US10326140B2 (en) Nonaqueous electrolyte battery, battery pack, and vehicle
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
US10008718B2 (en) Positive electrode active material for use in lithium ion secondary cell
US20160285081A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP6011888B2 (en) Non-aqueous electrolyte secondary battery
CN107210425B (en) Nonaqueous electrolyte secondary battery and battery pack
JP7055899B2 (en) Electrodes, batteries, and battery packs
JP6250998B2 (en) Nonaqueous electrolyte battery and battery pack
KR101884521B1 (en) Positive electrode material for lithium secondary battery and manufacturing method thereof
CN111758179B (en) Positive electrode, electrode group and nonaqueous electrolyte battery
JP2013182712A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP7106748B2 (en) Electrodes, batteries and battery packs
JP6081604B2 (en) Non-aqueous electrolyte battery, battery pack and automobile
JP5725372B2 (en) Nonaqueous electrolyte secondary battery
JP5796743B2 (en) Lithium secondary battery
JP7443579B2 (en) Nonaqueous electrolyte batteries and battery packs
JP7106749B2 (en) Electrodes, batteries and battery packs
WO2020208718A1 (en) Electrode, electrode group, battery and battery pack
WO2024127668A1 (en) Non-aqueous electrolyte battery and battery pack
EP4040541A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN114342110A (en) Negative electrode for secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921796

Country of ref document: EP

Kind code of ref document: A1