JP2003004043A - Anticorrosive sliding member - Google Patents

Anticorrosive sliding member

Info

Publication number
JP2003004043A
JP2003004043A JP2002124506A JP2002124506A JP2003004043A JP 2003004043 A JP2003004043 A JP 2003004043A JP 2002124506 A JP2002124506 A JP 2002124506A JP 2002124506 A JP2002124506 A JP 2002124506A JP 2003004043 A JP2003004043 A JP 2003004043A
Authority
JP
Japan
Prior art keywords
sliding
concave
convex
sliding surface
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002124506A
Other languages
Japanese (ja)
Other versions
JP3738750B2 (en
Inventor
Toshio Yuta
敏夫 勇田
Seiya Nishimura
生哉 西村
Daijiro Kano
大次郎 家納
Takeshi Saito
剛 斉藤
Tomita Suzuki
富太 鈴木
Mamoru Tanaka
守 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002124506A priority Critical patent/JP3738750B2/en
Publication of JP2003004043A publication Critical patent/JP2003004043A/en
Application granted granted Critical
Publication of JP3738750B2 publication Critical patent/JP3738750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an anticorrosive sliding member capable of ensuring the performance of lubrication, anticorrosion and anti-seizure of a sliding face of an uneven pattern for a long period. SOLUTION: In an sliding member that supports the rotating or swinging object applied to a plain bearing, an inside outer ring race face of rolling bearing and a contact part of thrust receiving part or an artificial joint of groove bearing, an uneven pattern is formed to the sliding face of base metal with 0.8 to 1.6 mm arrangement pitch of recessed or convex part and 1 μm to 10 μm depth on 30 to 70% of whole sliding face. Furthermore the anticorrosive sliding member filled by solid lubrication film in the recessed part of this hard film surface is provided, arranging the hard film of TiN, TiC, TiB2 , etc., or the hard film by ion implantation with the thickness capable of maintaining the uneven face of the uneven pattern along with the formation of the uneven pattern of the base metal.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術の分野】本発明は摺動接触する部材
の摺動面に耐摩耗,低摩擦抵抗処理を施した摺動部材に
関する。特に本発明は一般の相対摺動接触する機械部品
の他、真空中で使用されるすべり軸受,ころがり軸受の
内外輪レース面,グルーブ軸受のスラスト受部あるいは
人工関節等の摺動接触部に適用して有用な耐摩耗性摺動
部材の摺動面構造に関する。 【0002】 【従来の技術】相対摺動接触する部材の摺動面に耐摩耗
処理を施したものとして、例えば特開昭60−1355
64号公報に示された金属摺動部材がある。これは、互
いに摺動接触する金属部材の少なくとも一方の部材の摺
動面に、耐摩耗硬質材と固体潤滑剤とを区分けしてスパ
ッタ蒸着し、これによって硬質材料蒸着部および固体潤
滑材料蒸着部によるまだら状又はディンプル状パターン
(以下まだら状パターンと称する)の蒸着面を形成した
ものである。この構成により、摺動接触する硬質材料部
分で負荷荷重を受け、その周囲の固体潤滑材料が相手部
材との摺動接触で掘り起されて硬質材料部分へ潤滑剤と
して供給され、耐摩耗性と摩擦力の軽減が同時にもたら
される。 【0003】また他の例としては、摺動部材の母材の表
面に凹凸面を形成し、この凹凸面上に直接固体潤滑膜を
形成するか、あるいは該凹凸面にその凹凸形状を維持で
きる範囲で硬質材料層を設けた後、凹凸面全体を覆うよ
うに最上層に固体潤滑膜を形成し、これによって摺動時
のせん断応力による固体潤滑膜の剥離を防止するととも
に、耐摩耗性および充分な潤滑性を発揮できるようにし
た耐摩耗性摺動部材が提案されている(特開平2−76
925号公報)。 【0004】 【発明が解決しようとする課題】上述した従来の金属摺
動部材あるいは耐摩耗性摺動部材はいずれも、摺動に伴
なって固体潤滑面からの潤滑剤がそのまわりの耐摩耗硬
質材あるいは母材の摺動面凸部へ供給されるので高い潤
滑性が得られ、しかも耐摩耗硬質材あるいは凹凸パター
ンの凸部の部分で荷重を受けるので、負荷容量および寸
法精度を向上させ得る効果がある。しかし前述の特開昭
60−135564号公報記載のものは、摺動面の硬質
材料部と固体潤滑材料部によるまだら状パターンの両材
料部の面積比率については各々の部材の使用条件によっ
て適宜実験的に定めるとするのみで、具体的に特定され
ていない。特開平2−76925号公報においても円筒
または円柱状の各々の凹部または凸部の直径は例示され
ているものの、それらの個数あるいは分布状況即ち摺動
面全体に占める凹部または凸部の面積比率については示
されていない。 【0005】前述のように凹凸パターンの形成されてい
る摺動部材においては、凸部で荷重を受け凹部の部分か
ら潤滑剤を供給することになるので、凸部の面積が少な
いと耐荷重性能が低下し、逆に凸部全体の面積が大即ち
凹部が少ないと潤滑剤の供給能が低下する。凹部の深さ
についても凹部溝深さが大であると該凹部からの潤滑剤
が凸部へ流出しずらくなり、凹部が浅すぎると潤滑剤の
保持が有効になされない。このように摺動部材の低摩擦
抵抗および耐摩耗性を最大限に発揮するようにするには
凹凸パターンの凹部と凸部の面積比率および凹部の溝深
さを最適な値に定める必要がある。 【0006】本発明は、凹凸パターンを形成した摺動面
の凹凸部の面積比率および凹部の深さ、並びに凹凸部の
配列ピッチを最適な範囲に定め、さらに摺動面上に硬質
層を設けて該硬質層の表面に凹凸部できるようにし、こ
の凹部に固体潤滑剤を満たすことにより、摺動面の潤滑
性,耐摩耗性,耐焼付性を長期間にわたり確保できる摺
動部材を提供することにある。 【0007】 【課題を解決するための手段】本発明によれば、すべり
軸受、転がり軸受の内外輪レース面、グルーブ軸受のス
ラスト受部あるいは人工関節の接触部に適用して回転ま
たは揺動する物体を支持する摺動部材において、母材の
摺動面に凹部または凸部の配列ピッチを0.8〜1.6
mmとした凹凸パターンを形成し、前記凹部の面積比率
を摺動面全体の30〜70%、深さを1μm以上10μ
m以下とし、さらに前記母材の凹凸パターンの形成とと
もに、TiN,TiC,TiB2 等の硬質膜あるいはイ
オン注入による硬質膜を、前記凹凸パターンの凹凸面を
維持できる厚みで設け、この硬質膜表面の凹部に固体潤
滑膜を満たした他部材に摺動接触する母材の摺動面に凹
凸パターンを形成するとともに該凹凸パターンの凹部に
固体潤滑剤を満たした耐摩耗性摺動部材が提供される。 【0008】本発明の一形態によれば、前記凹凸パター
ンとして円柱状凸部を有する凸パターンあるいは円柱状
凹部を有する凹パターンが人工股関節の相対摺動面(人
工骨頭または臼蓋ソケット)の一方または双方に形成さ
れ、これらの円柱状凸部または円柱状凹部の直径が略
0.5mm、ピッチが略1.2mmに形成された人工股
関節構造が提供される。 【0009】 【作用】摺動部材の母材表面に凹部の面積比率が30〜
70%、凹部の深さが1mm以下または加工時間を短縮
するため好ましくは10μm以下の凹凸面を形成した摺
動部材は、潤滑剤が下地の凹凸面に拘束され、かつ凹部
が潤滑剤を供給する役割を果たすとともに凸部で荷重を
受けるため、摺動面の潤滑性を長期間にわたり保持でき
る。また凹凸面を維持できる範囲で表面に硬質材料層を
設け、該硬質層上面の凹部に固体潤滑剤を満たすことに
より、硬質材料層が摩耗バリアの役目を果たし、より高
い耐摩耗性,耐焼付性が得られる。さらに、摺動部にお
いて摩耗が発生したとしても、摩耗粉を凹部に逃がすこ
とができ、アブレシブによる急速な摩耗を防止すること
ができる。 【0010】 【発明の実施の形態】次に、本発明を実施例について図
面を参照して説明する。図1および図2はそれぞれ本発
明の各種実施例による耐摩耗性摺動部材の摺動面の部分
的な斜視図である。母材1は鉄,炭素鋼,ステンレス鋼
などの鉄鋼類をはじめ、銅,アルミニウムその他の非鉄
金属、あるいはセラミックス,超高分子量ポリエチレン
等の非金属類等、種々の工業材料が使用される。 【0011】図1の例では母材1の摺動面に複数個の円
柱状の凸部2が等間隔に規則的に形成され、凸部2以外
の部分は凹部3となっており、摺動面はこれらの凸部2
と凹部3による凹凸パターンで構成される。凸部2の直
径をDとし、個数をNとすれば、摺動面全体の凸部2の
摺動接触面積はπND2 /4であり、この面積の残余の
面積が摺動面全体に対して30〜70%の比率となって
凹部を形成している。 【0012】図2の場合は直径Dの円柱状の凹部3が複
数個等間隔に規則的に母材1の摺動面上に形成され、こ
れらの凹部3以外の部分が摺動面における凸部2となっ
ている。図2の例においても凹部3全体の摺動面に対す
る面積比率は30〜70%である。 【0013】凹凸パターンとしては必ずしも上述のよう
な円柱状や円筒状のものに限定されるものでなく、矩形
その他多角形状の凹凸部、あるいは凹部と凸部が層状に
区分けされて配置されたもの等でもよい。いずれも規則
的に摺動面全面に配列され、全体の凹部の面積比率は全
摺動面に対し30〜70%である。 【0014】凸部2または凹部3の比率を上述のように
した根拠を具体的な摩耗摩擦試験を示して説明する。ま
ず本発明において採用した摩擦摩耗試験装置を図3に示
す。空気軸受5により垂直に軸支された回転軸4の下端
にその軸芯から偏心して球面状の接触子6が固着され、
この接触子6に、試料取付台7に取り付けられた試料8
が接触している。なお回転軸4と試料取付台7は軸方向
に荷重がかけられ、これによって接触子6と試料8の圧
接力が調整可能となっている。試料取付台7はスラスト
方向およびラジアル方向に空気軸受9で支えられてい
る。試料取付台7の外側部は固定設置したロードセル1
0に連結されており、図示しない可変速モータで回転軸
4を軸線まわりに回転駆動することで接触子6と試料8
との間の摩擦力による試料取付台7の回転方向荷重がロ
ードセル10で検出され、接触子6と試料8間の摩擦力
の経時変化が観察される。なお、この方法で得られた時
間−トルク特性図は一般に図4のようになり、急激にト
ルク変化が増大(E点)し始めるまでの時間をもって寿
命と判定する。 【0015】既に説明したように凹凸パターンの形成さ
れている摺動部材においては、凸部で荷重を受けること
になり、凹部から潤滑剤を供給することになる。凸部が
少なくなれば耐荷重性能が低下し、凹部が少なくなると
潤滑剤の供給能力が低下する。したがって、1つの摺動
面において凸部と凹部の最適な面積比率が存在する。ま
た凹部の深さが大きすぎると潤滑剤が摺動面へ流出しず
らくなり、浅すぎると潤滑不足が生じる。したがって凹
部の深さhについても最適な値が存在する。図1のよう
な円柱状凸部2による凸パターンを形成した摺動面にお
いて、凹部3全体の摺動面に対する面積比率を変え、該
凹部3に固体潤滑膜としてMoS2 スパッタ膜をコーテ
ィングした試料の被膜寿命の試験データを表1に示す。
なお、凹部の深さはいずれも10μmとした。 【0016】 【表1】 【0017】ここで回転軸4の回転数;1000rp
m,接触子の押付荷重;0.23kgf,すべり速度;
0.4m/sとした。凹部3の面積比率14%では潤滑
不足で2時間後にトルクの急激な上昇がみられ、80%
を超えると凸部2のくずれが生じ荷重を受けられなくな
る。パターン種別「なし」は凹凸部のない場合である。 【0018】図2のような円筒状凹部3による凹凸パタ
ーンを摺動面に形成し、凹部3の面積比率を変え、その
上に固体潤滑膜としてMoS2 スパッタ膜をコーティン
グしたときの被膜寿命の試験データを表2に示す。な
お、凹部の深さはいずれも10μmとした。この例でも
凹部の面積比が14%で潤滑不足となり、80%で負荷
