JP2003004149A - Shaft seal mechanism and gas turbine - Google Patents

Shaft seal mechanism and gas turbine

Info

Publication number
JP2003004149A
JP2003004149A JP2001186708A JP2001186708A JP2003004149A JP 2003004149 A JP2003004149 A JP 2003004149A JP 2001186708 A JP2001186708 A JP 2001186708A JP 2001186708 A JP2001186708 A JP 2001186708A JP 2003004149 A JP2003004149 A JP 2003004149A
Authority
JP
Japan
Prior art keywords
seal mechanism
shaft seal
shaft
flow path
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001186708A
Other languages
Japanese (ja)
Other versions
JP3691000B2 (en
Inventor
Hidekazu Uehara
秀和 上原
Tanehiro Shinohara
種宏 篠原
Koichi Akagi
弘一 赤城
Masanori Yuri
雅則 由里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001186708A priority Critical patent/JP3691000B2/en
Publication of JP2003004149A publication Critical patent/JP2003004149A/en
Application granted granted Critical
Publication of JP3691000B2 publication Critical patent/JP3691000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shaft seal mechanism capable of reducing an amount of leakage through a space between division parts and alloying a difference in thermal expansion between a shaft seal mechanism and its mounting part and a gas turbine having the mechanism. SOLUTION: The gas turbine adapts constitution that a joining member 41 to apply flow passage resistance on combustion gas G flowing in the axial direction through a space between division parts is situated between the division parts 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン,蒸
気タービン,圧縮機,水車,冷凍機,ポンプなどの大型
流体機械の回転軸等に用いて好適な、軸シール機構に関
する。また、本発明は、高温高圧のガスをタービンに導
いて膨張させ、ガスの熱エネルギーを機械的な回転エネ
ルギーに変換して動力を発生させるガスタービンに関
し、特にその回転軸に適用される軸シール機構に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shaft seal mechanism suitable for use as a rotary shaft of a large fluid machine such as a gas turbine, a steam turbine, a compressor, a water turbine, a refrigerator, a pump or the like. The present invention also relates to a gas turbine that guides high-temperature and high-pressure gas to a turbine to expand the gas and converts the thermal energy of the gas into mechanical rotational energy to generate power, and particularly to a shaft seal applied to the rotating shaft thereof. Regarding the mechanism.

【0002】[0002]

【従来の技術】従来より、流体機械の回転軸等におい
て、静止側と回転側との間の環状隙間より、高圧側から
低圧側に向かって作動流体が漏洩するのを防止すること
を主な目的として、軸シール機構が用いられている。こ
の軸シール機構としては、ラビリンスシールやブラシシ
ールがあり、それぞれ以下に説明する構造を備えてい
る。
2. Description of the Related Art Conventionally, in a rotary shaft of a fluid machine or the like, it has been a main purpose to prevent a working fluid from leaking from a high pressure side to a low pressure side through an annular gap between a stationary side and a rotating side. A shaft seal mechanism is used for this purpose. The shaft seal mechanism includes a labyrinth seal and a brush seal, each of which has a structure described below.

【0003】まず、図20に示すラビリンスシールは、
静止側1と回転側2との間の隙間である環状空間を埋め
るように配置固定されており、回転側2とフィン3との
隙間4を狭めることにより、高圧側5から低圧側6へ流
れる流体の流路面積を小さくし、さらに、圧損抵抗の大
きい流路7を形成するように構成されている。このよう
な構成により、高圧側5から低圧側6に向かって漏洩す
る流体流量を低減する役目をなしている。同様に、図2
1に示すブラシシールも、静止側1と回転側2との間の
隙間である環状空間を埋めるように配置固定されてお
り、そのワイヤ先端7Aを回転側2に接触させること
で、静止側1と回転側2との間の隙間をなくし、実質的
な流路7Bを、ワイヤ先端7A間を通過するもののみと
することで、高圧側5から低圧側6に向かって漏洩する
流体流量を大幅に低減することが可能となっている。
First, the labyrinth seal shown in FIG.
It is arranged and fixed so as to fill the annular space that is the gap between the stationary side 1 and the rotating side 2, and by narrowing the gap 4 between the rotating side 2 and the fins 3, it flows from the high pressure side 5 to the low pressure side 6. The flow passage area of the fluid is reduced, and the flow passage 7 having a large pressure loss resistance is formed. Such a configuration serves to reduce the flow rate of fluid that leaks from the high pressure side 5 to the low pressure side 6. Similarly, FIG.
The brush seal shown in FIG. 1 is also arranged and fixed so as to fill the annular space which is the gap between the stationary side 1 and the rotating side 2, and the wire side 7A is brought into contact with the rotating side 2 to fix the stationary side 1 By eliminating the gap between the rotating side 2 and the rotating side 2, and only allowing the substantial flow path 7B to pass between the wire tips 7A, the flow rate of the fluid leaking from the high pressure side 5 to the low pressure side 6 is significantly increased. It is possible to reduce to.

【0004】このブラシシールを参考として、軸シール
機構を正面より見た全体構成の一例を図22(a),
(b)に示す。なお、図22(a)は、図21の矢視A
より見た正面図であり、図22(b)は、図22(a)
のB−B矢視図である。これら図22(a),(b)に
示すように、ブラシシールは円周方向の複数箇所におい
て分割(同図は6分割の例を示している)されており、
これら分割部分には、隙間9がそれぞれ形成されてい
る。これら隙間8は、流体機械の作動流体が温度変化を
伴う場合、軸シール機構と取付部部材との材料の違い、
或いは、過渡的な温度変化の違いによる熱膨張差を許容
するために必須なものである。
An example of the overall construction of the shaft seal mechanism as viewed from the front with reference to this brush seal is shown in FIG.
It shows in (b). Note that FIG. 22A shows a view A in FIG.
FIG. 22B is a front view seen further, and FIG.
It is a BB arrow line view of. As shown in FIGS. 22 (a) and 22 (b), the brush seal is divided at a plurality of positions in the circumferential direction (the figure shows an example of 6 divisions),
A gap 9 is formed in each of these divided portions. When the working fluid of the fluid machine is accompanied by a temperature change, these gaps 8 are made of different materials for the shaft seal mechanism and the mounting member,
Alternatively, it is essential in order to allow a difference in thermal expansion due to a difference in transitional temperature change.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな分割構造では、各分割片8間に隙間9がそれぞれ形
成され、これら隙間9が、高圧側5から低圧側6に向か
って直線的に流体を通過させる流路10を形成してしま
うため、この流路抵抗の低い流路10を通って漏れる漏
洩量が増加し、ガスタービンとしての機械効率を低下さ
せてしまうという問題を招来してしまうこととなる。こ
の問題は、同様な分割構造を有する軸シール機構の全て
において生じうるものであり、ブラシシールに限らず、
ラビリンスシールにおいても問題となることがある。
However, in such a divided structure, gaps 9 are formed between the respective divided pieces 8, and these gaps 9 are fluidized linearly from the high pressure side 5 to the low pressure side 6. Since the flow path 10 for passing the gas is formed, the amount of leakage that leaks through the flow path 10 having a low flow resistance increases, which causes a problem that the mechanical efficiency of the gas turbine is reduced. It will be. This problem can occur in all shaft seal mechanisms having the same divided structure, and is not limited to brush seals,
It can also be a problem with labyrinth seals.

【0006】本発明は、上記事情に鑑みてなされたもの
であり、各分割部間からの漏洩量を低減し、なおかつ、
軸シール機構とその取付部との間の熱膨張差を許容する
ことができる軸シール機構及び、これを備えたガスター
ビンの提供を目的とする。
The present invention has been made in view of the above circumstances, and reduces the amount of leakage from each divided portion, and
An object of the present invention is to provide a shaft seal mechanism capable of allowing a difference in thermal expansion between the shaft seal mechanism and a mounting portion thereof, and a gas turbine including the shaft seal mechanism.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の手段を採用した。すなわち、本発明
の請求項1に記載の軸シール機構は、回転軸と静止部と
の間の環状空間を通って前記回転軸の軸線方向に流れる
流体を阻止し、前記軸線方向より正面視した場合に、円
周方向で複数の分割部に分割されたリング状をなす軸シ
ール機構において、前記各分割部間に、これらの間を前
記軸線方向に向かう流体に対して流路抵抗を付与する流
路抵抗形成部が設けられていることを特徴とする。ま
た、請求項2に記載の軸シール機構は、請求項1に記載
の軸シール機構において、前記流路抵抗形成部が、向か
い合う前記各分割部間を覆う第1覆い部材であることを
特徴とする。また、請求項3に記載の軸シール機構は、
請求項1に記載の軸シール機構において、前記流路抵抗
形成部が、向かい合う前記各分割部間から互いに接近す
る方向にそれぞれ突出する凸部と、これら凸部を覆う第
2覆い部材とを備えていることを特徴とする。
The present invention adopts the following means in order to solve the above problems. That is, the shaft seal mechanism according to claim 1 of the present invention blocks fluid flowing in the axial direction of the rotary shaft through the annular space between the rotary shaft and the stationary portion, and is viewed from the front in the axial direction. In this case, in a ring-shaped shaft seal mechanism divided into a plurality of divided portions in the circumferential direction, a flow path resistance is imparted to the fluid flowing in the axial direction between the divided portions. A channel resistance forming portion is provided. Further, the shaft sealing mechanism according to claim 2 is the shaft sealing mechanism according to claim 1, wherein the flow path resistance forming portion is a first covering member that covers between the facing divided portions. To do. The shaft seal mechanism according to claim 3 is
The shaft seal mechanism according to claim 1, wherein the flow path resistance forming portion includes a convex portion protruding from each of the facing divided portions in a direction approaching each other, and a second covering member covering the convex portion. It is characterized by

