JP2003007280A - Nonaqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacturing method thereof

Info

Publication number
JP2003007280A
JP2003007280A JP2001192723A JP2001192723A JP2003007280A JP 2003007280 A JP2003007280 A JP 2003007280A JP 2001192723 A JP2001192723 A JP 2001192723A JP 2001192723 A JP2001192723 A JP 2001192723A JP 2003007280 A JP2003007280 A JP 2003007280A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
negative electrode
battery
positive electrode
porous polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001192723A
Other languages
Japanese (ja)
Other versions
JP2003007280A5 (en
Inventor
Masazumi Segawa
全澄 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001192723A priority Critical patent/JP2003007280A/en
Publication of JP2003007280A publication Critical patent/JP2003007280A/en
Publication of JP2003007280A5 publication Critical patent/JP2003007280A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a nonaqueous electrolyte secondary battery, having a porous polymer electrolyte with improvel high rate discharge performance and cycle performance. SOLUTION: This nonaqueous electrolyte secondary battery has the porous polymer electrolyte between a positive electrode and a negative electrode, the porous polymer electrolyte contains a first polymer electrolyte and a second polymer electrolyte, having different melting points, and satisfies the relation T1<T2, when the melting point of the first polymer electrolyte is represented by T1( deg.C) and that of the second polymer electrolyte is represented by T2( deg.C).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有孔性ポリマー電
解質を備えた非水電解質二次電池およびその製造方法に
関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery provided with a porous polymer electrolyte and a method for producing the same.

【0002】[0002]

【従来の技術】現在市販されているリチウム二次電池
は、コバルト酸リチウム等の遷移金属複合酸化物からな
る正極、グラファイト等の炭素系物質からなる負極、ポ
リエチレン、ポリプロピレン等からなるセパレータ、エ
チレンカーボネート等の炭酸エステル混合溶媒にLiP
等のリチウム塩が溶解された有機電解液とが用いら
れているが、電池をより一層安定なものとするために、
可燃性の有機電解液の代わりに化学反応性に乏しい固体
ポリマー電解質を用いる試みがなされてきた。
2. Description of the Related Art Currently available lithium secondary batteries include a positive electrode made of a transition metal composite oxide such as lithium cobalt oxide, a negative electrode made of a carbonaceous material such as graphite, a separator made of polyethylene, polypropylene, etc., and an ethylene carbonate. LiP in a mixed solvent such as carbonate ester
An organic electrolyte in which a lithium salt such as F 6 is dissolved is used, but in order to make the battery more stable,
Attempts have been made to use solid polymer electrolytes with poor chemical reactivity instead of flammable organic electrolytes.

【0003】最近では、導電性を向上させるために有機
電解液でポリマーを湿潤または膨潤させたポリマー電解
質を利用することが試みられており、さらにはリチウム
イオンの拡散速度を向上させるために、例えば特開平8
−195220号、特開平9−259923号に記載さ
れているように、有孔性ポリマー電解質をセパレータと
して用いたり、電極空孔中に保持させることで、高率充
放電特性および安全性に優れた電池を製造することが提
案されている。
Recently, it has been attempted to use a polymer electrolyte obtained by wetting or swelling a polymer with an organic electrolytic solution in order to improve conductivity, and further, for improving the diffusion rate of lithium ions, for example, JP-A-8
As described in JP-A-195220 and JP-A-9-259923, by using a porous polymer electrolyte as a separator or by holding it in electrode pores, high rate charge / discharge characteristics and safety are excellent. It has been proposed to manufacture batteries.

【0004】[0004]

【発明が解決しようとする課題】有孔性ポリマー電解質
を利用する目的は、導電性を有するポリマー電解質に多
数の孔を形成し、この孔の中に電解液を保持させること
でリチウムイオンの拡散速度を改善することにある。
The purpose of utilizing a porous polymer electrolyte is to form a large number of pores in a conductive polymer electrolyte and hold an electrolytic solution in the pores to diffuse lithium ions. To improve speed.

【0005】この有孔性ポリマー電解質を電極内部に備
えることにより、充放電反応の繰り返しにともなう電解
液の偏在化が抑制されるために、サイクルにともなう放
電容量の低下を抑制することが可能となる。これは、電
極内部に備えた有孔性ポリマー電解質が、電極内部の電
解液を保持するとともに、結着剤としての機能を果たす
ために、活物質粒子同士の脱落を抑制するからである。
Since the porous polymer electrolyte is provided inside the electrode, uneven distribution of the electrolytic solution due to repeated charging / discharging reaction is suppressed, so that it is possible to suppress a decrease in discharge capacity due to cycles. Become. This is because the porous polymer electrolyte provided inside the electrode holds the electrolytic solution inside the electrode and also functions as a binder, so that the active material particles are prevented from falling off.

【0006】また、この電解質をセパレータとして用い
ることにより、電池中に保持される電解液の量を低減で
きる。そして、電解液と同等のリチウムイオンの拡散速
度を維持でき、高率充放電特性も確保できる。さらに、
電解液で膨潤または湿潤した有孔性ポリマー電解質はや
わらかいため、正・負極の凹凸に併せて形状が変化す
る。したがって、有孔性ポリマー電解質をセパレータと
して用いることにより、セパレータと正・負極との間隙
を狭くすることが可能である。
Further, by using this electrolyte as a separator, the amount of electrolytic solution retained in the battery can be reduced. Then, the diffusion rate of lithium ions equivalent to that of the electrolytic solution can be maintained, and high rate charge / discharge characteristics can be secured. further,
Since the porous polymer electrolyte swollen or moistened with the electrolytic solution is soft, its shape changes according to the irregularities of the positive and negative electrodes. Therefore, by using the porous polymer electrolyte as the separator, it is possible to narrow the gap between the separator and the positive and negative electrodes.

【0007】しかし、セパレータとして有孔性ポリマー
電解質を用いた場合においても、依然として有孔性ポリ
マー電解質と電極との境界部には隙間があり、この部分
がイオン媒体の存在しない空間となって反応が阻害され
る。そのため、高率放電を行った場合に著しく放電容量
が低下するという新たな問題が生じた。
However, even when the porous polymer electrolyte is used as the separator, there is still a gap at the boundary between the porous polymer electrolyte and the electrode, and this portion becomes a space in which no ionic medium exists and reacts. Is hindered. Therefore, there is a new problem that the discharge capacity is significantly reduced when high-rate discharge is performed.

【0008】そこで、高率放電特性の向上を目的とし
て、少なくとも一方の電極内部と正極−負極間に有孔性
ポリマー電解質層を備え、正極と負極と有孔性ポリマー
電解質層とを固着することが検討されている。また、こ
の場合、サイクルにともなう電池厚みの増加を抑制でき
るために、電極内部にのみ有孔性ポリマー電解質を備え
た場合よりも飛躍的にサイクル性能を向上することがで
きる。
Therefore, for the purpose of improving the high rate discharge characteristics, a porous polymer electrolyte layer is provided between at least one of the electrodes and between the positive electrode and the negative electrode, and the positive electrode, the negative electrode and the porous polymer electrolyte layer are fixed to each other. Is being considered. Further, in this case, since it is possible to suppress an increase in battery thickness due to cycling, it is possible to dramatically improve cycle performance as compared with the case where the porous polymer electrolyte is provided only inside the electrodes.

【0009】しかしながら、正極と正極−負極間に備え
た有孔性ポリマー電解質層および負極と正極−負極間に
備えた有孔性ポリマー電解質とが加熱によって固着され
た電池が、十分な高率放電性能を示さないことがある。
この原因としては、加熱よって、正極−負極間に備えた
有孔性ポリマー電解質が融解しすぎた結果、その孔の一
部が閉塞し、ポリマー電解質のイオン伝導度および充放
電反応時におけるリチウムイオンの拡散性能が低下した
ことが原因として考えられる。またこの場合、高率で充
電がなされると、金属リチウムが析出しやすくなり、サ
イクル性能が著しく低下することを意味する。
However, a battery in which the porous polymer electrolyte layer provided between the positive electrode and the positive electrode and the negative electrode and the porous polymer electrolyte layer provided between the negative electrode and the positive electrode and the negative electrode are fixed by heating has a sufficiently high discharge rate. May not show performance.
As a cause of this, as a result of heating, the porous polymer electrolyte provided between the positive electrode and the negative electrode is melted too much, and as a result, a part of the pores is blocked, and the ionic conductivity of the polymer electrolyte and the lithium ion during charge / discharge reaction It is thought that the reason is that the diffusion performance of was decreased. Further, in this case, if the charging is performed at a high rate, metallic lithium is likely to be deposited and the cycle performance is significantly reduced.

【0010】本発明はこれらの問題を解決するためにな
されたもので、高率放電性能およびサイクル性能を向上
させた有孔性ポリマー電解質を備えた非水電解質二次電
池の製造方法を提供することを目的とする。
The present invention has been made to solve these problems, and provides a method for producing a non-aqueous electrolyte secondary battery having a porous polymer electrolyte with improved high rate discharge performance and cycle performance. The purpose is to

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、正極
−負極間に有孔性ポリマー電解質を備えた非水電解質二
次電池において、前記有孔性ポリマー電解質が融点の異
なる第1と第2のポリマー電解質とを含み、第1のポリ
マー電解質の融点をT1(℃)、第2のポリマー電解質
の融点をT2(℃)とした場合、T1<T2の関係を満
たすことを特徴とする。
According to a first aspect of the invention, in a non-aqueous electrolyte secondary battery having a porous polymer electrolyte between a positive electrode and a negative electrode, the porous polymer electrolyte has a different melting point. A second polymer electrolyte is included, and when the melting point of the first polymer electrolyte is T1 (° C.) and the melting point of the second polymer electrolyte is T2 (° C.), the relationship of T1 <T2 is satisfied. .

【0012】請求項1の発明によれば、電池を加熱し
て、正極−負極間に備えたポリマー電解質と、正極およ
び負極とを固着する場合、融点の低い第1のポリマー電
解質が融解することによって、接着層として働き、ポリ
マー電解質とそれぞれの電極とが固着され、一方、融点
の高い第2のポリマー電解質の有孔性が保たれ、有孔性
ポリマー電解質中のリチウムイオンの拡散性能が維持さ
れて、電池の高率放電性能を向上させることができる。
According to the invention of claim 1, when the battery is heated to fix the polymer electrolyte provided between the positive electrode and the negative electrode and the positive electrode and the negative electrode, the first polymer electrolyte having a low melting point is melted. Acts as an adhesive layer to fix the polymer electrolyte and the respective electrodes to each other, while maintaining the porosity of the second polymer electrolyte having a high melting point and maintaining the diffusion performance of lithium ions in the porous polymer electrolyte. As a result, the high rate discharge performance of the battery can be improved.