容量が低下する。凹凸パターンがなく単にMoS2 膜を
スパッタしただけの試料(表中「なし」で示した)は負
荷容量が小さく、被膜寿命は1時間であった。 【0019】 【表2】 【0020】被膜寿命は凹凸パターンの凹部の深さにも
関係する。図3の装置を用いた摩耗試験において、粗さ
計により摺動面の摩耗状況を観測した場合、表面に超高
分子量ポリエチレンを被覆した摺動面に対して、凹凸パ
ターンの有無による摩耗差は顕著である。凹凸パターン
を付与しない場合の粗さ計の結果にみられる大きな傷跡
は、摩耗粉により摺動面が深く削られたものと考えられ
る。つまり摩耗粉自体が新たな摩耗をひき起す。しかし
凹凸パターンを施した摺動面においては、凹部からの潤
滑剤の供給に加えて凹部への摩耗粉の逃げがもたらさ
れ、摺動面の凸部へ摩耗粉が入り込まない。 【0021】表3は図2のような凹凸パターンを施した
摺動面で凹部3の面積比率を摺動面全体に対し70%と
し、凹部3の溝深さhを変え、その上に固体潤滑膜とし
てMoS2 スパッタ膜をコーティングしたときの被膜寿
命の試験データを示す。 【0022】 【表3】 【0023】このデータから溝深さhが15μmを超え
ると潤滑剤が凹部3の底にたまり、凸部2へ潤滑剤が流
出しなくなり、被膜寿命は著しく低下する。 【0024】本発明による摺動面構造は、凹凸パターン
の凹部の面積比率を30〜70%、凹部の溝深さを10
μm以下1μm以上とするものであるが、この範囲の凹
凸パターンをもつ摺動面は上述の実験結果からも低摩擦
抵抗,耐摩耗性を最大限に発揮することが分る。 【0025】本発明の応用例として人工関節の相対摺動
部の表面改質が挙げられる。人工関節においては互いに
嵌合する人工骨頭および臼蓋ソケットが、金属あるいは
セラミックスと超高分子量ポリエチレンの組み合せから
成るのが一般的である。図3の摩耗摩擦試験装置で接触
子を平面仕上げした超高分子量ポリエチレンとし、試料
にステンレス材に生体適合性に優れたTiNをコーティ
ングしたものを用いて試験した。この場合の摩擦力の変
化を図5に示す。凹凸パターンを付加しない試料を使用
した場合、摩擦力の変動が大きく、かつ不安定である。
一方、凹凸パターンを付加した試料を使用した場合、そ
の変動は小さく、安定しているのが分る。試験後の観察
で試料のTiNの表面においてはパターンの有無による
摩耗の差を判断することは難しいが、固体潤滑剤として
の超高分子量ポリエチレンに関しては、パターンを付加
していない場合の方が、パターンを付加したものと比べ
て摩耗が著しく起きているのが観測される。またパター
ンを付加しない場合の粗さを測定したところ、大きな傷
跡が見られたが、この傷跡は摩耗片により深く削られた
ものと考えられる。パターンを付加している場合は凹部
に摩耗片が取り込まれ、摺動面に出ないので大きな摩耗
が防止される。 【0026】また同様に、摺動面に凹凸パターンを形成
した試料に、生体適合性に優れたTiNをコーティング
し、相手材として超高分子量ポリエチレンを用い、生理
食塩水中にて摩擦試験を行ったときの摩擦力の時間的推
移を図6に示す。比較のため凹凸パターンの無い試料を
同一条件下で試験した場合を同図に併せて示した。この
図からも明らかに凹凸パターンをもつ摺動面の優位性が
顕著である。 【0027】図7は本発明の耐摩耗性摺動面構造を用い
た人工股関節の分解側面図である。ステム11の先端に
ボール(人工骨頭)12が装着され、このボール12に
相手部材である臼蓋ソケット13の凹球面13aが相対
摺動可能に嵌合されるようになっている。ボール12お
よびソケット13の摺動面の一方または双方に図1また
は図2に拡大して示すような円柱状凸部2または円柱状
凹部3による凹凸パターンが形成される。凹凸パターン
の凹部3の面積比率および深さは上述した範囲のものが
採用されてよいが、個々の凸部2または凹部3の直径お
よびピッチについても人工股関節として使用する場合の
最適な値が存在する。 【0028】図8は凹凸パターンの円柱状凹部の直径
(mm)に対する人工股関節部の摺動面特性の実験結果
を示した図である。摺動面には超高分子量ポリエチレン
を用いた。図中にプロットした白丸は凹部直径に対する
摩擦力の減少率(%)の値であり、黒丸は超高分子量ポ
リエチレンの摩耗量(mm)を示している。図9は、同
様に超高分子量ポリエチレンの摺動面において、円柱状
凹部のピッチ(mm)に対する摩擦力の減少率(白丸)
及び摩耗量(黒丸)についての実験結果を示したもので
ある。これらの図から分かるように凹部の直径Dが0.
5mm、ピッチp(図2)が1.2mmのときに摩擦力
の減少率は最も大きく、超高分子量ポリエチレンの摩耗
量は最も小さくなる。以上から凹凸パターンを施した人
工股関節の場合、パターンの直径0.5mm、ピッチ
1.2mmが潤滑特性を最も向上させる最適値となる。
従来のように人工関節の摩擦や摩耗の防止手段として材
質の改良のみでは充分な効果が得られなかったが、本発
明のような摺動面構造とすることにより、人工関節摺動
面の潤滑特性を改善でき人工関節の寿命を大幅に延ばす
ことが可能となる。 【0029】なお、上述の説明で凹部の深さを1.0m
m以下好ましくは10μmとしたが、例えば人工股関節
などに用いる摺動面には摩耗粉を封じ込める必要がある
場合は深くし、固体潤滑剤を凹部に満たす場合は浅くす
ることが望ましく、使用箇所により深さは適宜前記の範
囲で選択する。ただ加工上からは、特に凹凸パターンを
微細加工技術で形成する必要がある場合は浅く、好まし
くは10μm以下にするのがよい。 【0030】 【発明の効果】以上説明したように本発明によれば、他
部材に摺動接触する母材の表面に凹凸パターンを形成
し、凹部の面積比を30〜70%、凹部の深さを1.0
mm以下または加工時間を短縮するため好ましくは10
μm以下とすることにより、固体潤滑条件下あるいは生
理食塩水等の液体中において、凹部からの潤滑剤の供
給、凹部への摩耗粉の逃げによるアブレシブ摩耗の防止
により、耐摩耗性および耐焼付性が向上する。また母材
の凹凸パターンの形成と共に、この凹凸パターンの凹凸
形状を維持できるようにTiN,TiC,TiB2 等の
硬質膜やイオン注入による硬質層を設け、硬質層表面の
凹部に固体潤滑剤を満たすことで、この凹部から流出し
た潤滑剤が硬質層の凸部を潤滑し、これによって硬質層
の摩耗が防止されるとともに、硬質層の凸部で荷重を受
けることになるので、充分な耐荷重性能が得られ、一層
高い耐摩耗性,耐焼付性および負荷容量の向上が達成さ
れる。また、このような形態の硬質層は、浸炭焼入れや
浸ボロン処理による浸炭層や浸ボロン層と異なり硬化処
理後の表面加工が不要である。本発明を人工関節に適用
することにより、関節摺動面の特性改善、特に摩擦、摩
耗を飛躍的に減少させることができ、人工関節の寿命の
延長に多大な効果が発揮される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sliding member in which a sliding surface of a member in sliding contact has been subjected to abrasion resistance and low friction resistance treatment. In particular, the present invention is applied to sliding parts such as plain bearings used in vacuum, inner and outer race surfaces of rolling bearings, thrust receiving parts of groove bearings, and artificial joints, in addition to general mechanical parts that make relative sliding contact. The present invention relates to a sliding surface structure of a wear-resistant sliding member useful as a sliding member. 2. Description of the Related Art Japanese Patent Application Laid-Open No. Sho 60-1355 discloses that a sliding surface of a member that makes relative sliding contact is subjected to a wear-resistant treatment.
There is a metal sliding member disclosed in JP-A-64. This is because the wear-resistant hard material and the solid lubricant are separated and sputter-deposited on the sliding surface of at least one of the metal members that are in sliding contact with each other, thereby forming the hard material deposition portion and the solid lubrication material deposition portion. In the form of a mottled or dimple-shaped pattern (hereinafter referred to as a mottled pattern). With this configuration, a load is applied to the hard material portion that comes into sliding contact, the surrounding solid lubricating material is dug out by sliding contact with the mating member, and is supplied to the hard material portion as a lubricant, and wear resistance is improved. At the same time, a reduction in frictional force is provided. As another example, an uneven surface can be formed on the surface of a base material of a sliding member, and a solid lubricating film can be formed directly on the uneven surface, or the uneven shape can be maintained on the uneven surface. After providing the hard material layer in the range, a solid lubricating film is formed on the uppermost layer so as to cover the entire uneven surface, thereby preventing peeling of the solid lubricating film due to shear stress during sliding, as well as abrasion resistance and A wear-resistant sliding member capable of exhibiting sufficient lubrication has been proposed (JP-A-2-76).
925). [0004] In any of the above-mentioned conventional metal sliding members or wear-resistant sliding members, the lubricant from the solid lubricated surface is accompanied by the wear resistance around the sliding member. High lubricity is obtained because it is supplied to the convex part of the sliding surface of the hard material or base material, and the load is applied to the convex part of the wear-resistant hard material or the concave and convex pattern, so that the load capacity and dimensional accuracy are improved. There is an effect to get. However, in the above-mentioned Japanese Patent Application Laid-Open No. 60-135564, the area ratio of the two material portions of the mottled pattern formed by the hard material portion and the solid lubrication material portion on the sliding surface is appropriately tested depending on the use conditions of each member. It is merely specified, but not specified. JP-A-2-76925 also exemplifies the diameter of each cylindrical