【0008】上記請求項1〜3のいずれかに記載の軸シ
ール機構によれば、各分割部間を通って漏れ出ようとす
る流体には、流路抵抗形成部による流路抵抗が付与され
るため、圧力損失を受けやすく、従来のような直線的な
隙間流路を通る場合に比較して容易に漏れるのを防止す
ることができるようになる。しかも、各分割部間は分離
した状態を維持しているため、互いに接近離間動作する
ことができ、これにより、このリング状の軸シール部材
は、応力を生じることなくその外径寸法を拡大または収
縮させることもできるようになっている。
According to the shaft seal mechanism of any one of claims 1 to 3, the flow path resistance by the flow path resistance forming portion is given to the fluid which leaks through between the divided portions. Therefore, pressure loss is likely to occur, and leakage can be prevented more easily than in the case of passing through a linear clearance channel as in the related art. Moreover, since the divided portions are kept separated from each other, they can be moved toward and away from each other, which allows the ring-shaped shaft seal member to expand its outer diameter without stress. It can also be contracted.

【0009】請求項4に記載の軸シール機構は、請求項
3に記載の軸シール機構において、前記第2覆い部材
が、互いに向かい合う前記各分割部間の外形状を一方か
ら他方に向かって連続するように繋ぐ外形形状を有する
ことを特徴とする。上記請求項4に記載の軸シール機構
によれば、その全体外形状は、円周方向で連続した単純
なリング形状をなすので、各分割部が取り付けられる静
止部に対し、第2覆い部を配置するための追加加工を施
さずに済む。
According to a fourth aspect of the present invention, there is provided the shaft sealing mechanism according to the third aspect, wherein the second covering member has a continuous outer shape between the divided portions facing each other from one to the other. It is characterized in that it has an outer shape that is connected so that According to the shaft seal mechanism of the fourth aspect, since the entire outer shape is a simple ring shape continuous in the circumferential direction, the second cover portion is provided to the stationary portion to which each divided portion is attached. It does not require additional processing for placement.

【0010】請求項5に記載の軸シール機構は、請求項
1に記載の軸シール機構において、前記流路抵抗形成部
が、互いに向かい合う前記各分割部間に設けられた凹凸
嵌合部であることを特徴とする。上記請求項5に記載の
軸シール機構によれば、各分割部間を通って漏れ出よう
とする流体には、流路抵抗形成部である凹凸嵌合部によ
り流路抵抗が付与されるため、圧力損失を受けやすく、
従来のような直線的な隙間流路を通る場合に比較して容
易に漏れるのを防止することができる。しかも、各分割
部間は分離した状態を維持しているため、互いに接近離
間動作することができ、これにより、このリング状の軸
シール部材は、応力を生じることなくその外径寸法を拡
大または収縮させることもできるようになる。
According to a fifth aspect of the present invention, there is provided the shaft sealing mechanism according to the first aspect, wherein the flow path resistance forming portion is an uneven fitting portion provided between the divided portions facing each other. It is characterized by According to the shaft seal mechanism of the fifth aspect, the flow path resistance is imparted to the fluid attempting to leak through the respective divided parts by the concave-convex fitting part that is the flow path resistance forming part. , Susceptible to pressure loss,
Leakage can be prevented more easily than in the case of passing through a linear clearance channel as in the related art. Moreover, since the divided portions are kept separated from each other, they can be moved toward and away from each other, which allows the ring-shaped shaft seal member to expand its outer diameter without stress. It will also be possible to contract.

【0011】本発明の請求項6に記載のガスタービン
は、高温高圧のガスをケーシングに導き、該ケーシング
の内部に回転可能に支持された回転軸の動翼に吹き付け
ることで前記ガスの熱エネルギーを機械的な回転エネル
ギーに変換して動力を発生するガスタービンにおいて、
請求項1〜5のいずれかに記載の軸シール機構を備えた
ことを特徴とする。上記請求項6に記載のガスタービン
によれば、上記請求項1〜5のいずれかに記載の軸シー
ル機構と同様の作用を得ることができる。
A gas turbine according to a sixth aspect of the present invention introduces a high-temperature and high-pressure gas into a casing, and blows it onto the rotor blades of a rotating shaft rotatably supported inside the casing to generate thermal energy of the gas. In a gas turbine that converts power into mechanical rotational energy to generate power,
A shaft seal mechanism according to any one of claims 1 to 5 is provided. According to the gas turbine described in claim 6, it is possible to obtain the same operation as that of the shaft seal mechanism described in any of claims 1 to 5.

【0012】[0012]

【発明の実施の形態】本発明に係る軸シール機構及びこ
れを備えたガスタービンの各実施形態についての説明を
以下に行うが、本発明がこれらのみに限定解釈されるも
のでないことは、勿論である。
BEST MODE FOR CARRYING OUT THE INVENTION Each embodiment of a shaft seal mechanism and a gas turbine equipped with the same according to the present invention will be described below. However, it goes without saying that the present invention is not limited to these embodiments. Is.

【0013】まず、図1〜図5を参照しながら第1実施
形態についての説明を行う。図1に、ガスタービンの概
略構成を示す。同図において、符号20は圧縮機、符号
21は燃焼器、符号22はガスタービンを示している。
圧縮機20は、多量の空気をその内部に取り入れて圧縮
するものである。通常、ガスタービンでは、後述する回
転軸23で得られる動力の一部が、圧縮機の動力として
利用されている。燃焼器21は、圧縮機20で圧縮され
た空気に燃料を混合して燃焼させるものである。タービ
ン22は、燃焼器21で発生させた燃焼ガスをその内部
に導入して膨張させ、回転軸23に設けられた動翼23
eに吹き付けることで燃焼ガスの熱エネルギーを機械的
な回転エネルギーに変換して動力を発生させるものであ
る。
First, the first embodiment will be described with reference to FIGS. FIG. 1 shows a schematic configuration of a gas turbine. In the figure, reference numeral 20 indicates a compressor, reference numeral 21 indicates a combustor, and reference numeral 22 indicates a gas turbine.
The compressor 20 takes in a large amount of air inside and compresses it. Usually, in a gas turbine, a part of the power obtained by a rotary shaft 23, which will be described later, is used as the power of the compressor. The combustor 21 mixes fuel with the air compressed by the compressor 20 and burns it. The turbine 22 introduces the combustion gas generated in the combustor 21 into the turbine 22 and expands the combustion gas, and a rotor blade 23 provided on the rotating shaft 23.
By spraying on e, the thermal energy of the combustion gas is converted into mechanical rotational energy to generate power.

【0014】タービン22には、回転軸23側の複数の
動翼23eの他に、ケーシング24側に固定された複数
の静翼24aが設けられており、これら動翼23eと静
翼24aとが回転軸23の軸方向に交互に配列されてい
る。動翼23eは、回転軸23の軸方向に流れる燃焼ガ
スの圧力を受けて回転軸23を回転させ、回転軸23に
与えられた回転エネルギーが軸端から取り出されて利用
されるようになっている。静翼24aと回転軸23との
間には、高圧側から低圧側に漏れる燃焼ガスの漏れ量を
低減するための軸シール機構として、リーフシール25
が設けられている。
The turbine 22 is provided with a plurality of stationary blades 24a fixed to the casing 24 side in addition to a plurality of moving blades 23e on the rotating shaft 23 side. They are arranged alternately in the axial direction of the rotary shaft 23. The rotor blade 23e receives the pressure of the combustion gas flowing in the axial direction of the rotary shaft 23, rotates the rotary shaft 23, and the rotational energy applied to the rotary shaft 23 is extracted from the shaft end and used. There is. A leaf seal 25 is provided between the stationary blade 24a and the rotary shaft 23 as a shaft seal mechanism for reducing the amount of combustion gas leaking from the high pressure side to the low pressure side.
Is provided.

【0015】このリーフシール25は、図2及び図3に
示すように、回転軸23の軸線方向に幅を有して先端が
回転軸23の周面23aに摺動し、互いに隙間30を空
けて外周側基端がリーフシールケーシング24A内周面
にろう付け固定された複数の可撓性を有する薄板29
を、回転軸23の周方向に該回転軸23の外周をシール
可能に多重に備えており、各薄板29と回転軸23の周
面23aとが鋭角をなし、各薄板29の回転軸方向両側
にそれぞれ低圧側側板26及び高圧側側板27が設けら
れた構成となっている。そして、このリーフシール25
は、該リーフシール25(静止部)と、回転軸23の周
面23aとの間の環状隙間空間(環状空間)を通って回
転軸23の軸線方向に漏れる燃焼ガスG(流体)の流れ
を阻止するものであり、軸線方向より正面視した場合
に、円周方向で複数(6体)の分割部40に分割(6分
割)されたリング状をなしている。
As shown in FIGS. 2 and 3, the leaf seal 25 has a width in the axial direction of the rotary shaft 23, and its tip slides on the peripheral surface 23a of the rotary shaft 23 to leave a gap 30 therebetween. A plurality of flexible thin plates 29 whose outer peripheral side ends are brazed and fixed to the inner peripheral surface of the leaf seal casing 24A.
Are multiply provided in the circumferential direction of the rotary shaft 23 so that the outer circumference of the rotary shaft 23 can be sealed, and each thin plate 29 and the circumferential surface 23a of the rotary shaft 23 form an acute angle, and both thin plate 29 both sides in the rotary shaft direction. A low-pressure side plate 26 and a high-pressure side plate 27 are provided in each. And this leaf seal 25
Is the flow of the combustion gas G (fluid) leaking in the axial direction of the rotary shaft 23 through the annular gap space (annular space) between the leaf seal 25 (stationary portion) and the peripheral surface 23a of the rotary shaft 23. This is a ring shape that is divided (six divisions) into a plurality of (six) divisions 40 in the circumferential direction when viewed from the front in the axial direction.

【0016】各薄板29は、回転軸23の軸方向に所定
の幅を有する平板形状を有しており、回転軸23の周方
向に多層に配置された構造になっている。そして、回転
軸23の外周をシールすることによって回転軸23の周
囲空間を高圧側領域と低圧側領域とに仕切っている。ま
た、各薄板29の幅方向両側において、高圧側領域には
前記高圧側側板27が、低圧側領域には前記低圧側側板
26がそれぞれ圧力作用方向のガイド板として配置され
ている。
Each thin plate 29 has a flat plate shape having a predetermined width in the axial direction of the rotary shaft 23, and has a structure of being arranged in multiple layers in the circumferential direction of the rotary shaft 23. By sealing the outer circumference of the rotary shaft 23, the space around the rotary shaft 23 is partitioned into a high pressure side region and a low pressure side region. Further, on both sides in the width direction of each thin plate 29, the high-pressure side plate 27 is arranged in the high-pressure side region, and the low-pressure side plate 26 is arranged in the low-pressure region as guide plates in the pressure acting direction.

【0017】そして、本実施形態のリーフシール25
は、図2〜図4に示すように、各分割部40間に、これ
らの間を前記軸線方向に向かう燃焼ガスGに対して流路
抵抗を付与する流路抵抗形成部として、互いに向かい合
う各分割部40間を覆う接合部材41(第1覆い部材)
を設けた点が特に特徴的となっている。この接合部材4
1は、一方の分割部40の端部40aと、該端部40a
に対向する他の分割部40の端部40bと、これら両端
部40a,40b間に形成された所定寸法(例えば0.
1mm〜1mm程度)の隙間c1とを覆う門形の部品で
あり、各薄板29が設けられた各分割部40の内周側部
分を除いて、各分割部40間の接合部分を覆うことが可
能となっている。
Then, the leaf seal 25 of the present embodiment.
As shown in FIGS. 2 to 4, between the divided portions 40, which face each other as flow passage resistance forming portions that give flow passage resistance to the combustion gas G that extends in the axial direction between them. Joining member 41 (first covering member) that covers between the divided portions 40
The point that is provided is particularly characteristic. This joining member 4
1 is an end portion 40a of one of the divided portions 40 and the end portion 40a
End 40b of the other divided portion 40 facing each other and a predetermined dimension (for example, 0.
It is a gate-shaped part that covers the clearance c1 of about 1 mm to 1 mm) and can cover the joint part between the divided parts 40 except the inner peripheral side part of each divided part 40 provided with each thin plate 29. It is possible.

【0018】すなわち、図5に示すように、各接合部材
41は、各分割部40間の接合部分のうち、その高圧側
領域及び低圧側領域に面する各側面40c,40dと重
なる部分及び前記隙間c1を覆う一対の側壁41a,4
1bと、各外周面40eと重なる部分及び前記隙間c1
を覆う外周壁41cとを備えて構成されている。さらに
同図に示すように、各接合部材41の両側壁41a,4
1bには、各分割部40の各側面40c,40dに形成
された段差状の被係止部40c1,40d1に対して係
止する段差状の係止部41a1,41b1とが形成され
ており、各接合部材41がリーフシール25の径方向に
抜け出るのを防止することが可能となっている。なお、
各側壁41a,41bと各側面40c,40dとの隙間
c2としては、前記隙間c1の1/2以下の寸法(c2
<0.5×c1)を採用するのが好ましく、場合によっ
ては摺接(c2=0)させるようにしても良い。
That is, as shown in FIG. 5, each of the joining members 41 is a portion of the joining portion between the divided portions 40, which overlaps the side surfaces 40c and 40d facing the high-pressure side area and the low-pressure side area, and the above-mentioned portion. A pair of side walls 41a, 4 covering the gap c1
1b, a portion overlapping each outer peripheral surface 40e, and the gap c1.
And an outer peripheral wall 41c that covers the. Further, as shown in the figure, both side walls 41a, 4 of each joining member 41 are
1b is formed with stepped locking portions 41a1 and 41b1 that lock with stepped locked portions 40c1 and 40d1 formed on the side surfaces 40c and 40d of the split portions 40, respectively. It is possible to prevent each joining member 41 from coming off in the radial direction of the leaf seal 25. In addition,
As the clearance c2 between each side wall 41a, 41b and each side surface 40c, 40d, a dimension (c2) which is 1/2 or less of the clearance c1.
It is preferable to adopt <0.5 × c1), and in some cases, sliding contact (c2 = 0) may be performed.

【0019】以上説明の本実施形態のリーフシール25
によれば、各分割部40間の間を通って漏れ出ようとす
る燃焼ガスGには、各接合部材41による流路抵抗が付
与されるため、圧力損失を受けやすく、従来のような直
線的な隙間流路を通る場合に比較して容易に漏れるのを
防止することができ、ガスタービンの機械効率向上を得
ることが可能となる。
The leaf seal 25 of this embodiment described above
According to the above, since the flow resistance of each joining member 41 is imparted to the combustion gas G which is about to leak out between the respective divided portions 40, the combustion gas G is likely to be subjected to the pressure loss and the straight line as in the conventional case. It is possible to prevent the gas from leaking more easily as compared with the case where the gas flows through the general clearance passage, and it is possible to improve the mechanical efficiency of the gas turbine.

【0020】すなわち、図4に示すように、高圧側領域
から低圧側領域に向かって漏れ出ようとする燃焼ガスG
は、下記(1)〜(3)の理由により、その漏洩量が低
減可能となっている。 (1)符号a,b,c,dの4箇所を曲がるような複雑
に折曲した迂回路を通らなければならないので、圧力損
失が増し、漏れにくくなる。 (2)隙間c1の流路に加えて、隙間c2の流路分だけ
全体流路長が長くなるので、やはり圧力損失が増し、漏
れにくくなる。 (3)隙間c1よりも狭い隙間c2の流路を通らなけれ
ばならないので、この部分で流路面積が絞られ、やはり
圧力損失が増して漏れにくくなる。
That is, as shown in FIG. 4, the combustion gas G which is about to leak from the high pressure side region toward the low pressure side region.
The leakage amount can be reduced for the following reasons (1) to (3). (1) Since it has to pass through a detour path that is complicatedly bent so as to bend at four points a, b, c, and d, pressure loss increases and it becomes difficult to leak. (2) In addition to the flow path of the clearance c1, the entire flow path length is increased by the flow path of the clearance c2, so that the pressure loss also increases and the leakage becomes difficult. (3) Since the passage of the gap c2 that is narrower than the gap c1 has to be passed, the area of the passage is narrowed at this portion, and the pressure loss also increases and the leakage becomes difficult.

【0021】しかも、各分割部40間は、各隙間c1を
置いて互いに分離した状態を維持しており、なおかつ、
各接合部材41が各分割部40間を拘束していないの
で、互いに接近離間動作することができ、これにより、
このリング状のリーフシール25は、応力を生じること
なくその外径寸法を拡大または収縮させることもできる
ようになっている。
Moreover, the respective divided portions 40 are kept separated from each other with the gaps c1 between them, and
Since the joining members 41 do not restrain the divided portions 40 from each other, they can move toward and away from each other.
The ring-shaped leaf seal 25 can also expand or contract its outer diameter dimension without causing stress.

【0022】以上説明のように、本実施形態のリーフシ
ール25は、各分割部40間に、これらの間を前記軸線
方向に向かう燃焼ガスGに対して流路抵抗を付与する接
合部材41を設ける構成を採用した。この構成によれ
ば、各接合部材41により与えられた流路抵抗により、
各分割部40間を通って漏れる燃焼ガスGの流量を低減
することが可能となる。なおかつ、各分割部40間は分
離状態を維持しているので、これら各分割部40間が接
近離間動作することにより、リーフシール25とその取
付部との間の熱膨張差を許容することも可能となってい
る。
As described above, in the leaf seal 25 of this embodiment, the joining members 41 for imparting flow path resistance to the combustion gas G extending between the divided portions 40 in the axial direction are provided between the divided portions 40. The configuration provided is adopted. According to this configuration, by the flow path resistance given by each joining member 41,
It is possible to reduce the flow rate of the combustion gas G that leaks between the divided portions 40. Moreover, since the divided portions 40 are kept in a separated state, the thermal expansion difference between the leaf seal 25 and its mounting portion may be allowed by the approaching / separating operation between these dividing portions 40. It is possible.

【0023】なお、本実施形態の接合部材41は、各薄
板29が設けられた各分割部40の内周側部分を除き、
各分割部40間の接合部分を覆うものとしたが、これに
限らず、例えば図6に示すように、低圧側側板26及び
高圧側側板27の各内周面側(前記回転軸23に面する
側の面)をも覆う形状を採用しても良い。この場合、同
図に示すように、外周側から前記回転軸23の位置する
内周側に向かう燃焼ガスGの漏れも、接合部材41で阻
止することができるので、より漏れ量を少なくして、ガ
スタービンの機械効率をより向上させることが可能とな
る。
The joining member 41 of the present embodiment is different from the inner peripheral side portion of each divided portion 40 provided with each thin plate 29.
Although the joint portion between the divided portions 40 is covered, the present invention is not limited to this. For example, as shown in FIG. 6, the inner peripheral surface side of the low-pressure side plate 26 and the high-pressure side plate 27 (the surface of the rotary shaft 23). It is also possible to adopt a shape that also covers the surface on the side to be processed. In this case, as shown in the same figure, since the joining member 41 can prevent the leakage of the combustion gas G from the outer peripheral side toward the inner peripheral side where the rotary shaft 23 is located, the leakage amount can be further reduced. It becomes possible to further improve the mechanical efficiency of the gas turbine.

【0024】次に、本発明の第2実施形態についての説
明を図7〜図10を参照しながら行うが、その特徴部分
を中心に説明するものとし、その他の、上記第1実施形
態と同一部分については説明を省略する。図7〜図9に
示すように、本実施形態のリーフシール50(前記リー
フシール25と区別するために新たな符号50を与える
ものとする)は、向かい合う前記各分割部40間から互
いに接近する方向にそれぞれ突出する各凸部51と、こ
れら凸部51を覆う接合部材52(第2覆い部材)と
を、前記流路抵抗形成部として採用している点が特に特
徴的となっている。
Next, a second embodiment of the present invention will be described with reference to FIGS. 7 to 10. The characteristic part will be mainly described, and the other parts are the same as those of the first embodiment. Description of parts is omitted. As shown in FIGS. 7 to 9, the leaf seals 50 of the present embodiment (provided that a new reference numeral 50 is provided to distinguish them from the leaf seals 25) approach each other from between the facing divided portions 40. A particular feature is that each convex portion 51 projecting in each direction and the joining member 52 (second covering member) that covers these convex portions 51 are adopted as the flow path resistance forming portion.

【0025】各凸部51は、各分割部40の外形を相似
状に細くした外形状を有しており、各分割部40と一体
に形成されている。そして、各凸部51の一側壁とし
て、各分割部40の低圧側側板26に連続する低圧側側
板26、他側壁として各分割部40の高圧側側板27に
連続する高圧側側板27が形成されている。各接合部材
52は、一方の分割部40の凸部51と、該凸部51に
対向する他方の分割部40の凸部51と、これら両凸部
51間に形成された所定寸法(例えば0.1mm〜1m
m程度)の隙間c1とを覆う門形の部品であり、各薄板
29が設けられた各凸部51の内周側部分を除いて、各
凸部51間を覆うことが可能となっている。
Each convex portion 51 has an outer shape in which the outer shape of each divided portion 40 is made similar to each other, and is formed integrally with each divided portion 40. Then, as one side wall of each convex portion 51, a low-pressure side plate 26 that is continuous with the low-pressure side plate 26 of each dividing part 40, and as another side wall, a high-pressure side plate 27 that is continuous with the high-pressure side plate 27 of each dividing part 40 is formed. ing. Each joining member 52 has a convex portion 51 of one divided portion 40, a convex portion 51 of the other divided portion 40 facing the convex portion 51, and a predetermined dimension (for example, 0 .1 mm to 1 m
It is a gate-shaped component that covers the clearance c1 of about m), and can cover each convex portion 51 except the inner peripheral side portion of each convex portion 51 provided with each thin plate 29. .

【0026】すなわち、図10に示すように、各接合部
材52は、各凸部51のうち、その高圧側領域及び低圧
側領域に面する各側面51a,51bと重なる部分及び
前記隙間c1を覆う一対の側壁52a,52bと、各外
周面51cと重なる部分及び前記隙間c1を覆う外周壁
52cとを備えて構成されている。さらに同図に示すよ
うに、各接合部材52の両側壁52a,52bには、各
凸部51の各側面51a,51bに形成された段差状の
被係止部51a1,51b1に対して係止する段差状の
係止部52a1,52b1が形成されており、各接合部
材52がリーフシール50の径方向に抜け出るのを防止
することが可能となっている。なお、各側壁52a,5
2bと各側面51a,51bとの隙間c3としては、前
記隙間c1の1/2以下の寸法(c3<0.5×c1)
を採用するのが好ましく、場合によっては摺接(c3=
0)させるようにしても良い。
That is, as shown in FIG. 10, each joining member 52 covers a portion of each convex portion 51, which overlaps the side surfaces 51a and 51b facing the high-pressure side area and the low-pressure side area, and the gap c1. It is configured to include a pair of side walls 52a and 52b and an outer peripheral wall 52c that covers a portion overlapping each outer peripheral surface 51c and the gap c1. Further, as shown in the figure, the side walls 52a, 52b of each joining member 52 are locked to the stepped locked portions 51a1, 51b1 formed on each side surface 51a, 51b of each convex portion 51. The step-like locking portions 52a1 and 52b1 are formed to prevent the joining members 52 from coming off in the radial direction of the leaf seal 50. In addition, each side wall 52a, 5
The clearance c3 between the 2b and each side surface 51a, 51b is not more than half the clearance c1 (c3 <0.5 × c1).
Is preferable, and in some cases, sliding contact (c3 =
0) may be performed.

【0027】また、各接合部材52は、図8及び図9に
示すように、互いに向かい合う各分割部40間の外形状
を一方から他方に向かって連続するように繋ぐ外形形状
を有している。すなわち、各接合部材52の各側壁52
a,52bは、その低圧側領域及び高圧側領域をそれぞ
れ向いた面の形状が、その両隣の各分割部40の両側面
の形状と等しく、連続した形状をなすようになってい
る。
Further, as shown in FIGS. 8 and 9, each joining member 52 has an outer shape in which the outer shape between the divided portions 40 facing each other is continuously connected from one side to the other side. . That is, each side wall 52 of each joining member 52
The shapes of a and 52b, which respectively face the low-pressure side area and the high-pressure side area, are the same as the shapes of both side surfaces of the respective divided portions 40 on both sides thereof, and are continuous.

