JP2003004835A - Method for measuring position by electric field strength - Google Patents

Method for measuring position by electric field strength

Info

Publication number
JP2003004835A
JP2003004835A JP2001182701A JP2001182701A JP2003004835A JP 2003004835 A JP2003004835 A JP 2003004835A JP 2001182701 A JP2001182701 A JP 2001182701A JP 2001182701 A JP2001182701 A JP 2001182701A JP 2003004835 A JP2003004835 A JP 2003004835A
Authority
JP
Japan
Prior art keywords
signal
beat
signals
electric field
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001182701A
Other languages
Japanese (ja)
Inventor
Akinari Sugiyama
晃也 杉山
Hiroichi Sugiyama
博一 杉山
Senichi Kasai
銑衣智 笠井
Toshiyuki Saito
利行 斎藤
Hiroshi Isshiki
浩 一色
Hiroyuki Kato
裕幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERUYA KK
Teruya Corp
Original Assignee
TERUYA KK
Teruya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TERUYA KK, Teruya Corp filed Critical TERUYA KK
Priority to JP2001182701A priority Critical patent/JP2003004835A/en
Publication of JP2003004835A publication Critical patent/JP2003004835A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a position measurement method whereby a self position can be highly accurately measured by measuring an electric field strength at three points under the ground or in a building structure. SOLUTION: A transmitter capable of transmitting by alternately superposing many ID signals and a signal for generating beats with a carrier wave, and many base stations set into a triangular grid for emitting the signals to a ceiling or a space upper part of a measuring object section under the ground or in the building structure, are connected by signal cables respectively. A receiver capable of receiving signals from at least three or more base stations is set to a measurement point. Extracting the ID signal and synthesizing a beat signal are carried out by the signals received by the receiver. Contents of the ID signal and a strength of the beat signal are analyzed. The position is specified by an interpolating function formed with the use of a look-up table in which IDs and beat signal strengths of measuring object sections are mapped beforehand.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地下又は建築構造
物内において、電界強度の3点計測により自己の位置を
高精度に測定することが可能な、電界強度による位置測
定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position measuring method based on electric field strength, which enables highly accurate measurement of the position of oneself by measuring three points of electric field strength underground or in a building structure. .

【0002】[0002]

【従来の技術】従来、自己の位置を測定する方法とし
て、複数のGPS衛星から送信されるGPS信号を受信
し、該GPS信号の経緯度情報を解析して位置を特定す
る、GPSシステム(Global Positioning System:全
地球測位システム)があり、更に高精度のDGPSシス
テム(Differential GPS:ディファレンシャルGPS)
も使用されている。また、PHS(Personal Handy-pho
ne System)端末を利用して、市中に多数設置されたP
HS基地局と当該PHS端末との間で音声通話以外に固
有の認識番号情報を送受信することにより、該PHS端
末の位置情報を得るシステムがある。
2. Description of the Related Art Conventionally, a GPS system (Global System) which receives GPS signals transmitted from a plurality of GPS satellites and analyzes the latitude and longitude information of the GPS signals to identify the position has been used as a method for measuring the position of the user. Positioning System: Global Positioning System) and more accurate DGPS system (Differential GPS)
Is also used. In addition, PHS (Personal Handy-pho
ne System) P terminals installed in the city
There is a system that obtains position information of the PHS terminal by transmitting / receiving unique identification number information other than voice communication between the HS base station and the PHS terminal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記G
PS又はDGPSシステムによる位置測定法において、
特にDGPSシステムでは計測精度が数m程度と高精度
であるが、該システムを利用するためにはGPS信号を
受信するための専用アンテナや経緯度情報を瞬時に解析
するための高速演算装置等のハードウェアやソフトウェ
アが必要であり、システムが高価になってしまうという
問題点があった。更にGPS信号はマイクロ波であるた
め、地下や建築構造物内では使用できないという問題点
があった。また、PHS端末及びPHS基地局との間の
認識番号情報の送受信による位置測定法においては、既
存のPHS端末やPHS基地局が使用できるためシステ
ムは安価に構築できるが、計測精度が100〜200m
程度と粗く、高精度を必要とするシステムでは利用でき
ないという問題点があった。
However, the above-mentioned G
In the position measurement method by PS or DGPS system,
In particular, the DGPS system has a high measurement accuracy of about several meters, but in order to use the system, a dedicated antenna for receiving a GPS signal, a high-speed arithmetic device for instantaneously analyzing latitude / longitude information, etc. There was a problem that the system became expensive because hardware and software were required. Further, since the GPS signal is a microwave, there is a problem that it cannot be used underground or in a building structure. Further, in the position measuring method by transmitting / receiving the identification number information between the PHS terminal and the PHS base station, the existing PHS terminal or PHS base station can be used, so the system can be constructed inexpensively, but the measurement accuracy is 100 to 200 m.
There is a problem that it cannot be used in a system that is coarse and coarse and requires high precision.