or cylindrical concave or convex portion. However, the number or distribution of the concave or convex portions, that is, the area ratio of the concave or convex portion occupying the entire sliding surface is described. Is not shown. In the sliding member having the uneven pattern as described above, a load is applied to the convex portion and the lubricant is supplied from the concave portion. On the contrary, if the area of the entire convex portion is large, that is, if the concave portion is small, the ability to supply the lubricant decreases. Regarding the depth of the concave portion, if the depth of the concave groove is large, the lubricant from the concave portion is difficult to flow to the convex portion, and if the concave portion is too shallow, the lubricant cannot be effectively held. In order to maximize the low frictional resistance and wear resistance of the sliding member, it is necessary to set the area ratio between the concave portion and the convex portion of the concave-convex pattern and the groove depth of the concave portion to optimal values. . According to the present invention, the area ratio of the concave and convex portions and the depth of the concave portions on the sliding surface on which the concave and convex pattern is formed, and the arrangement pitch of the concave and convex portions are set in optimum ranges, and a hard layer is provided on the sliding surface. By providing an uneven portion on the surface of the hard layer and filling the concave portion with a solid lubricant, a sliding member capable of ensuring lubrication, abrasion resistance, and seizure resistance of the sliding surface for a long period of time is provided. It is in. According to the present invention, the present invention is applied to a race bearing, a race surface of an inner / outer ring of a rolling bearing, a thrust receiving portion of a groove bearing or a contact portion of an artificial joint to rotate or swing. In the sliding member supporting the object, the arrangement pitch of the concave portions or the convex portions on the sliding surface of the base material is 0.8 to 1.6.
mm, an area ratio of the concave portion is 30 to 70% of the entire sliding surface, and a depth is 1 μm or more and 10 μm or more.
m or less, and a hard film of TiN, TiC, TiB 2 or the like or a hard film formed by ion implantation is provided with a thickness capable of maintaining the uneven surface of the uneven pattern while forming the uneven pattern of the base material. A wear-resistant sliding member in which a concave-convex pattern is formed on a sliding surface of a base material that is in sliding contact with another member filled with a solid lubricant film in a concave portion, and a concave portion of the concave-convex pattern is filled with a solid lubricant. You. According to one embodiment of the present invention, the convex / concave pattern having a cylindrical convex portion or the concave pattern having a cylindrical concave portion is one of the relative sliding surfaces of the artificial hip joint (artificial head or acetabular socket). Alternatively, there is provided an artificial hip joint structure in which these cylindrical convex portions or cylindrical concave portions have a diameter of about 0.5 mm and a pitch of about 1.2 mm. The area ratio of the concave portion on the surface of the base material of the sliding member is 30 to
In a sliding member having a concave / convex surface of preferably 70%, a concave depth of 1 mm or less or preferably 10 μm or less in order to shorten the processing time, the lubricant is restrained by the concave / convex surface of the base and the concave portion supplies the lubricant. The lubrication of the sliding surface can be maintained for a long period of time because the convex portion has a load. In addition, a hard material layer is provided on the surface to the extent that the uneven surface can be maintained, and the concave portion on the upper surface of the hard layer is filled with a solid lubricant, so that the hard material layer functions as a wear barrier, and has higher wear resistance and seizure resistance. Property is obtained. Further, even if abrasion occurs in the sliding portion, the abrasion powder can escape to the concave portion, and rapid wear due to abrasive can be prevented. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are partial perspective views of a sliding surface of a wear-resistant sliding member according to various embodiments of the present invention. As the base material 1, various industrial materials such as iron, carbon steel, stainless steel and other non-ferrous metals, copper, aluminum and other non-ferrous metals, or non-metals such as ceramics and ultrahigh molecular weight polyethylene are used. In the example shown in FIG. 1, a plurality of columnar projections 2 are regularly formed on the sliding surface of the base material 1 at regular intervals, and portions other than the projections 2 are recesses 3. The moving surface has these convex portions 2
And a concave / convex pattern formed by the concave portions 3. The diameter of the convex portion 2 is D, if the number of the N, sliding contact area of the projection 2 of the entire sliding surface is πND 2/4, the remainder of the area of this area with respect to the entire sliding surface Thus, the concave portions are formed at a ratio of 30 to 70%. In the case of FIG. 2, a plurality of cylindrical recesses 3 having a diameter D are regularly formed on the sliding surface of the base material 1 at regular intervals, and portions other than these recesses 3 are projected on the sliding surface. Part 2 2, the area ratio of the entire concave portion 3 to the sliding surface is 30 to 70%. The concavo-convex pattern is not necessarily limited to the columnar or cylindrical shape as described above, but may be a rectangular or other polygonal concavo-convex portion, or a pattern in which concave portions and convex portions are divided into layers and arranged. And so on. Each of them is regularly arranged on the entire sliding surface, and the area ratio of the entire concave portion is 30 to 70% with respect to the entire sliding surface. The basis for setting the ratio of the convex portion 2 or the concave portion 3 as described above will be described with reference to a specific wear friction test. First, FIG. 3 shows a friction and wear test apparatus employed in the present invention. A spherical contact 6 is fixed to the lower end of the rotating shaft 4 vertically supported by the air bearing 5 eccentrically from its axis,
