JP2003004924A - Diffractive optical element and optical device - Google Patents

Diffractive optical element and optical device

Info

Publication number
JP2003004924A
JP2003004924A JP2001189109A JP2001189109A JP2003004924A JP 2003004924 A JP2003004924 A JP 2003004924A JP 2001189109 A JP2001189109 A JP 2001189109A JP 2001189109 A JP2001189109 A JP 2001189109A JP 2003004924 A JP2003004924 A JP 2003004924A
Authority
JP
Japan
Prior art keywords
region
optical element
diffractive optical
wavelength
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001189109A
Other languages
Japanese (ja)
Inventor
Tama Takada
球 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2001189109A priority Critical patent/JP2003004924A/en
Publication of JP2003004924A publication Critical patent/JP2003004924A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diffractive optical element which has almost constant diffraction efficiency for a wide wavelength range and which can be easily manufactured. SOLUTION: A first region and a second region with uniform distribution are settled in a diffraction grating having a step-like cross-sectional form in a single period. The level difference in one period of the second region is twice as the level difference in one period in the first region and the designed wavelength in the second region is twice as the designed wavelength in the first region. The number of steps in one period of the second region is same as the number of steps in one period of the first region and the horizontal width in the step-like part is made identical for all steps so that the diffraction efficiency for the designed wavelengths in the first and second regions is optimized. By controlling the ratio of the total area of the first region to the total area of the second region, the diffraction efficiency in the whole wavelength range from the designed wavelength in the first region to the designed wavelength in the second region is controlled to almost constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回折格子によって
光を回折させる回折光学素子およびこれを用いる光学装
置に関し、特に、広い波長範囲にわたって回折効率が略
一定の回折光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diffractive optical element for diffracting light by a diffraction grating and an optical device using the same, and more particularly to a diffractive optical element having a substantially constant diffraction efficiency over a wide wavelength range.

【0002】[0002]

【従来の技術】回折格子によって光を回折させる回折光
学素子は、種々の光学装置の光学系に用いられている。
回折光学素子には様々な利点があるが、主なものは次の
とおりである。(1)回折角が波長に依存するため、分光
に利用することができる。(2)回折格子を設ける面を曲
面としてレンズとすれば、同一のパワーを有する通常の
レンズよりも薄型の素子となる。(3)レンズとは正負が
逆の波長分散特性を有するため、レンズを用いる光学系
の色収差を補正することができる。
2. Description of the Related Art Diffractive optical elements that diffract light by a diffraction grating are used in optical systems of various optical devices.
The diffractive optical element has various advantages, but the main ones are as follows. (1) Since the diffraction angle depends on the wavelength, it can be used for spectroscopy. (2) If the surface on which the diffraction grating is provided has a curved surface and is used as a lens, the element becomes thinner than an ordinary lens having the same power. (3) The chromatic aberration of the optical system using the lens can be corrected because the positive and negative polarities of the wavelength dispersion characteristic of the lens are reversed.

【0003】回折格子の凹凸の高低差は設計波長に応じ
て定められ、使用波長が設計波長から離れるほど回折効
率は低下する。また、回折格子は、1周期内の最高部と
最低部の間が傾斜面であるブレーズ型のときに回折効率
が最も高くなる。この理想的なブレーズ型の回折格子の
場合、設計波長をλ0、使用波長をλとすると、1次の
回折効率ηは次の式1で表される。 η=[sin{π(1−λ0/λ)}/π(1−λ0/λ)]2 … 式1
The height difference of the unevenness of the diffraction grating is determined according to the design wavelength, and the diffraction efficiency decreases as the used wavelength deviates from the design wavelength. Further, the diffraction grating has the highest diffraction efficiency in the case of the blazed type having an inclined surface between the highest part and the lowest part within one period. In the case of this ideal blazed diffraction grating, assuming that the design wavelength is λ 0 and the used wavelength is λ, the first-order diffraction efficiency η is expressed by the following equation 1. η = [sin {π (1-λ 0 / λ)} / π (1-λ 0 / λ)] 2 Equation 1

【0004】設計波長が550nmのときの回折効率を
図10に示す。400〜800nmの波長範囲で、回折
効率は61.5%から100%までの値となる。このよ
うに、回折光学素子を広い波長範囲の光に対して使用す
ると、回折効率が大きく変化する。回折効率が波長によ
って大きく相違すると、波長ごとの光の強度を検出する
分光器では、波長に応じて出力を補正しなければならな
い。また、カメラでは、色収差の補正が不完全になり、
撮影した像に色むらが生じてしまう。
FIG. 10 shows the diffraction efficiency when the design wavelength is 550 nm. In the wavelength range of 400 to 800 nm, the diffraction efficiency has a value of 61.5% to 100%. As described above, when the diffractive optical element is used for light in a wide wavelength range, the diffraction efficiency changes greatly. When the diffraction efficiency greatly differs depending on the wavelength, a spectroscope that detects the intensity of light for each wavelength must correct the output according to the wavelength. Also, in the camera, the correction of chromatic aberration becomes incomplete,
Color unevenness occurs in the captured image.

【0005】この問題点に関連して、特開平11−16
0512号では、回折格子を3つの領域に分割し、各領
域の設計波長を450、532、614nmとして、領
域ごとに高低差を相違させることが提案されている。こ
の設定での回折効率を図11に示す。各領域の回折効率
は各々の設計波長で100%となる。しかし、実際に
は、個々の領域に設計波長に近い波長の光だけが入射す
るわけではなく、いずれの領域にも広い波長範囲の光が
入射するから、回折格子全体としての総合的な回折効率
は、3領域の回折効率の平均値となる。例えば、3領域
の面積が等しいとき、総合的な回折効率は、400〜8
00nmの波長範囲で66.3%から95.0%となる。
このため、回折効率が大きく変化するという問題は、依
然解消されない。
Regarding this problem, Japanese Patent Laid-Open No. 11-16
No. 0512 proposes that the diffraction grating is divided into three regions, and the design wavelength of each region is set to 450, 532, and 614 nm, and the height difference is made different for each region. The diffraction efficiency in this setting is shown in FIG. The diffraction efficiency of each region is 100% at each design wavelength. However, in reality, not only light with a wavelength close to the design wavelength is incident on each region, but light with a wide wavelength range is incident on any region, so the overall diffraction efficiency of the diffraction grating as a whole. Is the average value of the diffraction efficiencies in the three regions. For example, when the areas of the three regions are equal, the total diffraction efficiency is 400 to 8
It is 66.3% to 95.0% in the wavelength range of 00 nm.
For this reason, the problem that the diffraction efficiency changes greatly cannot be solved.

【0006】ブレーズ型の回折格子は、回折効率の観点
からは理想的であるが、作製が難しく、量産には不向き
である。そこで、ブレーズ型の最高部と最低部の間の傾
斜面を階段状の形状で近似することが行われている。こ
のような回折格子はマルチレベル型と呼ばれる。マルチ
レベル型の回折格子は、水平面と垂直面のみからなるた
め、半導体技術で確立されているフォトリソグラフィに
よって容易に作製することができる。例えば、米国特許
4,895,790では、k枚のフォトマスクを用いて、
エッチングをk回行うことにより、段数が(2k−1)
の階段形状を作製することが提案されている。マルチレ
ベル型では、水平面の幅を狭くして段数を多くするほど
回折効率は高くなる(理想的なブレーズ型の回折効率に
近づく)が、水平面の幅には加工上の最小限界があるた
め、回折格子の周期(ピッチ)に応じて最適な段数が定
まることになる。
The blazed diffraction grating is ideal from the viewpoint of diffraction efficiency, but it is difficult to manufacture and is not suitable for mass production. Therefore, the inclined surface between the highest portion and the lowest portion of the blazed type is approximated by a step-like shape. Such a diffraction grating is called a multilevel type. Since the multi-level type diffraction grating is composed of only the horizontal plane and the vertical plane, it can be easily manufactured by the photolithography established in the semiconductor technology. For example, in US Pat. No. 4,895,790, using k photomasks,
By performing the etching k times, the number of steps is (2 k -1)
It has been proposed to make a staircase shape. In the multi-level type, as the width of the horizontal plane is narrowed and the number of steps is increased, the diffraction efficiency becomes higher (closer to the diffraction efficiency of the ideal blaze type), but the width of the horizontal plane has the minimum limit in processing. The optimum number of stages is determined according to the period (pitch) of the diffraction grating.