【0004】本発明は、以上のような問題点を解決する
ために成されたものであり、地下や建築構造物内におい
て、比較的に安価にシステムを構築することができる電
界強度の3点計測により自己の位置を高精度に測定する
ことが可能な、電界強度による位置測定法を提供するこ
とを目的とする。
The present invention was made in order to solve the above problems, and it has three electric field strengths, which make it possible to construct a system relatively inexpensively in an underground structure or a building structure. It is an object of the present invention to provide a position measuring method based on electric field intensity, which enables highly accurate measurement of the position of self.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の電界強度による位置測定法においては、搬
送波に多数のID信号及びビート発生用信号を交互に重
畳して送信可能な送信機と、地下又は建築構造物内の測
定対象区域の天井又は空間上部に前記信号を発射するた
めの三角格子状に多数設置した基地局とを、個々に信号
ケーブルにて接続する。
In order to solve the above-mentioned problems, in the position measuring method by the electric field strength of the present invention, a transmitter capable of alternately superposing a large number of ID signals and beat generating signals on a carrier wave and transmitting the same. And a plurality of base stations installed in the shape of a triangular lattice for emitting the signals on the ceiling or the upper space of the measurement area in the underground or the building structure are individually connected by signal cables.

【0006】上記各基地局から発射される信号は、搬送
波に各基地局固有のID信号と少なくとも4種類以上の
ビート発生用信号の内の1種類のビート発生用信号を重
畳した信号である。また、測定地点には、少なくとも3
箇所以上の基地局からの信号を受信可能な受信機を配設
し、該受信機にて受信した信号よりID信号の抽出及び
ビート信号の合成を行う。そして、該ID信号の内容及
びビート信号の強度を解析し、予め測定対象区域のID
とビート信号強度をマッピングしたルックアップテーブ
ルを用いて作られた補間関数により位置の特定を行う。
The signal emitted from each of the base stations is a signal in which an ID signal specific to each base station and one kind of beat generating signal among at least four kinds of beat generating signals are superimposed on a carrier wave. In addition, at least 3 at the measurement point.
A receiver that can receive signals from base stations at more than one place is provided, and an ID signal is extracted from the signal received by the receiver and a beat signal is synthesized. Then, the content of the ID signal and the strength of the beat signal are analyzed, and the ID of the measurement target area is calculated in advance.
The position is specified by an interpolation function created by using a look-up table in which the beat signal strength is mapped.

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図を用いて
説明する。図1は本発明の電界強度による位置測定法を
構築するためのブロック図であり、測定対象となる地下
又は建築構造物内に、搬送波に多数のID信号及びビー
ト発生用信号を交互に重畳して送信可能な送信機1を設
置する。また、該地下又は建築構造物内の測定対象区域
の天井12又は空間上部に前記信号を発射するための多
数の基地局6,7,8を三角格子状の各頂点に設置し、
前記送信機1より個々に信号ケーブル2にて接続する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram for constructing a position measuring method by electric field strength according to the present invention, in which a large number of ID signals and beat generating signals are alternately superposed on a carrier wave in an underground or building structure to be measured. The transmitter 1 that can transmit the data is installed. Further, a large number of base stations 6, 7 and 8 for emitting the signal are installed at each apex of a triangular lattice on the ceiling 12 or the space upper part of the measurement target area in the underground or the building structure,
The signal cables 2 are individually connected from the transmitter 1.

【0008】また、図2は本発明の電界強度による位置
測定法において三角格子状に配列した基地局の一実施例
における配置図であり、三角形の各頂点の黒丸印が基地
局となる。該基地局から発射される信号は、搬送波に各
基地局固有のID信号と少なくとも4種類以上のビート
発生用信号の内の1種類のビート発生用信号を重畳した
信号であり、例えば中央付近の太枠の三角形において頂
点の基地局はビート発生用信号が“1”であり、底辺左
端の基地局のビート発生用信号が“2”であり、底辺右
端の基地局のビート発生用信号が“0”であることを表
している。
FIG. 2 is a layout diagram of an embodiment of base stations arranged in a triangular lattice in the position measuring method based on the electric field strength of the present invention, and the black circles at the vertices of the triangles represent the base stations. The signal emitted from the base station is a signal obtained by superimposing an ID signal unique to each base station and at least one kind of beat generating signal of at least four kinds of beat generating signals on a carrier wave. The base station at the apex of the bold-lined triangle has a beat generation signal of “1”, the base station at the left end of the bottom has a beat generation signal of “2”, and the base station at the right end of the bottom has a beat generation signal of “1”. It represents 0 ”.

【0009】図2ではビート発生用信号として“0”,
“1”,“2”及び“3”の4種類を使用しており、図
示するような配置を行うことにより任意の基地局のビー
ト発生用信号と周囲6つの基地局とのビート発生用信号
は重なることがない。
In FIG. 2, the beat generation signal is "0",
Four types of "1", "2" and "3" are used, and the beat generating signal of an arbitrary base station and the beat generating signal of six surrounding base stations can be obtained by arranging as shown in the figure. Do not overlap.

【0010】また、基地局を特定するための各基地局固
有のID信号として、図2では上辺左端より“0”,
“1”,“2”‥‥とし、底辺右端を“36”としてい
る。このため、例えば中央付近の太枠の三角形において
頂点の基地局はID信号内容がが“11”であり、底辺
左端の基地局のID信号内容が“17”であり、底辺右
端の基地局のID信号内容が“18”であることを表し
ている。
Further, as an ID signal unique to each base station for specifying the base station, "0" from the left end of the upper side in FIG.
"1", "2" ... And the bottom right end is "36". Therefore, for example, the ID signal content of the base station at the apex in the thick frame triangle near the center is “11”, the ID signal content of the base station at the left end of the bottom is “17”, and the base station at the right end of the base is It indicates that the content of the ID signal is "18".

【0011】図3は、図2において各基地局間の距離及
び位置を明示した図であり、三角形の一辺の長さが10
mの正三角形であることを表している。このように三角
格子を正三角形にするのが理想的であるが、場所によっ
ては困難であるため、この場合には必ずしも正三角形に
する必要はなく、ルックアップテーブルや座標データの
補間処理を行うことにより対応可能である。
FIG. 3 is a diagram in which the distances and positions between the base stations in FIG. 2 are clearly shown, and the length of one side of the triangle is 10
It represents a regular triangle of m. Although it is ideal to make the triangular lattice into an equilateral triangle in this way, it is difficult depending on the place. Therefore, in this case, it is not always necessary to form an equilateral triangle, and a lookup table or coordinate data interpolation processing is performed. This can be dealt with.

【0012】また、図1に示すように測定地点である床
面13上に立つユーザー9は、基地局3のアンテナ6,
基地局4のアンテナ7及び基地局5のアンテナ8の3箇
所の基地局から発射される信号を受信可能なユーザー受
信機10を所持し、該ユーザー受信機10のアンテナ1
1にて受信した信号よりID信号の抽出及びビート信号
の合成を行う。
Further, as shown in FIG. 1, the user 9 standing on the floor surface 13 which is the measuring point is the antenna 6 of the base station 3.
A user receiver 10 capable of receiving signals emitted from three base stations, that is, the antenna 7 of the base station 4 and the antenna 8 of the base station 5, is provided, and the antenna 1 of the user receiver 10 is provided.
The ID signal is extracted from the signal received at 1 and the beat signal is synthesized.

【0013】図4は本発明の電界強度による位置測定法
において基地局より発射するID信号とビート発生用信
号との周期関係図であり、搬送波にID信号とビート発
生用信号とを交互に重畳して送信する。そして、該ID
信号の内容及びビート信号の強度を解析し、予め測定対
象区域のIDとビート信号強度をマッピングしたルック
アップテーブルを用いて作られた補間関数により位置の
特定を行う。また、該地下又は建築構造物内の他の場所
に受信機14を設置し、送信機能を付加したユーザー受
信機10より送信された位置情報を当該受信機14のア
ンテナ15で受信し、更にLANケーブル16を経由し
て上位サーバーに送信すれば、ユーザー9の位置の一元
管理が行えることになる。
FIG. 4 is a diagram showing a periodic relationship between an ID signal emitted from a base station and a beat generating signal in the position measuring method using electric field strength according to the present invention. The ID signal and the beat generating signal are alternately superposed on a carrier wave. And send. And the ID
The content of the signal and the strength of the beat signal are analyzed, and the position is specified by an interpolation function created using a lookup table in which the ID of the measurement target area and the strength of the beat signal are mapped in advance. Further, the receiver 14 is installed in the basement or another place in the building structure, and the position information transmitted from the user receiver 10 having a transmission function is received by the antenna 15 of the receiver 14, and further the LAN is used. If the data is transmitted to the host server via the cable 16, the position of the user 9 can be centrally managed.

【0014】[0014]

【原理解析】本発明の電界強度による位置測定法におけ
る原理を数式を用いて解析する。まず、測定地点が特定
の三角形内にあるものとし、該特定の三角形内に適切に
補間データ点を選び、各補間データ点上の電界強度を計
算してルックアップテーブルを作成する。次に、ビート
信号により測定地点での電界強度を解析し、前記ルック
アップテーブルと比較及び補間により測定地点の座標を
算出する。
[Principle Analysis] The principle of the position measuring method based on the electric field strength of the present invention will be analyzed using mathematical expressions. First, assuming that the measurement point is within a specific triangle, an interpolation data point is appropriately selected within the specific triangle, the electric field strength on each interpolation data point is calculated, and a lookup table is created. Next, the electric field strength at the measurement point is analyzed by the beat signal, and the coordinates of the measurement point are calculated by comparison and interpolation with the look-up table.

【0015】実際の測位においては、計測された電界と
ユーザー受信機10の内部で発生する参照信号との積を
作ってビ−トを求め、これより電界強度を求める。これ
を入力として上記のアルゴリズムから位置座標を求める
ものとする。ここで、ビート発生用信号を4種類とした
場合、ビ−ト周波数は4種類である。電界強度はビ−ト
周波数の振幅を使用するものとし、任意の位置(x,y,
z)の時刻tにおける電界E(x,y,z,t)は数式1で表さ
れる。
In actual positioning, the product of the measured electric field and the reference signal generated inside the user receiver 10 is made to obtain a beat, and the electric field strength is obtained from this. It is assumed that the position coordinates are obtained from the above algorithm using this as an input. Here, when there are four types of beat generating signals, there are four types of beat frequencies. The electric field strength uses the amplitude of the beat frequency, and at any position (x, y,
The electric field E (x, y, z, t) at time t of z) is expressed by Equation 1.

【0016】[0016]

【数1】 [Equation 1]

【0017】ここでri及びkiは数式2で表される。Here, r i and k i are expressed by Equation 2.

【0018】[0018]

【数2】 [Equation 2]

【0019】(xsi,ysi,zsi)は基地局iの位置,Ai
φiは基地局iから発射される電波の振幅と位相であ
り、ユーザー受信機10の内部で発生する参照信号(周
波数f ref)との積を取ると数式3が成り立つ。
(Xsi, ysi, zsi) Is the position of base station i, Ai
φiIs the amplitude and phase of the radio wave emitted from the base station i.
The reference signal (frequency) generated inside the user receiver 10.
Wave number f ref), The mathematical formula 3 holds.

【0020】[0020]

【数3】 [Equation 3]

【0021】ビ−ト成分をEB(x,y,z,t)とすると数式
4が成り立つ。
When the beat component is E B (x, y, z, t), the equation 4 is established.

【0022】[0022]

【数4】 [Equation 4]

【0023】ビ−ト周波数(4種類)ごとに、上式から
cos成分とsin成分を足し合わせた後に、ビ−ト周波数ご
との振幅│EB│を計算しそのビ−ト周波数の電界強度
とする。上式によれば、電界強度は基地局iから発射さ
れる電波の位相の関数となるので同期を取っておくと精
度が向上する。また、振幅についても同様である。
For each beat frequency (4 types),
After adding the cos component and the sin component, the amplitude │E B │ for each beat frequency is calculated and used as the electric field strength at that beat frequency. According to the above equation, the electric field strength is a function of the phase of the radio wave emitted from the base station i, so that the accuracy is improved if the synchronization is kept. The same applies to the amplitude.

【0024】図6は、図2における太枠の三角形(ビー
ト発生用信号0,1,2)内の図5に示される各補間デ
ータ点(P0〜P8)におけるビート周波数の電界強度
をシミュレーションより求めたものである。電波源の周
波数としては、f0=10,000,100Hz,f1=10,000,200Hz,f2
=10,000,300Hz,f3=10,000,400Hzを用いている。また、
ユーザー受信機10の内部で発生する参照信号の周波数
は、fref=10,000,000Hzとしている。ここで、各格子点
においてビート周波数の電界強度に相違が生じているこ
とが判り、該電界強度から座標を推定することが可能と
なる。
FIG. 6 is a simulation showing the electric field strength of the beat frequency at each interpolation data point (P0 to P8) shown in FIG. 5 in the thick frame triangle (beat generating signals 0, 1, 2) in FIG. It is what I asked The frequency of the radio wave source is f 0 = 10,000,100Hz, f 1 = 10,000,200Hz, f 2
= 10,000,300Hz and f 3 = 10,000,400Hz are used. Also,
The frequency of the reference signal generated inside the user receiver 10 is f ref = 10,000,000 Hz. Here, it is found that the electric field strength of the beat frequency is different at each grid point, and the coordinates can be estimated from the electric field strength.

【0025】例として、1次式による補間を考える。補
間デ−タ点(xi,yi,zi)for i=0,1,…,M−1におけるビ
−トj=0,1,…,N−1の電界強度を│Eijとする。zi
=h=const for i=0,1,…,M−1 としても良い。x座標
に関する補間式の係数をα00 and α1j forj=0,1,…,N
−1とすると数式5が成り立つ。
As an example, consider interpolation by a linear equation. Supplement
Data point (xi, yi, zi) For i = 0,1, ..., M−1
−G j = 0,1, ..., N−1 electric field strength | EBijAnd zi
= h = const for i = 0,1, ..., M−1. x coordinate
The coefficient of the interpolation formula for α00 and α1jforj = 0,1, ..., N
If −1, then Equation 5 holds.

【0026】[0026]

【数5】 [Equation 5]

【0027】M=N+1であれば、係数α00 and α1j for
j=0,1,…,N−1を決定できる。M>N+1の場合には最小自
乗法を用いればよい。
If M = N + 1, the coefficient α 00 and α 1j for
It is possible to determine j = 0, 1, ..., N−1. If M> N + 1, the least squares method may be used.

【0028】同様に、y座標に関する補間式の係数をβ
00 and β1j forj=0,1,…,N−1とすると数式6が成
り立つ。
Similarly, the coefficient of the interpolation formula for the y coordinate is β
00 and β 1j If forj = 0, 1, ..., N−1, then Equation 6 holds.

【0029】[0029]

【数6】 [Equation 6]

【0030】M=N+1であれば、係数β00 and β1j for
j=0,1,…,N−1を決定できる。M>N+1の場合には最小自
乗法を用いればよい。数式5および数式6の右辺の第2
項はすべてのビ−トに対して和を取ってもよいが、位置
計測対象点の属する三角形の頂点に置かれた電波源の周
波数から生じるビ−トに限定してもよい。以下ではこの
ように考えた場合の結果を示す。
If M = N + 1, the coefficient β 00 and β 1j for
It is possible to determine j = 0, 1, ..., N−1. If M> N + 1, the least squares method may be used. Second on the right side of Equations 5 and 6
Although the term may be summed for all the beats, it may be limited to the beat generated from the frequency of the radio wave source placed at the vertex of the triangle to which the position measurement target point belongs. The following shows the results of such a consideration.

【0031】h=0の場合の結果について述べる。補間係
数は表1に示されるような結果を与える。
The result when h = 0 is described. The interpolation factors give results as shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1で与えられる補間係数を用いて位置を
推定すると、表2に示されるような結果が得られる。
Estimating the position using the interpolation coefficients given in Table 1 yields the results shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】以上述べたように、本発明の電界強度に
よる位置測定法を地下又は建築構造物内において使用す
れば、該地下又は建築構造物内の測定対象区域の天井又
は空間上部に三角格子状に多数設置した基地局から発射
されるID信号及びビート発生用信号を含んだ電波を受
信して電界強度の3点計測により自己の位置を高精度に
測定することができ、更には比較的に安価にシステムを
構築することができるという絶大なる効果を奏すること
ができる。
As described above, when the position measuring method based on the electric field strength of the present invention is used in an underground or a building structure, a triangle is formed on the ceiling or space above the measurement area in the underground or the building structure. The position of one's own can be measured with high accuracy by receiving radio waves including ID signals and beat generating signals emitted from a large number of base stations installed in a grid pattern, and measuring the self position with high accuracy. The great effect that the system can be constructed at a low cost can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電界強度による位置測定法を構築する
ためのブロック図である。
FIG. 1 is a block diagram for constructing a position measuring method by electric field strength according to the present invention.