The sample 8 attached to the sample mounting table 7 is
Are in contact. Note that a load is applied to the rotating shaft 4 and the sample mounting table 7 in the axial direction, so that the pressure contact force between the contact 6 and the sample 8 can be adjusted. The sample mount 7 is supported by an air bearing 9 in the thrust direction and the radial direction. The outside of the sample mount 7 is a fixed load cell 1
The contact 6 and the sample 8 are driven by rotating the rotating shaft 4 around the axis with a variable speed motor (not shown).
The load in the rotation direction of the sample mounting table 7 due to the frictional force between the contact 6 and the sample 8 is detected by the load cell 10, and the change over time in the frictional force between the contact 6 and the sample 8 is observed. The time-torque characteristic diagram obtained by this method is generally as shown in FIG. 4, and the life is determined as the time until the torque change suddenly starts increasing (point E). As described above, in the sliding member having the uneven pattern formed thereon, a load is applied to the convex portion, and the lubricant is supplied from the concave portion. When the number of convex portions decreases, the load-bearing performance decreases, and when the number of concave portions decreases, the ability to supply the lubricant decreases. Therefore, there is an optimum area ratio between the convex portion and the concave portion on one sliding surface. If the depth of the concave portion is too large, the lubricant hardly flows to the sliding surface, and if it is too shallow, insufficient lubrication occurs. Therefore, there is an optimum value for the depth h of the concave portion. In the sliding surface on which the convex pattern formed by the columnar convex portions 2 as shown in FIG. 1 was formed, the area ratio of the entire concave portion 3 to the sliding surface was changed, and the concave portion 3 was coated with a MoS 2 sputtered film as a solid lubricant film. Table 1 shows the test data of the coating life of the samples.
The depth of each of the concave portions was 10 μm. [Table 1] Here, the rotation speed of the rotating shaft 4;
m, contact pressing load; 0.23 kgf, sliding speed;
0.4 m / s. At an area ratio of the recess 3 of 14%, a sudden increase in torque was observed after 2 hours due to insufficient lubrication, and the 80%
If it exceeds, the convex portion 2 is distorted, and the load cannot be received. The pattern type "none" is a case where there is no uneven portion. A concave / convex pattern formed by a cylindrical concave portion 3 as shown in FIG. 2 is formed on the sliding surface, the area ratio of the concave portion 3 is changed, and the MoS 2 sputtered film is coated thereon as a solid lubricating film. The test data is shown in Table 2. The depth of each of the concave portions was 10 μm. Also in this example, when the area ratio of the concave portion is 14%, the lubrication is insufficient, and when the area ratio is 80%, the load capacity decreases. The sample (shown as “none” in the table) in which the MoS 2 film was simply sputtered without the concavo-convex pattern had a small load capacity, and the film life was 1 hour. [Table 2] The life of the coating is also related to the depth of the concave portions of the concave / convex pattern. In the wear test using the apparatus shown in FIG. 3, when the wear state of the sliding surface was observed with a roughness meter, the difference in wear due to the presence or absence of a concavo-convex pattern with respect to the sliding surface coated with ultra-high molecular weight polyethylene was measured. Notable. The large scar seen in the result of the roughness meter when the concavo-convex pattern is not provided is considered to be that the sliding surface was deeply shaved by the abrasion powder. That is, the wear powder itself causes new wear. However, on the sliding surface provided with the concavo-convex pattern, in addition to the supply of the lubricant from the concave portion, the escape of the wear powder to the concave portion is caused, and the wear powder does not enter the convex portion of the slide surface. Table 3 shows that the area ratio of the concave portion 3 is set to 70% of the entire sliding surface on the sliding surface provided with the concavo-convex pattern as shown in FIG. 2, and the groove depth h of the concave portion 3 is changed. Test data of film life when a MoS 2 sputtered film is coated as a lubricating film is shown. [Table 3] According to this data, when the groove depth h exceeds 15 μm, the lubricant accumulates at the bottom of the concave portion 3 and the lubricant does not flow out to the convex portion 2, and the life of the coating film is significantly reduced. In the sliding surface structure according to the present invention, the area ratio of the concave portion of the concave / convex pattern is 30 to 70%, and the groove depth of the concave portion is 10%.
The sliding surface having the concavo-convex pattern in this range is at most 1 μm or less, and it can be seen from the above experimental results that the sliding surface exhibits the maximum low frictional resistance and wear resistance. An application example of the present invention is surface modification of a relative sliding portion of an artificial joint. In artificial joints, the prosthetic head and acetabular socket that fit together generally consist of a combination of metal or ceramics and ultra high molecular weight polyethylene. The test was carried out using ultrahigh molecular weight polyethylene whose contacts were finished in a plane by the abrasion friction test apparatus shown in FIG. 3, and using a stainless steel material coated with TiN having excellent biocompatibility. FIG. 5 shows the change in the frictional force in this case. When a sample without an uneven pattern is used, the fluctuation of the frictional force is large and unstable.