【0028】以上説明の本実施形態のリーフシール50
によれば、各分割部40間の間を通って漏れ出ようとす
る燃焼ガスGに、各凸部51及び各接合部材52による
流路抵抗が付与されるため、圧力損失を受けやすく、従
来のような直線的な隙間流路を通る場合に比較して容易
に漏れるのを防止することができ、ガスタービンの機械
効率向上を得ることが可能となる。燃焼ガスGの漏洩量
が低減可能である理由は、前述の(1)〜(3)の理由
に同じであるが、本実施形態では、図9に示すように、
隙間c4の新たな流路を更に設けているので、上記第1
実施形態のリーフシール25に比較して圧力損失が更に
増し、より漏れにくくなっている。
The leaf seal 50 of this embodiment described above
According to the above, since the flow path resistance due to the respective convex portions 51 and the respective joint members 52 is imparted to the combustion gas G which is about to leak through between the respective divided portions 40, it is easy to receive the pressure loss, As compared with the case of passing through such a linear clearance flow path as described above, leakage can be prevented more easily, and the mechanical efficiency of the gas turbine can be improved. The reason why the leakage amount of the combustion gas G can be reduced is the same as the above-mentioned reasons (1) to (3), but in the present embodiment, as shown in FIG.
Since a new flow path for the gap c4 is further provided,
Compared with the leaf seal 25 of the embodiment, the pressure loss is further increased and it is more difficult to leak.

【0029】以上説明の本実施形態のリーフシール50
によれば、上記第1実施形態と同様に、各分割部40間
を通って漏れる燃焼ガスGの流量を低減することがで
き、なおかつ、リーフシール25とその取付部との間の
熱膨張差を許容することも可能となっている。さらに、
本実施形態のリーフシール50は、その各接合部材52
が、互いに向かい合う各分割部40間の外形状を一方か
ら他方に向かって連続するように繋ぐ外形形状を有して
いるので、リーフシール50の取付部に対し、各接合部
材52の箇所のみ特別な加工を施す必要がなくなり、組
立性の向上及び低加工コスト化できるのでより好ましい
と言える。
The leaf seal 50 of this embodiment described above
According to the first embodiment, as in the first embodiment, the flow rate of the combustion gas G that leaks between the divided portions 40 can be reduced, and the difference in thermal expansion between the leaf seal 25 and its attachment portion can be reduced. It is also possible to allow. further,
The leaf seal 50 of the present embodiment has the respective joining members 52.
Has an outer shape in which the outer shape between the divided portions 40 facing each other is continuously connected from one side to the other side, so that only the location of each joining member 52 is special with respect to the mounting portion of the leaf seal 50. It can be said that it is more preferable because it is not necessary to perform various processes, the assembling property is improved, and the processing cost can be reduced.

【0030】なお、本実施形態の接合部材52は、各薄
板29が設けられた各凸部51の内周側部分を除き、各
凸部51間を覆うものとしたが、これに限らず、例えば
図11に示すように、低圧側側板26及び高圧側側板2
7の各内周面側をも覆う形状を採用しても良い。この場
合、同図に示すように、外周側から前記回転軸23の位
置する内周側に向かう燃焼ガスGの漏れも、接合部材5
2で阻止することができるので、より漏れ量を少なくし
て、ガスタービンの機械効率をより向上させることが可
能となる。
The joining member 52 of the present embodiment covers the space between the convex portions 51 except the inner peripheral side portion of the convex portions 51 provided with the thin plates 29, but is not limited to this. For example, as shown in FIG. 11, the low-pressure side plate 26 and the high-pressure side plate 2
A shape that covers the inner peripheral surface side of 7 may also be adopted. In this case, as shown in the figure, even if the leakage of the combustion gas G from the outer peripheral side toward the inner peripheral side where the rotary shaft 23 is located, the joining member 5
Therefore, it is possible to reduce the amount of leakage and further improve the mechanical efficiency of the gas turbine.

【0031】次に、本発明の第3実施形態についての説
明を図12〜図15を参照しながら行うが、その特徴部
分を中心に説明するものとし、その他の、上記第1実施
形態と同一部分については説明を省略する。図12〜図
14に示すように、本実施形態のリーフシール60(前
記リーフシール25と区別するために新たな符号60を
与えるものとする)は、互いに向かい合う各分割部40
間に設けられた凹凸嵌合部61を、前記流路抵抗形成部
として採用している点が特に特徴的となっている。すな
わち、凹凸嵌合部61は、向かい合う各分割部40の一
方より他方に向かって突出するように設けられた凸部6
2と、該凸部62を覆うように嵌合し、他方の分割部4
0に設けられる凹部63(嵌合部)とから構成されてい
る。
Next, a third embodiment of the present invention will be described with reference to FIGS. 12 to 15. The characteristic part will be mainly described, and the other parts are the same as those of the first embodiment. Description of parts is omitted. As shown in FIGS. 12 to 14, the leaf seals 60 of the present embodiment (provided with a new reference numeral 60 to be distinguished from the leaf seals 25) are divided portions 40 facing each other.
A particular feature is that the concave-convex fitting portion 61 provided therebetween is used as the flow path resistance forming portion. That is, the concave-convex fitting portion 61 is provided with the convex portion 6 provided so as to project from one of the facing divided portions 40 toward the other.
2 and the convex portion 62 so as to cover them, and the other split portion 4
0 and a concave portion 63 (fitting portion).

【0032】凸部62は、各分割部40の外形を相似状
に細くした外形状を有しており、各分割部40と一体に
形成されている。そして、各凸部62の一側壁として、
各分割部40の低圧側側板26に連続する低圧側側板2
6、他側壁として各分割部40の高圧側側板27に連続
する高圧側側板27が形成されている。凹部63は、図
14に示すように、該凹部63に対して凸部62を嵌合
させて組み立てた状態で、その円周方向に所定寸法(例
えば0.1mm〜1mm程度)の隙間c1を確保するよ
うに分割部40の端部に形成されており、各薄板29が
設けられた凸部62の内周側部分を除いて、凸部62の
周囲を覆うことが可能となっている。
The convex portion 62 has an outer shape in which the outer shape of each divided portion 40 is thinned in a similar shape, and is integrally formed with each divided portion 40. Then, as one side wall of each convex portion 62,
Low-pressure side plate 2 continuous with the low-pressure side plate 26 of each divided portion 40
6. As the other side wall, a high-pressure side plate 27 that is continuous with the high-pressure side plate 27 of each dividing portion 40 is formed. As shown in FIG. 14, the recess 63 has a gap c1 of a predetermined dimension (for example, about 0.1 mm to 1 mm) in the circumferential direction in a state where the projection 62 is fitted into the recess 63 and assembled. It is formed at the end of the divided portion 40 so as to be secured, and it is possible to cover the periphery of the convex portion 62 except for the inner peripheral side portion of the convex portion 62 where each thin plate 29 is provided.

【0033】さらに図15に示すように、凹部63に
は、凸部62の各側面62a,62bに形成された段差
状の被係止部62a1,62b1に対して係止する段差
状の係止部63a1,63b1が形成されており、凹部
63及び凸部62間の嵌合状態がリーフシール50の径
方向に抜けるのを防止することが可能となっている。な
お、凹部63及び凸部62間の隙間c5としては、前記
隙間c1以下の寸法(c5<c1)を採用するのが好ま
しく、場合によっては摺接(c5=0)させるようにし
ても良い。
Further, as shown in FIG. 15, in the concave portion 63, a step-like engagement for engaging with the step-like engaged portions 62a1, 62b1 formed on the respective side surfaces 62a, 62b of the projection 62. The portions 63a1 and 63b1 are formed, and it is possible to prevent the fitted state between the concave portion 63 and the convex portion 62 from coming off in the radial direction of the leaf seal 50. As the gap c5 between the concave portion 63 and the convex portion 62, it is preferable to adopt a dimension (c5 <c1) which is equal to or smaller than the gap c1 and may be slidably contacted (c5 = 0) in some cases.

【0034】以上説明の本実施形態のリーフシール60
によれば、各分割部40間の間を通って漏れ出ようとす
る燃焼ガスGには、凹凸嵌合部61による流路抵抗が付
与されるため、圧力損失を受けやすく、従来のような直
線的な隙間流路を通る場合に比較して容易に漏れるのを
防止することができ、ガスタービンの機械効率向上を得
ることが可能となる。したがって、本実施形態のリーフ
シール60によれば、上記第1実施形態と同様に、各分
割部40間を通って漏れる燃焼ガスGの流量を低減する
ことができ、なおかつ、リーフシール60とその取付部
との間の熱膨張差を許容することも可能となっている。
The leaf seal 60 of this embodiment described above
According to the above, since the flow path resistance due to the concave-convex fitting portion 61 is imparted to the combustion gas G which is about to leak through between the divided portions 40, pressure loss is likely to occur, and the combustion gas G as in the conventional case is obtained. Leakage can be prevented more easily than in the case of passing through a linear clearance flow path, and the mechanical efficiency of the gas turbine can be improved. Therefore, according to the leaf seal 60 of the present embodiment, it is possible to reduce the flow rate of the combustion gas G that leaks between the divided portions 40, as in the first embodiment, and yet the leaf seal 60 and its It is also possible to allow a difference in thermal expansion with the mounting portion.

【0035】さらに、本実施形態のリーフシール60
は、上記第1実施形態に比較して、前記接合部材41の
ような別部品を製作する必要がないことと、互いに向か
い合う各分割部40間の外形状が、一方から他方に向か
って連続するように繋ぐ外形形状をなしているので、リ
ーフシール60の取付部に対して各凹凸嵌合部61の箇
所のみ特別な加工を施す必要がないこととから、組立性
の向上及び低加工コスト化できるのでより好ましいと言
える。
Furthermore, the leaf seal 60 of this embodiment.
In comparison with the first embodiment, it is not necessary to manufacture a separate component such as the joining member 41, and the outer shape between the divided portions 40 facing each other is continuous from one to the other. Since the outer shape of the leaf seal 60 is formed as described above, it is not necessary to perform special processing on the mounting portion of the leaf seal 60 only at the concave-convex fitting portion 61, so that the assemblability is improved and the processing cost is reduced. It is possible to say that it is more preferable.

【0036】なお、本実施形態の凹部63は、各薄板2
9が設けられた各凸部62の内周側部分を除き、各凸部
62の周囲を覆うものとしたが、これに限らず、例えば
図16に示すように、低圧側側板26及び高圧側側板2
7の各内周面側をも覆う形状を採用しても良い。この場
合、同図に示すように、外周側から前記回転軸23の位
置する内周側に向かう燃焼ガスGの漏れも、凹部63で
阻止することができるので、より漏れ量を少なくして、
ガスタービンの機械効率をより向上させることが可能と
なる。
The concave portion 63 of this embodiment is formed by each thin plate 2.
Although the circumference of each convex portion 62 is covered except for the inner peripheral side portion of each convex portion 62 where 9 is provided, the present invention is not limited to this. For example, as shown in FIG. Side plate 2
A shape that covers the inner peripheral surface side of 7 may also be adopted. In this case, as shown in the same figure, the leakage of the combustion gas G from the outer peripheral side toward the inner peripheral side where the rotary shaft 23 is located can also be blocked by the recess 63, so that the leakage amount can be further reduced.
It is possible to further improve the mechanical efficiency of the gas turbine.

【0037】本実施形態の凹凸嵌合部61の変形例とし
ては、例えば図17〜図19に示すものがあるが、その
他の凹凸嵌合形状を採用しても良いことは勿論である。
なお、これら変形例では、ブラシ70を有するブラシシ
ールに本発明を適用した場合を例に説明している。すな
わち、図17に示す変形例の凹凸嵌合部61は、一方の
分割部40の端部に形成された角形の凸部71及び角形
の凹部72と、他方の分割部40の端部に形成された角
形の凸部73及び角形の凹部74とを、所定寸法(例え
ば0.1mm〜1mm程度)の隙間c1を確保するよう
に互いに噛み合わせることで構成されている。
As a modified example of the concave-convex fitting portion 61 of this embodiment, for example, there are those shown in FIGS. 17 to 19, but it goes without saying that other concave-convex fitting shapes may be adopted.
In addition, in these modified examples, the case where the present invention is applied to the brush seal having the brush 70 is described as an example. That is, the concavo-convex fitting portion 61 of the modified example shown in FIG. 17 is formed at the end portion of one of the divided portions 40 with the square convex portion 71 and the square concave portion 72, and at the end portion of the other divided portion 40. The square convex portion 73 and the square concave portion 74 are meshed with each other so as to secure a gap c1 having a predetermined dimension (for example, about 0.1 mm to 1 mm).

【0038】同様に、図18に示す変形例の凹凸嵌合部
61は、一方の分割部40の端部に形成された三角形状
の凸部81及び三角形状の凹部82と、他方の分割部4
0の端部に形成された三角形状の凸部83及び三角形状
の凹部84とを、所定寸法(例えば0.1mm〜1mm
程度)の隙間c1を確保するように互いに噛み合わせる
ことで構成されている。また、図19に示す変形例の凹
凸嵌合部61は、図14では直線的であった各低圧側側
板26間の噛み合わせ面と、各高圧側側板27間の噛み
合わせ面とのそれぞれを、三角形の凹凸形状に構成した
場合の例である。
Similarly, the concavo-convex fitting portion 61 of the modified example shown in FIG. 18 has a triangular convex portion 81 and a triangular concave portion 82 formed at the ends of one of the divided portions 40, and the other divided portion. Four
The triangular convex portion 83 and the triangular concave portion 84 formed at the end portion of 0 have a predetermined size (for example, 0.1 mm to 1 mm).
It is configured by meshing with each other so as to secure a clearance c1 of about (about). Further, the uneven fitting portion 61 of the modified example shown in FIG. 19 has a meshing surface between the low-pressure side plates 26 and a meshing surface between the high-pressure side plates 27, which are linear in FIG. Is an example in the case of being configured in a triangular concavo-convex shape.

【0039】以上説明の図17〜図19の各変形例にお
いても、上記第3実施形態と同様の作用効果を得ること
が可能である上に、燃焼ガスGが流れる流路がさらに複
雑な迂回路となるので、ここを通る燃焼ガスGに対して
より大きな流路抵抗を付与することができ、燃焼ガスG
の漏洩量をより低減させることが可能となる。
Also in each of the modified examples of FIGS. 17 to 19 described above, it is possible to obtain the same operation and effect as those of the above-described third embodiment, and the bypass in which the flow path of the combustion gas G flows is further complicated. Since it becomes a passage, it is possible to give a larger flow path resistance to the combustion gas G passing therethrough.
It is possible to further reduce the leakage amount of.

【0040】以上に本発明の軸シール機構及びこれを備
えたガスタービンの第1〜第3実施形態及びその各種変
形例をそれぞれ説明してきたが、このガスタービンとし
ては、燃焼ガスを利用してタービン軸を回転させて動力
を得る一般的なガスタービンに加え、航空機用ガスター
ビンエンジン等に適用することも可能である。また、本
発明に係るガスタービンとしては、水蒸気を利用する蒸
気タービン等の流体機械にも転用可能である。また、本
発明に係る軸シール機構としては、ガスタービン、ガス
タービンエンジン、蒸気タービンなどの各種流体機械に
も適用可能である。
The shaft seal mechanism of the present invention and the first to third embodiments of the gas turbine equipped with the shaft seal mechanism and various modifications thereof have been described above. The gas turbine uses combustion gas. In addition to a general gas turbine that rotates a turbine shaft to obtain power, it can also be applied to an aircraft gas turbine engine or the like. Further, the gas turbine according to the present invention can be diverted to a fluid machine such as a steam turbine using steam. Further, the shaft seal mechanism according to the present invention can be applied to various fluid machines such as a gas turbine, a gas turbine engine, and a steam turbine.

【0041】また、各リーフシール40,50,60は
6分割構造としたが、これに限らず、5分割以下、もし
くは7分割以上の構成を採用するものとしても良い。ま
た、本実施形態では、各薄板29を有するリーフシール
40,50,60に本発明を適用した場合を例に説明し
たが、これに限らず、ブラシシール及びラビリンスシー
ルなど、分割構造を有する他の軸シール機構に本発明を
適用しても良いことは、勿論である。
Although each leaf seal 40, 50, 60 has a six-divided structure, the present invention is not limited to this, and a structure of five or less, or seven or more may be adopted. Further, in the present embodiment, the case where the present invention is applied to the leaf seals 40, 50, 60 having the respective thin plates 29 has been described as an example, but the present invention is not limited to this, and a split structure such as a brush seal and a labyrinth seal is provided. It is needless to say that the present invention may be applied to the shaft seal mechanism of No.

【0042】[0042]

【発明の効果】本発明の請求項1〜3に記載の軸シール
機構は、各分割部間に、これらの間を軸線方向に向かう
流体に対して流路抵抗を付与する流路抵抗形成部を設け
る構成を採用した。この構成によれば、流路抵抗形成部
により与えられた抵抗により、各分割部間を通って漏れ
る流体流量を低減することが可能となる。なおかつ、各
分割部間は分離状態を維持しているので、これら各分割
部間が接近離間動作することにより、軸シール機構とそ
の取付部との間の熱膨張差を許容することも可能とな
る。
The shaft seal mechanism according to the first to third aspects of the present invention provides a flow passage resistance forming portion for imparting flow passage resistance to the fluid flowing in the axial direction between the divided portions. Is adopted. According to this configuration, it is possible to reduce the flow rate of the fluid that leaks between the divided parts due to the resistance given by the flow path resistance forming part. Furthermore, since the separated portions are maintained in a separated state, it is possible to allow a difference in thermal expansion between the shaft seal mechanism and its mounting portion by the approaching and separating operations between these divided portions. Become.

【0043】また、請求項4に記載の軸シール機構は、
請求項3に記載の軸シール機構において、前記第2覆い
部材が、互いに向かい合う各分割部間の外形状が一方か
ら他方に向かって連続するように繋ぐ外形形状を有する
構成を採用した。この構成によれば、各分割部を取り付
ける静止部に対し、第2覆い部を配置するための追加加
工を施さずに済むので、加工コストの上昇を防ぐことが
可能となる。
Further, the shaft seal mechanism according to claim 4 is
In the shaft seal mechanism according to a third aspect of the present invention, the second cover member has an outer shape in which the outer shapes of the divided portions facing each other are continuous from one side to the other side. According to this configuration, it is not necessary to perform additional processing for disposing the second cover portion on the stationary portion to which each divided portion is attached, so that it is possible to prevent an increase in processing cost.

【0044】また、請求項5に記載の軸シール機構は、
各分割部間に、これらの間を軸線方向に向かう流体に対
して流路抵抗を付与する流路抵抗形成部として、凹凸嵌
合部を設ける構成を採用した。この構成によれば、凹凸
嵌合部により与えられた抵抗により、各分割部間を通っ
て漏れる流体流量を低減することが可能となる。なおか
つ、各分割部間は分離状態を維持しているので、これら
各分割部間が接近離間動作することにより、軸シール機
構とその取付部との間の熱膨張差を許容することも可能
となる。
Further, the shaft seal mechanism according to claim 5 is
The configuration in which the concavo-convex fitting part is provided between the divided parts is provided as a flow path resistance forming part that gives flow path resistance to the fluid flowing between them in the axial direction. According to this configuration, it is possible to reduce the flow rate of the fluid that leaks between the divided portions due to the resistance provided by the concave-convex fitting portion. Furthermore, since the separated portions are maintained in a separated state, it is possible to allow a difference in thermal expansion between the shaft seal mechanism and its mounting portion by the approaching and separating operations between these divided portions. Become.

【0045】本発明の請求項6に記載のガスタービン
は、請求項1〜5のいずれかに記載の軸シール機構を備
える構成を採用した。この構成によれば、各分割部間か
らの漏洩量を低減して機械効率を向上させ、なおかつ、
軸シール機構とその取付部との間の熱膨張差を許容する
ことが可能となる。
A gas turbine according to a sixth aspect of the present invention adopts a configuration including the shaft seal mechanism according to any of the first to fifth aspects. According to this configuration, the amount of leakage from each divided portion is reduced to improve the mechanical efficiency, and
It is possible to allow a difference in thermal expansion between the shaft seal mechanism and its mounting portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る軸シール機構を備えたガスター
ビンの第1実施形態を示す概略全体構成断面図である。
FIG. 1 is a schematic overall configuration cross-sectional view showing a first embodiment of a gas turbine provided with a shaft seal mechanism according to the present invention.

【図2】 同ガスタービンの同軸シール機構を示す図で
あって、図1のC−C矢視図である。
FIG. 2 is a view showing a coaxial seal mechanism of the same gas turbine, and is a view taken along the line CC of FIG.

【図3】 同軸シール機構の要部を示す図であって、図
2のD部の斜視図である。
FIG. 3 is a view showing a main part of the coaxial seal mechanism, and is a perspective view of a D part in FIG. 2.

【図4】 同軸シール機構の同要部を示す図であって、
図2のE−E矢視図である。
FIG. 4 is a view showing the main part of the coaxial seal mechanism,
It is a EE arrow line view of FIG.

【図5】 同軸シール機構の同要部を示す図であって、
図4のF−F断面図である。
FIG. 5 is a view showing the main part of the coaxial seal mechanism,
FIG. 5 is a sectional view taken along line FF of FIG. 4.

【図6】 同軸シール機構の変形例を示す図であって、
図5のG部に相当する部分拡大図である。
FIG. 6 is a view showing a modified example of the coaxial seal mechanism,
FIG. 6 is a partially enlarged view corresponding to a G part in FIG. 5.

【図7】 本発明の軸シール機構の第2実施形態を示す
図であって、図3に相当する要部斜視図である。
FIG. 7 is a view showing a second embodiment of the shaft seal mechanism of the present invention, and is a perspective view of relevant parts corresponding to FIG. 3.

【図8】 同軸シール機構の同要部を示す図であって、
図7の矢印Hより見た正面図である。
FIG. 8 is a view showing the main part of the coaxial seal mechanism,
It is the front view seen from the arrow H of FIG.

【図9】 同軸シール機構の同要部を示す図であって、
図8のI−I矢視図である。
FIG. 9 is a view showing the main part of the coaxial seal mechanism,
FIG. 9 is a view on arrow I-I of FIG. 8.

【図10】 同軸シール機構の同要部を示す図であっ
て、図9のJ−J断面図である。
10 is a view showing the main part of the coaxial seal mechanism and is a cross-sectional view taken along line JJ of FIG.

【図11】 同軸シール機構の変形例を示す図であっ
て、図10のK部に相当する部分拡大図である。
FIG. 11 is a view showing a modified example of the coaxial seal mechanism, and is a partially enlarged view corresponding to a K portion in FIG.

【図12】 本発明の軸シール機構の第3実施形態を示
す図であって、図3に相当する要部斜視図である。
FIG. 12 is a view showing a third embodiment of the shaft seal mechanism of the present invention, and is a perspective view of relevant parts corresponding to FIG. 3.

【図13】 同軸シール機構の同要部を示す図であっ
て、図12の矢印Lより見た正面図である。
13 is a view showing the same main part of the coaxial seal mechanism, and is a front view seen from an arrow L in FIG.

【図14】 同軸シール機構の同要部を示す図であっ
て、図13のM−M矢視図である。
FIG. 14 is a view showing the main part of the coaxial seal mechanism and is a view taken along the line MM in FIG. 13.

【図15】 同軸シール機構の同要部を示す図であっ
て、図14のN−N断面図である。
15 is a view showing the same main part of the coaxial seal mechanism, which is a sectional view taken along line NN of FIG.

【図16】 同軸シール機構の変形例を示す図であっ
て、図15のO部に相当する部分拡大図である。
16 is a view showing a modified example of the coaxial seal mechanism, and is a partial enlarged view corresponding to the portion O in FIG.

【図17】 同軸シール機構の他の変形例を示す図であ
って、図4に相当する部分拡大図である。
17 is a view showing another modification of the coaxial seal mechanism, and is a partially enlarged view corresponding to FIG. 4. FIG.

【図18】 同軸シール機構の他の変形例を示す図であ
って、図4に相当する部分拡大図である。
FIG. 18 is a view showing another modification of the coaxial seal mechanism, and is a partially enlarged view corresponding to FIG. 4.

【図19】 同軸シール機構の他の変形例を示す図であ
って、図4に相当する部分拡大図である。
FIG. 19 is a view showing another modification of the coaxial seal mechanism, and is a partially enlarged view corresponding to FIG. 4.

【図20】 従来の軸シール機構の一例であるラビリン
スシールを示す図であって、回転軸の軸線を含む断面よ
り見た断面図である。
FIG. 20 is a view showing a labyrinth seal which is an example of a conventional shaft seal mechanism, and is a cross-sectional view seen from a cross-section including an axis of a rotating shaft.

【図21】 従来の軸シール機構の他の例であるブラシ
シールを示す図であって、回転軸の軸線を含む断面より
見た断面図である。
FIG. 21 is a view showing a brush seal which is another example of the conventional shaft seal mechanism, and is a cross-sectional view seen from a cross-section including the axis of the rotating shaft.

【図22】 同ブラシシールを示す図であって、(a)
は図21の矢印Aより見た正面図であり、(b)は
(a)のB−B矢視図である。
FIG. 22 is a view showing the brush seal, showing (a).
Is a front view seen from the arrow A of FIG. 21, and (b) is a view taken along the line BB of (a).

【符号の説明】[Explanation of symbols]

22・・・ガスタービン 23・・・回転軸 23e・・・動翼 24・・・ケーシング 25,50,60・・・リーフシール(軸シール機構) 40・・・分割部 41・・・接合部材(流路抵抗形成部,第1覆い部材) 51,52・・・凸部,接合部材(凸部,第2覆い部材,
流路抵抗形成部) 61・・・凹凸嵌合部 G・・・燃焼ガス(流体,ガス)
22 ... Gas turbine 23 ... Rotating shaft 23e ... Moving blade 24 ... Casing 25, 50, 60 ... Leaf seal (shaft seal mechanism) 40 ... Dividing part 41 ... Joining member (Flow path resistance forming portion, first covering member) 51, 52 ... Convex portion, joining member (convex portion, second covering member,
Flow path resistance forming part) 61 ... concave-convex fitting part G ... combustion gas (fluid, gas)

フロントページの続き (72)発明者 赤城 弘一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 由里 雅則 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 Fターム(参考) 3G002 HA02 3J042 AA04 AA11 BA03 CA10 DA11Continued front page    (72) Inventor Koichi Akagi             2-1-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture             Takasago Works, Mitsubishi Heavy Industries, Ltd. (72) Inventor, Masanori Yuri             2-1-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture             Takasago Works, Mitsubishi Heavy Industries, Ltd. F-term (reference) 3G002 HA02                 3J042 AA04 AA11 BA03 CA10 DA11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転軸と静止部との間の環状空間を通
って前記回転軸の軸線方向に流れる流体を阻止し、 前記軸線方向より正面視した場合に、円周方向で複数の
分割部に分割されたリング状をなす軸シール機構におい
て、 前記各分割部間には、これらの間を前記軸線方向に向か
う流体に対して流路抵抗を付与する流路抵抗形成部が設
けられていることを特徴とする軸シール機構。
1. A plurality of divided parts in a circumferential direction when a fluid flowing in an axial direction of the rotary shaft is blocked through an annular space between the rotary shaft and a stationary part, when viewed from the axial direction in a front view. In the ring-shaped shaft seal mechanism divided into, the flow path resistance forming portion that provides flow path resistance to the fluid flowing in the axial direction between the split portions is provided between the split portions. A shaft seal mechanism characterized in that
【請求項2】 請求項1に記載の軸シール機構におい
て、 前記流路抵抗形成部は、向かい合う前記各分割部間を覆
う第1覆い部材であることを特徴とする軸シール機構。
2. The shaft seal mechanism according to claim 1, wherein the flow path resistance forming portion is a first covering member that covers between the facing divided portions.
【請求項3】 請求項1に記載の軸シール機構におい
て、 前記流路抵抗形成部は、向かい合う前記各分割部間から
互いに接近する方向にそれぞれ突出する凸部と、これら
凸部を覆う第2覆い部材とを備えていることを特徴とす
る軸シール機構。
3. The shaft seal mechanism according to claim 1, wherein the flow path resistance forming portion projects from the facing divisional portions in respective directions approaching each other, and a second portion covering the projections. A shaft seal mechanism comprising: a cover member.
【請求項4】 請求項3に記載の軸シール機構におい
て、 前記第2覆い部材は、互いに向かい合う前記各分割部間
の外形状を一方から他方に向かって連続するように繋ぐ
外形形状を有することを特徴とする軸シール機構。
4. The shaft seal mechanism according to claim 3, wherein the second covering member has an outer shape that connects the outer shapes of the divided portions facing each other so as to be continuous from one side to the other side. A shaft seal mechanism characterized by.
【請求項5】 請求項1に記載の軸シール機構におい
て、 前記流路抵抗形成部は、互いに向かい合う前記各分割部
間に設けられた凹凸嵌合部であることを特徴とする軸シ
ール機構。
5. The shaft seal mechanism according to claim 1, wherein the flow path resistance forming portion is an uneven fitting portion provided between the divided portions facing each other.
【請求項6】 高温高圧のガスをケーシングに導き、
該ケーシングの内部に回転可能に支持された回転軸の動
翼に吹き付けることで前記ガスの熱エネルギーを機械的
な回転エネルギーに変換して動力を発生するガスタービ
ンにおいて、 請求項1〜5のいずれかに記載の軸シール機構を備えた
ことを特徴とするガスタービン。
6. A high temperature and high pressure gas is introduced into a casing,
A gas turbine that converts the thermal energy of the gas into mechanical rotational energy to generate power by spraying on the rotor blades of a rotating shaft that is rotatably supported inside the casing. A gas turbine comprising the shaft sealing mechanism according to claim 1.
JP2001186708A 2001-06-20 2001-06-20 Shaft seal mechanism and gas turbine Expired - Lifetime JP3691000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001186708A JP3691000B2 (en) 2001-06-20 2001-06-20 Shaft seal mechanism and gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001186708A JP3691000B2 (en) 2001-06-20 2001-06-20 Shaft seal mechanism and gas turbine

Publications (2)

Publication Number Publication Date
JP2003004149A true JP2003004149A (en) 2003-01-08
JP3691000B2 JP3691000B2 (en) 2005-08-31

Family

ID=19026113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001186708A Expired - Lifetime JP3691000B2 (en) 2001-06-20 2001-06-20 Shaft seal mechanism and gas turbine

Country Status (1)

Country Link
JP (1) JP3691000B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261515B2 (en) 2004-08-10 2007-08-28 Mitsubishi Heavy Industries, Ltd. Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine
JP2008128276A (en) * 2006-11-16 2008-06-05 Mitsubishi Heavy Ind Ltd Shaft sealing device for rotary machine
JP2009281437A (en) * 2008-05-20 2009-12-03 Mitsubishi Heavy Ind Ltd Axially sealing device of rotary machine
CN102707574A (en) * 2011-03-28 2012-10-03 Asml控股股份有限公司 Lithographic apparatus and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111107U (en) * 1977-02-14 1978-09-05
JPH10103014A (en) * 1996-09-30 1998-04-21 Toshiba Corp Gas turbine shroud structure
JPH11336506A (en) * 1998-05-21 1999-12-07 Mitsubishi Heavy Ind Ltd Seal divided surface joining structure of gas turbine
JP2000227163A (en) * 1999-02-05 2000-08-15 Eagle Engineering Aerospace Co Ltd Brush sealing device
JP2002081552A (en) * 2000-09-04 2002-03-22 Toshiba Corp Brush seal device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111107U (en) * 1977-02-14 1978-09-05
JPH10103014A (en) * 1996-09-30 1998-04-21 Toshiba Corp Gas turbine shroud structure
JPH11336506A (en) * 1998-05-21 1999-12-07 Mitsubishi Heavy Ind Ltd Seal divided surface joining structure of gas turbine
JP2000227163A (en) * 1999-02-05 2000-08-15 Eagle Engineering Aerospace Co Ltd Brush sealing device
JP2002081552A (en) * 2000-09-04 2002-03-22 Toshiba Corp Brush seal device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261515B2 (en) 2004-08-10 2007-08-28 Mitsubishi Heavy Industries, Ltd. Shaft sealing mechanism, structure for mounting shaft sealing mechanism on stator, and turbine
JP2008128276A (en) * 2006-11-16 2008-06-05 Mitsubishi Heavy Ind Ltd Shaft sealing device for rotary machine
JP4625438B2 (en) * 2006-11-16 2011-02-02 三菱重工業株式会社 Shaft seal device for rotating machinery
JP2009281437A (en) * 2008-05-20 2009-12-03 Mitsubishi Heavy Ind Ltd Axially sealing device of rotary machine
CN102707574A (en) * 2011-03-28 2012-10-03 Asml控股股份有限公司 Lithographic apparatus and device manufacturing method
JP2012209555A (en) * 2011-03-28 2012-10-25 Asml Holding Nv Lithographic apparatus and device manufacturing method
KR101475304B1 (en) * 2011-03-28 2014-12-22 에이에스엠엘 홀딩 엔.브이. Lithographic apparatus and device manufacturing method
US9081311B2 (en) 2011-03-28 2015-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP3691000B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US7857582B2 (en) Abradable labyrinth tooth seal
US8075256B2 (en) Ingestion resistant seal assembly
RU2368790C2 (en) Gas turbine with combustion chamber fixed to nozzle block
US9260979B2 (en) Outer rim seal assembly in a turbine engine
EP2634374B1 (en) Turbine and method for manufacturing turbine
JP5879084B2 (en) Turbomachine seal assembly
US20060082074A1 (en) Circumferential feather seal
JP6542246B2 (en) Variable displacement turbocharger
US20090191050A1 (en) Sealing band having bendable tang with anti-rotation in a turbine and associated methods
US9200519B2 (en) Belly band seal with underlapping ends
US6827350B2 (en) Hybrid honeycomb and brush seal for steam gland
JP2009047043A (en) Axial flow turbine
JP5374563B2 (en) Axial flow turbine
JP2004353673A (en) Nozzle interstage seal for steam turbine
WO2014066159A1 (en) Gas turbine including belly band seal anti-rotation device
JP2007120340A (en) Combustor tail pipe seal structure of gas turbine
JP3977921B2 (en) Gas turbine seal split surface joint structure
JP2010001863A (en) Turbocharger
KR20030057416A (en) Supplemental seal for the chordal hinge seals in a gas turbine
JP5141405B2 (en) Turbocharger
JP2003004149A (en) Shaft seal mechanism and gas turbine
US20040086384A1 (en) Composite tubular woven seal for steam turbine diaphragm horizontal joint interfaces
US20040175263A1 (en) Method and apparatus for rotating machine main fit seal
US9011083B2 (en) Seal arrangement for a gas turbine
JP3757999B2 (en) Scroll seal structure in gas turbine

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R151 Written notification of patent or utility model registration

Ref document number: 3691000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term