【0013】請求項2の発明は、上記非水電解質二次電
池において、正極−負極間に備える有孔性ポリマー電解
質を構成する第1のポリマーと第2のポリマーの質量比
を規定したものであり、第1のポリマーの質量をW1、
第2のポリマーの質量をW2とした場合、0.05≦W
1/(W1+W2)≦0.95の関係を満たすことを特
徴とするものである。
According to a second aspect of the present invention, in the above non-aqueous electrolyte secondary battery, the mass ratio of the first polymer and the second polymer constituting the porous polymer electrolyte provided between the positive electrode and the negative electrode is defined. Yes, the mass of the first polymer is W1,
When the mass of the second polymer is W2, 0.05 ≦ W
It is characterized in that the relationship of 1 / (W1 + W2) ≦ 0.95 is satisfied.

【0014】請求項2の発明によれば、正極−負極間に
備えた有孔性ポリマー電解質と、正極および負極との十
分な接着強度が得られるとともに、ポリマー電解質の有
孔性が保持される。
According to the invention of claim 2, sufficient adhesive strength between the porous polymer electrolyte provided between the positive electrode and the negative electrode and the positive electrode and the negative electrode is obtained, and the porous property of the polymer electrolyte is maintained. .

【0015】請求項3の発明は、上記非水電解質二次電
池の製造方法に関するもので、正極−負極間に備えた有
孔性ポリマー電解質と、正極および負極とが加熱によっ
て固着され、加熱温度をT3(℃)とした場合、T1≦
T3≦(T1+5)、かつT3≦(T2−3)の関係を
満たすことを特徴とする。
The invention of claim 3 relates to a method for producing the above non-aqueous electrolyte secondary battery, wherein the porous polymer electrolyte provided between the positive electrode and the negative electrode and the positive electrode and the negative electrode are fixed by heating, and the heating temperature is increased. Is T3 (° C.), T1 ≦
It is characterized in that the relationship of T3 ≦ (T1 + 5) and T3 ≦ (T2-3) is satisfied.

【0016】請求項3の発明によれば、電池を加熱し
て、融点の低い第1のポリマー電解質の表面をわずかに
融解させることによって、それぞれの電極との固着を図
る。この場合、第1のポリマー電解質の孔が閉塞した場
合においても、融点の高い第2のポリマー電解質の有孔
性が維持される。その結果、正極−負極間に備えた有孔
性ポリマー電解質中におけるリチウムイオンの拡散性能
の低下が抑制されて、高率放電性能を向上させることが
できる。また、リチウムイオンの拡散分布の不均一化に
ともなう負極の分極の増大が原因でひきおこされる金属
リチウムの電解析出を抑制できるために、優れたサイク
ル性能を期待できる。
According to the third aspect of the present invention, the battery is heated so that the surface of the first polymer electrolyte having a low melting point is slightly melted, thereby fixing the respective electrodes. In this case, even when the pores of the first polymer electrolyte are closed, the porosity of the second polymer electrolyte having a high melting point is maintained. As a result, it is possible to suppress the deterioration of the diffusion performance of lithium ions in the porous polymer electrolyte provided between the positive electrode and the negative electrode, and improve the high rate discharge performance. Further, since electrolytic deposition of metallic lithium caused by an increase in polarization of the negative electrode due to non-uniform diffusion distribution of lithium ions can be suppressed, excellent cycle performance can be expected.

【0017】[0017]

【発明の実施の形態】以下、本発明電池の実施形態を説
明する。本発明の非水電解質二次電池は、正極−負極間
に有孔性ポリマー電解質を備えたものであり、この有孔
性ポリマー電解質が融点の異なる第1と第2のポリマー
電解質とを含み、第1のポリマー電解質の融点をT1
(℃)、第2のポリマー電解質の融点をT2(℃)とし
た場合、T1<T2の関係を満たすことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the battery of the present invention will be described below. The non-aqueous electrolyte secondary battery of the present invention is provided with a porous polymer electrolyte between the positive electrode and the negative electrode, and the porous polymer electrolyte includes first and second polymer electrolytes having different melting points, The melting point of the first polymer electrolyte is T1.
(C) and the melting point of the second polymer electrolyte is T2 (° C), the relationship of T1 <T2 is satisfied.

【0018】電池をT1以上の温度で加熱して、正極−
負極間に備えたポリマー電解質と、正極および負極とを
固着する場合、融点の低い第1のポリマー電解質が融解
することによって、接着層として働き、ポリマー電解質
とそれぞれの電極とが固着され、十分な一体性が期待で
きる。一方、融点の高い第2のポリマー電解質の有孔性
が保たれ、有孔性ポリマー電解質中のリチウムイオンの
拡散性能が維持されて、電池の高率放電性能を向上させ
ることができる。
The battery is heated at a temperature of T1 or higher to produce a positive electrode
When the polymer electrolyte provided between the negative electrodes and the positive electrode and the negative electrode are fixed to each other, the first polymer electrolyte having a low melting point melts to act as an adhesive layer, and the polymer electrolyte and each electrode are fixed to each other, which is sufficient. Oneness can be expected. On the other hand, the porosity of the second polymer electrolyte having a high melting point is maintained, the diffusion performance of lithium ions in the porous polymer electrolyte is maintained, and the high rate discharge performance of the battery can be improved.

【0019】さらに、本発明においては、正極−負極間
に備えた有孔性ポリマー電解質を構成する融点の低い第
1のポリマーの質量をW1、融点の高い第2のポリマー
の質量をW2とした場合、0.05≦W1/(W1+W
2)≦0.95の関係を満たすことを特徴とする。
Further, in the present invention, the mass of the first polymer having a low melting point which constitutes the porous polymer electrolyte provided between the positive electrode and the negative electrode is W1, and the mass of the second polymer having a high melting point is W2. In case of 0.05 ≦ W1 / (W1 + W
2) It is characterized in that the relationship of ≦ 0.95 is satisfied.

【0020】融点の低い第1のポリマー量が5wt%よ
りも少ないと、電極と正極−負極間に備えた有孔性ポリ
マー電解質との十分な接着強度が得られなくなる。ま
た、融点の高い第2のポリマー量が5wt%よりも少な
い場合、ポリマー電解質の有孔性が維持される割合が少
なくなり、リチウムイオンの拡散性能の低下を抑制する
ことが困難になる。
When the amount of the first polymer having a low melting point is less than 5% by weight, sufficient adhesive strength between the electrode and the porous polymer electrolyte provided between the positive electrode and the negative electrode cannot be obtained. Further, when the amount of the second polymer having a high melting point is less than 5 wt%, the ratio of maintaining the porosity of the polymer electrolyte decreases, and it becomes difficult to suppress the deterioration of the diffusion performance of lithium ions.

【0021】また、本発明では、正極−負極間に備える
ポリマー電解質として、第1のポリマー電解質よりも融
点の高い第2のポリマー電解質を同時に備える。そし
て、加熱温度をT3(℃)と表記した場合、T1≦T3
≦(T1+5)、かつT2≧(T3−3)とすることを
特徴とする。T3>(T1+5)とした場合、第1のポ
リマー電解質の孔が完全に閉塞する可能性があるからで
ある。また、第2の有孔性ポリマー電解質の有孔性を維
持するためには、T3≦(T2−3)とするとよい。以
上のように温度条件を設定することにより、課題を解決
できることを後述の実験で明らかにした。
Further, in the present invention, as the polymer electrolyte provided between the positive electrode and the negative electrode, the second polymer electrolyte having a higher melting point than that of the first polymer electrolyte is provided at the same time. When the heating temperature is expressed as T3 (° C.), T1 ≦ T3
It is characterized in that ≦ (T1 + 5) and T2 ≧ (T3-3). This is because when T3> (T1 + 5), the pores of the first polymer electrolyte may be completely blocked. Further, in order to maintain the porosity of the second porous polymer electrolyte, T3 ≦ (T2-3) is preferably satisfied. It was clarified in the experiments described later that the problem can be solved by setting the temperature conditions as described above.

【0022】本発明において「正極−負極間に備える有
孔性ポリマー電解質」とは、有孔性ポリマー電解質を正
極と負極との短絡を防止するセパレータとして用いるこ
とを意味する。あるいは、ポリオレフィン等の微細孔を
もつ膜をセパレータとして使用し、そのセパレータと正
極板との間およびそのセパレータと負極板との間に有孔
性ポリマー電解質を備えることを意味する。
In the present invention, "a porous polymer electrolyte provided between the positive electrode and the negative electrode" means that the porous polymer electrolyte is used as a separator for preventing a short circuit between the positive electrode and the negative electrode. Alternatively, it means that a membrane having fine pores such as polyolefin is used as a separator, and a porous polymer electrolyte is provided between the separator and the positive electrode plate and between the separator and the negative electrode plate.

【0023】なお、いずれの場合においても、融点の低
い第1のポリマー電解質が、正極―負極間に備える有孔
性ポリマー電解質の表面の少なくとも一部に存在すると
よい。さらに好ましくは、有孔性ポリマー電解質と電極
との十分な接着強度がえられる量が表面に存在するとよ
い。
In any case, the first polymer electrolyte having a low melting point may be present on at least a part of the surface of the porous polymer electrolyte provided between the positive electrode and the negative electrode. More preferably, an amount sufficient to obtain sufficient adhesive strength between the porous polymer electrolyte and the electrode should be present on the surface.

【0024】なお、「ポリオレフィン等の微細孔をもつ
膜」とは、例えば、ポリプロピレンやポリエチレン等の
絶縁性フィルムに有数の微細孔を設けられてなるもの
や、不織布からなるものをさし、有孔性ポリマー電解質
膜との大きな違いは、絶縁性フィルム部分がイオン伝導
性をもたないことである。
The term "membrane having fine pores such as polyolefin" refers to, for example, an insulating film such as polypropylene or polyethylene provided with numerous fine pores, or a nonwoven fabric. The major difference from the porous polymer electrolyte membrane is that the insulating film portion has no ionic conductivity.

【0025】また、有孔性ポリマー電解質をセパレータ
の孔中に備えてもよい。この場合、有孔性ポリマー電解
質が連続的に存在するために、リチウムイオンの拡散性
能が向上する。
A porous polymer electrolyte may be provided in the pores of the separator. In this case, since the porous polymer electrolyte is continuously present, the lithium ion diffusion performance is improved.

【0026】さらに本発明においては、有孔性ポリマー
電解質を、正極または負極の少なくとも一方の電極内部
に備えていることが好ましい。ここで「電極内部」と
は、電極合剤層間の最表層に存在する間隙および電極内
部の電極合剤層の粒子間に存在する間隙を表わすものと
する。電極内部に備える有孔性ポリマー電解質として
は、その融点が第1のポリマー電解質よりも高いことが
好ましく、さらに好ましくは、第2のポリマー電解質の
融点以上であるとよい。電極内部に有孔性ポリマー電解
質を備えることにより、従来のリチウムイオン二次電池
よりも電解液量を少なくすることができるために、電池
の安全性が向上する。
Further, in the present invention, it is preferable that the porous polymer electrolyte is provided inside at least one of the positive electrode and the negative electrode. Here, “inside the electrode” means a gap existing in the outermost layer between the electrode mixture layers and a gap existing between particles of the electrode mixture layer inside the electrode. The porous polymer electrolyte provided inside the electrode preferably has a melting point higher than that of the first polymer electrolyte, and more preferably the melting point of the second polymer electrolyte or higher. By providing the porous polymer electrolyte inside the electrode, the amount of the electrolytic solution can be made smaller than that of the conventional lithium ion secondary battery, so that the safety of the battery is improved.

【0027】また、電極内部に備えた有孔性ポリマー電
解質は、活物質粒子同士の結着剤としても機能するため
に、そのサイクルにともなう放電容量の低下を著しく抑
制できる。
Further, since the porous polymer electrolyte provided inside the electrode also functions as a binder for the active material particles to each other, it is possible to remarkably suppress a decrease in discharge capacity due to the cycle.

【0028】本発明において、有孔性ポリマー電解質の
融点とは、有孔性ポリマーの空孔全体を電解液で満たし
た状態で示差走査熱量測定(DSC)をおこない、この
測定において観測されるポリマーの融解にともなう吸熱
ピークを示す温度とする。ただし、吸熱ピークが鋭い場
合にはピークの極大値の温度、吸熱ピークがブロードな
場合にはピークの立ち上がり開始時の温度とする。ま
た、ポリ塩化ビニル等のポリマーは、融解ではなく分解
するものがあるで、これらの有孔性ポリマー電解質の融
点は分解開始温度とした。なお、有孔性ポリマーの空孔
を満たす電解液の種類を代えても、DSCで測定される
吸熱ピークの極大値を示す温度はあまり変化しなかっ
た。
In the present invention, the melting point of the porous polymer electrolyte means the differential scanning calorimetry (DSC) in the state where all the pores of the porous polymer are filled with the electrolytic solution, and the polymer observed in this measurement The temperature is the temperature at which the endothermic peak associated with melting of is obtained. However, when the endothermic peak is sharp, it is the temperature at the maximum value of the peak, and when the endothermic peak is broad, it is the temperature at the start of rising of the peak. In addition, some polymers such as polyvinyl chloride decompose instead of melting, so the melting point of these porous polymer electrolytes was set to the decomposition initiation temperature. Even if the type of the electrolyte solution filling the pores of the porous polymer was changed, the temperature at which the maximum value of the endothermic peak measured by DSC did not change much.

【0029】本発明による電池の製造プロセスの1例を
つぎに挙げる。正極と負極の少なくとも一方の電極内部
と正極−負極間に有孔性ポリマーを備えた電池を組み立
てる第1の工程と、この電池に電解液を注液して、有孔
性ポリマーの孔中に電解液を保持させ、同時にポリマー
部分を電解液で膨潤または湿潤させて、ポリマーにイオ
ン伝導性を備えて電解質とする第2の工程を経た後、第
3の工程で加熱を行なうことにより、正極と正極−負極
間に備えた有孔性ポリマー電解質および負極と正極−負
極間に備えた有孔性ポリマー電解質とを固着させる。な
お、電池の封口は、第3の工程の前または後でおこなえ
ばよい。
An example of the manufacturing process of the battery according to the present invention will be given below. The first step of assembling a battery provided with a porous polymer between the inside of at least one of the positive electrode and the negative electrode and between the positive electrode and the negative electrode, and injecting an electrolytic solution into this battery, The electrolytic solution is retained, and at the same time, the polymer portion is swollen or moistened with the electrolytic solution, and the polymer is provided with ionic conductivity. After the second step of forming an electrolyte, heating is performed in the third step. And the porous polymer electrolyte provided between the positive electrode and the negative electrode, and the porous polymer electrolyte provided between the negative electrode and the positive electrode-negative electrode are fixed. Note that the battery may be sealed before or after the third step.

【0030】電解液を注液した後に加熱をおこなう場
合、注液直後は電解液が電池構成要素の空孔に均一に分
布していないことが多いため、予備充電を実施して電解
液を均一に分散させた後に加熱するのがよい。負極とし
てグラファイトを使用し、負極集電体として銅等の金属
を使用した場合は、グラファイトの電位が負極集電体の
溶解析出電位よりも高い場合がある。予備充電をおこな
わずに加熱処理を実施すると、負極集電体の溶解が促進
され、電池が短絡することがある。この場合は、必ず予
備充電をおこなって、グラファイトの電位を集電体の電
位よりも低くし、その後に加熱処理をおこなう。
When heating is performed after injecting the electrolytic solution, immediately after the injection, the electrolytic solution is often not evenly distributed in the pores of the battery constituent elements. It is better to heat after dispersing in. When graphite is used as the negative electrode and a metal such as copper is used as the negative electrode current collector, the potential of graphite may be higher than the dissolution and deposition potential of the negative electrode current collector. When the heat treatment is performed without performing the preliminary charging, the dissolution of the negative electrode current collector is promoted and the battery may be short-circuited. In this case, pre-charging is always performed so that the potential of graphite is lower than that of the current collector, and then heat treatment is performed.

【0031】さらに、負極材料としてグラファイト等を
使用した場合においては、放電状態(グラファイト層間
にリチウムイオンが極力挿入されていない状態)におい
て加熱をおこなうのが好ましい。
Furthermore, when graphite or the like is used as the negative electrode material, it is preferable to perform heating in a discharged state (a state in which lithium ions are not inserted between graphite layers as much as possible).

【0032】さらに加熱により、ガスが発生してケース
が膨れたり歪んだりした場合は、電池ケースを交換した
り、封口部を一度開放し、内部のガスを放出した後に再
度封するとよい。
When gas is further generated by heating and the case swells or is distorted, the battery case may be replaced, or the sealing part may be opened once, and the gas inside may be released and then the case may be sealed again.

【0033】電池を加熱する手段としては、電池を恒温
槽内に配置したり、電池をヒートプレスしたり、ウォー
ターバスやオイルバス等に電池を浸漬する方法などがあ
る。また、赤外線や紫外線を照射してもよい。ところ
で、加熱温度T3とは、恒温層を用いた場合は恒温層内
部の実測値、ウォーターバスやオイルバスなどを用いた
場合は浴中の溶媒の実測温度を指す。ヒートプレスなど
を用いた場合は、T3を設定温度とする。赤外線などを
照射する場合は、電池表面温度をT3とする。また電池
全体を加熱しなくても電極集電体と電池ケース外部の電
極端子が金属で接合されているために、この部分のみを
加熱してもよい。
Means for heating the battery include placing the battery in a constant temperature bath, heat pressing the battery, and immersing the battery in a water bath or oil bath. Further, infrared rays or ultraviolet rays may be irradiated. By the way, the heating temperature T3 refers to the actual measurement value inside the constant temperature layer when a constant temperature layer is used, and the actual measurement temperature of the solvent in the bath when a water bath or oil bath is used. When a heat press or the like is used, T3 is set as the set temperature. When irradiating with infrared rays or the like, the battery surface temperature is set to T3. Further, since the electrode current collector and the electrode terminal outside the battery case are joined by metal without heating the entire battery, only this portion may be heated.

【0034】なお、加熱温度とともに加熱時間も重要な
ファクターであるが、加熱時間は、電池の大きさや使用
するポリマーの種類、あるいは加熱方法などに応じて、
最適の時間を選択すればよい。
Although the heating time is an important factor in addition to the heating temperature, the heating time depends on the size of the battery, the type of polymer used, the heating method, etc.
Just select the optimal time.

【0035】本発明において、有孔性ポリマーを得る方
法としては、紫外線照射による貫通孔形成方法や相転移
法等を用いることができ、中でも先に述べた相転移法の
ひとつである湿式法による方法が好ましい。
In the present invention, as a method for obtaining a porous polymer, a through-hole forming method by ultraviolet irradiation, a phase transition method and the like can be used, and among them, a wet method which is one of the phase transition methods described above is used. The method is preferred.

【0036】湿式法とは、第1の溶媒にポリマーを溶解
したポリマー溶液から、抽出用の第2の溶媒を用いて第
1の溶媒を抽出することにより有孔性ポリマーを得る方
法であって、ポリマー溶液を、ポリマーに対して不溶で
あり、第1の溶媒と相溶性のある第2の溶媒中に浸漬す
ることによって、第1の溶媒を抽出し、第1の溶媒が除
去された部分が孔となって、有孔性ポリマーが形成され
るというものである。そして、この溶媒抽出法では、ポ
リマーに開口部が円形の貫通孔を形成することができ
る。
The wet method is a method for obtaining a porous polymer by extracting a first solvent from a polymer solution prepared by dissolving a polymer in a first solvent using a second solvent for extraction. , A portion in which the first solvent is extracted by immersing the polymer solution in a second solvent that is insoluble in the polymer and is compatible with the first solvent, and the first solvent is removed. Becomes pores and a porous polymer is formed. Then, in this solvent extraction method, a through hole having a circular opening can be formed in the polymer.

【0037】ポリマーを溶解する第1の溶媒としては、
ポリマーに合わせて、例えば、ジメチルホルムアミド、
プロピレンカーボネート、エチレンカーボネート、ジメ
チルカーボネート、ジエチルカーボネート、エチルメチ
ルカーボネート等の炭酸エステル、ジメチルエーテル、
ジエチルエーテル、エチルメチルエーテル、テトラヒド
ロフラン等のエーテル、ジメチルアセトアミド、1−メ
チル−ピロリジノン、n−メチル−2−ピロリドンやこ
れらの混合物を用いることができる。
As the first solvent for dissolving the polymer,
Depending on the polymer, for example, dimethylformamide,
Carbonic acid esters such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether,
Ethers such as diethyl ether, ethyl methyl ether and tetrahydrofuran, dimethylacetamide, 1-methyl-pyrrolidinone, n-methyl-2-pyrrolidone and mixtures thereof can be used.

【0038】ポリマー溶液中の第1の溶媒を抽出する第
2の溶媒としては、第1の溶媒と相溶性のあるものが選
択され、例えば水、アルコール、アセトン、これらの混
合溶液を用いることができる。
As the second solvent for extracting the first solvent in the polymer solution, one which is compatible with the first solvent is selected and, for example, water, alcohol, acetone, or a mixed solution thereof is used. it can.

【0039】ところで、電極内部の小さな空孔内に有孔
性ポリマー電解質を形成した場合は、その一部のみを見
ると空孔内に糸状のポリマーが張り巡らされたような形
状となる場合等、その形成される場所や孔の形成方法に
よって種々の形態を示すことがある。また、機能的に表
現するならば、イオンの移動を容易にさせるための電解
液をポリマーが保持できるようにするための多数の孔ま
たは空隙を有する(例えば、このような構造となること
によって電解液中をリチウムイオンが移動でき、ポリマ
ーを構成するマトリクス中もリチウムイオンが移動でき
るようになる)ポリマー電解質ということもできる。
By the way, when the porous polymer electrolyte is formed in the small pores inside the electrode, when only a part of the polymer electrolyte is formed, the filamentous polymer is spread in the pores. Various shapes may be shown depending on the place where the hole is formed and the method of forming the hole. Also, if functionally expressed, it has a large number of pores or voids for allowing the polymer to hold an electrolytic solution for facilitating the movement of ions (for example, by having such a structure, electrolytic It can be said that it is a polymer electrolyte in which lithium ions can move in a liquid and lithium ions can also move in a matrix forming a polymer.

【0040】また本発明において、正極−負極間に備え
る有孔性ポリマー電解質としては、あらかじめ電極とは
独立したものを作製しておき、電池組立時に正極と負極
間に挟んでもよいし、あるいは、電極表面に有孔性ポリ
マー電解質層を一体に形成してもよい。また、ポリオレ
フィン製などのセパレータの両面に有孔性ポリマー電解
質を形成しておいてもよい。
In the present invention, the porous polymer electrolyte provided between the positive electrode and the negative electrode may be prepared separately from the electrode and may be sandwiched between the positive electrode and the negative electrode during battery assembly, or A porous polymer electrolyte layer may be integrally formed on the electrode surface. Further, a porous polymer electrolyte may be formed on both surfaces of a separator made of polyolefin or the like.

【0041】また、例えば、負極表面に有孔性ポリマー
層を直接形成し、正極と負極とが有孔性ポリマー層で電
気的に絶縁された状態として積層し、巻き回して、角
形、円筒形、樹脂加工したアルミニウムシート等の電池
ケース内に配置し、リチウム二次電池用電解液を注入し
て電池としてもよい。
Further, for example, a porous polymer layer is directly formed on the surface of the negative electrode, and the positive electrode and the negative electrode are laminated in a state of being electrically insulated by the porous polymer layer and wound to form a prismatic or cylindrical shape. Alternatively, the battery may be arranged in a battery case such as a resin-processed aluminum sheet, and the electrolytic solution for a lithium secondary battery may be injected into the battery.

【0042】電極内部または正極−負極間に備える有孔
性ポリマー電解質を構成するポリマーの材質としては、
例えば、ポリビニリデンフルオライド(PVdF)、ポ
リ塩化ビニル、ポリアクリロニトリル、ポリ塩化ビニリ
デン、ポリメチルメタクリレート、ポリメチルアクリレ
ート、ポリビニルアルコール、ポリメタクリロニトリ
ル、ポリビニルアセテート、ポリビニルピロリドン、も
しくはこれらの誘導体を、単独で、あるいは混合して用
いることができる。また、上記ポリマーを構成する各種
モノマーを共重合させたポリマー、たとえばビニリデン
フルオライド/ヘキサフルオロプロピレンコポリマー
(P(VdF/HFP))等を用いることもできる。な
お、充放電による活物質の体積膨張収縮に追随した形状
変化の可能な柔軟性を有するものが好ましい。
The material of the polymer that constitutes the porous polymer electrolyte provided inside the electrode or between the positive electrode and the negative electrode is
For example, polyvinylidene fluoride (PVdF), polyvinyl chloride, polyacrylonitrile, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polyvinyl alcohol, polymethacrylonitrile, polyvinyl acetate, polyvinylpyrrolidone, or a derivative thereof is used alone. Or a mixture thereof can be used. Further, a polymer obtained by copolymerizing various monomers constituting the above polymer, for example, vinylidene fluoride / hexafluoropropylene copolymer (P (VdF / HFP)) and the like can also be used. In addition, it is preferable that the active material has flexibility capable of changing its shape following the volume expansion and contraction of the active material.

【0043】なお、これらのポリマーの材質は、正極−
負極間に備える2種類の有孔性ポリマー電解質の材質の
融点の関係が請求項1の関係を満たすように選択する必
要がある。そして、正極−負極間に備える有孔性ポリマ
ー電解質の組み合わせの例としては、第1のポリマーの
材質としてPVdFを選択した場合、第2の材質として
は、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリメタク
リル酸メチル、ポリフッ化ビニル等が挙げられる。ただ
し、ポリマーの融点は分子量や結晶性、ポリマーに共重
合化を施した場合は共重合組成比等の因子によって変化
するために、上記例に限定されるものではない。
The materials of these polymers are positive electrode
It is necessary to select the relationship between the melting points of the materials of the two kinds of porous polymer electrolytes provided between the negative electrodes so as to satisfy the relationship of claim 1. Then, as an example of the combination of the porous polymer electrolyte provided between the positive electrode and the negative electrode, when PVdF is selected as the material of the first polymer, polyvinylidene chloride, polyvinyl chloride, polymethacryl is used as the second material. Examples thereof include methyl acidate and polyvinyl fluoride. However, the melting point of the polymer changes depending on factors such as the molecular weight, the crystallinity, and the copolymerization composition ratio when the polymer is copolymerized, and is not limited to the above examples.

【0044】その他の組み合わせとしては、例えば、正
極−負極間に備えるポリマーの材質としてP(VdF/
HFP)等の共重合体を選択した場合、電極内部に備え
る有孔性ポリマーの材質としては、HFPの共重合組成
比を低下したP(VdF/HFP)、平均分子量を増加
したP(VdF/HFP)、共重合組成を低下させ、か
つ平均分子量を増加させたP(VdF/HFP)等ある
いはPVdFを用いることも可能である。
Other combinations include, for example, P (VdF /
When a copolymer such as HFP) is selected, the material of the porous polymer provided inside the electrode is P (VdF / HFP) with a reduced HFP copolymerization composition ratio and P (VdF / Hd) with an increased average molecular weight. It is also possible to use HFP), P (VdF / HFP) or the like in which the copolymer composition is decreased and the average molecular weight is increased, or PVdF.

【0045】本発明の非水電解質二次電池における正極
活物質として、例えば、リチウムの吸蔵放出が可能な化
合物を用いることができ、例えば、LiCoO、Li
NiO、LiMn24、Li2Mn24、MnO2、F
eO2、V25、V613、TiO2、TiS2等のよう
な、組成式LixMO2、またはLiy24(ただし、
Mは遷移金属、0≦x≦1、0≦y≦2)で表される複
合酸化物、トンネル状の孔を有する酸化物、層状構造の
金属カルコゲン化物等を用いることができる。
As the positive electrode active material in the non-aqueous electrolyte secondary battery of the present invention, for example, a compound capable of inserting and extracting lithium can be used. For example, LiCoO 2 or Li
NiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , F
eO 2, V 2 O 5, V 6 O 13, such as TiO 2, TiS 2, etc., the composition formula Li x MO 2 or Li y M 2 O 4, (provided that
M can be a transition metal, a complex oxide represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), an oxide having tunnel holes, or a metal chalcogenide having a layered structure.

【0046】また、LiNi0.80Co0.202、LiN
0.80Co0.17Al0.032等のように、遷移金属Mの
一部を他の元素で置換した無機化合物を用いることもで
きる。さらには、例えばポリアニリン等の導電性ポリマ
ーのような有機化合物を用いることもできる。なお、無
機化合物、有機化合物を問わず、上記各種活物質を混合
して用いることもできる。
In addition, LiNi 0.80 Co 0.20 O 2 , LiN
It is also possible to use an inorganic compound in which a part of the transition metal M is replaced with another element, such as i 0.80 Co 0.17 Al 0.03 O 2 . Furthermore, an organic compound such as a conductive polymer such as polyaniline can be used. In addition, regardless of whether it is an inorganic compound or an organic compound, the above various active materials can be mixed and used.

【0047】本発明の非水電解質二次電池における負極
活物質としては、例えばAl、Si、Pb、Sn、Z
n、Cd等とリチウムの合金、LiFe23等の遷移金
属複合酸化物、WO2、MoO2等の遷移金属酸化物、コ
ークス、メソカーボンマイクロビーズ(MCMB)、メ
ソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維
等の易黒鉛化性炭素の熱処理物、フェノール樹脂焼成
体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、
フルフリルアルコール樹脂焼成体等の難黒鉛化性炭素の
熱処理物、天然黒鉛、人造黒鉛、黒鉛化MCMB、黒鉛
化メソフェーズピッチ系炭素繊維、黒鉛ウイスカー等の
黒鉛質材料、またはこれらの混合物からなる炭素材料、
窒化リチウム、もしくは金属リチウム、またはこれらの
混合物を用いることができ、特に炭素材料が好ましい。
Examples of the negative electrode active material in the non-aqueous electrolyte secondary battery of the present invention include Al, Si, Pb, Sn and Z.
n, Cd, etc. and lithium alloys, transition metal composite oxides such as LiFe 2 O 3 , transition metal oxides such as WO 2 , MoO 2 , coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, heat Heat-treated product of graphitizable carbon such as decomposed vapor grown carbon fiber, phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon,
Heat-treated non-graphitizable carbon such as fired furfuryl alcohol resin, natural graphite, artificial graphite, graphitized MCMB, graphitized mesophase pitch-based carbon fiber, graphite material such as graphite whiskers, or carbon composed of a mixture thereof material,
Lithium nitride, lithium metal, or a mixture thereof can be used, and a carbon material is particularly preferable.

【0048】電解液としては、その溶媒として、エチレ
ンカーボネート、ジメチルカーボネート、ジエチルカー
ボネート、エチルメチルカーボネート、γ−ブチロラク
トン、スルホラン、ジメチルスルホキシド、アセトニト
リル、ジメチルホルムアミド、ジメチルアセトアミド、
1、2−ジメトキシエタン、1、2−ジエトキシエタ
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、ジオキソラン、メチルアセテート等の極性溶媒、も
しくはこれらの混合物を用いることができる。
As the electrolytic solution, as its solvent, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide,
A polar solvent such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane or methyl acetate, or a mixture thereof can be used.

【0049】また、電解液に含有させる塩としては、L
iPF6、LiBF4、LiAsF6、LiClO4、Li
SCN、LiI、LiCF3SO3、LiCl、LiB
r、LiCF3CO2等のリチウム塩またはこれらの混合
物を用いることができる。
The salt contained in the electrolytic solution is L
iPF 6, LiBF 4, LiAsF 6 , LiClO 4, Li
SCN, LiI, LiCF 3 SO 3 , LiCl, LiB
r, a lithium salt such as LiCF 3 CO 2 or a mixture thereof can be used.

【0050】電解液の注液量は正極、負極、有孔性ポリ
マー膜の空孔体積の合計の130%以下、10%以上が
満たされる量するのが良く、最低限、電極材質に合わせ
て電極体積の膨張収縮に追随できるの量とするのが良
い。そして、電池構成要素間の隙間は高率放電特性の低
下につながるために、本発明は電池への注液量が少ない
場合はより効果的になる。
The amount of electrolyte injected is preferably 130% or less and 10% or more of the total pore volume of the positive electrode, the negative electrode and the porous polymer film, and at least in accordance with the electrode material. It is preferable that the amount is sufficient to follow the expansion and contraction of the electrode volume. Since the gap between the battery constituent elements leads to deterioration of the high rate discharge characteristic, the present invention becomes more effective when the amount of liquid injected into the battery is small.

【0051】[0051]

【実施例】以下、実施例によりさらに本発明について説
明する。
EXAMPLES The present invention will be further described below with reference to examples.

【0052】[実施例1]正極活物質として、LiNi
0.85Co0.152を使用し、負極活物質としてグラファ
イトを用い、正極−負極間に備える有孔性ポリマー電解
質の材質として13wt%のヘキサフルオロプロピレン
(HFP)を共重合させたP(VdF/HFP)(分子
量約30万)と6wt%のHFPを共重合させたP(V
dF/HFP)(分子量約30万)とを用いて、以下の
ような電池を製作した。
[Example 1] LiNi was used as the positive electrode active material.
P (VdF / HFP) in which 0.85 Co 0.15 O 2 was used, graphite was used as the negative electrode active material, and 13 wt% of hexafluoropropylene (HFP) was copolymerized as the material of the porous polymer electrolyte provided between the positive electrode and the negative electrode. ) (Molecular weight of about 300,000) and 6 wt% of HFP are copolymerized P (V
The following battery was manufactured using dF / HFP) (molecular weight of about 300,000).

【0053】なお、それぞれポリマーに、電解液(1m
ol/lのLiClOを溶解したエチレンカーボネー
トとジエチルカーボネートの混合電解液(体積比1:
1))を含ませておいて、示差走査熱分析(DSC)に
より融点を測定した結果を図1に示す。図1において、
13wt%HFPを共重合させたP(VdF/HFP)
の結果を記号○で、また、6wt%HFPを共重合させ
たP(VdF/HFP)の結果を記号△で示した。この
場合、前者の融点を96℃、後者のそれを104℃と判
断した。
The electrolyte solution (1 m
A mixed electrolyte solution of ethylene carbonate and diethyl carbonate in which ol / l of LiClO 4 was dissolved (volume ratio 1:
1)) was included and the melting point was measured by differential scanning calorimetry (DSC). The results are shown in FIG. In FIG.
P (VdF / HFP) copolymerized with 13 wt% HFP
The result is shown by the symbol ◯, and the result of P (VdF / HFP) copolymerized with 6 wt% HFP is shown by the symbol Δ. In this case, the melting point of the former was determined to be 96 ° C and that of the latter was determined to be 104 ° C.

【0054】まず、LiNi0.85Co0.152粒子4
8.7wt%、アセチレンブラック2.7wt%、PV
dF3.3wt%、NMP45.3wt%を混合したペ
ーストをアルミニウム箔の両面に塗布し、90℃で乾燥
してNMPを蒸発させ、正極本体を準備した。
First, LiNi 0.85 Co 0.15 O 2 particles 4
8.7 wt%, acetylene black 2.7 wt%, PV
A paste in which dF 3.3 wt% and NMP 45.3 wt% were mixed was applied on both surfaces of the aluminum foil, dried at 90 ° C. to evaporate NMP, and a positive electrode main body was prepared.

【0055】次に、6wt%のHFPを共重合させたP
(VdF/HFP)(分子量約30万)を、NMPに8
wt%溶解させたポリマー溶液を準備し、この中に上記
電極本体を浸漬し、電極本体にポリマー溶液を含浸し
た。そして、電極表面に余剰に付着したポリマー溶液を
ローラーに通して除去した後、電極本体をイオン交換水
(25℃)に浸漬してNMPの抽出をおこなった。
Next, P co-polymerized with 6 wt% of HFP was used.
(VdF / HFP) (molecular weight about 300,000) is added to NMP
A polymer solution dissolved in wt% was prepared, and the above electrode body was immersed in this to impregnate the electrode body with the polymer solution. Then, after the polymer solution excessively attached to the electrode surface was removed by passing it through a roller, the electrode body was immersed in ion-exchanged water (25 ° C.) to extract NMP.

【0056】この電極を取り出し、130℃で乾燥をお
こない、その後プレスした。プレス後の正極の厚さは1
60μmであった。正極単位面積当たりに充填された活
物質の質量は20mg/cmであった。
This electrode was taken out, dried at 130 ° C., and then pressed. The thickness of the positive electrode after pressing is 1
It was 60 μm. The mass of the active material charged per unit area of the positive electrode was 20 mg / cm 2 .

【0057】次に、負極活物質としてグラファイトを使
用し、以下のようにして負極を作製した。グラファイト
81wt%、PVdF9wt%、NMP10wt%を混
合したペーストを厚さ14μmの銅箔の両面に塗布し、
90℃で乾燥してNMPを蒸発させて負極本体を準備し
た。
Next, using graphite as the negative electrode active material, a negative electrode was prepared as follows. A paste in which 81 wt% of graphite, 9 wt% of PVdF, and 10 wt% of NMP are mixed is applied on both sides of a copper foil having a thickness of 14 μm,
A negative electrode body was prepared by drying at 90 ° C. and evaporating NMP.

【0058】次に、6wt%のHFPを共重合させたP
(VdF/HFP)(分子量約30万)を、NMPに6
wt%溶解させたポリマー溶液を準備し、この中に上記
電極本体を浸漬し、電極本体にポリマー溶液を担持し
た。そして、電極表面に余剰に付着したポリマー溶液を
ローラーに通して除去した後、電極本体をイオン交換水
(25℃)に浸漬してNMPの抽出をおこなった。
Next, P which was copolymerized with 6 wt% of HFP was used.
(VdF / HFP) (molecular weight about 300,000) was added to NMP 6
A polymer solution dissolved in wt% was prepared, and the above electrode body was immersed in this to carry the polymer solution on the electrode body. Then, after the polymer solution excessively attached to the electrode surface was removed by passing it through a roller, the electrode body was immersed in ion-exchanged water (25 ° C.) to extract NMP.

【0059】この電極を取り出し、100℃で乾燥をお
こない、その後プレスした。プレス後の負極の厚さは2
08μmであった。負極単位面積当たりに充填された活
物質の質量は15mg/cm2であった。
This electrode was taken out, dried at 100 ° C. and then pressed. The thickness of the negative electrode after pressing is 2
It was 08 μm. The mass of the active material charged per unit area of the negative electrode was 15 mg / cm 2 .

【0060】次に、正極−負極間に備える有孔性ポリマ
ー電解質を湿式法により製作した。13wt%のHFP
を共重合させたP(VdF/HFP)10wt%、6w
t%のHFPを共重合させたP(VdF/HFP)10
wt%、NMP80wt%からなる溶液を準備した。こ
のポリマー溶液を、ガラス板上にドクターブレード法を
用いてキャストし、エタノールを75wt%含んだイオ
ン交換水中に浸漬して有孔性ポリマー膜を製作した。そ
の膜厚は、25μmであり、空隙率は58%であった。
Next, a porous polymer electrolyte provided between the positive electrode and the negative electrode was manufactured by a wet method. 13 wt% HFP
Copolymerized P (VdF / HFP) 10wt%, 6w
P (VdF / HFP) 10 copolymerized with t% HFP
A solution consisting of wt% and NMP 80 wt% was prepared. This polymer solution was cast on a glass plate using a doctor blade method and immersed in ion-exchanged water containing 75 wt% of ethanol to prepare a porous polymer film. The film thickness was 25 μm and the porosity was 58%.

【0061】正極と負極との間にこの有孔性ボリマー膜
を介在させ、重ねて巻き回したものを巻回型極板群と
し、これをアルミニウムケースに挿入して電池を組み立
てた。その後、1mol/lのLiPF6を含むエチレ
ンカーボネートとジエチルカーボネートの混合電解液
(体積比1:1)を加えて封口した。電解液の注液量
は、正極、負極、有孔性ポリマー膜の空孔体積合計の1
20%とした。その後、速やかに120mAの電流で2
時間充電した。さらに、120mAの電流で4.2Vま
で充電し、つづいて4.2Vの定電圧で2時間充電し
た。次に、120mAの電流で2.75Vまで放電し
た。これを室温にて3サイクル実施した。
The porous polymer film was interposed between the positive electrode and the negative electrode, and the wound type electrode plate group was formed by winding the film in a stacked manner, and the wound electrode plate group was inserted into an aluminum case to assemble a battery. Then, a mixed electrolyte solution of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) containing 1 mol / l of LiPF 6 was added and sealed. The amount of electrolyte injected is 1 of the total pore volume of the positive electrode, the negative electrode, and the porous polymer film.
It was set to 20%. After that, immediately with a current of 120 mA, 2
Charged for hours. Furthermore, it was charged up to 4.2V with a current of 120 mA, and then charged for 2 hours at a constant voltage of 4.2V. Next, it was discharged to 2.75 V with a current of 120 mA. This was carried out at room temperature for 3 cycles.

【0062】その後、電池をナイロン袋に挿入し、鉄板
に挟んだ状態で、101℃に設定したオイルバス中に2
0分間浸漬し、正極板、負極板、および正極−負極間に
備えた有孔性ポリマー電解質とを固着させた。こうして
公称容量600mAhの本発明による電池(A)とし
た。
After that, the battery was inserted into a nylon bag, sandwiched between iron plates, and placed in an oil bath set at 101 ° C.
Immersion was carried out for 0 minutes to fix the positive electrode plate, the negative electrode plate, and the porous polymer electrolyte provided between the positive electrode and the negative electrode. Thus, a battery (A) according to the present invention having a nominal capacity of 600 mAh was obtained.

【0063】[実施例2]電池に加熱処理を施す際、オ
イルバスのかわりにウォーターバスを使用し、その温度
を96℃に設定した以外は実施例1と同一の手順で電池
を製作し、これを本発明による電池(B)とした。
Example 2 A battery was manufactured by the same procedure as in Example 1 except that a water bath was used in place of the oil bath and the temperature was set to 96 ° C. when the battery was heat-treated. This was designated as Battery (B) according to the present invention.

【0064】[実施例3]正極−負極間に備える有孔性
ポリマー電解質の材質として、13wt%のヘキサフル
オロプロピレン(HFP)を共重合させたP(VdF/
HFP)(分子量約30万)とHFPをまったく共重合
させていないPVdF(分子量約25万)とを用いた以
外は、実施例1と同一の手順で電池を製作し、これを本
発明による電池(C)とした。
Example 3 As a material for the porous polymer electrolyte provided between the positive electrode and the negative electrode, 13% by weight of hexafluoropropylene (HFP) was copolymerized with P (VdF /
HFP) (molecular weight: about 300,000) and PVdF (molecular weight: about 250,000) in which HFP was not copolymerized at all were used to manufacture a battery by the same procedure as in Example 1, which was used as a battery according to the present invention. (C).

【0065】なお、PVdFに電解液(1mol/lの
LiClOを溶解したエチレンカーボネートとジエチ
ルカーボネートの混合電解液(体積比1:1))を含ま
せておいて、示差走査熱分析(DSC)を用いて、その
融点を測定したところ120℃を示した。
PVdF was mixed with an electrolytic solution (a mixed electrolytic solution of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) in which 1 mol / l of LiClO 4 was dissolved), and the differential scanning calorimetry (DSC) was performed. The melting point was measured by using, and it was 120 ° C.

【0066】[実施例4]正極−負極間に備える有孔性
ポリマー電解質の材質として、13wt%のヘキサフル
オロプロピレン(HFP)を共重合させたP(VdF/
HFP)(分子量約30万)とポリアクリロニトリル
(PAN)(分子量約20万)とを用いた以外は、実施
例1と同一の手順で電池を製作し、これを本発明による
電池(D)とした。
Example 4 As a material for the porous polymer electrolyte provided between the positive electrode and the negative electrode, P (VdF / 13% by weight of hexafluoropropylene (HFP) was copolymerized.
HFP) (molecular weight: about 300,000) and polyacrylonitrile (PAN) (molecular weight: about 200,000) were used to manufacture a battery by the same procedure as in Example 1, and to manufacture the battery as a battery (D) according to the present invention. did.

【0067】なお、PANに電解液(1mol/lのL
iClOを溶解したエチレンカーボネートとジエチル
カーボネートの混合電解液(体積比1:1))を含ませ
ておいて、示差走査熱分析(DSC)を実施したとこ
ろ、50〜120℃において分解(融解)に起因するピ
ークを確認できなかった。
The electrolyte solution (1 mol / l of L was added to the PAN).
When a differential scanning calorimetry (DSC) was carried out by including a mixed electrolytic solution of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) in which iClO 4 was dissolved, it was decomposed (melted) at 50 to 120 ° C. The peak due to was not able to be confirmed.

【0068】[実施例5]正極−負極間に備える有孔性
ポリマー電解質を次のようにして製作した。13wt%
のHFPを共重合させたP(VdF/HFP)1wt
%、6wt%のHFPを共重合させたP(VdF/HF
P)19wt%、NMP80wt%からなる溶液を準備
した。このポリマー溶液を、ガラス板上にドクターブレ
ード法を用いてキャストし、エタノールを75wt%含
んだイオン交換水中に浸漬して有孔性ポリマー膜を製作
した。その膜厚は、25μmであり、空隙率は60%で
あった。この電解質を正極―負極間に備えたほかは実施
例1と同一の手順を経て電池を製作し、これを電池
(E)とした。
Example 5 A porous polymer electrolyte provided between the positive electrode and the negative electrode was manufactured as follows. 13 wt%
HFP copolymerized P (VdF / HFP) 1wt
%, 6 wt% HFP copolymerized P (VdF / HF
A solution consisting of P) 19 wt% and NMP 80 wt% was prepared. This polymer solution was cast on a glass plate using a doctor blade method and immersed in ion-exchanged water containing 75 wt% of ethanol to prepare a porous polymer film. The film thickness was 25 μm and the porosity was 60%. A battery was manufactured through the same procedure as in Example 1 except that this electrolyte was provided between the positive electrode and the negative electrode, and this was designated as battery (E).

【0069】[実施例6]正極−負極間に備える有孔性
ポリマー電解質を次のように製作した。13wt%のH
FPを共重合させたP(VdF/HFP)19wt%、
6wt%のHFPを共重合させたP(VdF/HFP)
1wt%、NMP80wt%からなる溶液を準備した。
このポリマー溶液を、ガラス板上にドクターブレード法
を用いてキャストし、エタノールを75wt%含んだイ
オン交換水中に浸漬して有孔性ポリマー膜を製作した。
その膜厚は、25μmであり、空隙率は59%であっ
た。この電解質を正極―負極間に備えたほかは実施例3
と同一の手順を経て電池を製作し、これを電池(F)と
した。
[Example 6] A porous polymer electrolyte provided between the positive electrode and the negative electrode was produced as follows. 13 wt% H
19% by weight of P (VdF / HFP) copolymerized with FP,
P (VdF / HFP) copolymerized with 6 wt% HFP
A solution consisting of 1 wt% and NMP 80 wt% was prepared.
This polymer solution was cast on a glass plate using a doctor blade method and immersed in ion-exchanged water containing 75 wt% of ethanol to prepare a porous polymer film.
The film thickness was 25 μm and the porosity was 59%. Example 3 except that this electrolyte was provided between the positive electrode and the negative electrode.
A battery was manufactured through the same procedure as above, and this was designated as battery (F).

【0070】[比較例1]電池に加熱処理を施す際、ウ
ォーターバスの温度を90℃に設定した以外は実施例1
と同一の手順で電池を製作し、これを電池(G)とし
た。
Comparative Example 1 Example 1 was repeated except that the temperature of the water bath was set to 90 ° C. when the battery was heat-treated.
A battery was manufactured by the same procedure as above, and this was used as a battery (G).

【0071】[比較例2]電池に加熱処理を施す際、オ
イルバスの温度を105℃に設定した以外は実施例1と
同一の手順で電池を製作し、これを電池(H)とした。
Comparative Example 2 A battery was manufactured by the same procedure as in Example 1 except that the temperature of the oil bath was set to 105 ° C. when the battery was heat-treated, and this was designated as battery (H).

【0072】[比較例3]正極−負極間に備える有孔性
ポリマー電解質を次のように製作した。13wt%のH
FPを共重合させたP(VdF/HFP)0.4wt
%、6wt%のHFPを共重合させたP(VdF/HF
P)19.6wt%、NMP80wt%からなる溶液を
準備した。このポリマー溶液を、ガラス板上にドクター
ブレード法を用いてキャストし、エタノールを75wt
%含んだイオン交換水中に浸漬して有孔性ポリマー膜を
製作した。その膜厚は、25μmであり、空隙率は59
%であった。この電解質を正極―負極間に備えたほかは
実施例1と同一の手順を経て電池を製作し、これを電池
(I)とした。[比較例4]正極−負極間に備える有孔
性ポリマー電解質の材質として、6wt%のHFPを共
重合させたP(VdF/HFP)(分子量約30万)の
みを用いた。6wt%のHFPを共重合させたP(Vd
F/HFP)20wt%、NMP80wt%からなる溶
液を準備した。このポリマー溶液を、ガラス板上にドク
ターブレード法を用いてキャストし、エタノールを75
wt%含んだイオン交換水中に浸漬して有孔性ポリマー
膜を製作した。製作した膜の厚みは25μmであり、空
隙率は58%であった。その他は実施例1と同一の手順
を経て電池を製作し、これを電池(J)とした。
Comparative Example 3 A porous polymer electrolyte provided between the positive electrode and the negative electrode was manufactured as follows. 13 wt% H
0.4 wt% P (VdF / HFP) copolymerized with FP
%, 6 wt% HFP copolymerized P (VdF / HF
P) A solution consisting of 19.6 wt% and NMP 80 wt% was prepared. This polymer solution was cast on a glass plate using the doctor blade method, and 75 wt% of ethanol was used.
% Of ion-exchanged water to prepare a porous polymer membrane. The film thickness is 25 μm and the porosity is 59
%Met. A battery was manufactured through the same procedure as in Example 1 except that this electrolyte was provided between the positive electrode and the negative electrode, and this was designated as battery (I). [Comparative Example 4] As the material of the porous polymer electrolyte provided between the positive electrode and the negative electrode, only P (VdF / HFP) (molecular weight of about 300,000) copolymerized with 6 wt% of HFP was used. P (Vd that is copolymerized with 6 wt% HFP
F / HFP) 20 wt% and NMP 80 wt% were prepared. This polymer solution was cast on a glass plate using the doctor blade method, and ethanol was added to
A porous polymer membrane was manufactured by immersing it in ion exchange water containing wt%. The manufactured film had a thickness of 25 μm and a porosity of 58%. A battery was manufactured by the same procedure as in Example 1 except for the above, and was used as a battery (J).

【0073】[比較例5]正極−負極間に備える有孔性
ポリマー電解質を次のように作成した。13wt%のH
FPを共重合させたP(VdF/HFP)19.6wt
%、6wt%のHFPを共重合させたP(VdF/HF
P)0.4wt%、NMP80wt%からなる溶液を準
備した。このポリマー溶液を、ガラス板上にドクターブ
レード法を用いてキャストし、エタノールを75wt%
含んだイオン交換水中に浸漬して有孔性ポリマー膜を製
作した。その膜厚は、25μmであり、空隙率は59%
であった。この電解質を正極−負極間に備えたほかは実
施例1と同一の手順を経て電池を製作し、これを電池
(K)とした。
Comparative Example 5 A porous polymer electrolyte provided between the positive electrode and the negative electrode was prepared as follows. 13 wt% H
P (VdF / HFP) copolymerized with FP 19.6 wt
%, 6 wt% HFP copolymerized P (VdF / HF
A solution consisting of P) 0.4 wt% and NMP 80 wt% was prepared. This polymer solution was cast on a glass plate using a doctor blade method, and ethanol was added at 75 wt%
The porous polymer membrane was manufactured by immersing it in the contained ion-exchanged water. The film thickness is 25 μm and the porosity is 59%
Met. A battery was manufactured through the same procedure as in Example 1 except that this electrolyte was provided between the positive electrode and the negative electrode, and this was designated as battery (K).

【0074】[比較例6]正極−負極間に備える有孔性
ポリマー電解質の材質として、13wt%のHFPを共
重合させたP(VdF/HFP)(分子量約30万)の
みを用いた。13wt%のHFPを共重合させたP(V
dF/HFP)20wt%、NMP80wt%からなる
溶液を準備した。このポリマー溶液を、ガラス板上にド
クターブレード法を用いてキャストし、エタノールを7
5wt%含んだイオン交換水中に浸漬して有孔性ポリマ
ー膜を製作した。製作した膜の厚みは25μmであり、
空隙率は58%であった。その他は実施例1と同一の手
順を経て電池を製作し、これを電池(L)とした。
Comparative Example 6 As the material for the porous polymer electrolyte provided between the positive electrode and the negative electrode, only P (VdF / HFP) (molecular weight of about 300,000) copolymerized with 13 wt% of HFP was used. P (V
A solution consisting of 20 wt% of dF / HFP) and 80 wt% of NMP was prepared. This polymer solution was cast on a glass plate using the doctor blade method, and ethanol was added to
A porous polymer membrane was manufactured by immersing in ion-exchanged water containing 5 wt%. The thickness of the manufactured film is 25 μm,
The porosity was 58%. A battery was manufactured by the same procedure as in Example 1 except for the above, and this was used as a battery (L).

【0075】[比較例7]電池に加熱処理をおこなわな
い以外は、実施例1と同一の手順を経て電池を製作し、
これを電池(M)とした。
[Comparative Example 7] A battery was manufactured through the same procedure as in Example 1 except that the battery was not subjected to heat treatment.
This was used as a battery (M).

【0076】[比較例8]電極内部および正極−負極間
にポリマー電解質をいっさい備えず、セパレータの部分
に微多孔性のポリプロピレン製膜を用い、加熱処理を施
さない電池を製作し、これを電池(N)とした。
[Comparative Example 8] A battery which is not heat-treated by using a microporous polypropylene membrane in the separator portion without any polymer electrolyte inside the electrode and between the positive electrode and the negative electrode was prepared. (N).

【0077】最初に、各電池について、電池エレメント
の一体性の調査をおこなった。まず、ここで製作した電
池(A)〜(L)を解体し、正極板と負極板と多孔性ポ
リマー電解質膜の一体性を調査した。その結果、比較例
の電池(G)は一体性が確認されたものの、その強度は
低かった。このことより、正極と正極−負極間に備えた
有孔性ポリマー電解質および負極と正極−負極間に備え
た有孔性ポリマー電解質とを十分に固着するためには、
第1のポリマー電解質の融点をT1、加熱温度をT3と
表記した場合、T3≧T1の関係を満たすことが好まし
いことが示された。
First, for each battery, the integrity of the battery element was investigated. First, the batteries (A) to (L) manufactured here were disassembled, and the integrity of the positive electrode plate, the negative electrode plate, and the porous polymer electrolyte membrane was investigated. As a result, although the battery (G) of the comparative example was confirmed to have integrity, its strength was low. From this, in order to sufficiently fix the porous polymer electrolyte provided between the positive electrode and the positive electrode-negative electrode and the porous polymer electrolyte provided between the negative electrode and the positive electrode-negative electrode,
When the melting point of the first polymer electrolyte is expressed as T1 and the heating temperature is expressed as T3, it has been shown that it is preferable to satisfy the relationship of T3 ≧ T1.

【0078】また、比較例の電池(I)および(J)に
ついても、エレメントの一体性は確認されたものの、そ
の強度は低かった。これに対して、電池(E)では、十
分な一体性が確認された。正極と正極−負極間に備えた
有孔性ポリマー電解質および負極と正極−負極間にそな
えた有孔性ポリマー電解質とを十分に固着するために
は、正極−負極間に備える有孔性ポリマー電解質を構成
する第1のポリマーの質量をW1、第2のポリマーの質
量をW2とした場合、W1/(W1+W2)≧0.05
の関係を満たすことが好ましいことが示された。
Further, regarding the batteries (I) and (J) of the comparative example, the integrity of the element was confirmed, but the strength was low. On the other hand, in the battery (E), sufficient integrity was confirmed. In order to sufficiently fix the porous polymer electrolyte provided between the positive electrode and the positive electrode-negative electrode and the porous polymer electrolyte provided between the negative electrode and the positive electrode-negative electrode, the porous polymer electrolyte provided between the positive electrode and the negative electrode is provided. W1 / (W1 + W2) ≧ 0.05, where W1 is the mass of the first polymer and W2 is the mass of the second polymer constituting
It was shown that it is preferable to satisfy the relationship of

【0079】つぎに、各電池の高率放電容量の調査をお
こなった。製作した本発明による電池(A)〜(F)、
比較用の電池(H)、(K)、(L)、(M)を用い
て、2C率(1200mA定電流)放電容量の比較をお
こなった。各電池を10個ずつ準備し、600mAの定
電流で4.2Vまで充電し、その後4.2Vの定電圧にて
3時間充電した。その後、1200mAの定電流にて
2.75Vまで放電し、その時の放電容量を測定した。
各電池の放電容量を表1に示した。
Next, the high rate discharge capacity of each battery was investigated. The manufactured batteries (A) to (F) according to the present invention,
Using the batteries (H), (K), (L), and (M) for comparison, the discharge capacities of 2C rate (1200 mA constant current) were compared. Ten of each battery was prepared, charged to a constant current of 600 mA to 4.2 V, and then charged to a constant voltage of 4.2 V for 3 hours. Then, it was discharged to 2.75 V at a constant current of 1200 mA, and the discharge capacity at that time was measured.
The discharge capacity of each battery is shown in Table 1.

【0080】[0080]

【表1】 [Table 1]

【0081】加熱処理をおこなっていない比較用の電池
(M)とおこなった電池(A)〜(L)の1200mA
定電流放電容量を比較すると、後者の容量が高いことが
わかった。これは正極と正極−負極間に備えた有孔性ポ
リマー電解質との隙間および負極と正極−負極間に備え
た有孔性ポリマー電解質との隙間がなくなったことによ
り、電解液が均一分布したことが原因であると考えられ
る。つまり、高率放電性能を向上させるためには、正極
と正極―負極間に備えた有孔性ポリマー電解質および負
極と正極―負極間にそなえた有孔性ポリマー電解質の固
着が重要であることがいえる。つぎに、本発明による電
池(A)〜(D)と比較用の電池(H)の放電容量を比
較すると、前者のほうが明らかに優れた結果を示してい
ることがわかった。加熱温度(T3)と第2のポリマー
電解質の融点(T2)との関係が、T3>(T2−3)
となると、第1のポリマー電解質のみならず、第2のポ
リマー電解質の孔の閉塞も発生しやすいものと考えられ
る。その結果、正極−負極間のリチウムイオンの拡散が
著しく阻害されており、1200mA定電流放電容量が
著しく低下したものと考えられる。このことより、T3
≦(T2−3)の関係を満たすことが好ましいことが示
された。
1200 mA of comparative battery (M) not subjected to heat treatment and batteries (A) to (L) performed.
Comparing the constant current discharge capacities, it was found that the latter capacity was high. This is because the gap between the positive electrode and the porous polymer electrolyte provided between the positive electrode and the negative electrode and the gap between the negative electrode and the porous polymer electrolyte provided between the positive electrode and the negative electrode were eliminated, so that the electrolyte solution was uniformly distributed. Is believed to be the cause. In other words, in order to improve the high rate discharge performance, it is important to fix the porous polymer electrolyte provided between the positive electrode and the positive electrode and the negative electrode and the porous polymer electrolyte provided between the negative electrode and the positive electrode and the negative electrode. I can say. Next, when the discharge capacities of the batteries (A) to (D) according to the present invention and the comparative battery (H) were compared, it was found that the former showed clearly superior results. The relationship between the heating temperature (T3) and the melting point (T2) of the second polymer electrolyte is T3> (T2-3).
Then, it is considered that not only the pores of the first polymer electrolyte but also the pores of the second polymer electrolyte are likely to be clogged. As a result, it is considered that the diffusion of lithium ions between the positive electrode and the negative electrode was significantly hindered, and the 1200 mA constant current discharge capacity was significantly reduced. From this, T3
It was shown that it is preferable to satisfy the relationship of ≦ (T2-3).

【0082】つぎに、本発明による電池(A)、
(E)、(F)および比較用の電池(K)、(L)の放
電容量を比較すると、前者のほうが明らかに優れた結果
を示していることがわかった。正極−負極間に備えた第
2のポリマー電解質が有孔性を維持した場合において
も、第1のポリマー電解質の割合が多くなると、電解質
全体としての有孔性が著しく低くなり、その結果、充放
電反応時におけるリチウムイオンの拡散が著しく阻害さ
れるものと考えられる。正極と正極−負極間に備えた有
孔性ポリマー電解質および負極と正極−負極間に備えた
有孔性ポリマー電解質とを十分に固着するためには、W
1/(W1+W2)≦0.95の関係を満たすことが好
ましいことが示された。
Next, the battery (A) according to the present invention,
Comparing the discharge capacities of (E) and (F) and the batteries (K) and (L) for comparison, it was found that the former showed clearly superior results. Even when the second polymer electrolyte provided between the positive electrode and the negative electrode maintains the porosity, if the proportion of the first polymer electrolyte increases, the porosity of the electrolyte as a whole becomes significantly low. It is considered that the diffusion of lithium ions during the discharge reaction is significantly hindered. To sufficiently bond the porous polymer electrolyte provided between the positive electrode and the positive electrode-negative electrode and the porous polymer electrolyte provided between the negative electrode and the positive electrode-negative electrode, W
It was shown that it is preferable to satisfy the relationship of 1 / (W1 + W2) ≦ 0.95.

【0083】さらに、各電池のサイクル性能の比較をお
こなつた。本発明による電池(A)〜(D)および比較
用の電池(G)、(H)、(M)、(N)を用いてそれ
ぞれのサイクル性能を比較した。それぞれの電池をまず
300mAの電流値で4.2Vまで充電し、続いて4.
2Vの定電圧で3時間充電した。その後、600mAの
電流値にて2.75Vまで放電した。これを300サイ
クル実施した。
Further, the cycle performance of each battery was compared. The batteries (A) to (D) according to the present invention and the batteries (G), (H), (M), and (N) for comparison were used to compare their cycle performances. Each battery was first charged to a voltage of 4.2 mA at a current value of 300 mA, and then 4.
It was charged for 3 hours at a constant voltage of 2V. Then, it was discharged to 2.75 V at a current value of 600 mA. This was carried out for 300 cycles.

【0084】ここで、1サイクル目の放電容量に対する
各サイクルの放電容量の比を、各サイクルの放電容量維
持率とし、図2にサイクル数による放電容量維持率の推
移を示した。図2において、電池(A)、(B)、
(C)、(D)、(G)、(H)、(M)、および
(N)の結果をそれぞれ、記号(△)、(▽)、
(□)、(○)、(■)、(●)、(▲)、(▼)で示
した。
Here, the ratio of the discharge capacity of each cycle to the discharge capacity of the first cycle was taken as the discharge capacity maintenance rate of each cycle, and FIG. 2 shows the transition of the discharge capacity maintenance rate depending on the number of cycles. In FIG. 2, batteries (A), (B),
The results of (C), (D), (G), (H), (M), and (N) are represented by the symbols (Δ), (▽),
(□), (○), (■), (●), (▲), (▼).

【0085】電池(M)および(N)は加熱処理を施し
ていない電池である。これらの電池は、サイクルの経過
にともなって放電容量の維持率が低下した。これは、充
放電反応による電極板の体積膨張収縮が繰り返されるこ
とにより、電極と正極−負極間に備えた短絡防止剤との
圧迫が緩くなり、隙間が増加して電解液の分布が不均一
になったことが原因として考えられる。
Batteries (M) and (N) are batteries that have not been heat-treated. In these batteries, the discharge capacity retention rate decreased with the passage of cycles. This is because the volume expansion and contraction of the electrode plate due to the charge / discharge reaction is repeated, so that the pressure between the electrode and the short-circuit preventive agent provided between the positive electrode and the negative electrode becomes loose, and the gap increases and the distribution of the electrolyte solution becomes uneven. It is considered that the cause is.

【0086】これに対して、各電極板と正極−負極間に
備えた有孔性ポリマー電解質を固着した電池は、サイク
ルにともなう電極間距離の増加が抑制されるため、未処
理の電池よりも優れたサイクル性能を示した。
On the other hand, in the battery to which the porous polymer electrolyte provided between each electrode plate and the positive electrode and the negative electrode is fixed, the increase in the distance between the electrodes due to the cycle is suppressed, so that the battery is more than the untreated battery. It showed excellent cycle performance.

【0087】次に、本発明による電池(A)〜(D)と
比較用の電池(G)、(H)のサイクル性能を比較した
ところ、前者のほうが明らかに優れたサイクル性能を示
した。電池(G)は、正極と正極−負極間に備えた有孔
性ポリマー電解質および負極と正極−負極間に備えた有
孔性ポリマー電解質との固着強度が低く、そのサイクル
にともなう電池厚みの増加が、電池(A)〜(D)より
も大きかった。サイクルにともなう電解液が不均一分布
したために性能が低下したものと考えられる。
Next, when the cycle performances of the batteries (A) to (D) according to the present invention and the comparative batteries (G) and (H) were compared, the former showed clearly superior cycle performance. The battery (G) has low adhesion strength between the porous polymer electrolyte provided between the positive electrode and the positive electrode and the negative electrode and the porous polymer electrolyte provided between the negative electrode and the positive electrode-negative electrode, and the battery thickness increases with the cycle. Was larger than the batteries (A) to (D). It is considered that the performance deteriorated because the electrolyte solution was non-uniformly distributed with the cycle.

【0088】また、電池(H)は、加熱温度が高かった
ため、正極−負極間に備えた有孔性ポリマー電解質の孔
の大部分が閉塞したことが高率放電性能の結果より示唆
された。つまり、充電反応時に金属リチウムが、負極板
上へ電解析出しやすく、サイクルにともなう容量の低下
が顕著になったものと考えられる。
Further, since the heating temperature of the battery (H) was high, most of the pores of the porous polymer electrolyte provided between the positive electrode and the negative electrode were blocked from the results of the high rate discharge performance. In other words, it is considered that metallic lithium was likely to be electrolytically deposited on the negative electrode plate during the charging reaction, and the decrease in capacity with the cycle became remarkable.

【0089】以上の結果より、第1のポリマー電解質の
融点(T1)、第2のポリマー電解質の融点(T2)、
および加熱温度(T3)が、T1≦T3≦(T1+
5)、かつT3≦(T2−3)の関係を満たすことによ
り、優れた高率放電性能およびサイクル性能を示す電池
を製作できることが明らかになった。
From the above results, the melting point (T1) of the first polymer electrolyte, the melting point (T2) of the second polymer electrolyte,
And the heating temperature (T3) is T1 ≦ T3 ≦ (T1 +
It has been clarified that a battery having excellent high rate discharge performance and cycle performance can be manufactured by satisfying the relationship of 5) and T3 ≦ (T2-3).

【0090】また、正極−負極間に備えるポリマー電解
質を形成する第1のポリマーの質量をW1、第2のポリ
マーをW2と表記した場合、0.05≦W1/(W1+
W2)≦0.95の関係を満たすことにより、本発明の
効果が顕著となることを明らかになった。
When the mass of the first polymer forming the polymer electrolyte provided between the positive electrode and the negative electrode is W1 and the mass of the second polymer is W2, 0.05 ≦ W1 / (W1 +
It has been clarified that the effect of the present invention becomes remarkable by satisfying the relationship of W2) ≦ 0.95.

【0091】[0091]

【発明の効果】本発明の非水電解質二次電池の製造方法
においては、電極内部に備えた有孔性ポリマー電解質と
正極−負極間に備えた有孔性ポリマー電解質層とが固着
されて、連続して配置されることになる。その結果、電
解液を連続して均一に分散することが可能となるめに、
リチウムイオンの拡散分布が均一となり、放電特性が向
上する。
In the method for producing a non-aqueous electrolyte secondary battery of the present invention, the porous polymer electrolyte provided inside the electrode and the porous polymer electrolyte layer provided between the positive electrode and the negative electrode are fixed, It will be arranged continuously. As a result, it becomes possible to disperse the electrolyte solution continuously and uniformly,
Dispersion distribution of lithium ions becomes uniform, and discharge characteristics are improved.

【0092】また、本発明の非水電解質二次電池の製造
方法によれば、正極−負極間に備えたポリマー電解質の
融解を極力抑制でき、ポリマー電解質の孔の閉塞が抑制
され、その結果、高率放電性能とサイクル性能を向上さ
せることができる。
Further, according to the method for producing a non-aqueous electrolyte secondary battery of the present invention, the melting of the polymer electrolyte provided between the positive electrode and the negative electrode can be suppressed as much as possible, and the clogging of the pores of the polymer electrolyte can be suppressed. High rate discharge performance and cycle performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリマー電解質のDSC測定結果を示す図。FIG. 1 is a diagram showing a DSC measurement result of a polymer electrolyte.

【図2】電池のサイクル性能を示す図FIG. 2 is a diagram showing battery cycle performance.

フロントページの続き Fターム(参考) 5H021 AA06 BB01 BB11 CC04 EE02 EE23 EE27 HH01 HH06 5H029 AJ02 AJ05 AK02 AK03 AK05 AK16 AL02 AL03 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 CJ02 CJ05 DJ04 DJ06 EJ12 EJ14 HJ01 HJ14Continued front page    F-term (reference) 5H021 AA06 BB01 BB11 CC04 EE02                       EE23 EE27 HH01 HH06                 5H029 AJ02 AJ05 AK02 AK03 AK05                       AK16 AL02 AL03 AL06 AL07                       AL08 AL12 AM02 AM03 AM04                       AM05 AM07 CJ02 CJ05 DJ04                       DJ06 EJ12 EJ14 HJ01 HJ14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極−負極間に有孔性ポリマー電解質を
備え、前記有孔性ポリマー電解質が融点の異なる第1と
第2のポリマー電解質とを含み、第1のポリマー電解質
の融点をT1(℃)、第2のポリマー電解質の融点をT
2(℃)とした場合、T1<T2の関係を満たすことを
特徴とする非水電解質二次電池。 【実施例2】 第1のポリマーの質量をW1、第2のポ
リマーの質量をW2とした場合、0.05≦W1/(W
1+W2)≦0.95の関係を満たすことを特徴とする
請求項1記載の非水電解質二次電池。
1. A porous polymer electrolyte is provided between a positive electrode and a negative electrode, the porous polymer electrolyte includes first and second polymer electrolytes having different melting points, and the melting point of the first polymer electrolyte is T1 ( ℃), the melting point of the second polymer electrolyte is T
A non-aqueous electrolyte secondary battery characterized by satisfying the relationship of T1 <T2 when 2 (° C.). Example 2 When the mass of the first polymer is W1 and the mass of the second polymer is W2, 0.05 ≦ W1 / (W
The non-aqueous electrolyte secondary battery according to claim 1, wherein the relationship of 1 + W2) ≦ 0.95 is satisfied.
【請求項2】 正極−負極間に備えた有孔性ポリマー電
解質と、正極および負極とが加熱によって固着され、加
熱温度をT3(℃)とした場合、T1≦T3≦(T1+
5)、かつT3≦(T2−3)の関係を満たすことを特
徴とする請求項1または2記載の非水電解質二次電池の
製造方法。
2. The porous polymer electrolyte provided between the positive electrode and the negative electrode and the positive electrode and the negative electrode are fixed by heating, and when the heating temperature is T3 (° C.), T1 ≦ T3 ≦ (T1 +
5) And the relationship of T3 <(T2-3) is satisfied, The manufacturing method of the non-aqueous electrolyte secondary battery of Claim 1 or 2 characterized by the above-mentioned.
JP2001192723A 2001-06-26 2001-06-26 Nonaqueous electrolyte secondary battery and manufacturing method thereof Pending JP2003007280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192723A JP2003007280A (en) 2001-06-26 2001-06-26 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192723A JP2003007280A (en) 2001-06-26 2001-06-26 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003007280A true JP2003007280A (en) 2003-01-10
JP2003007280A5 JP2003007280A5 (en) 2005-10-27

Family

ID=19031137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192723A Pending JP2003007280A (en) 2001-06-26 2001-06-26 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003007280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058368A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
WO2013058370A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
WO2013058367A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
WO2013058369A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058368A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
WO2013058370A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
WO2013058367A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
WO2013058369A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
JP5282179B1 (en) * 2011-10-21 2013-09-04 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5282181B1 (en) * 2011-10-21 2013-09-04 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5282180B1 (en) * 2011-10-21 2013-09-04 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5342088B1 (en) * 2011-10-21 2013-11-13 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
CN103891000A (en) * 2011-10-21 2014-06-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
CN103890998A (en) * 2011-10-21 2014-06-25 帝人株式会社 Nonaqueous secondary battery separator and non-aqueous secondary battery
KR101429579B1 (en) 2011-10-21 2014-08-12 데이진 가부시키가이샤 Nonaqueous secondary battery separator and non-aqueous secondary battery
KR101429580B1 (en) 2011-10-21 2014-08-12 데이진 가부시키가이샤 Nonaqueous secondary battery separator and non-aqueous secondary battery
KR101434377B1 (en) 2011-10-21 2014-08-27 데이진 가부시키가이샤 Nonaqueous secondary battery separator and non-aqueous secondary battery
KR101434376B1 (en) 2011-10-21 2014-08-27 데이진 가부시키가이샤 Nonaqueous secondary battery separator and non-aqueous secondary battery
US9431638B2 (en) 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
TWI548136B (en) * 2011-10-21 2016-09-01 帝人股份有限公司 Separator for non-aqueous type secondary battery, and non-aqueous type secondary battery
TWI553944B (en) * 2011-10-21 2016-10-11 帝人股份有限公司 Separator for non-aqueous type secondary battery, and non-aqueous type secondary battery
TWI553945B (en) * 2011-10-21 2016-10-11 帝人股份有限公司 Separator for non-aqueous type secondary battery, and non-aqueous type secondary battery
US10096811B2 (en) 2011-10-21 2018-10-09 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
US10115948B2 (en) 2011-10-21 2018-10-30 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery

Similar Documents

Publication Publication Date Title
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
US6528212B1 (en) Lithium battery
US7674554B2 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the anode active material
JP2002530838A (en) Electrolyte with improved low temperature performance
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
US20050277026A1 (en) Non-aqueous secondary battery and separator used therefor
US6730404B1 (en) Composite active material and process for the production thereof, electrode and process for the production thereof, and non-aqueous electrolyte battery
JP3503697B2 (en) Non-aqueous electrolyte battery
JP2003157898A (en) Nonaqueous electrolyte secondary battery and method of manufacture
US5910381A (en) Chlorinated diethyl carbonate solvent for battery
JP2002203556A (en) Non-aqueous electrolyte secondary battery
JP2002042868A (en) Nonaqueous electrolyte battery and its manufacturing method
JP2001143755A (en) Non-aqueous electrolyte secondary cell
JP2003007280A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2001319693A (en) Nonaqueous-electrolyte secondary battery
JP4351858B2 (en) Nonaqueous electrolyte secondary battery
US5772702A (en) Method of preparing electrochemical cells
CN112216812B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP3954682B2 (en) Method for producing polymer solid electrolyte battery
JP2003059536A (en) Nonaqueous electrolyte cell and its manufacturing method
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000323126A (en) Nonaqueous electrolyte secondary battery and its charging method
JP4082103B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2000195522A (en) Nonaqueous electrolyte seconday battery
JPH1126025A (en) Cylindrical nonaqueous battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213