On the other hand, when the sample to which the concavo-convex pattern is added is used, the fluctuation is small and it can be seen that it is stable. It is difficult to judge the difference in wear due to the presence or absence of a pattern on the surface of the sample TiN by observation after the test, but for ultra-high molecular weight polyethylene as a solid lubricant, it is better if no pattern is added. It is observed that abrasion has occurred significantly as compared with the case where the pattern is added. When the roughness was measured without adding a pattern, a large scar was found. It is considered that the scar was deeply shaved by the wear debris. When a pattern is added, abrasion pieces are taken into the concave portions and do not come out on the sliding surface, so that large abrasion is prevented. Similarly, a sample having an uneven pattern formed on the sliding surface was coated with TiN having excellent biocompatibility, and a friction test was performed in physiological saline using ultrahigh molecular weight polyethylene as a mating material. FIG. 6 shows a temporal transition of the frictional force at the time. For comparison, a case where a sample without an uneven pattern was tested under the same conditions is also shown in FIG. This figure also clearly shows the superiority of the sliding surface having the concavo-convex pattern. FIG. 7 is an exploded side view of an artificial hip joint using the wear-resistant sliding surface structure of the present invention. A ball (artificial bone head) 12 is mounted on the tip of the stem 11, and the concave spherical surface 13 a of the acetabular socket 13, which is a mating member, is fitted to the ball 12 so as to be relatively slidable. On one or both of the sliding surfaces of the ball 12 and the socket 13, a concavo-convex pattern is formed by a cylindrical convex portion 2 or a cylindrical concave portion 3 as shown in an enlarged manner in FIG. 1 or FIG. Although the area ratio and the depth of the concave portion 3 of the concave and convex pattern may be in the above ranges, the diameter and the pitch of each convex portion 2 or the concave portion 3 also have an optimum value when used as an artificial hip joint. I do. FIG. 8 is a view showing the experimental results of the sliding surface characteristics of the artificial hip joint with respect to the diameter (mm) of the cylindrical concave portion of the concave-convex pattern. Ultrahigh molecular weight polyethylene was used for the sliding surface. The white circles plotted in the figure indicate the value of the reduction rate (%) of the frictional force with respect to the diameter of the concave portion, and the black circles indicate the wear amount (mm) of the ultrahigh molecular weight polyethylene. FIG. 9 also shows the reduction rate of the frictional force (open circle) with respect to the pitch (mm) of the cylindrical concave portion on the sliding surface of ultrahigh molecular weight polyethylene.
And the experimental results for the wear amount (black circles). As can be seen from these figures, the diameter D of the concave portion is 0.
When the pitch is 5 mm and the pitch p (FIG. 2) is 1.2 mm, the reduction rate of the frictional force is the largest, and the wear amount of the ultrahigh molecular weight polyethylene is the smallest. From the above, in the case of an artificial hip joint having a concavo-convex pattern, a pattern diameter of 0.5 mm and a pitch of 1.2 mm are optimal values for maximizing lubrication characteristics.
Although the improvement of the material alone did not provide a sufficient effect as a means for preventing friction and wear of the artificial joint as in the past, the sliding surface structure as in the present invention provides lubrication of the sliding surface of the artificial joint. The characteristics can be improved and the life of the artificial joint can be greatly extended. In the above description, the depth of the recess is set to 1.0 m.
m or less, preferably 10 μm. For example, the sliding surface used for an artificial hip joint or the like is preferably deep when it is necessary to confine wear powder, and shallow when the solid lubricant is filled in the concave portion. The depth is appropriately selected within the above range. However, from the viewpoint of processing, it is shallow, preferably 10 μm or less, particularly when the concavo-convex pattern needs to be formed by fine processing technology. As described above, according to the present invention, a concavo-convex pattern is formed on the surface of a base material which is in sliding contact with another member, the area ratio of the concave portions is 30 to 70%, and the depth of the concave portions is 30%. 1.0
mm or less to reduce the processing time.
μm or less, under solid lubrication conditions or in a liquid such as physiological saline, the abrasion resistance and seizure resistance can be prevented by supplying lubricant from the recess and preventing abrasive wear due to escape of abrasion powder into the recess. Is improved. Also with the formation of the uneven pattern of the base material, TiN so as to maintain the irregular shape of the uneven pattern, TiC, the hard layer provided by the hard film and ion implantation, such as TiB 2, a solid lubricant in the recess of the hard layer surface By filling, the lubricant flowing out of the concave portion lubricates the convex portion of the hard layer, thereby preventing the wear of the hard layer and receiving a load at the convex portion of the hard layer. Load performance is obtained, and higher wear resistance, seizure resistance and improved load capacity are achieved. In addition, unlike the carburized layer or the carburized boron layer formed by carburizing and quenching or boron carburizing, the hard layer having such a form does not require surface processing after hardening. By applying the present invention to an artificial joint, the characteristics of the joint sliding surface can be improved, particularly friction and wear can be drastically reduced, and the effect of extending the life of the artificial joint can be greatly improved.

