JP2003007332A - Lithium secondary battery and manufacturing method of the same - Google Patents

Lithium secondary battery and manufacturing method of the same

Info

Publication number
JP2003007332A
JP2003007332A JP2001190018A JP2001190018A JP2003007332A JP 2003007332 A JP2003007332 A JP 2003007332A JP 2001190018 A JP2001190018 A JP 2001190018A JP 2001190018 A JP2001190018 A JP 2001190018A JP 2003007332 A JP2003007332 A JP 2003007332A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
battery
lithium
organosilicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001190018A
Other languages
Japanese (ja)
Inventor
Motofumi Isono
基史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001190018A priority Critical patent/JP2003007332A/en
Publication of JP2003007332A publication Critical patent/JP2003007332A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having a low internal resistance irrespective of the moisture content of the secondary battery, and a manufacturing method of the lithium secondary battery. SOLUTION: The lithium secondary battery comprises a positive electrode and a negative electrode, each of which is made of an activator capable of occluding or separating lithium, and a nonaqueous electrolytic solution composed by dissolving an electrolyte, which produces halogen acid in reacting with water, and an organic silicon compound, which has Si-N(silicon - nickel) bond, in an organic solvent. The organic silicon compound is added to the nonaqueous electrolytic solution after the lithium secondary battery is charged up at least once. In this manner, the formation of a high resistance film due to the organic silicon compound can be suppressed by charging the secondary battery more than once, so that a bad effect by water can be suppressed without adverse effect by the high resistance film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池内部の水分に
より悪影響を受け難いリチウム二次電池及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery which is less likely to be adversely affected by moisture inside the battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】パソコン、ビデオカメラ、携帯電話等の
小型化に伴い、情報関連機器、通信機器の分野では、こ
れらの機器に用いる電源として、高エネルギー密度であ
るという理由から、リチウム二次電池が実用化され広く
普及するに至っている。また一方で、自動車の分野にお
いても、環境問題、資源問題から電気自動車の開発が急
がれており、この電気自動車用の電源としても、リチウ
ム二次電池が検討されている。
2. Description of the Related Art With the miniaturization of personal computers, video cameras, mobile phones, etc., in the field of information-related equipment and communication equipment, lithium secondary batteries are used as a power source for these equipment because of their high energy density. Has been put into practical use and has become widespread. On the other hand, also in the field of automobiles, the development of electric vehicles has been rushed due to environmental problems and resource problems, and lithium secondary batteries are also being considered as a power source for these electric vehicles.

【0003】リチウム二次電池には、4V級の作動電圧
が得られるものとして、層状岩塩構造のLiCoO2
LiNiO2、スピネル構造のLiMn24及びそれら
の一部を他元素で置換したリチウム遷移金属複合酸化物
等の正極活物質がよく知られている。これらの中でも、
合成が容易である、最も高い作動電圧が得られる等の理
由から、現在では、LiCoO2系のリチウム遷移金属
複合酸化物を正極活物質に用いる電池が主流を占めてい
る。
Lithium secondary batteries have a layered rock salt structure of LiCoO 2 , which can provide an operating voltage of 4V.
Positive electrode active materials such as LiNiO 2 , LiMn 2 O 4 having a spinel structure, and lithium transition metal composite oxides in which some of them are substituted with other elements are well known. Among these,
Batteries using LiCoO 2 -based lithium-transition metal composite oxides as the positive electrode active material are now predominant because they are easy to synthesize and obtain the highest operating voltage.

【0004】ところで、4V級の作動電圧を達成するに
は電解液を非水電解液とする必要がある。非水電解液に
は、電解質としてハロゲン化合物であるLiPF6等が
良く用いられているが、非水である筈の電解液中に若干
の水分が不可避的に混入していたり、あるいは他の電池
材料に水分が吸着していたりすると、次式(1)に示す
ような反応が起こり、フッ化水素HFのごときハロゲン
酸を発生させる。
By the way, in order to achieve an operating voltage of 4 V class, it is necessary to use a non-aqueous electrolyte as the electrolytic solution. LiPF 6 , which is a halogen compound, is often used as the electrolyte in the non-aqueous electrolytic solution, but some water is inevitably mixed in the electrolytic solution which should be non-aqueous, or other batteries. When water is adsorbed on the material, a reaction as shown in the following formula (1) occurs, and a halogen acid such as hydrogen fluoride HF is generated.

【0005】 LiPF6+H2O→2HF+LiF+POF3…(1) 発生するフッ化水素は電池を構成する材料を劣化させ、
更には電池性能を劣化させるという問題がある。たとえ
ば、構成材料が劣化した結果、内部抵抗が悪化する。
LiPF 6 + H 2 O → 2HF + LiF + POF 3 (1) The generated hydrogen fluoride deteriorates the materials constituting the battery,
Further, there is a problem that the battery performance is deteriorated. For example, internal resistance deteriorates as a result of deterioration of constituent materials.

【0006】この問題を解決するために、特開平11−
16602号公報においては、LiPF6等を電解質と
して含有する非水電解液に対し、Si−N結合を有する
有機ケイ素化合物を添加する非水電解液二次電池の発明
が記載されている。Si−N結合を有する有機ケイ素化
合物は水及びフッ化水素と反応し、電池材料に悪影響を
与えない化合物に変化させる。
In order to solve this problem, Japanese Patent Laid-Open No. 11-
Japanese Patent No. 16602 describes an invention of a non-aqueous electrolyte secondary battery in which an organosilicon compound having a Si—N bond is added to a non-aqueous electrolyte containing LiPF 6 or the like as an electrolyte. The organosilicon compound having a Si—N bond reacts with water and hydrogen fluoride and is converted into a compound that does not adversely affect the battery material.

【0007】その他の解決方法としては、リチウム二次
電池の各構成要素について厳密に乾燥を行い、混入する
水分量を制限する方法がある。
As another solution, there is a method of strictly drying each constituent element of the lithium secondary battery to limit the amount of mixed water.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、本発明
者の研究によると、Si−N結合を有する有機ケイ素化
合物を添加することで、かえって電池の内部抵抗が増加
する場合があった。また、各構成要素について水分量を
制限するためには大がかりな乾燥雰囲気が必要となりコ
スト増大の一因ともなった。
However, according to the research conducted by the present inventors, the addition of an organosilicon compound having a Si--N bond may rather increase the internal resistance of the battery. In addition, a large dry atmosphere is required to limit the water content of each component, which is one of the causes of cost increase.