【0007】[0007]

【発明が解決しようとする課題】上述の特開平11−1
60512号においても、回折格子をマルチレベル型と
しており、3つの領域の最大高低差を相違させるため
に、段差(隣り合う水平面の高低差)は同じにし、段数
を領域ごとに相違させている。この方法では、領域ごと
に段数が異なるため、最大高低差が最小の領域すなわち
段数が最少の領域を基準に最適の段数を定めると、他の
領域では段数が最適な段数よりも多くなって、水平面の
幅を最小限界以下にする必要が生じる。水平面の幅を最
小限界以下にすると、階段状の形状が崩れてしまい、回
折効率が低下する。逆に、最大高低差が最大の領域すな
わち段数が最多の領域を基準に最適の段数を定めると、
他の領域では段数が最適な段数よりも少なくなって、最
適な段数であれば得られるはずの回折効率を得ることが
できなくなる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Also in No. 60512, the diffraction grating is of a multilevel type, and in order to make the maximum height difference of the three regions different, the steps (height difference of adjacent horizontal planes) are made the same and the number of steps is made different for each region. In this method, since the number of stages is different for each region, if the optimum number of stages is determined on the basis of the region with the smallest maximum height difference, that is, the region with the smallest number of stages, the number of stages in other regions becomes larger than the optimal number of stages. It becomes necessary to make the width of the horizontal plane below the minimum limit. If the width of the horizontal plane is less than the minimum limit, the staircase shape is broken and the diffraction efficiency is reduced. Conversely, if the optimum number of steps is determined based on the area with the largest maximum height difference, that is, the area with the largest number of steps,
In other regions, the number of steps is smaller than the optimum number of steps, and it becomes impossible to obtain the diffraction efficiency that should be obtained with the optimum number of steps.

【0008】また、領域間の最大高低差の比は、設計波
長の比であり、簡単な正数比にはならない。このため、
偶然の場合を除き、異なる領域に高さの同じ水平面や高
低差の等しい水平面の組が存在することがなく、異なる
領域を1度のエッチングで加工することはできない。そ
の結果、領域ごとに個別にエッチングを行う必要が生じ
て、作製効率がよくない。
Further, the ratio of the maximum height difference between regions is the ratio of design wavelengths, and is not a simple positive number ratio. For this reason,
Except by chance, there are no horizontal planes with the same height or horizontal planes with the same height difference in different regions, and different regions cannot be processed by one etching. As a result, it becomes necessary to carry out etching individually for each region, resulting in poor manufacturing efficiency.

【0009】本発明はこのような問題点に鑑みてなされ
たもので、広い波長範囲にわたって回折効率が略一定
で、しかも作製が容易な回折光学素子を提供することを
目的とする。また、そのような回折光学素子を備えた高
性能の分光装置および撮像装置を提供することを目的と
する。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a diffractive optical element which has a substantially constant diffraction efficiency over a wide wavelength range and is easy to manufacture. Another object of the present invention is to provide a high-performance spectroscopic device and an imaging device equipped with such a diffractive optical element.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、1周期の断面が段差の等しい階段状の
回折格子を有する回折光学素子において、回折格子が、
1周期内の段数が一定で、1周期内の最大高低差が一定
の第1の領域と、1周期内の段数が一定で第1の領域の
1周期内の段数に等しく、1周期内の最大高低差が一定
で第1の領域の1周期内の最大高低差の2倍の第2の領
域より成るものとする。
In order to achieve the above object, according to the present invention, in a diffractive optical element having a step-like diffraction grating whose cross section of one period has equal steps, the diffraction grating is
The first area in which the number of steps in one cycle is constant and the maximum height difference in one cycle is constant, and the number of steps in one cycle is constant and is equal to the number of steps in one cycle of the first area It is assumed that the maximum height difference is constant and the second area is twice the maximum height difference in one cycle of the first area.

【0011】この回折光学素子の回折格子は2種類の領
域を有しており、第2の領域の最大高低差は第1の領域
の最大高低差の2倍である。すなわち、第1の領域と第
2の領域の設計波長は1:2であり、回折格子は波長比
が1:2である第1の波長の光と第2の波長の光を効率
よく回折させることができる。しかも、第1の領域と第
2の領域は、段数が同じであるから、階段状の部分の水
平面の幅が同じであり、どちらも段数に応じた最高の回
折効率を与える設定とすることが可能である。つまり、
第1の領域による第1の波長の光の回折効率と、第2の
領域による第2の波長の光の回折効率を等しくすること
ができる。
The diffraction grating of this diffractive optical element has two types of regions, and the maximum height difference of the second region is twice the maximum height difference of the first region. That is, the design wavelength of the first region and the second region is 1: 2, and the diffraction grating efficiently diffracts the light of the first wavelength and the light of the second wavelength having the wavelength ratio of 1: 2. be able to. Moreover, since the first region and the second region have the same number of steps, the width of the horizontal plane of the stepped portion is the same, and both can be set to give the highest diffraction efficiency according to the number of steps. It is possible. That is,
It is possible to equalize the diffraction efficiency of the light of the first wavelength by the first region and the diffraction efficiency of the light of the second wavelength by the second region.

【0012】任意の波長の光に対する回折格子全体とし
ての回折効率は、第1の領域と第2の領域の面積比を重
み係数とする第1の領域の回折効率と第2の領域の回折
効率の加重平均となる。式1および図10より明らかな
ように回折効率は設計波長に関して非対称であるが、第
1、第2の領域の面積比の設定次第で、第1の波長から
第2の波長までの波長範囲全体を一部に含む広い波長範
囲にわたって、回折効率を略一定にすることができる。
The diffraction efficiency of the entire diffraction grating for light of an arbitrary wavelength is the diffraction efficiency of the first region and the diffraction efficiency of the second region with the area ratio of the first region and the second region as a weighting coefficient. Is a weighted average of. As is clear from Equation 1 and FIG. 10, the diffraction efficiency is asymmetric with respect to the design wavelength, but depending on the setting of the area ratio of the first and second regions, the entire wavelength range from the first wavelength to the second wavelength is It is possible to make the diffraction efficiency substantially constant over a wide wavelength range including a part of.

【0013】第1の領域と第2の領域は、最大高低差の
比が1:2であって段数が同じであるから段差の比も
1:2となり、高さの等しい水平面や、高低差の等しい
水平面の組を有することになる。回折格子をフォトリソ
グラフィによって作製する場合、高さの等しい水平面
や、高低差の等しい水平面のうち低い方の水平面は1度
のエッチングで同時に形成することができるから、工程
数を少なくすることができて、作製効率も向上する。
In the first area and the second area, the maximum height difference ratio is 1: 2 and the number of steps is the same, so the step ratio is also 1: 2. Will have a set of equal horizontal planes. When the diffraction grating is manufactured by photolithography, the horizontal plane having the same height or the lower horizontal plane having the same height difference can be simultaneously formed by one etching, so that the number of steps can be reduced. Therefore, the manufacturing efficiency is also improved.