【図面の簡単な説明】 【図1】本発明の実施例による凸パターンをもつ耐摩耗
性摺動部材の部分的な斜視図である。 【図2】本発明の他の実施例による凹パターンをもつ耐
摩耗性摺動部材の部分的な斜視図である。 【図3】本発明に係る摩耗摩擦試験装置の概略的な縦断
面図である。 【図4】摩耗摩擦試験で得られる時間−トルク特性を示
した図である。 【図5】超高分子量ポリエチレンとTiN被覆材との摩
擦力試験における摩擦力の経時変化を示した図である。 【図6】生理食塩水中にて超高分子量ポリエチレンとT
iN被覆材との摩擦試験を行った場合の摩擦力の経時変
化を示した図である。 【図7】本発明の適用例による人工股関節の分解側面図
である。 【図8】本発明による摺動面の凹凸パターンの凹部直径
に対する人工股関節の摺動面特性を示した図である。 【図9】本発明による摺動面の凹凸パターンの凹部ピッ
チに対する人工股関節の摺動面特性を示した図である。 【符号の説明】 1 母材 2 凸部 3 凹部 4 回転軸 5,9 空気軸受 6 接触子 7 試料取付台 8 試料 10 ロードセル 12 ボール 13 ソケット
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial perspective view of a wear-resistant sliding member having a convex pattern according to an embodiment of the present invention. FIG. 2 is a partial perspective view of a wear-resistant sliding member having a concave pattern according to another embodiment of the present invention. FIG. 3 is a schematic longitudinal sectional view of a wear friction test apparatus according to the present invention. FIG. 4 is a diagram showing time-torque characteristics obtained in a wear friction test. FIG. 5 is a diagram showing a change over time of a frictional force in a frictional force test between an ultrahigh molecular weight polyethylene and a TiN coating material. FIG. 6. Ultra high molecular weight polyethylene and T in saline
FIG. 6 is a diagram showing a change over time of friction force when a friction test with an iN coating material is performed. FIG. 7 is an exploded side view of an artificial hip joint according to an application example of the present invention. FIG. 8 is a graph showing a sliding surface characteristic of an artificial hip joint with respect to a concave portion diameter of a concave-convex pattern on a sliding surface according to the present invention. FIG. 9 is a diagram showing the sliding surface characteristics of the artificial hip joint with respect to the concave pitch of the concave-convex pattern on the sliding surface according to the present invention. [Description of Signs] 1 Base material 2 Convex portion 3 Concave portion 4 Rotating shaft 5, 9 Air bearing 6 Contact 7 Sample mount 8 Sample 10 Load cell 12 Ball 13 Socket