【図2】本発明の電界強度による位置測定法において三
角格子状に配列した基地局の一実施例における配置図で
ある。
FIG. 2 is a layout diagram of an embodiment of base stations arranged in a triangular lattice pattern in the position measuring method by electric field strength according to the present invention.

【図3】図2において各基地局間の距離及び位置を明示
した図である。
FIG. 3 is a diagram in which distances and positions between base stations in FIG. 2 are clearly shown.

【図4】本発明の電界強度による位置測定法において基
地局より発射するID信号とビート発生用信号との周期
関係図である。
FIG. 4 is a diagram showing a periodic relationship between an ID signal emitted from a base station and a beat generating signal in the position measuring method using electric field strength of the present invention.

【図5】本発明の電界強度による位置測定法における補
間データ採取のための補間データ点の配置図である。
FIG. 5 is a layout diagram of interpolation data points for sampling interpolation data in the position measuring method by electric field strength according to the present invention.

【図6】本発明の電界強度による位置測定法における各
観測点のビート周波数の電界強度の違いを明示した図で
ある。
FIG. 6 is a diagram clearly showing a difference in electric field strength of beat frequencies at respective observation points in the position measuring method by electric field strength of the present invention.

【符号の説明】[Explanation of symbols]

1 送信機 2 信号ケーブル 3〜5 基地局 6〜8 アンテナ 9 ユーザー 10 ユーザー受信機 11 アンテナ 12 天井 13 床面 14 受信機 15 アンテナ 16 LANケーブル 1 transmitter 2 signal cable 3-5 base stations 6-8 antenna 9 users 10 user receiver 11 antenna 12 ceiling 13 floor 14 receiver 15 antenna 16 LAN cable

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 利行 静岡県静岡市御幸町8−3 東京生命ビル 4階 株式会社テルヤ内 (72)発明者 一色 浩 大阪府大阪狭山市大野台2丁目17番10号 (72)発明者 加藤 裕幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5J062 BB08 CC18 HH04 5K067 AA41 DD17 DD19 EE02 EE10 EE13 GG01 GG11 HH21 JJ53 JJ54    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiyuki Saito             Tokyo Life Building 8-3 Miyukicho, Shizuoka City, Shizuoka Prefecture             On the 4th floor, Telya Co., Ltd. (72) Inventor Hiroshi Isshiki             2-17-10 Onodai, Sayama City, Osaka Prefecture, Osaka Prefecture (72) Inventor Hiroyuki Kato             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F term (reference) 5J062 BB08 CC18 HH04                 5K067 AA41 DD17 DD19 EE02 EE10                       EE13 GG01 GG11 HH21 JJ53                       JJ54

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 搬送波に多数のID信号及びビート発生
用信号を交互に重畳して送信可能な送信機と、地下又は
建築構造物内の測定対象区域の天井又は空間上部に前記
信号を発射するための三角格子状に多数設置した基地局
とを、個々に信号ケーブルにて接続して構成することを
特徴とする、電界強度による位置測定法。
1. A transmitter capable of alternately superimposing a large number of ID signals and beat generation signals on a carrier wave and transmitting the signals, and emitting the signals to a ceiling or an upper space of a measurement target area in an underground or building structure. A position measurement method based on electric field strength, which is characterized in that a large number of base stations installed in a triangular grid are individually connected by signal cables.
【請求項2】 各基地局から発射される信号は、搬送波
に各基地局固有のID信号と少なくとも4種類以上のビ
ート発生用信号の内の1種類のビート発生用信号を重畳
した信号であることを特徴とした、請求項1に記載の電
界強度による位置測定法。
2. A signal emitted from each base station is a signal obtained by superimposing on a carrier wave an ID signal unique to each base station and one kind of beat generating signal among at least four kinds of beat generating signals. The position measuring method by electric field strength according to claim 1, wherein
【請求項3】 測定地点には、少なくとも3箇所以上の
基地局からの信号を受信可能な受信機を配設し、該受信
機にて受信した信号よりID信号の抽出及びビート信号
の合成を行い、該ID信号の内容及びビート信号の強度
を解析し、予め測定対象区域のIDとビート信号強度を
マッピングしたルックアップテーブルを用いて作られた
補間関数により位置の特定を行うことを特徴とした、請
求項1に記載の電界強度による位置測定法。
3. A measuring point is provided with a receiver capable of receiving signals from at least three or more base stations, and an ID signal is extracted from the signal received by the receiver and a beat signal is synthesized. Characterized in that the content of the ID signal and the strength of the beat signal are analyzed, and the position is specified by an interpolation function created in advance using a look-up table in which the ID of the measurement target area and the beat signal strength are mapped. The position measuring method by electric field strength according to claim 1.
JP2001182701A 2001-06-18 2001-06-18 Method for measuring position by electric field strength Pending JP2003004835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182701A JP2003004835A (en) 2001-06-18 2001-06-18 Method for measuring position by electric field strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182701A JP2003004835A (en) 2001-06-18 2001-06-18 Method for measuring position by electric field strength

Publications (1)

Publication Number Publication Date
JP2003004835A true JP2003004835A (en) 2003-01-08

Family

ID=19022740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182701A Pending JP2003004835A (en) 2001-06-18 2001-06-18 Method for measuring position by electric field strength

Country Status (1)

Country Link
JP (1) JP2003004835A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010348A (en) * 2001-06-29 2003-01-14 Teruya:Kk Network system for collecting disaster information or the like in underground or in building structure
KR100938047B1 (en) 2003-04-25 2010-01-21 마이크로소프트 코포레이션 Calibration of a device location measurement system that utilizes wireless signal strengths
JP2011220966A (en) * 2010-04-14 2011-11-04 Fujitsu Ltd Device, program and method for position estimation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010348A (en) * 2001-06-29 2003-01-14 Teruya:Kk Network system for collecting disaster information or the like in underground or in building structure
KR100938047B1 (en) 2003-04-25 2010-01-21 마이크로소프트 코포레이션 Calibration of a device location measurement system that utilizes wireless signal strengths
JP2011220966A (en) * 2010-04-14 2011-11-04 Fujitsu Ltd Device, program and method for position estimation

Similar Documents

Publication Publication Date Title
US10813073B2 (en) Determining emitter locations
KR101077879B1 (en) Estimating the location of inexpensive wireless terminals by using signal strength measurements
Zhang et al. Localization technologies for indoor human tracking
CN108027419A (en) Self-organizing mixing indoor locating system
US10798527B2 (en) Cognitive progressive method and system for deploying indoor location sensor networks
CN107003378A (en) It is determined that the geographical position of the portable electron device with synthetic antenna array
US8504322B2 (en) Likelihood map system for localizing an emitter
Li et al. An indoor ultrasonic positioning system based on TOA for Internet of Things
RU2709607C1 (en) Method of determining coordinates of a radio-frequency source from an aircraft board using a tri-orthogonal antenna system
US7212466B2 (en) Producing amplitude values for controlling pixel illumination on a sonar display
KR20120071291A (en) Indoor position finding apparatus and method for measuring indoor positioning using wireless communication
JP2007074323A (en) Wireless tag search method and device
Piontek et al. Improving the accuracy of ultrasound-based localisation systems
JP2003004835A (en) Method for measuring position by electric field strength
RU2691295C2 (en) Global radiohydroacoustic system of monitoring fields of atmosphere, ocean and earth crust in the marine environment and determining formation sources thereof
JPH11326482A (en) Wide-area radio wave monitoring method and device
CN111356168B (en) Network coverage simulation method and device
RU2691294C2 (en) Method for forming and application of global radiohydroacoustic system of monitoring atmospheric, oceanic and crustal fields in marine environment and recognition of sources thereof
RU151663U1 (en) RADAR SITUATION SIMULATOR WITH RADIO TECHNICAL SIGNALS SYNTHESIS
Mohd et al. Indoor Wi-Fi tracking system using fingerprinting and Kalman filter
KR101975656B1 (en) Localization apparatus and method for controlling thereof
CN110336629B (en) Method for realizing field intensity distribution prediction processing based on frequency spectrum drive test data and corresponding system
Kulawiak et al. Dynamic signal strength mapping and analysis by means of mobile Geographic Information System
RU2640395C1 (en) Method for determining location of satellite communication earth station
RU2668566C2 (en) One-position multiplicative difference-relative method for determining of radio frequencies sources location coordinates