【0014】ここで、第1の領域と第2の領域が回折格
子の全体にわたって略均一に分布している構成とすると
よい。巨視的に見て回折格子のどの部位にも第1の領域
と第2の領域が一定の面積比で存在することになり、部
位間で回折効率に差が生じるのを避けることができる。
Here, it is preferable that the first region and the second region are substantially uniformly distributed over the entire diffraction grating. Macroscopically, the first region and the second region are present at a constant area ratio in any part of the diffraction grating, and it is possible to avoid a difference in diffraction efficiency between the parts.

【0015】入射角が0°のときの第1の領域の最高の
回折効率の波長を350nm以上かつ550nm以下と
するとよい。この場合、入射角が0°のときの第2の領
域の最高の回折効率の波長は700nm以上かつ110
0nm以下となる。このようにすると、入射角が0°か
ら大きく離れない使用形態において、可視光全体を略一
定の回折効率で回折させることができる。
The wavelength of the highest diffraction efficiency in the first region when the incident angle is 0 ° is preferably 350 nm or more and 550 nm or less. In this case, the wavelength of the highest diffraction efficiency in the second region when the incident angle is 0 ° is 700 nm or more and 110
It becomes 0 nm or less. This makes it possible to diffract the entire visible light with a substantially constant diffraction efficiency in a usage pattern in which the incident angle does not greatly deviate from 0 °.

【0016】また、第1の領域の総面積を第2の領域の
総面積の1.7倍以上かつ2.6倍以下とするとよい。第
1、第2の領域の面積比をこのようにすると、可視光全
体に対する回折効率の一定度が特に高くなる。
The total area of the first region may be 1.7 times or more and 2.6 times or less of the total area of the second region. When the area ratio of the first and second regions is set as described above, the degree of constant diffraction efficiency with respect to the entire visible light becomes particularly high.

【0017】本発明ではまた、分光装置は、光を波長に
応じて分離させる光学系の一部に、上記のいずれかの回
折光学素子を備えるものとする。分離後の光の強度を波
長にかかわらず略一定にすることができて、強度の補正
をする必要がなくなる。
Further, in the present invention, the spectroscopic device is provided with any one of the above diffractive optical elements in a part of an optical system for separating light according to a wavelength. The intensity of the separated light can be made substantially constant regardless of the wavelength, and it is not necessary to correct the intensity.

【0018】本発明ではまた、撮像装置は、光を結像さ
せる光学系の一部に、上記のいずれかの回折光学素子を
備えるものとする。レンズによる屈折で生じる色収差を
良好に補正することができて、像に色むらが発生するの
を避けることができる。
Further, in the present invention, the image pickup device is provided with any one of the above diffractive optical elements in a part of an optical system for forming an image of light. It is possible to satisfactorily correct the chromatic aberration caused by the refraction by the lens, and it is possible to avoid the occurrence of color unevenness in the image.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照しながら説明する。第1の実施形態である回
折光学素子1の構成を図1に模式的に示す。回折光学素
子1は、表面に凹凸の周期的配列である回折格子11が
形成された平板状の基板10より成る。図1は、回折光
学素子1全体の平面図であり、きわめて微細な構造であ
る回折格子11の形状自体は表していない。回折格子1
1は、回折特性の異なる2種類の領域11a、11bを
有する。第1の領域11aと第2の領域11bは共に帯
状であって多数存在し、その幅方向(x方向)に交互に
設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The configuration of the diffractive optical element 1 according to the first embodiment is schematically shown in FIG. The diffractive optical element 1 is composed of a flat plate-shaped substrate 10 on the surface of which a diffraction grating 11 which is a periodic array of irregularities is formed. FIG. 1 is a plan view of the entire diffractive optical element 1, and does not show the shape itself of the diffraction grating 11 having an extremely fine structure. Diffraction grating 1
Reference numeral 1 has two types of regions 11a and 11b having different diffraction characteristics. Both the first region 11a and the second region 11b are strip-shaped and are present in a large number, and are provided alternately in the width direction (x direction).

【0020】回折格子11の等高線図を図2に模式的に
示す。回折格子11は、凹凸の周期的配列の方向(x方
向)が領域11a、11bの幅方向に一致するように、
すなわち、高さの同じ点が領域11a、11bの長さ方
向(y方向)に連なるように設定されている。
A contour diagram of the diffraction grating 11 is schematically shown in FIG. In the diffraction grating 11, the direction (x direction) of the periodic array of the concavities and convexities matches the width direction of the regions 11a and 11b.
That is, the points having the same height are set to be continuous in the length direction (y direction) of the regions 11a and 11b.

【0021】回折格子11の周期方向の断面を図3に模
式的に示す。回折格子11はブレーズ型の傾斜面を階段
状の形状で近似したマルチレベル型であり、1周期p内
に複数の水平面を有する。回折格子11の周期は全体に
わたって一定であり、第1の領域11aと第2の領域1
1bのいずれにおいても周期は同じである。なお、1周
期の始点と終点は任意に定義することができるが、ここ
では最も高い水平面と最も低い水平面の境界から最も高
い水平面と最も低い水平面の境界までを1周期pとい
う。
FIG. 3 schematically shows a cross section of the diffraction grating 11 in the periodic direction. The diffraction grating 11 is a multi-level type in which a blaze-type inclined surface is approximated by a step shape, and has a plurality of horizontal planes within one period p. The period of the diffraction grating 11 is constant throughout, and the first region 11a and the second region 1
The cycle is the same in any of 1b. The start point and the end point of one cycle can be arbitrarily defined, but here, the period from the boundary between the highest horizontal plane and the lowest horizontal plane to the boundary between the highest horizontal plane and the lowest horizontal plane is referred to as one cycle p.

【0022】第2の領域11bの1周期内の最大高低差
(最も高い水平面と最も低い水平面の高低差)h2は、
第1の領域11aの1周期内の最大高低差h1の2倍で
ある。一方、1周期内の段数(水平面の数m−1)は第
1の領域11aと第2の領域11bで同じであり、ま
た、段差(隣り合う水平面の高低差)は1周期内では等
しい。したがって、第2の領域11bの段差d2は第1
の領域の段差d1の2倍であり、水平面の幅wは全て等
しい。
The maximum height difference (height difference between the highest horizontal plane and the lowest horizontal plane) h2 within one cycle of the second region 11b is
It is twice the maximum height difference h1 within one cycle of the first region 11a. On the other hand, the number of steps in one cycle (the number m-1 of horizontal planes) is the same in the first region 11a and the second region 11b, and the step (height difference between adjacent horizontal planes) is the same in one period. Therefore, the step d2 of the second region 11b is the first
Is twice as large as the step d1 in the area, and the widths w of the horizontal plane are all equal.

【0023】なお、回折格子11は、傾斜面の最高部と
最低部の高低差をm等分して各等分点と最高部とを水平
面としたものであり、傾斜面の最低部に対応する水平面
は存在しない。図3に示した例は、傾斜面の最高部と最
低部の高低差を4等分した場合のものであり、したがっ
て、1周期内の水平面の数mは4、段数は3になってい
る。
The diffraction grating 11 is one in which the height difference between the highest part and the lowest part of the inclined surface is divided into m equal parts, and each equal point and the highest part are made into a horizontal plane, which corresponds to the lowest part of the inclined surface. No horizontal plane exists. The example shown in FIG. 3 is a case where the height difference between the highest part and the lowest part of the inclined surface is divided into four equal parts, and therefore, the number m of horizontal surfaces in one cycle is 4, and the number of steps is 3. .

【0024】このような構成の回折格子11では、第2
の領域11bの設計波長は第1の領域11aの設計波長
の2倍に定まる。また、水平面の幅wは全て等しいか
ら、第1の領域11aと第2の領域11bのいずれにお
いても、水平面の幅wを加工上の最小限界にすることが
可能であり、したがって、第1の領域11aによるその
設計波長の光の回折効率と、第2の領域11bによるそ
の設計波長の光の回折効率とを、等しくかつ最高にする
ことができる。
In the diffraction grating 11 having such a configuration, the second
The design wavelength of the area 11b is set to be twice the design wavelength of the first area 11a. Further, since the widths w of the horizontal plane are all the same, it is possible to set the width w of the horizontal plane to the minimum limit in processing in both the first region 11a and the second region 11b. The diffraction efficiency of the light of the design wavelength by the area 11a and the diffraction efficiency of the light of the design wavelength by the second area 11b can be equalized and maximized.

【0025】任意の波長λの光に対する回折格子11全
体としての総合的な回折効率ηtは、第1の領域11a
の回折効率η1と第2の領域11bの回折効率η2の加
重平均となり、式2で表される。 ηt=η1・S1/S+η2・S2/S … 式2
The total diffraction efficiency ηt of the diffraction grating 11 as a whole with respect to light of an arbitrary wavelength λ is determined by the first region 11a.
Is the weighted average of the diffraction efficiency η1 of the second region 11b and the diffraction efficiency η2 of the second region 11b, which is expressed by Equation 2. ηt = η1 · S1 / S + η2 · S2 / S ... Formula 2

【0026】ここで、重み係数に含まれるS1およびS
2は、それぞれ第1の領域11aの総面積および第2の
領域11bの総面積であり、Sは回折格子11の全面積
(S1+S2)である。また、第1、第2の領域11
a、11bの回折効率η1、η2は、前述の式1より算
出される。
Here, S1 and S included in the weighting factors
2 is the total area of the first region 11a and the total area of the second region 11b, and S is the total area (S1 + S2) of the diffraction grating 11. In addition, the first and second regions 11
The diffraction efficiencies η1 and η2 of a and 11b are calculated by the above-mentioned formula 1.

【0027】第1の領域11a、第2の領域11bの設
計波長λ0をそれぞれ440nm、880nmとし、第
1の領域11aの総面積S1と第2の領域11bの総面
積S2の比を2:1としたときの回折格子11の総合的
な回折効率ηtを、各領域11a、11bの回折効率η
1、η2と共に図4に示す。400〜800nmの波長
範囲における回折格子11の総合的な回折効率ηtは6
4.8〜68.4%であり、略一定になっている。第1の
領域11a、第2の領域11bの設計波長λ0をこれら
の値とするとき、第1の領域11aの総面積S1を第2
の領域11bの総面積S2の1.7〜2.6倍の範囲内と
すれば、この波長範囲の回折効率ηtの最大値と最小値
の比は1.1以下になる。
Design wavelengths λ 0 of the first region 11a and the second region 11b are 440 nm and 880 nm, respectively, and the ratio of the total area S1 of the first region 11a and the total area S2 of the second region 11b is 2: When the total diffraction efficiency ηt of the diffraction grating 11 is set to 1, the diffraction efficiency η of each of the regions 11a and 11b is
1 and η2 are shown in FIG. The total diffraction efficiency ηt of the diffraction grating 11 in the wavelength range of 400 to 800 nm is 6
It is 4.8 to 68.4%, which is almost constant. When the design wavelength λ 0 of the first region 11a and the second region 11b is set to these values, the total area S1 of the first region 11a is set to the second
If the range is 1.7 to 2.6 times the total area S2 of the region 11b, the ratio of the maximum value to the minimum value of the diffraction efficiency ηt in this wavelength range is 1.1 or less.

【0028】なお、図4は、1周期内の段数を無限にし
たとき、すなわち、理想的なブレーズ型としたときのも
のであり、段数が少ないほど回折効率は低下する。例え
ば、段数が15、7、3(水平面の数mが16、8、
4)のとき、回折効率はそれぞれブレーズ型の98.
7、95.0、81.1%となる。ただし、階段状の形状
に近似することによる回折効率の低下は、2つの設計波
長間の回折効率が略一定であることには全く影響しな
い。
FIG. 4 shows the case where the number of steps in one cycle is infinite, that is, when the ideal blazed type is used, and the smaller the number of steps, the lower the diffraction efficiency. For example, the number of steps is 15, 7, 3 (the number of horizontal planes m is 16, 8,
In 4), the diffraction efficiency is 98.
It becomes 7,95.0,81.1%. However, the decrease in the diffraction efficiency due to the approximation of the stepped shape does not affect the fact that the diffraction efficiency between the two design wavelengths is substantially constant.

【0029】後述するように、回折格子11はフォトリ
ソグラフィによって作製するが、エッチング加工で形成
し得る水平面の幅wの最小限界は1μm程度である。ま
た、上記のように可視の波長範囲の光を回折させる場
合、回折格子11の周期pは4μm程度であるから、1
周期内の段数の最適値は3(水平面の数mの最適値は
4)となる。したがって、回折格子11は、可視光全体
を50%以上の略一定な回折効率で回折させることが可
能である。
As will be described later, the diffraction grating 11 is produced by photolithography, but the minimum limit of the width w of the horizontal plane that can be formed by etching is about 1 μm. Further, when diffracting light in the visible wavelength range as described above, the period p of the diffraction grating 11 is about 4 μm, so
The optimum value of the number of steps in the cycle is 3 (the optimum value of the number m of horizontal planes is 4). Therefore, the diffraction grating 11 can diffract the entire visible light with a substantially constant diffraction efficiency of 50% or more.

【0030】1周期内の最大高低差h1、h2は、段数
が傾斜面の高低差を等分した数よりも1少ないから、近
似前の理想的なブレーズ型の最大高低差hの(m−1)
/m倍とする。なお、理想的なブレーズ型の回折格子に
入射角0゜で光を入射させる場合、最大高低差hは、透
過型とするときは式3、反射型とするときは式4とな
る。ここで、nは媒質の屈折率であり、式3においては
基板の屈折率、式4においては、光を基板側から入射さ
せるときは基板の屈折率、光を空気側から直接入射させ
るときは空気の屈折率、すなわち1である。 h=λ0/(n−1) … 式3 h=λ0/2n … 式4
Since the maximum height differences h1 and h2 within one cycle are one less than the number of steps of the height difference of the inclined surface divided by 1, the ideal blazed maximum height difference h (m- 1)
/ M times. When light is incident on an ideal blazed diffraction grating at an incident angle of 0 °, the maximum height difference h is expressed by Equation 3 when it is a transmission type and Equation 4 when it is a reflection type. Here, n is the refractive index of the medium, and in Equation 3, the refractive index of the substrate, in Equation 4, when the light is incident from the substrate side, the refractive index of the substrate, and when the light is directly incident from the air side, The refractive index of air, that is, 1. h = λ 0 / (n−1) Equation 3 h = λ 0 / 2n Equation 4

【0031】設計波長λ0は回折光学素子1を実際に使
用する際の光の入射角を考慮して定めるのが理想的であ
る。しかし、本実施形態の回折光学素子1では、広い波
長範囲で回折効率を略一定にすることができるから、入
射角を厳密に考慮して設計波長λ0を定める必要はな
い。例えば、入射角を0゜としておき、第1の領域11
aの設計波長を350〜550nmの範囲内の値とし、
第2の領域11bの設計波長をその2倍の値として回折
格子11を作製しておけば、使用時の入射角が30°程
度であっても、可視光全体を略一定の回折効率で回折さ
せることができる。
The design wavelength λ 0 is ideally determined in consideration of the incident angle of light when the diffractive optical element 1 is actually used. However, in the diffractive optical element 1 of the present embodiment, since the diffraction efficiency can be made substantially constant over a wide wavelength range, it is not necessary to strictly consider the incident angle to determine the design wavelength λ 0 . For example, the incident angle is set to 0 ° and the first region 11
The design wavelength of a is set to a value within the range of 350 to 550 nm,
If the diffraction grating 11 is prepared with the design wavelength of the second region 11b being twice as large as the design wavelength, the entire visible light is diffracted at a substantially constant diffraction efficiency even when the incident angle during use is about 30 °. Can be made.

【0032】回折格子11の作製方法について、段数が
3すなわち水平面の数mが4の場合を例にとって説明す
る。作製工程を図5に模式的に示す。まず、基板10の
平坦な表面にフォトレジスト(不図示)を塗布し、1周
期pの1/2の幅の開口E1を有するマスクM1を用い
てフォトレジストをパターニングし、さらにエッチング
を行う(a)。エッチングで加工する深さは第1の領域
の11aの段差d1の4倍とする。これで、第2の領域
11bの下から2番目の水平面を含む水平面が形成され
る。
A method of manufacturing the diffraction grating 11 will be described by taking as an example a case where the number of steps is 3, that is, the number m of horizontal planes is 4. The manufacturing process is schematically shown in FIG. First, a photoresist (not shown) is applied to the flat surface of the substrate 10, the photoresist is patterned using a mask M1 having an opening E1 having a width 1/2 of one period p, and etching is further performed (a ). The etching depth is four times the step d1 of the first region 11a. This forms a horizontal plane including the second horizontal plane from the bottom of the second region 11b.

【0033】その後、フォトレジストの塗布、マスクを
用いるパターニングおよびエッチングの工程を2回繰り
返す。2回目の工程(b)では、1周期pの1/2の幅
の開口E1と、1周期pの1/4の幅の2つの開口E2
を有するマスクM2を用い、エッチングで加工する深さ
を第1の領域の11aの段差d1の2倍とする。これ
で、第1の領域11aの下から2番目の水平面を含む水
平面と、第2の領域11bの最も下の水平面と下から3
番目の水平面が同時に形成される。
Thereafter, the steps of applying photoresist, patterning using a mask and etching are repeated twice. In the second step (b), the opening E1 having a width of ½ of one cycle p and the two openings E2 having a width of ¼ of one cycle p.
Using the mask M2 having the above, the depth to be processed by etching is set to be twice the step d1 of 11a in the first region. With this, the horizontal plane including the second horizontal plane from the bottom of the first region 11a and the lowermost horizontal plane of the second region 11b and 3 from the bottom.
A second horizontal plane is formed at the same time.

【0034】3回目の工程(c)では、1周期pの1/
4の幅の2つの開口E2を有するマスクM3を用い、エ
ッチングで加工する深さを第1の領域の11aの段差d
1の1倍とする。これで、第1の領域11aの最も下の
水平面と下から3番目の水平面が形成され、回折格子1
1の作製が完了する。
In the third step (c), 1 / p of one cycle p
Using a mask M3 having two openings E2 having a width of 4 and a step depth d of 11a in the first region
It is 1 times 1. This forms the lowest horizontal plane and the third horizontal plane from the bottom of the first region 11a.
Preparation of 1 is completed.

【0035】なお、マスクとエッチングで加工する深さ
とを対応させる限り、上記の3回の工程はどの順序で行
ってもよい。水平面を形成する順序が相違するだけで、
作製した回折格子11の形状は同じになる。
Note that the above three steps may be performed in any order as long as the mask and the depth to be processed by etching correspond to each other. Only the order of forming the horizontal plane is different,
The manufactured diffraction gratings 11 have the same shape.

【0036】第1の領域11aと第2の領域11bを別
々に作製すると、用いるマスクは4枚、工程数も4とな
るが、上記の方法では、必要なマスクの数や工程数が少
なくなり、作製効率が向上する。これは、第1の領域1
1aと第2の領域11bに、高さの等しい水平面や高低
差の等しい水平面の組が存在するからである。
When the first region 11a and the second region 11b are separately manufactured, four masks are used and the number of steps is 4, but the above method reduces the number of masks required and the number of steps. The manufacturing efficiency is improved. This is the first area 1
This is because there are horizontal planes having the same height and horizontal planes having the same height difference in 1a and the second region 11b.

【0037】一般に、k回のエッチングでは2kの水平
面を有する(2k−1)段の階段状とすることができる
が、2つの領域を個別にエッチングすれば、総工程数は
2kとなる。これに対し、2つの領域を同時にエッチン
グすることが可能な上記の方法では、総工程数は(k+
1)で済む。したがって、段数が多くなるほど、作製効
率向上の効果は顕著になる。なお、(k+1)回のエッ
チングで形成し得る段数は、最大で(2k−1)であ
り、これ以下の任意の値にすることができる。
In general, it is possible to form (2 k -1) steps having a horizontal plane of 2 k by etching k times, but if the two regions are individually etched, the total number of steps is 2 k. . On the other hand, in the above method capable of simultaneously etching two regions, the total number of steps is (k +
1) is enough. Therefore, as the number of stages increases, the effect of improving the manufacturing efficiency becomes more remarkable. Note that the maximum number of steps that can be formed by (k + 1) times of etching is (2 k −1), and can be set to any value less than this.

【0038】第1の領域11aと第2の領域11bの幅
は、回折格子11の周期pの数十倍程度であり、第1、
第2の領域11a、11bは回折格子11全体にわたっ
て略均一に分布している。したがって、回折格子11の
どの部位においても、広い波長範囲の光を略一定の回折
効率で回折させることが可能である。このように設定し
ておくと、たとえ光の入射位置が変動したとしても、光
に対する第1、第2の領域11a、11bの面積比が変
化しないから、広い波長範囲にわたって回折効率を略一
定とすることが確実に実現される。
The width of the first region 11a and the second region 11b is about several tens of times the period p of the diffraction grating 11, and
The second regions 11a and 11b are distributed substantially uniformly over the entire diffraction grating 11. Therefore, it is possible to diffract light in a wide wavelength range with substantially constant diffraction efficiency at any part of the diffraction grating 11. With this setting, even if the incident position of light changes, the area ratio of the first and second regions 11a and 11b to the light does not change, so that the diffraction efficiency is kept substantially constant over a wide wavelength range. Is certainly realized.

【0039】波長分布が光束の断面のどの部位において
も均一な光に対して回折光学素子1を使用する場合は、
第1の領域11aや第2の領域11bの分布に偏りがあ
っても、全体としての回折効率は略一定になる。したが
って、このような用途では、第1、第2の領域11a、
11bが回折格子11全体にわたって略均一に分布して
いる必要はなく、例えば、回折格子11を2つの区画に
区分けし、一方を第1の領域11a、他方を第2の領域
11bとすることもできる。
When the diffractive optical element 1 is used for light whose wavelength distribution is uniform at any part of the cross section of the light beam,
Even if the distributions of the first region 11a and the second region 11b are uneven, the diffraction efficiency as a whole is substantially constant. Therefore, in such an application, the first and second regions 11a,
It is not necessary for 11b to be distributed substantially uniformly over the entire diffraction grating 11. For example, the diffraction grating 11 may be divided into two sections, one of which is the first area 11a and the other is the second area 11b. it can.

【0040】しかし、そのような設定では、回折格子1
1のどの部位に光が入射するかによって、光に対する第
1の領域11aと第2の領域11bの面積比が変動する
ことになり、回折効率を一定化することが難しくなる。
この問題は、光の入射位置を厳密に定めて固定すること
により回避することができるが、そのようにするために
は、回折光学素子1に光を導く他の光学素子と回折光学
素子1の位置関係を精度よく設定する必要があり、調整
に時間を要する。したがって、第1の領域11aと第2
の領域11bを略均一に分布させておくのが好ましい。
However, in such a setting, the diffraction grating 1
The area ratio of the first region 11a to the second region 11b with respect to the light varies depending on which part of 1 the light enters, and it becomes difficult to make the diffraction efficiency constant.
This problem can be avoided by strictly determining and fixing the incident position of the light, but in order to do so, the diffractive optical element 1 and other optical elements for guiding the light to the diffractive optical element 1 must be provided. It is necessary to set the positional relationship with high accuracy, and it takes time to adjust. Therefore, the first region 11a and the second region 11a
It is preferable that the regions 11b of 1 are distributed substantially uniformly.

【0041】なお、ここでは第1の領域11aと第2の
領域11bを真っ直ぐな帯状として交互に配置している
が、式2に基づき設計波長に応じて面積比を定める限
り、第1の領域11aと第2の領域11bの形状や位置
関係は、他の設定とすることもできる。例を図6に示
す。図6において、(a)は第2の領域11bを矩形に
して第1の領域11a内に分散させたもの、(b)は第
1の領域11aと第2の領域11bを同心円の帯状とし
て交互に配置したものである。(b)の場合、回折格子
11も同心円とする。第1、第2の領域11a、11b
を同心円ではない円弧状として交互に配置することもで
きる。その場合の回折格子11の例を図7の等高線図に
示す。
Here, the first regions 11a and the second regions 11b are alternately arranged in a straight band shape, but as long as the area ratio is determined according to the design wavelength based on the equation 2, the first regions 11a and 11b are alternately arranged. The shape and the positional relationship between 11a and the second area 11b can be set to other settings. An example is shown in FIG. In FIG. 6, (a) shows the second area 11b in a rectangular shape and is dispersed in the first area 11a. It was placed in. In the case of (b), the diffraction grating 11 is also a concentric circle. First and second areas 11a and 11b
Can also be arranged alternately as arcs that are not concentric circles. An example of the diffraction grating 11 in that case is shown in the contour diagram of FIG. 7.

【0042】回折対象とする光の波長は可視光域以外で
あってもよい。例えば、200〜400nmの波長範囲
の紫外光、1000〜2000nmの波長範囲の赤外光
を対象とすることもできる。
The wavelength of the light to be diffracted may be outside the visible light range. For example, ultraviolet light in the wavelength range of 200 to 400 nm and infrared light in the wavelength range of 1000 to 2000 nm can be targeted.

【0043】第2の実施形態である分光装置2の構成を
図8に模式的に示す。分光装置2は、光を波長に応じて
分離し、分離した光の強度を個別に検出するもので、ス
リット21aを有する光束規制板21、2つの凹面ミラ
ー22、24、回折光学素子23、およびセンサ25よ
り成る。
The structure of the spectroscopic device 2 according to the second embodiment is schematically shown in FIG. The spectroscopic device 2 separates light according to the wavelength and individually detects the intensity of the separated light. The light flux regulating plate 21 having the slit 21a, the two concave mirrors 22 and 24, the diffractive optical element 23, and It comprises a sensor 25.

【0044】スリット21aを通過した光は、凹面ミラ
ー22によって反射されて、収束しながら回折光学素子
23に入射し、波長に応じた回折角で反射される。回折
光学素子23により反射された光は、凹面ミラー24に
よって反射されて、さらに収束しながらセンサ25に入
射する。センサ25に入射する際には、光は波長ごとに
分離しており、センサ25は各波長の光の強度を検出す
る。
The light passing through the slit 21a is reflected by the concave mirror 22, enters the diffractive optical element 23 while converging, and is reflected at a diffraction angle according to the wavelength. The light reflected by the diffractive optical element 23 is reflected by the concave mirror 24 and enters the sensor 25 while further converging. When entering the sensor 25, the light is separated for each wavelength, and the sensor 25 detects the intensity of the light of each wavelength.

【0045】回折光学素子23としては第1の実施形態
の回折光学素子1を反射型として用いる。回折光学素子
1は、前述のように広い波長範囲の光に対する回折効率
が略一定であるから、センサ25が検出する各波長の光
の強度比は、分離前の強度比を忠実に表す。したがっ
て、センサ25の出力を補正する必要はない。
As the diffractive optical element 23, the diffractive optical element 1 of the first embodiment is used as a reflective type. Since the diffractive optical element 1 has a substantially constant diffraction efficiency for light in a wide wavelength range as described above, the intensity ratio of light of each wavelength detected by the sensor 25 faithfully represents the intensity ratio before separation. Therefore, it is not necessary to correct the output of the sensor 25.

【0046】回折光学素子23として使用する場合、回
折格子11を図7に示した円弧状とし、凹面ミラー22
からの光が回折格子11の周期方向(x方向)に沿って
入射するように配置するとよい。凹面ミラー22、24
により非点収差が発生するが、その非点収差を補正する
ことが可能になる。
When used as the diffractive optical element 23, the diffraction grating 11 is formed into the arc shape shown in FIG.
It is preferable to arrange so that the light from is incident along the periodic direction (x direction) of the diffraction grating 11. Concave mirrors 22 and 24
As a result, astigmatism occurs, but the astigmatism can be corrected.

【0047】第3の実施形態である撮像装置3の構成を
図9に模式的に示す。撮像装置3は、光を電気信号に変
換することにより撮影を行うもので、撮影対象からの光
を結像させる撮像光学系として、2つのレンズ群31、
34、回折光学素子32、および絞り33を備えてお
り、撮影光学系による結像面に、撮像素子としてエリア
センサ35を備えている。
The configuration of the image pickup apparatus 3 according to the third embodiment is schematically shown in FIG. The image pickup device 3 is for taking an image by converting light into an electric signal, and as an image pickup optical system for forming an image of light from an object to be imaged, two lens groups 31,
34, a diffractive optical element 32, and a diaphragm 33, and an area sensor 35 as an image pickup element on the image forming surface of the photographing optical system.

【0048】回折光学素子32としては第1の実施形態
の回折光学素子1を透過型として用いるが、基板10は
両面を凹面とされており、回折光学素子32は凹レンズ
としても機能する。回折格子11は同心円状に設定され
ており、第1、第2の領域11a、11bも、図6の
(b)に示したように同心円の帯状とされている。
As the diffractive optical element 32, the diffractive optical element 1 of the first embodiment is used as a transmission type, but the substrate 10 has concave surfaces on both sides, and the diffractive optical element 32 also functions as a concave lens. The diffraction grating 11 is set in a concentric circle shape, and the first and second regions 11a and 11b are also in a concentric band shape as shown in FIG. 6B.

【0049】撮影対象からの光には、レンズ群31、3
4や凹レンズとしての回折光学素子32による屈折で、
色収差が発生するが、回折光学素子32による回折でこ
れを補正することができる。したがって、色ずれのない
質の高い像を提供することが可能である。色収差の発生
はレンズ群31、34に含まれるレンズの数を増すこと
でも抑えられるが、回折光学素子32を備えれば、レン
ズの数を増さなくても色収差の補正が可能である。
The lens groups 31, 3 are used for the light from the object to be photographed.
Refraction by the diffractive optical element 32 as 4 or a concave lens,
Chromatic aberration occurs, which can be corrected by diffraction by the diffractive optical element 32. Therefore, it is possible to provide a high-quality image with no color shift. The occurrence of chromatic aberration can be suppressed by increasing the number of lenses included in the lens groups 31 and 34. However, if the diffractive optical element 32 is provided, it is possible to correct chromatic aberration without increasing the number of lenses.

【0050】以上、回折光学素子1ならびにこれを利用
した分光装置2および撮像装置3の実施形態について説
明したが、本発明の回折光学素子は、ここに示した例に
限らず、様々な光学装置に利用することが可能である。
例えば、分光測色器、光ピックアップ、光通信デバイ
ス、レーザビームプリンタ、複写機、顕微鏡等に用いて
も、広い波長範囲の光に対して回折効率が略一定である
という特徴が生かされる。
The embodiments of the diffractive optical element 1 and the spectroscopic device 2 and the image pickup device 3 using the diffractive optical element 1 have been described above. However, the diffractive optical element of the present invention is not limited to the examples shown here, and various optical devices can be used. Can be used for.
For example, even when used in a spectrocolorimeter, an optical pickup, an optical communication device, a laser beam printer, a copying machine, a microscope, etc., the characteristic that the diffraction efficiency is substantially constant for light in a wide wavelength range is utilized.

【0051】[0051]

【発明の効果】1周期の断面が段差の等しい階段状の回
折格子を有し、回折格子が、1周期内の段数が一定で、
1周期内の最大高低差が一定の第1の領域と、1周期内
の段数が一定で第1の領域の1周期内の段数に等しく、
1周期内の最大高低差が一定で第1の領域の1周期内の
最大高低差の2倍の第2の領域より成る本発明の回折光
学素子では、波長比が1:2の第1の波長の光と第2の
波長の光の双方を、回折格子の段数に応じた最高の回折
効率で回折させることが可能である。また、第1、第2
の波長に応じて第1、第2の領域の面積比を定めること
で、回折効率を第1の波長から第2の波長までを含む広
い波長範囲の全体にわたって略一定にすることができ
る。しかも、第1の領域の一部の水平面と第2の領域の
一部の水平面をエッチングにより同時に形成することが
できるため、作製効率にも優れている。
The cross section of one cycle has a stepped diffraction grating having the same steps, and the diffraction grating has a constant number of steps in one cycle,
A first area having a constant maximum height difference in one cycle and a step number in one cycle equal to the number of steps in one cycle of the first area;
According to the diffractive optical element of the present invention, which has a constant maximum height difference within one cycle and is twice the maximum height difference within one cycle of the first area, the first embodiment has a wavelength ratio of 1: 2. It is possible to diffract both the light of the wavelength and the light of the second wavelength with the highest diffraction efficiency according to the number of steps of the diffraction grating. Also, the first and second
By determining the area ratio of the first and second regions according to the wavelength of, the diffraction efficiency can be made substantially constant over the entire wide wavelength range including the first wavelength to the second wavelength. Moreover, since the horizontal surface of a part of the first region and the horizontal surface of a part of the second region can be simultaneously formed by etching, the manufacturing efficiency is excellent.

【0052】第1の領域と第2の領域が回折格子の全体
にわたって略均一に分布している構成では、巨視的に見
て回折格子のどの部位にも第1の領域と第2の領域が一
定の面積比で存在することになり、部位間で回折効率に
差が生じない。したがって、光の入射位置の自由度が高
くなる。
In the structure in which the first region and the second region are substantially evenly distributed over the entire diffraction grating, the first region and the second region are macroscopically located at every portion of the diffraction grating. Since they exist with a constant area ratio, there is no difference in diffraction efficiency between the parts. Therefore, the degree of freedom of the incident position of light is increased.

【0053】入射角が0°のときの第1の領域の最高の
回折効率の波長を350nm以上かつ550nm以下と
すると、入射角が0°から大きく離れない限り、可視光
全体を略一定の回折効率で回折させることが可能になっ
て、用途の広い素子となる。
When the wavelength of the highest diffraction efficiency in the first region when the incident angle is 0 ° is set to 350 nm or more and 550 nm or less, the entire visible light is diffracted to a substantially constant value unless the incident angle is greatly separated from 0 °. It can be diffracted with high efficiency and becomes a versatile element.

【0054】また、第1の領域の総面積を第2の領域の
総面積の1.7倍以上かつ2.6倍以下とすると、可視光
全体に対する回折効率の一定度を特に高くすることがで
きる。
When the total area of the first region is 1.7 times or more and 2.6 times or less of the total area of the second region, the constant degree of diffraction efficiency for the entire visible light can be made particularly high. it can.

【0055】光を波長に応じて分離させる光学系の一部
に、上記の特長を有する回折光学素子を備えた本発明の
分光装置では、分離後の光の強度を波長にかかわらず略
一定にすることができる。したがって、波長に応じて強
度を補正する必要のない使い易い分光装置となる。
In the spectroscopic device of the present invention in which the diffractive optical element having the above-mentioned features is provided in a part of the optical system for separating the light according to the wavelength, the intensity of the separated light is substantially constant regardless of the wavelength. can do. Therefore, it becomes an easy-to-use spectroscopic device that does not need to correct the intensity according to the wavelength.

【0056】また、光を結像させる光学系の一部に、上
記の特長を有する回折光学素子を備えた本発明の撮像装
置では、レンズによる屈折で生じる色収差を回折光学素
子により良好に補正することが可能である。したがっ
て、色むらのない良質の像を提供する撮像装置となる。
Further, in the image pickup apparatus of the present invention in which the diffractive optical element having the above-mentioned features is provided in a part of the optical system for forming an image of light, the chromatic aberration caused by the refraction by the lens is favorably corrected by the diffractive optical element. It is possible. Therefore, the image pickup apparatus can provide a high-quality image without color unevenness.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1の実施形態の回折光学素子の回折格子の
領域を示す平面図。
FIG. 1 is a plan view showing a region of a diffraction grating of a diffractive optical element according to a first embodiment.

【図2】 上記回折光学素子の回折格子の等高線図。FIG. 2 is a contour diagram of a diffraction grating of the diffractive optical element.

【図3】 上記回折光学素子の回折格子の断面図。FIG. 3 is a sectional view of a diffraction grating of the diffractive optical element.

【図4】 上記回折光学素子の回折効率を示す図。FIG. 4 is a diagram showing the diffraction efficiency of the diffractive optical element.

【図5】 上記回折光学素子の回折格子を作製する工程
を示す断面図。
FIG. 5 is a cross-sectional view showing a step of producing a diffraction grating of the diffractive optical element.

【図6】 上記回折光学素子の回折格子の領域の変形例
を示す平面図。
FIG. 6 is a plan view showing a modified example of a region of a diffraction grating of the diffractive optical element.

【図7】 上記回折光学素子の回折格子の変形例の等高
線図。
FIG. 7 is a contour diagram of a modified example of the diffraction grating of the diffractive optical element.

【図8】 第2の実施形態の分光装置の構成を模式的に
示す図。
FIG. 8 is a diagram schematically showing a configuration of a spectroscopic device according to a second embodiment.

【図9】 第3の実施形態の撮像装置の構成を模式的に
示す図。
FIG. 9 is a diagram schematically showing a configuration of an image pickup apparatus according to a third embodiment.

【図10】 従来の回折光学素子の回折効率を示す図。FIG. 10 is a diagram showing the diffraction efficiency of a conventional diffractive optical element.

【図11】 従来の他の回折光学素子の回折効率を示す
図。
FIG. 11 is a diagram showing the diffraction efficiency of another conventional diffractive optical element.

【符号の説明】[Explanation of symbols]

1 回折光学素子 10 基板 11 回折格子 11a 第1の領域 11b 第2の領域 2 分光装置 21 光束規制板 21a スリット 22 凹面ミラー 23 回折光学素子 24 凹面ミラー 25 センサ 3 撮像装置 31 レンズ群 32 回折光学素子 33 絞り 34 レンズ群 35 撮像素子 1 Diffractive optical element 10 substrates 11 diffraction grating 11a First area 11b Second area 2 Spectroscopic device 21 Luminous flux regulation plate 21a slit 22 concave mirror 23 Diffractive optical element 24 concave mirror 25 sensors 3 Imaging device 31 lens group 32 diffractive optical element 33 aperture 34 lens group 35 Image sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1周期の断面が段差の等しい階段状の回
折格子を有する回折光学素子において、 回折格子が、1周期内の段数が一定で、1周期内の最大
高低差が一定の第1の領域と、1周期内の段数が一定で
第1の領域の1周期内の段数に等しく、1周期内の最大
高低差が一定で第1の領域の1周期内の最大高低差の2
倍の第2の領域より成ることを特徴とする回折光学素
子。
1. A diffractive optical element having a step-like diffraction grating with a cross section of one cycle having equal steps, wherein the diffraction grating has a constant number of steps within one cycle and a constant maximum height difference within one cycle. And the number of steps in one cycle is constant and equal to the number of steps in one cycle of the first area, the maximum height difference in one cycle is constant and the maximum height difference in one cycle of the first area is two.
A diffractive optical element comprising a doubled second region.
【請求項2】 第1の領域と第2の領域が回折格子の全
体にわたって略均一に分布していることを特徴とする請
求項1に記載の回折光学素子。
2. The diffractive optical element according to claim 1, wherein the first region and the second region are substantially uniformly distributed over the entire diffraction grating.
【請求項3】 入射角が0°のときの第1の領域の最高
の回折効率の波長が350nm以上かつ550nm以下
であることを特徴とする請求項1または請求項2に記載
の回折光学素子。
3. The diffractive optical element according to claim 1, wherein the wavelength of the highest diffraction efficiency in the first region when the incident angle is 0 ° is 350 nm or more and 550 nm or less. .
【請求項4】 第1の領域の総面積が第2の領域の総面
積の1.7倍以上かつ2.6倍以下であることを特徴とす
る請求項1ないし請求項3のいずれか1項に記載の回折
光学素子。
4. The total area of the first region is 1.7 times or more and 2.6 times or less of the total area of the second region, according to any one of claims 1 to 3. The diffractive optical element according to the item.
【請求項5】 光を波長に応じて分離させる光学系の一
部に、請求項1ないし請求項4のいずれか1項に記載の
回折光学素子を備えることを特徴とする分光装置。
5. A spectroscopic device comprising the diffractive optical element according to claim 1 in a part of an optical system that separates light according to a wavelength.
【請求項6】 光を結像させる光学系の一部に、請求項
1ないし請求項4のいずれか1項に記載の回折光学素子
を備えることを特徴とする撮像装置。
6. An image pickup apparatus comprising the diffractive optical element according to claim 1 in a part of an optical system for forming an image of light.
JP2001189109A 2001-06-22 2001-06-22 Diffractive optical element and optical device Pending JP2003004924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001189109A JP2003004924A (en) 2001-06-22 2001-06-22 Diffractive optical element and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001189109A JP2003004924A (en) 2001-06-22 2001-06-22 Diffractive optical element and optical device

Publications (1)

Publication Number Publication Date
JP2003004924A true JP2003004924A (en) 2003-01-08

Family

ID=19028081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001189109A Pending JP2003004924A (en) 2001-06-22 2001-06-22 Diffractive optical element and optical device

Country Status (1)

Country Link
JP (1) JP2003004924A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047695A (en) * 2005-08-12 2007-02-22 Shimadzu Corp Diffraction grating
KR100793364B1 (en) 2006-05-29 2008-01-11 삼성에스디아이 주식회사 Laser irradiation device and fabrication method of organic light emitting display device using the same
KR100793363B1 (en) 2006-05-29 2008-01-11 삼성에스디아이 주식회사 Laser irradiation device and fabrication method of organic light emitting display device using the same
JP2010519588A (en) * 2007-02-23 2010-06-03 ナノコンプ リミテッド Diffraction grating structure and design method of the diffraction grating structure
JP2011075850A (en) * 2009-09-30 2011-04-14 Japan Atomic Energy Agency Multilayer film laminar diffraction grating and spectrometer
CN102540298A (en) * 2012-02-01 2012-07-04 中国科学技术大学 Soft X-ray double-frequency gratings and manufacture method thereof
WO2017212522A1 (en) * 2016-06-06 2017-12-14 株式会社島津製作所 Diffraction grating and spectral device
WO2023140273A1 (en) * 2022-01-20 2023-07-27 大日本印刷株式会社 Diffraction grating and mold for forming diffraction grating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047695A (en) * 2005-08-12 2007-02-22 Shimadzu Corp Diffraction grating
KR100793364B1 (en) 2006-05-29 2008-01-11 삼성에스디아이 주식회사 Laser irradiation device and fabrication method of organic light emitting display device using the same
KR100793363B1 (en) 2006-05-29 2008-01-11 삼성에스디아이 주식회사 Laser irradiation device and fabrication method of organic light emitting display device using the same
JP2010519588A (en) * 2007-02-23 2010-06-03 ナノコンプ リミテッド Diffraction grating structure and design method of the diffraction grating structure
JP2011075850A (en) * 2009-09-30 2011-04-14 Japan Atomic Energy Agency Multilayer film laminar diffraction grating and spectrometer
CN102540298A (en) * 2012-02-01 2012-07-04 中国科学技术大学 Soft X-ray double-frequency gratings and manufacture method thereof
WO2017212522A1 (en) * 2016-06-06 2017-12-14 株式会社島津製作所 Diffraction grating and spectral device
JPWO2017212522A1 (en) * 2016-06-06 2019-01-17 株式会社島津製作所 Diffraction grating and spectroscopic device
US10900832B2 (en) 2016-06-06 2021-01-26 Shimadzu Corporation Diffraction grating and spectral device
WO2023140273A1 (en) * 2022-01-20 2023-07-27 大日本印刷株式会社 Diffraction grating and mold for forming diffraction grating

Similar Documents

Publication Publication Date Title
US11567240B2 (en) Multilayered meta lens and optical apparatus including the same
US10267956B2 (en) Multi-wavelength optical dielectric metasurfaces
JP6707105B2 (en) Color imaging device and imaging device
US6927915B2 (en) Diffractive optical element, and optical system and optical apparatus provided with the same
US8885254B2 (en) Laminated diffractive optical element and optical system
JP5077404B2 (en) Diffraction element and optical device
TWI354809B (en) Composite optical dividing device
JP4714152B2 (en) Optical element
JP4091948B2 (en) Condensing device and contact-type solid-state imaging device using the same
US5737125A (en) Diffractive optical element and optical system including the same
JP5338280B2 (en) Two-dimensional solid-state imaging device
US20190178714A1 (en) Compact folded metasurface spectrometer
JP2007328096A (en) Diffraction optical element, manufacturing method thereof and optical module
JPH0915411A (en) Diffraction optical device array for execution of color separation and image sensor
JP2003004924A (en) Diffractive optical element and optical device
US20090231711A1 (en) Diffraction grating low-pass filter
TWI772902B (en) Image sensor and image apparatus
US11747528B2 (en) Diffraction grating device, method of manufacturing the same, and optical apparatus including the diffraction grating device
JPH09116914A (en) Color filter for solid-state image pickup element and its manufacture
JP2007101926A (en) Transmission grating and spectral element and spectroscope using the same
US5907435A (en) Laser beam optical focusing system of two symmetrical diffractive optical elements
JP3189922B2 (en) Diffractive optical element
JP2004077957A (en) Diffraction optical element
JP2007025177A (en) Refractive index control type of diffractive optical element, and method for producing same
JPH10170822A (en) Image pickup device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050613