フロントページの続き (72)発明者 家納 大次郎 北海道札幌市東区北24条東9丁目1番31号 (72)発明者 斉藤 剛 神奈川県藤沢市鵠沼神明1−5−50日本精 工株式会社藤沢工場内 (72)発明者 鈴木 富太 神奈川県藤沢市鵠沼神明1−5−50日本精 工株式会社藤沢工場内 (72)発明者 田中 守 神奈川県横浜市金沢区六浦町1287の6 Fターム(参考) 3J011 AA07 BA10 CA05 CA06 DA01 JA01 KA03 MA03 PA02 QA03 SB13 SE10 3J101 AA01 BA53 BA54 BA56 BA70 CA14 EA02 EA06 EA41 EA78 FA32 FA33 Continuation of front page    (72) Inventor Daijiro Iena             Hokkaido, Sapporo City (72) Inventor Takeshi Saito             1-5-50 Nihonsei, Kugenuma Shinmei, Fujisawa City, Kanagawa Prefecture             Kosaku Fujisawa Plant (72) Inventor Tomita Suzuki             1-5-50 Nihonsei, Kugenuma Shinmei, Fujisawa City, Kanagawa Prefecture             Kosaku Fujisawa Plant (72) Inventor Mamoru Tanaka             1287-6, Rokuura-cho, Kanazawa-ku, Yokohama-shi, Kanagawa F term (reference) 3J011 AA07 BA10 CA05 CA06 DA01                       JA01 KA03 MA03 PA02 QA03                       SB13 SE10                 3J101 AA01 BA53 BA54 BA56 BA70                       CA14 EA02 EA06 EA41 EA78                       FA32 FA33