【0009】そこで本発明では、水分含有量によらず内
部抵抗の低いリチウム二次電池を提供することを解決す
べき課題とする。さらに本発明では、水分含有量によら
ず内部抵抗の低いリチウム二次電池を製造する方法を提
供することを解決すべき課題とする。
Therefore, it is an object of the present invention to provide a lithium secondary battery having a low internal resistance regardless of the water content. Further, it is an object of the present invention to provide a method for producing a lithium secondary battery having a low internal resistance regardless of the water content.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する目的
で本発明者は鋭意研究を行った結果、リチウムを吸蔵・
脱離可能な物質をそれぞれ活物質とする正極および負極
と、水と反応することでハロゲン酸を生成しうる電解質
とSi−N結合を有する有機ケイ素化合物とを有機溶媒
に溶解させた非水電解液と、を含んで構成されるリチウ
ム二次電池であって、前記有機ケイ素化合物は、前記リ
チウム二次電池に少なくとも1回充電を行った後に、前
記非水電解液内に添加されることを特徴とするリチウム
二次電池を発明した。
[Means for Solving the Problems] As a result of intensive research conducted by the present inventor for the purpose of solving the above problems, as a result
Non-aqueous electrolysis in which a positive electrode and a negative electrode each having a removable substance as an active material, an electrolyte capable of generating a halogen acid by reacting with water, and an organosilicon compound having a Si—N bond are dissolved in an organic solvent. A lithium secondary battery including a liquid, wherein the organosilicon compound is added to the non-aqueous electrolyte after charging the lithium secondary battery at least once. A characteristic lithium secondary battery has been invented.

【0011】つまり、Si−N結合を有する有機ケイ素
化合物を添加しても内部抵抗の減少が期待通りとならな
いのは、Si−N結合を有する有機ケイ素化合物が電気
化学的に不安定であるのでリチウム二次電池への充電初
期において、分解されて活性な負極活物質表面に高抵抗
な皮膜を生成する結果、かえってリチウム二次電池の内
部抵抗が増加するものと考えられる。本発明者はこの知
見に基づいてSi−N結合を有する有機ケイ素化合物の
分解物により生成する高抵抗皮膜の生成を押さえる目的
で検討を行った結果、Si−N結合を有する有機ケイ素
化合物の分解による皮膜生成は、リチウム二次電池を作
成した後の最初の充電時に集中して生成することが判明
した。そこで、Si−N結合を有する有機ケイ素化合物
の電解液中への添加をリチウム二次電池を作成した後の
最初の充電を行った後に行うことでSi−N結合を有す
る有機ケイ素化合物に由来する高抵抗皮膜の生成を抑
え、且つ有機ケイ素化合物の働きには影響がないので水
分による悪影響を抑えることに成功した。
That is, even if the organosilicon compound having the Si--N bond is not added, the internal resistance does not decrease as expected because the organosilicon compound having the Si--N bond is electrochemically unstable. It is considered that the internal resistance of the lithium secondary battery increases on the contrary, as a result of being decomposed to form a high resistance film on the surface of the active negative electrode active material at the initial stage of charging the lithium secondary battery. Based on this finding, the present inventor has conducted an investigation for the purpose of suppressing the formation of a high resistance film formed by a decomposition product of an organosilicon compound having a Si—N bond, and as a result, decomposed the organosilicon compound having a Si—N bond. It has been found that the film formation by the method is concentrated during the first charge after the lithium secondary battery is manufactured. Therefore, the addition of the organosilicon compound having a Si—N bond into the electrolytic solution is performed after the first charging after the lithium secondary battery is created, so that the organosilicon compound having a Si—N bond is derived. Since the formation of a high resistance film is suppressed and the function of the organosilicon compound is not affected, it has succeeded in suppressing the adverse effect of water.

【0012】[0012]

【発明の実施の形態】本発明のリチウム二次電池では、
コイン型電池、ボタン型電池、円筒型電池及び角型電池
等の公知の電池構造をとることができる。いずれの形状
を採る場合であっても、正極および負極をセパレータを
介して重畳あるいは捲回等して電極体とし、正極集電体
および負極集電体から外部に通ずる正極端子および負極
端子までの間を集電用リード等を用いて接続した後、こ
の電極体を非水電解液とともに電池ケース内に挿設し、
これを密閉してリチウム電池を完成することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the lithium secondary battery of the present invention,
Known battery structures such as a coin battery, a button battery, a cylindrical battery, and a prismatic battery can be adopted. Whichever shape is adopted, the positive electrode and the negative electrode are laminated or wound with a separator to form an electrode body, and the positive electrode current collector and the negative electrode current collector are connected to the positive electrode terminal and the negative electrode terminal which communicate with the outside. After connecting between the two using a current collecting lead, etc., insert this electrode body together with the non-aqueous electrolyte into the battery case,
By sealing this, a lithium battery can be completed.

【0013】本発明のリチウム二次電池の特徴は、Si
−N結合を有する有機ケイ素化合物を本リチウム二次電
池に少なくとも1回充電を行った後に、非水電解液内に
添加することにある。さらには有機ケイ素化合物を添加
する前のリチウム二次電池の充電は放電を伴って数サイ
クルにわたって行うことも可能であり、好ましくは5回
の充放電を行うことである。ここで、「リチウム二次電
池を充電する」とは、正極、負極及びセパレータからな
る電極体を電池ケース内に挿設、密閉した後に充電を行
う場合の他、電極体まで形成した後に、電池ケースを密
閉せずに又は電池ケース以外の容器内に蓄えられた非水
電解液内で充電を行う場合でもよい。つまり、最終的な
リチウム二次電池に用いられる構成要素のうち、すべて
を含んだ状態又はリチウム二次電池として完成した形で
充電を行う必要はない。さらに充電は少なくとも負極に
ついてのみ行えば足りる。最初の充電により負極表面に
被膜が生成し、この被膜により有機ケイ素化合物に由来
する高抵抗被膜の生成が抑制される。したがって、極論
すれば、最終的なリチウム二次電池に用いられる電極体
の形で充電を行わなくても、別の組み合わせで電極体を
作成した後に充電を行い、その負極のみを用いて(さら
に極論すれば負極に用いられる負極活物質のみを取り出
して)本発明のリチウム二次電池とすることもできる。
The feature of the lithium secondary battery of the present invention is that
This is to add the organosilicon compound having a -N bond to the non-aqueous electrolyte after charging the present lithium secondary battery at least once. Further, the charging of the lithium secondary battery before adding the organosilicon compound can be carried out for several cycles with discharging, and preferably the charging and discharging is carried out 5 times. Here, "to charge a lithium secondary battery" means to insert an electrode body consisting of a positive electrode, a negative electrode and a separator into a battery case, and to charge after sealing, as well as after forming the electrode body, the battery. The charging may be performed without sealing the case or in the non-aqueous electrolyte solution stored in a container other than the battery case. That is, it is not necessary to perform charging in a state in which all of the constituent elements used in the final lithium secondary battery are included or in a form completed as a lithium secondary battery. Furthermore, it suffices to charge only at least the negative electrode. A film is formed on the surface of the negative electrode by the first charge, and this film suppresses the formation of a high resistance film derived from an organosilicon compound. Therefore, to put it in a polar theory, even if charging is not performed in the form of the electrode body used in the final lithium secondary battery, charging is performed after the electrode body is created by another combination, and only the negative electrode is used (further To put it to the extreme, the lithium secondary battery of the present invention can be obtained by taking out only the negative electrode active material used for the negative electrode.

【0014】非水電解液に有機ケイ素化合物を添加する
方法としては、電池ケース内で充電を行う場合は電池ケ
ース(たとえば電池ケースの蓋)に孔を設けておき、そ
の孔から有機ケイ素化合物を添加することや蓋を密閉せ
ずに充電を行いその蓋を開けて添加することができ、電
池ケース以外の容器内で充電を行う場合には電池ケース
内に電極体等を挿設する際に非水電解液内へ同時に有機
ケイ素化合物を添加することができる。ここで、「リチ
ウム二次電池を充電する」場合の非水電解液は最終的な
リチウム二次電池に用いるものでなくてもよい。したが
って、充電前後で非水電解液を交換することもできる。
以下に本発明のリチウム二次電池の構成要素について詳
説する。
As a method of adding the organosilicon compound to the non-aqueous electrolyte, a hole is provided in the battery case (for example, a lid of the battery case) when charging is performed in the battery case, and the organosilicon compound is introduced from the hole. You can add or charge without sealing the lid and open the lid to add, and when charging in a container other than the battery case, when inserting the electrode body etc. in the battery case The organosilicon compound can be added to the non-aqueous electrolyte solution at the same time. Here, the non-aqueous electrolyte in the case of “charging the lithium secondary battery” does not have to be the one used in the final lithium secondary battery. Therefore, the non-aqueous electrolyte can be exchanged before and after charging.
The constituent elements of the lithium secondary battery of the present invention will be described in detail below.

【0015】正極は、リチウムイオンを吸蔵・脱離でき
る正極活物質に導電材および結着剤を混合し、必要に応
じ適当な溶媒を加えて、ペースト状の正極合材としたも
のを、アルミニウム等の金属箔製の集電体表面に塗布、
乾燥し、その後プレスによって活物質密度を高めること
によって形成する。
The positive electrode is prepared by mixing a conductive material and a binder with a positive electrode active material capable of occluding and desorbing lithium ions, and adding a suitable solvent if necessary to obtain a paste-like positive electrode mixture, which is made of aluminum. Coated on the surface of a metal foil collector such as
It is formed by drying and then increasing the density of the active material by pressing.

【0016】正極活物質にはリチウム遷移金属複合酸化
物等の公知の正極活物質を用いることができる。リチウ
ム遷移金属複合酸化物は、その電気抵抗が低く、リチウ
ムイオンの拡散性能に優れ、高い充放電効率と良好な充
放電サイクル特性とが得られるため、本正極活物質に好
ましい材料である。たとえばリチウムコバルト酸化物、
リチウムニッケル酸化物、リチウムマンガン酸化物や、
各々にLi、Al、そしてCr等の遷移金属を添加また
は置換した材料等である。なお、これらのリチウム−金
属複合酸化物を正極活物質として用いる場合には単独で
用いるばかりでなくこれらを複数種類混合して用いるこ
ともできる。
As the positive electrode active material, a known positive electrode active material such as a lithium transition metal composite oxide can be used. The lithium-transition metal composite oxide is a preferable material for the positive electrode active material because it has low electric resistance, excellent lithium ion diffusion performance, high charge-discharge efficiency, and good charge-discharge cycle characteristics. For example, lithium cobalt oxide,
Lithium nickel oxide, lithium manganese oxide,
A material in which a transition metal such as Li, Al, and Cr is added or replaced is used. When these lithium-metal composite oxides are used as the positive electrode active material, they can be used not only individually but also as a mixture of two or more kinds.

【0017】導電材は、正極の電気伝導性を確保するた
めのものであり、カーボンブラック、アセチレンブラッ
ク、黒鉛等の炭素物質粉状体の1種または2種以上を混
合したものを用いることができる。結着剤は、活物質粒
子および導電材粒子を繋ぎ止める役割を果たすものでポ
リテトラフルオロエチレン、ポリフッ化ビニリデン、フ
ッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチ
レン等の熱可塑性樹脂を用いることができる。これら活
物質、導電材、結着剤を分散させる溶剤としては、N−
メチル−2−ピロリドン等の有機溶剤を用いることがで
きる。
The conductive material is for ensuring the electrical conductivity of the positive electrode, and it is preferable to use one kind or a mixture of two or more kinds of carbon material powders such as carbon black, acetylene black and graphite. it can. The binder plays a role of binding the active material particles and the conductive material particles together, and a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene can be used. . As a solvent for dispersing the active material, the conductive material, and the binder, N-
An organic solvent such as methyl-2-pyrrolidone can be used.

【0018】負極については、リチウムイオンを充電時
には吸蔵し、かつ放電時には放出する負極活物質を用い
ることができれば、その材料構成で特に限定されるもの
ではなく、公知の材料構成のものを用いることができ
る。たとえば、リチウム金属、グラファイト又は非晶質
炭素等の炭素材料等である。そのなかでも特に炭素材料
を用いることが好ましい。比表面積が比較的大きくで
き、リチウムの吸蔵、放出速度が速いため大電流での充
放電特性、出力・回生密度に対して良好となる。特に、
出力・回生密度のバランスを考慮すると、充放電に伴な
い電圧変化の比較的大きい炭素材料を使用することが好
ましい。中でも結晶性の高い天然黒鉛や人造黒鉛などか
らなるものを用いることが好ましい。このような結晶性
の高い炭素材を用いることにより、負極のリチウムイオ
ンの受け渡し効率を向上させることができる。
The negative electrode is not particularly limited in material constitution as long as it can use a negative electrode active material which occludes lithium ions during charging and releases lithium ions during discharging, and a known material constitution is used. You can For example, it is a carbon material such as lithium metal, graphite or amorphous carbon. Among them, it is particularly preferable to use a carbon material. Since the specific surface area can be made relatively large, and the absorption and desorption rates of lithium are fast, the charge and discharge characteristics at a large current and the output and regeneration density are good. In particular,
Considering the balance between the output and the regenerative density, it is preferable to use a carbon material having a relatively large voltage change with charge and discharge. Above all, it is preferable to use one made of natural graphite or artificial graphite having high crystallinity. By using such a carbon material having high crystallinity, the lithium ion delivery efficiency of the negative electrode can be improved.

【0019】このように負極活物質として炭素材料を用
いた場合には、これに必要に応じて正極で説明したよう
な導電材および結着材を混合して得られた負極合材が集
電体に塗布されてなるものを用いることが好ましい。
When a carbon material is used as the negative electrode active material as described above, the negative electrode mixture obtained by mixing the conductive material and the binder as described in the positive electrode, if necessary, with the current collector. It is preferable to use the one applied to the body.

【0020】非水電解液は、有機溶媒に電解質とSi−
N結合を有する有機ケイ素化合物とを溶解させたもので
ある。
The non-aqueous electrolyte is composed of an organic solvent, an electrolyte and Si-
It is a solution of an organosilicon compound having an N bond.

【0021】有機溶媒は、通常リチウム二次電池の非水
電解液の用いられる有機溶媒であれば特に限定されるも
のではなく、例えば、カーボネート類、ハロゲン化炭化
水素、エーテル類、ケトン類、ニトリル類、ラクトン
類、オキソラン化合物等を用いることができる。特に、
プロピレンカーボネート、エチレンカーボネート、1,
2−ジメトキシエタン、ジメチルカーボネート、ジエチ
ルカーボネート、エチルメチルカーボネート、テトラヒ
ドロフラン等及びそれらの混合溶媒が適当である。例え
ば、エチレンカーボネート、プロピレンカーボネートな
どの高誘電率の主溶媒と、ジメチルカーボネート、ジエ
チルカーボネート、エチルメチルカーボネートなどの低
粘性の副溶媒との混合有機溶媒が好ましい。また、副溶
媒として、ジメトキシエタン、テトラヒドロフラン及び
ブチルラクトンなどを用いてもよい。
The organic solvent is not particularly limited as long as it is an organic solvent usually used in a non-aqueous electrolyte of a lithium secondary battery, and examples thereof include carbonates, halogenated hydrocarbons, ethers, ketones and nitriles. , Lactones, oxolane compounds and the like can be used. In particular,
Propylene carbonate, ethylene carbonate, 1,
2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, tetrahydrofuran and the like and mixed solvents thereof are suitable. For example, a mixed organic solvent of a main solvent having a high dielectric constant such as ethylene carbonate and propylene carbonate and a sub-solvent having a low viscosity such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate is preferable. Moreover, you may use dimethoxyethane, tetrahydrofuran, butyl lactone, etc. as a subsolvent.

【0022】電解質は、LiPF6を含む。さらに、L
iBF4、LiClO4およびLiAsF6から選ばれる
無機塩、該無機塩の誘導体、LiSO3CF3、LiC
(SO3CF32、LiN(SO3CF32、LiN(S
2252およびLiN(SO2CF3)(SO24
9)から選ばれる有機塩、並びにその有機塩の誘導体の
少なくとも1種を必要に応じて含むことができる。
The electrolyte contains LiPF 6 . Furthermore, L
Inorganic salt selected from iBF 4 , LiClO 4 and LiAsF 6 , derivatives of the inorganic salt, LiSO 3 CF 3 , LiC
(SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (S
O 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F
At least one kind of organic salt selected from 9 ) and a derivative of the organic salt can be contained if necessary.

【0023】これらの電解質の使用により、電池性能を
さらに優れたものとすることができ、かつその電池性能
を室温以外の温度域においてもさらに高く維持すること
ができる。電解質の濃度についても特に限定されるもの
ではなく、用途に応じ、電解質および有機溶媒の種類を
考慮して適切に選択することが好ましい。これらの電解
質は水分と反応することでハロゲン酸を生成する。
By using these electrolytes, the battery performance can be further improved, and the battery performance can be maintained even higher in a temperature range other than room temperature. The concentration of the electrolyte is also not particularly limited, and it is preferable to appropriately select the concentration of the electrolyte and the organic solvent in consideration of the use. These electrolytes generate halogen acid by reacting with water.

【0024】有機ケイ素化合物はSi−N結合を有する
化合物である。この有機ケイ素化合物はSi−N結合が
解裂し、水又はハロゲン酸と反応することで、次式
(2):水、(3):ハロゲン酸の反応により、水等を
リチウム二次電池に悪影響を及ぼさない化合物に変化さ
せる。 R3−Si−N−R2 + H2O→R3−Si−OH + HN−R2…(2) R3−Si−N−R2 + HX→R3−Si−X + HN−R2…(3) ここで、Rとしては、式(2)、(3)共にすべて独立
して変更可能な基であり、水素原子を任意の置換基で置
換可能なアルキル基等から選択される。したがって、本
発明のリチウム二次電池に使用可能な有機ケイ素化合物
はSi−N結合を有していればその他の化学構造は特に
限定されないことはもちろん、複数の化合物の混合物で
もよい。Si−N結合は分子内に複数有してもよく、さ
らにSi−N−Siのような構造をも含む。有機ケイ素
化合物をいくつか例示すると、1,1,3,3,5,5
−ヘキサメチルシクロトリシラザン、1,1,1,3,
3,3−ヘキサメチルジシラザン、(N,O−ビストリ
メチルシリル)アセトアミド、(N,N−ジエチルアミ
ノ)トリメチルシラザン、ビス(トリメチルシリル)−
1,4−ブタンジアミン、N−トリメチルシリルイミダ
ゾール等がある。水分がすべて電解質と反応してハロゲ
ン酸となったと仮定しても、含有される水分のモル比で
2倍のハロゲン酸が生成されるのみであるので、有機ケ
イ素化合物を添加する濃度としては、最終的なリチウム
二次電池内に想定される水分量に対してモル比で最大で
も2倍添加することで十分効果が発揮できる。
The organosilicon compound is a compound having a Si-N bond. In this organosilicon compound, the Si—N bond is cleaved and reacts with water or a halogen acid, whereby water or the like is converted into a lithium secondary battery by the reaction of the following formula (2): water and (3): halogen acid. Change to a compound that does not adversely affect. R 3 -Si-N-R 2 + H 2 O → R 3 -Si-OH + HN-R 2 ... (2) R 3 -Si-N-R 2 + HX → R 3 -Si-X + HN- R 2 (3) Here, R is a group in which both formulas (2) and (3) are independently modifiable, and is selected from an alkyl group capable of substituting a hydrogen atom with any substituent. It Therefore, the organosilicon compound usable in the lithium secondary battery of the present invention is not particularly limited in terms of other chemical structures as long as it has a Si—N bond, and may be a mixture of a plurality of compounds. There may be a plurality of Si-N bonds in the molecule, and further includes a structure such as Si-N-Si. Some examples of organosilicon compounds are 1,1,3,3,5,5
-Hexamethylcyclotrisilazane, 1,1,1,3
3,3-hexamethyldisilazane, (N, O-bistrimethylsilyl) acetamide, (N, N-diethylamino) trimethylsilazane, bis (trimethylsilyl)-
1,4-butanediamine, N-trimethylsilylimidazole and the like. Even if it is assumed that all of the water content reacts with the electrolyte to form a halogen acid, it produces only twice the halogen acid content in terms of the molar ratio of the water content, so the concentration of the organosilicon compound added is: A sufficient effect can be exhibited by adding at most twice the molar ratio of the water content expected in the final lithium secondary battery.

【0025】セパレータは、正極および負極を電気的に
絶縁し、電解液を保持する役割を果たすものである。た
とえば、多孔性合成樹脂膜、特にポリオレフィン系高分
子(ポリエチレン、ポリプロピレン)の多孔膜を用いれ
ばよい。なおセパレータは、正極と負極との絶縁を担保
するため、正極および負極よりもさらに大きいものとす
るのが好ましい。
The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a porous film of polyolefin polymer (polyethylene, polypropylene) may be used. The separator is preferably larger than the positive electrode and the negative electrode in order to ensure the insulation between the positive electrode and the negative electrode.

【0026】電池ケースは、特に限定されるものではな
く、公知の材料、形態で作成することができる。
The battery case is not particularly limited and can be made of known materials and forms.

【0027】ガスケットは、ケースと正負の両端子部の
間の電気的な絶縁と、ケース内の密閉性とを担保するも
のである。たとえば、電解液にたいして、化学的、電気
的に安定であるポリプロピレンのような高分子等から構
成できる。
The gasket ensures electrical insulation between the case and both the positive and negative terminal portions and the hermeticity of the inside of the case. For example, the electrolyte may be composed of a polymer such as polypropylene that is chemically and electrically stable.

【0028】[0028]

【実施例】以下に本発明のリチウム二次電池について実
施例に基づいて説明する。
EXAMPLES The lithium secondary battery of the present invention will be described below based on examples.

【0029】〈試験例1のリチウム二次電池〉本試験例
のリチウム二次電池は、組成式LiNiO2で表される
リチウムニッケル複合酸化物を正極活物質として用い、
カーボンブラックを負極活物質として用いたリチウム二
次電池である。
<Lithium Secondary Battery of Test Example 1> The lithium secondary battery of this test example uses a lithium nickel composite oxide represented by the composition formula LiNiO 2 as a positive electrode active material,
It is a lithium secondary battery using carbon black as a negative electrode active material.

【0030】本試験例のリチウム二次電池の正極は、上
記LiNiO2を85質量部に、導電材としてアセチレ
ンブラックを10質量部、結着剤としてポリフッ化ビニ
リデンを5質量部混合し、適量のN−メチル−2−ピロ
リドンを添加して混練することでペースト状の正極合材
を得、この正極合材を厚さ15μmのAl箔製正極集電
体の両面に塗布、乾燥し、プレス工程を経て、シート状
正極を作製した。
The positive electrode of the lithium secondary battery of this test example was prepared by mixing 85 parts by mass of the above LiNiO 2 , 10 parts by mass of acetylene black as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder to prepare an appropriate amount. A paste-like positive electrode mixture is obtained by adding and kneading N-methyl-2-pyrrolidone, and the positive electrode mixture is applied to both surfaces of a 15 μm thick Al foil positive electrode current collector, dried, and pressed. After that, a sheet-shaped positive electrode was produced.

【0031】負極は、カーボンブラックを92.5質量
部に、結着剤としてポリフッ化ビニリデンを7.5質量
部混合し、適量のN−メチル−2−ピロリドンを添加し
て混練することでペースト状の負極合材を得、この負極
合材を厚さ10μmのCu箔製負極集電体の両面に塗
布、乾燥し、プレス工程を経て、シート状負極を作製し
た。
The negative electrode was prepared by mixing 92.5 parts by mass of carbon black and 7.5 parts by mass of polyvinylidene fluoride as a binder, adding an appropriate amount of N-methyl-2-pyrrolidone, and kneading the paste. A negative electrode composite material was obtained, and the negative electrode composite material was applied onto both surfaces of a Cu foil negative electrode current collector having a thickness of 10 μm, dried, and subjected to a pressing step to produce a sheet-shaped negative electrode.

【0032】上記正極および負極をそれぞれ所定の大き
さに裁断し、裁断した正極と負極とを、その間に厚さ2
5μmのポリエチレン製セパレータを挟装して捲回し、
ロール状の電極体を形成した。この電極体に集電用リー
ドを付設し、18650型電池ケースに挿設し、その後
その電池ケース内に非水電解液を注入した。非水電解液
には、エチレンカーボネート(EC)とジエチルカーボ
ネート(DEC)とを体積比で1:1に混合した混合溶
媒にLiPF6を1Mの濃度で溶解させたものを用い
た。最後に電池ケースを密閉して、本試験例のリチウム
二次電池を完成させた。なお、正極及び負極は質量比で
2000ppmの水分を含有していた。
The positive electrode and the negative electrode are each cut into a predetermined size, and the cut positive electrode and negative electrode have a thickness of 2 mm therebetween.
Wound by sandwiching a polyethylene separator of 5 μm,
A roll-shaped electrode body was formed. A current-collecting lead was attached to this electrode body and inserted into a 18650 type battery case, and then a non-aqueous electrolyte was injected into the battery case. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1 M in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 1: 1 was used. Finally, the battery case was sealed to complete the lithium secondary battery of this test example. The positive electrode and the negative electrode contained water in a weight ratio of 2000 ppm.

【0033】その後、コンディショニングとして4.1
V〜3V間を1Cで5サイクル充放電を行った。
Then, 4.1 is used for conditioning.
Charge / discharge was performed for 5 cycles at 1 C between V and 3V.

【0034】〈試験例2のリチウム二次電池〉正極及び
負極が質量比で6000ppmの水分を含有すること以
外は試験例1のリチウム二次電池と同様の方法で製造し
た。
<Lithium Secondary Battery of Test Example 2> A lithium secondary battery of Test Example 1 was manufactured except that the positive electrode and the negative electrode contained water of 6000 ppm in mass ratio.

【0035】〈試験例3、4、5のリチウム二次電池〉
正極及び負極の水分含有量を規定しないこと以外は、試
験例1と同様の方法でリチウム二次電池を製造した。そ
のうちの1つはコンディショニングを行った後に、有機
ケイ素化合物としての1,1,3,3,5,5−ヘキサ
メチルシクロトリシラザンを非水電解液に対して質量比
で0.5%添加し試験例3の電池とした。有機ケイ素化
合物の添加は、電池のコンディショニングまでを電池ケ
ースの蓋を密閉させずに乾燥雰囲気下で行った後に行っ
た。
<Lithium Secondary Battery of Test Examples 3, 4, and 5>
A lithium secondary battery was manufactured in the same manner as in Test Example 1 except that the water contents of the positive electrode and the negative electrode were not specified. One of them was subjected to conditioning, and then 1,1,3,3,5,5-hexamethylcyclotrisilazane as an organic silicon compound was added to the non-aqueous electrolyte solution in a mass ratio of 0.5%. The battery of Test Example 3 was used. The organosilicon compound was added after conditioning the battery in a dry atmosphere without sealing the lid of the battery case.

【0036】別の1つにはコンディショニング前に前述
の有機ケイ素化合物を非水電解液に対して質量比で0.
5%添加し試験例4の電池とした。そして前述の有機ケ
イ素化合物を添加しない電池を試験例5の電池とした。
なお、試験例3〜5の電池はすべて電極中の水分量が同
一と考えられる。
Another condition is that before conditioning, the organosilicon compound is added to the non-aqueous electrolyte in a mass ratio of 0.
5% was added to obtain a battery of Test Example 4. Then, the battery to which the above-mentioned organosilicon compound was not added was used as a battery of Test Example 5.
The batteries of Test Examples 3 to 5 are considered to have the same water content in the electrodes.

【0037】〈内部抵抗の測定〉各試験例の電池につい
て25℃における内部抵抗を測定した。内部抵抗の測定
は電池に印加する電流の値を変化させたときの電池の端
子電圧の値を測定し、各電流値と電圧値とを結ぶ線の傾
きから導出した。
<Measurement of Internal Resistance> The internal resistance at 25 ° C. of the batteries of each test example was measured. The internal resistance was measured by measuring the value of the terminal voltage of the battery when the value of the current applied to the battery was changed and deriving from the slope of the line connecting each current value and the voltage value.

【0038】さらに、試験例3〜5の電池について−3
0℃における出力を測定した。出力の値は、満充電した
各試験例の電池を−30℃に冷却した後に、端子電圧が
3Vとなる電流の値(I)を求め、3×Iより求めた。
Regarding the batteries of Test Examples 3 to 5-3
The output at 0 ° C was measured. The output value was obtained by cooling the battery of each test example fully charged to −30 ° C. and then obtaining the current value (I) at which the terminal voltage was 3 V, and was obtained from 3 × I.

【0039】なお、これらの測定は電池のコンディショ
ニングが終了した24時間後に行った。
These measurements were carried out 24 hours after the battery conditioning was completed.

【0040】〈結果〉結果を表1に示す。<Results> The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表より試験例1の電池の内部抵抗(61m
Ω)と試験例2の電池の内部抵抗(74mΩ)とを比較
すると、試験例2の電池の内部抵抗がより高いことが明
らかとなった。これは、試験例2の電池は水分量が多い
ので式(1)の反応で生成するハロゲン酸(フッ化水
素)の量が多く、生成したフッ化水素により正極活物質
が損傷されたためと考えられる。
From the table, the internal resistance of the battery of Test Example 1 (61 m
Ω) was compared with the internal resistance (74 mΩ) of the battery of Test Example 2, it was revealed that the internal resistance of the battery of Test Example 2 was higher. It is considered that this is because the battery of Test Example 2 had a large amount of water and thus a large amount of halogen acid (hydrogen fluoride) produced by the reaction of the formula (1), and the positive electrode active material was damaged by the produced hydrogen fluoride. To be

【0043】試験4と試験例5の電池を比較すると、有
機ケイ素化合物を添加した試験例4の電池の方が却って
内部抵抗が上昇している。これは有機ケイ素化合物の電
位安定性が低く、コンディショニングの最中に分解され
た生成物が高抵抗被膜を形成したものと推測された。そ
れに対して、コンディショニング後に有機ケイ素化合物
を添加した試験例3の電池の内部抵抗(50mΩ)は試
験例4の電池の内部抵抗(60mΩ)よりも低下したこ
とはもちろん、試験例5の電池の内部抵抗(53mΩ)
よりも低下することが明らかとなった。これは、コンデ
ィショニング初期に生成する被膜により負極表面が覆わ
れるために有機ケイ素化合物の分解の進行又は被膜の生
成が抑制されたためと推測された。
Comparing the batteries of Test 4 and Test Example 5, the internal resistance of the battery of Test Example 4 to which the organosilicon compound was added was rather increased. It was speculated that this was because the potential stability of the organosilicon compound was low, and the products decomposed during conditioning formed a high resistance film. On the other hand, the internal resistance (50 mΩ) of the battery of Test Example 3 in which the organosilicon compound was added after conditioning was lower than the internal resistance (60 mΩ) of the battery of Test Example 4, as well as the internal resistance of the battery of Test Example 5. Resistance (53mΩ)
It became clear that it is lower than that. It was speculated that this is because the negative electrode surface was covered with the film formed in the initial stage of conditioning, and thus the progress of decomposition of the organosilicon compound or the formation of the film was suppressed.

【0044】同様のことは−30℃における低温出力特
性の測定結果からもわかる。つまり、試験例4及び5の
電池に比較して試験例3の電池がより高出力であること
から、25℃における内部抵抗の結果から判明したこと
と同様に、試験例3の電池の内部抵抗が−30℃におい
ても低いこと明らかとなった。
The same thing can be seen from the measurement results of the low temperature output characteristics at -30 ° C. That is, since the battery of Test Example 3 has a higher output than the batteries of Test Examples 4 and 5, the internal resistance of the battery of Test Example 3 was similar to that found from the result of the internal resistance at 25 ° C. Was low even at -30 ° C.

【0045】[0045]

【発明の効果】本発明のリチウム二次電池は、有機ケイ
素化合物を非水電解液内にリチウム二次電池に少なくと
も1回充電を行った後に添加するものである。このよう
な構成を有することで、本発明のリチウム二次電池は、
電池の構成材料について厳しく水分の管理をする必要が
なくなり、より低コストに内部抵抗の低いリチウム二次
電池を提供することが可能となる。
INDUSTRIAL APPLICABILITY In the lithium secondary battery of the present invention, the organosilicon compound is added to the non-aqueous electrolyte after charging the lithium secondary battery at least once. By having such a configuration, the lithium secondary battery of the present invention,
It becomes unnecessary to strictly control the water content of the constituent materials of the battery, and it becomes possible to provide a lithium secondary battery having a low internal resistance at a lower cost.

【0046】同様に、本発明のリチウム二次電池の製造
方法は、有機ケイ素化合物を非水電解液内にリチウム二
次電池に少なくとも1回充電を行った後に添加するもの
である。このような構成を有する本発明の製造方法によ
り製造されたリチウム二次電池は、電池の構成材料につ
いて厳しく水分の管理をする必要がなくなり、より低コ
ストに内部抵抗の低いリチウム二次電池を提供すること
が可能となる。
Similarly, in the method for producing a lithium secondary battery of the present invention, the organosilicon compound is added to the non-aqueous electrolyte after charging the lithium secondary battery at least once. The lithium secondary battery manufactured by the manufacturing method of the present invention having such a structure does not require strict water content management for battery constituent materials, and provides a lithium secondary battery with low internal resistance at lower cost. It becomes possible to do.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・脱離可能な物質をそれ
ぞれ活物質とする正極および負極と、水と反応すること
でハロゲン酸を生成しうる電解質とSi−N結合を有す
る有機ケイ素化合物とを有機溶媒に溶解させた非水電解
液と、を含んで構成されるリチウム二次電池であって、 前記有機ケイ素化合物は、前記リチウム二次電池に少な
くとも1回充電を行った後に、前記非水電解液内に添加
されることを特徴とするリチウム二次電池。
1. A positive electrode and a negative electrode each having a substance capable of occluding / desorbing lithium as an active material, an electrolyte capable of generating a halogen acid by reacting with water, and an organosilicon compound having a Si—N bond. A non-aqueous electrolyte solution dissolved in an organic solvent, wherein the lithium secondary battery comprises the non-aqueous electrolyte after charging the lithium secondary battery at least once. A lithium secondary battery, which is added in an electrolytic solution.
【請求項2】 前記有機ケイ素化合物は、前記リチウム
二次電池に少なくとも5回充放電を繰り返した後に添加
される請求項1に記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the organosilicon compound is added to the lithium secondary battery after repeating charging and discharging at least 5 times.
【請求項3】 リチウムを吸蔵・脱離可能な物質をそれ
ぞれ活物質とする正極および負極と、水と反応すること
でハロゲン酸を生成しうる電解質とSi−N結合を有す
る有機ケイ素化合物とを有機溶媒に溶解させた非水電解
液と、を含んで構成されるリチウム二次電池の製造方法
であって、 前記有機ケイ素化合物は、前記リチウム二次電池に少な
くとも1回充電を行った後に、前記非水電解液内に添加
されることを特徴とするリチウム二次電池の製造方法。
3. A positive electrode and a negative electrode each having a substance capable of occluding / desorbing lithium as an active material, an electrolyte capable of generating a halogen acid by reacting with water, and an organosilicon compound having a Si—N bond. A method for producing a lithium secondary battery comprising a non-aqueous electrolyte solution dissolved in an organic solvent, wherein the organosilicon compound is obtained by charging the lithium secondary battery at least once. A method for manufacturing a lithium secondary battery, which is added in the non-aqueous electrolyte.
JP2001190018A 2001-06-22 2001-06-22 Lithium secondary battery and manufacturing method of the same Pending JP2003007332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190018A JP2003007332A (en) 2001-06-22 2001-06-22 Lithium secondary battery and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190018A JP2003007332A (en) 2001-06-22 2001-06-22 Lithium secondary battery and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2003007332A true JP2003007332A (en) 2003-01-10

Family

ID=19028847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190018A Pending JP2003007332A (en) 2001-06-22 2001-06-22 Lithium secondary battery and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2003007332A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
WO2014091606A1 (en) * 2012-12-13 2014-06-19 エリーパワー株式会社 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery
CN103988355A (en) * 2011-12-08 2014-08-13 巴斯夫欧洲公司 Electrochemical cells and the use thereof
WO2015098471A1 (en) * 2013-12-25 2015-07-02 旭化成株式会社 Composition for addition to electrolyte solutions containing silyl group-containing compound, electrolyte solution for nonaqueous electricity storage devices containing said composition, and lithium ion secondary battery containing said electrolyte solution
JP2019194980A (en) * 2018-04-23 2019-11-07 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Electrolyte and lithium ion battery
CN112290096A (en) * 2020-11-23 2021-01-29 中国科学院上海硅酸盐研究所 Metal-air battery
WO2021025164A1 (en) 2019-08-08 2021-02-11 三菱ケミカル株式会社 Nonaqueous electrolytic solution and nonaqueous-electrolytic-solution battery
CN113130990A (en) * 2019-12-30 2021-07-16 深圳市研一新材料有限责任公司 Electrolyte and secondary battery using same
CN114006040A (en) * 2021-09-29 2022-02-01 林丰川 Electrolyte and lithium ion battery with quick charge and ultralow temperature discharge performance

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
CN101821895A (en) * 2007-10-12 2010-09-01 丰田自动车株式会社 Method for manufacturing secondary battery
US8753769B2 (en) 2007-10-12 2014-06-17 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
KR101944238B1 (en) 2011-12-08 2019-01-31 바스프 에스이 Electrochemical cells and the use thereof
CN103988355A (en) * 2011-12-08 2014-08-13 巴斯夫欧洲公司 Electrochemical cells and the use thereof
KR20140105813A (en) * 2011-12-08 2014-09-02 바스프 에스이 Electrochemical cells and the use thereof
JP2015500553A (en) * 2011-12-08 2015-01-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Electrochemical cell and use thereof
JPWO2014091606A1 (en) * 2012-12-13 2017-01-05 エリーパワー株式会社 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN104854754A (en) * 2012-12-13 2015-08-19 艾利电力能源有限公司 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery
US10147977B2 (en) 2012-12-13 2018-12-04 Eliiy Power Co., Ltd. Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
WO2014091606A1 (en) * 2012-12-13 2014-06-19 エリーパワー株式会社 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery
CN105745779A (en) * 2013-12-25 2016-07-06 旭化成株式会社 Composition for addition to electrolyte solutions containing silyl group-containing compound, electrolyte solution for nonaqueous electricity storage devices containing said composition, and lithium ion secondary battery containing said electrolyte solution
WO2015098471A1 (en) * 2013-12-25 2015-07-02 旭化成株式会社 Composition for addition to electrolyte solutions containing silyl group-containing compound, electrolyte solution for nonaqueous electricity storage devices containing said composition, and lithium ion secondary battery containing said electrolyte solution
JPWO2015098471A1 (en) * 2013-12-25 2017-03-23 旭化成株式会社 Composition for adding electrolytic solution containing silyl group-containing compound, electrolytic solution for non-aqueous electricity storage device containing the composition, and lithium ion secondary battery containing the electrolytic solution
JP2019194980A (en) * 2018-04-23 2019-11-07 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Electrolyte and lithium ion battery
US11239498B2 (en) 2018-04-23 2022-02-01 Contemporary Amperex Technology Co., Limited Electrolytic solution and lithium-ion battery
WO2021025164A1 (en) 2019-08-08 2021-02-11 三菱ケミカル株式会社 Nonaqueous electrolytic solution and nonaqueous-electrolytic-solution battery
KR20220035244A (en) 2019-08-08 2022-03-21 미쯔비시 케미컬 주식회사 Non-aqueous electrolyte and non-aqueous electrolyte battery
CN113130990A (en) * 2019-12-30 2021-07-16 深圳市研一新材料有限责任公司 Electrolyte and secondary battery using same
CN112290096A (en) * 2020-11-23 2021-01-29 中国科学院上海硅酸盐研究所 Metal-air battery
CN114006040A (en) * 2021-09-29 2022-02-01 林丰川 Electrolyte and lithium ion battery with quick charge and ultralow temperature discharge performance
CN114006040B (en) * 2021-09-29 2023-11-21 林丰川 Electrolyte with fast charge and ultralow temperature discharge performance and lithium ion battery

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP5754358B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2002260634A (en) Lithium secondary battery
JP2002343446A (en) Method for measuring amount of self-discharge of lithium ion secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JP2003007332A (en) Lithium secondary battery and manufacturing method of the same
JP2003115324A (en) Nonaqueous electrolyte battery
JP2002237331A (en) Lithium secondary battery
JP2002343364A (en) Nonaqueous electrolyte solution secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
JP2000228199A (en) Nonaqueous electrolyte solution secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002117832A (en) Lithium secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2002175836A (en) Nonaqueous electrolyte battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2002184458A (en) Lithium secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JP4843833B2 (en) Method for improving low temperature characteristics of lithium secondary battery
JP2001283920A (en) Lithium secondary battery
JP4264209B2 (en) Nonaqueous electrolyte secondary battery