Claims (1)

【特許請求の範囲】 【請求項1】すべり軸受、転がり軸受の内外輪レース
面、グルーブ軸受のスラスト受部あるいは人工関節の接
触部に適用して回転または揺動する物体を支持する摺動
部材において、母材の摺動面に凹部または凸部の配列ピ
ッチを0.8〜1.6mmとした凹凸パターンを形成
し、前記凹部の面積比率を摺動面全体の30〜70%、
深さを1μm以上10μm以下とし、さらに前記母材の
凹凸パターンの形成とともに、TiN,TiC,TiB
2 等の硬質膜あるいはイオン注入による硬質膜を、前記
凹凸パターンの凹凸面を維持できる厚みで設け、この硬
質膜表面の凹部に固体潤滑膜を満たしたことを特徴とす
る耐摩耗性摺動部材。
Claims: 1. A sliding member for supporting an object that rotates or swings by being applied to inner and outer race surfaces of a sliding bearing, a rolling bearing, a thrust receiving portion of a groove bearing or a contact portion of an artificial joint. A concave / convex pattern in which the arrangement pitch of the concave portions or convex portions is 0.8 to 1.6 mm is formed on the sliding surface of the base material, and the area ratio of the concave portions is 30 to 70% of the entire sliding surface;
The depth is set to 1 μm or more and 10 μm or less, and the formation of the uneven pattern of the base material and the formation of TiN, TiC, TiB
A wear-resistant sliding member characterized in that a hard film such as 2 or a hard film formed by ion implantation is provided with a thickness capable of maintaining the uneven surface of the uneven pattern, and a concave portion of the hard film surface is filled with a solid lubricating film. .
JP2002124506A 1993-03-05 2002-04-25 Wear-resistant sliding member Expired - Fee Related JP3738750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124506A JP3738750B2 (en) 1993-03-05 2002-04-25 Wear-resistant sliding member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7084493 1993-03-05
JP5-70844 1993-03-05
JP2002124506A JP3738750B2 (en) 1993-03-05 2002-04-25 Wear-resistant sliding member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12783593A Division JPH06313430A (en) 1993-03-05 1993-04-30 Wear and abrasion resistance sliding member

Publications (2)

Publication Number Publication Date
JP2003004043A true JP2003004043A (en) 2003-01-08
JP3738750B2 JP3738750B2 (en) 2006-01-25

Family

ID=26411971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124506A Expired - Fee Related JP3738750B2 (en) 1993-03-05 2002-04-25 Wear-resistant sliding member

Country Status (1)

Country Link
JP (1) JP3738750B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308734A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Method for driving plasma display panel
JP2007255312A (en) * 2006-03-23 2007-10-04 Daido Metal Co Ltd Sliding member and its manufacturing method
JP2008054809A (en) * 2006-08-30 2008-03-13 Hamada:Kk Structure of slide contact surface in artificial joint
JP2013092188A (en) * 2011-10-25 2013-05-16 Kurimoto Ltd Sliding member
WO2016088976A1 (en) * 2014-12-04 2016-06-09 중앙대학교 산학협력단 Low-friction sliding contact structure
US9976209B2 (en) 2011-02-15 2018-05-22 Kobe Steel, Ltd. Sliding member and method for manufacturing the same
JP2021063587A (en) * 2019-04-26 2021-04-22 日本精工株式会社 Method for designing friction of sliding member, method for managing surface roughness, and method for manufacturing sliding mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398468B2 (en) * 2009-10-21 2014-01-29 国立大学法人 東京大学 Artificial hip joint liner and artificial hip joint using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308734A (en) * 2005-04-27 2006-11-09 Matsushita Electric Ind Co Ltd Method for driving plasma display panel
JP2007255312A (en) * 2006-03-23 2007-10-04 Daido Metal Co Ltd Sliding member and its manufacturing method
JP2008054809A (en) * 2006-08-30 2008-03-13 Hamada:Kk Structure of slide contact surface in artificial joint
US9976209B2 (en) 2011-02-15 2018-05-22 Kobe Steel, Ltd. Sliding member and method for manufacturing the same
JP2013092188A (en) * 2011-10-25 2013-05-16 Kurimoto Ltd Sliding member
WO2016088976A1 (en) * 2014-12-04 2016-06-09 중앙대학교 산학협력단 Low-friction sliding contact structure
JP2021063587A (en) * 2019-04-26 2021-04-22 日本精工株式会社 Method for designing friction of sliding member, method for managing surface roughness, and method for manufacturing sliding mechanism
WO2021215050A1 (en) * 2019-04-26 2021-10-28 日本精工株式会社 Method for designing friction between sliding members, method for managing surface roughness, and method for manufacturing sliding mechanism
US11586787B2 (en) 2019-04-26 2023-02-21 Nsk Ltd. Friction design method and surface roughness control method for sliding member and production method for sliding mechanism

Also Published As

Publication number Publication date
JP3738750B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
US5462362A (en) Wear resisting slide member
WO2011122662A1 (en) Anti-friction bearing
WO1994002750A1 (en) Bearings
JP2003510530A (en) Hybrid angular contact ball bearing and axial thrust bearing having the same
Todd Solid lubrication of ball bearings for spacecraft mechanisms
JP2838869B2 (en) Lubricated rolling contact device, lubricating method, lubricating composition and ceramic rolling element
JP2003004043A (en) Anticorrosive sliding member
JP2989521B2 (en) Chain incorporating rolling elements
JPH06313430A (en) Wear and abrasion resistance sliding member
JP3590992B2 (en) Wear-resistant sliding member
JP2003222133A (en) Sintered oilless sliding bearing
JP2020046068A (en) Rolling bearing, wheel support device, and main shaft support device for wind power generation
WO2020045455A1 (en) Double-row self-aligning roller bearing and main shaft support device for wind generation equipped with same
JP2020118292A (en) Rolling bearing and wind power generation spindle support device
JP2007327632A (en) Rolling sliding member and rolling device
JP2012067900A (en) Rolling bearing
JPS60205011A (en) Self-lubricating bearing
JPH0893774A (en) Solid lubricating rolling bearing
JP2002195266A (en) Roller bearing
JP2008151264A (en) Cage for roller bearing
JP2006308080A (en) Rolling bearing
CN108884870A (en) Cage for rolling bearing and rolling bearing
JPS6329942Y2 (en)
JPH1047359A (en) Rolling bearing
JPH06159369A (en) Anti-corrosive roller bearing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041213

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Effective date: 20051024

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees