JP2003003253A - Vapor deposition system and method - Google Patents

Vapor deposition system and method

Info

Publication number
JP2003003253A
JP2003003253A JP2001191341A JP2001191341A JP2003003253A JP 2003003253 A JP2003003253 A JP 2003003253A JP 2001191341 A JP2001191341 A JP 2001191341A JP 2001191341 A JP2001191341 A JP 2001191341A JP 2003003253 A JP2003003253 A JP 2003003253A
Authority
JP
Japan
Prior art keywords
chamber
substrate
heating
greenhouse
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001191341A
Other languages
Japanese (ja)
Inventor
Kenji Ando
謙二 安藤
Hidehiro Kanazawa
秀宏 金沢
Koji Teranishi
康治 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001191341A priority Critical patent/JP2003003253A/en
Publication of JP2003003253A publication Critical patent/JP2003003253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a continuous automatic vapor deposition system which is capable of realizing the uniform heating over the entire part of substrates by minimizing the temperature difference between a substrate holder and the segments of the substrates inclusive of lenses in contact with the substrate holder as far as possible, improves lens performance and is high in productivity. SOLUTION: This vapor deposition system has a plurality of heating and slow cooling chambers 2 in which the lenses 9 being the substrates are housed and which are respectively independently capable of controlling the atmospheres and temperatures in the chambers under the atmosphere pressure, a heat insulting chamber 16 which is connectable to both of the heating and slow cooling chambers 2 and makes exhausting and pressurizing to the atmosphere possible between the atmospheric pressure and a desired vacuum degree while preventing the escape of heat of the transferred and heated lenses 9, a deposition chamber 31 which deposits the films 9 by vapor deposition in the vacuum and a conveying chamber 24 which has a temperature controlled substrate conveying robot 25 and of which the substrate conveying robot 25 is capable of conveying the lenses 9 between the heat insulating chamber 16 and the deposition chamber 31 in the vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板ホルダーに取
り付けられた基板の昇温・降温時に、均一な加熱および
均一な徐冷が可能な蒸着装置に関し、特に、基板がCa
2 等の様な熱に非常に弱い単結晶基板を加熱・徐冷す
るための連続自動蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor deposition apparatus capable of uniform heating and uniform cooling when a substrate mounted on a substrate holder is heated or cooled, and more particularly, when the substrate is Ca.
The present invention relates to a continuous automatic vapor deposition device for heating and gradually cooling a single crystal substrate such as F 2 which is very weak against heat.

【0002】[0002]

【従来の技術】従来から広く一般に用いられている自動
蒸着装置は、ロードロック室と、移載室と、成膜室と、
アンロード室とで構成され、ロードロック室には、複数
枚の基板が投入されて、真空排気と、膜の吸収、膜の密
度(屈折率)、膜の密着等の性能を向上させるために基
板を加熱するプロセスとが行われ、移載室ではロードロ
ック室で加熱された基板が真空状態で搬入されて成膜室
とアンロード室との間の搬送を行い、成膜室では基板に
膜が成膜され、アンロード室では成膜された基板の徐冷
および復圧を行って基板を排出する。基板の加熱方法と
しては、成膜前や成膜中に加熱が必要であることからレ
ンズ等の基板が取り付けられた基板ホルダーを真空中で
保持し、シースヒーターやハロゲンランプ等の熱源によ
って成膜面、成膜裏面または両面から加熱する方法が一
般に用いられている。
2. Description of the Related Art An automatic vapor deposition apparatus that has been widely and conventionally used includes a load lock chamber, a transfer chamber, a film forming chamber,
It consists of an unload chamber, and multiple substrates are put into the load lock chamber to improve the performance such as vacuum evacuation, film absorption, film density (refractive index), and film adhesion. The process of heating the substrate is performed, and the substrate heated in the load lock chamber is transferred in a vacuum state in the transfer chamber and is transported between the film formation chamber and the unload chamber. A film is formed, and in the unload chamber, the formed substrate is gradually cooled and the pressure is restored to discharge the substrate. As a method of heating the substrate, since it is necessary to heat the film before or during film formation, the substrate holder to which the substrate such as the lens is attached is held in vacuum, and the film is formed by a heat source such as a sheath heater or halogen lamp. A method of heating the surface, the back surface of the film formation, or both surfaces is generally used.

【0003】また、均一加熱を達成させる方法として、
特開平10−41378号公報で開示されているような
ヒーター面と基板裏面とのギャップ間にHe等のガスを
供給する方法や、特開平07−263530公報で開示
されているような、静電チャックとヒーターとを一体化
して加熱の効率化や均一化を図ったものが提案されてい
る。
Further, as a method for achieving uniform heating,
A method of supplying a gas such as He in the gap between the heater surface and the back surface of the substrate as disclosed in JP-A-10-41378, and electrostatic discharge as disclosed in JP-A-07-263530. It has been proposed that the chuck and the heater are integrated to improve the efficiency and uniformity of heating.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来から
広く用いられているシースヒーターのようにヒーターと
基板とを接触させる方法や、ハロゲンランプ等の熱源を
用いてヒーターと非接触の状態で真空中の加熱・徐冷を
行う方法で、単結晶CaF2 レンズを成膜する場合に
は、接触方法でレンズに傷が発生するという問題の他
に、下記のような問題点がある。 1. 均一な加熱や均一な徐冷が困難 2. 加熱徐冷処理室等の蒸着装置の大型・高価格化 3. 低い生産性 1.の問題は、ヒーターと非接触での加熱および徐冷工
程は、一般に成膜前の予備排気室での予備加熱や成膜中
の加熱が必要なことから、加熱雰囲気は真空となり真空
中での加熱・徐冷が行われる。従って加熱のメカニズム
は熱の伝導や対流による加熱はほとんどなく輻射による
加熱が主となる。材料の異なるレンズとレンズが保持さ
れるレンズホルダーとでは輻射熱の吸収効率が異なるこ
とから両者の間では昇温・降温特性が違り、レンズのレ
ンズホルダーと接触する部分とそれ以外の部分との間に
温度差が生じるため、均一加熱・徐冷について問題があ
った。
However, a method of bringing a heater into contact with a substrate such as a sheath heater which has been widely used in the past, or a vacuum heater in a non-contact state with a heater using a heat source such as a halogen lamp is used. When a single crystal CaF 2 lens is formed by the method of heating and gradually cooling, there are the following problems in addition to the problem that the lens is scratched by the contact method. 1. Uniform heating and uniform slow cooling are difficult 2. Larger and more expensive vapor deposition equipment such as heating / cooling chambers 3. Low productivity 1. The problem is that the heating without contact with the heater and the gradual cooling process generally require preheating in the preliminary exhaust chamber before film formation and heating during film formation. Heating / slow cooling is performed. Therefore, the heating mechanism is mostly heating by radiation, not by heat conduction or convection. Since the absorption efficiency of radiant heat is different between the lens made of different materials and the lens holder that holds the lens, the temperature rising and cooling characteristics differ between the two, and the part that contacts the lens holder of the lens and the other part Since there is a temperature difference between them, there is a problem with uniform heating / slow cooling.

【0005】2.の問題は、特に、単結晶CaF2 レン
ズにおける加熱・徐冷プロセスでは、熱の影響による面
形状変化等の問題を回避するために、数℃〜数十℃/時
間のような傾斜が非常に緩やかな昇温および降温カーブ
を用いた加熱冷却プロセスが必要で、従来の様な複数枚
で且つ多数バッチ分のレンズの処理を行ったり、インラ
イン型の連続処理炉の機能を有するロードロック室/ア
ンロード室構成では、滞留時間が長いためにロードロッ
ク室/アンロード室が大型化せざるを得ず、従って高価
格化を招いていた。
2. In particular, in the heating / slow cooling process for a single-crystal CaF 2 lens, in order to avoid problems such as surface shape change due to the influence of heat, a gradient such as several degrees Celsius to several tens of degrees Celsius / hour is very high. A heating / cooling process that uses a gradual temperature rise / fall curve is required, and a load lock chamber with the function of an in-line type continuous processing furnace is required to process multiple lenses for a large number of batches as before. In the structure of the unload chamber, the load lock chamber / unload chamber must be increased in size due to the long residence time, and thus the price has been increased.

【0006】また、様々なレンズ形状に対応する自動蒸
着装置として機能するためには、多種の膜厚補正板を真
空中で保管できる大型の真空保管室が必要となる。
Further, in order to function as an automatic vapor deposition apparatus corresponding to various lens shapes, a large vacuum storage chamber capable of storing various film thickness correction plates in vacuum is required.

【0007】3.の問題は、色々なレンズの形状に対応
した均一成膜を実現するには、両面のレンズ形状に応じ
た補正マスクが2種とレンズ反転機構とが必要である。
この補正マスクの搬送機構とレンズ反転機構がないと片
面に成膜されたレンズは昇温、成膜、降温プロセスを経
た後に反転して再度同様のプロセス処理を行わなければ
ならない。特に、次世代のArFやF2 半導体露光装置に
用いられている単結晶の高性能CaF2 レンズ等では、
上記1.の温度差が原因となったCaF2 レンズの面変
化、ホモジニティー変化や結晶のすべり等が発生して、
反射防止膜等のコート後のレンズ性能を低下させてい
る。
3. However, in order to realize uniform film formation corresponding to various lens shapes, two types of correction masks corresponding to the lens shapes on both sides and a lens reversing mechanism are required.
Without the mechanism for transporting the correction mask and the lens reversing mechanism, the lens formed on one surface must be subjected to the temperature raising, film forming, and temperature lowering processes, and then turned over to perform the same process again. In particular, in single crystal high performance CaF 2 lenses used in next-generation ArF and F 2 semiconductor exposure equipment,
Above 1. CaF 2 lens surface change, homogeneity change, crystal slip, etc. occurred due to the temperature difference of
The lens performance after coating such as an antireflection film is deteriorated.

【0008】従って、本発明の目的は、光学薄膜を形成
する連続自動蒸着装置の加熱プロセスにおいて、従来と
は異なった複数個の雰囲気制御された大気圧加熱炉、真
空排気・復圧が可能な保温チャンバー、およびレンズ裏
面を成膜するための反転室を有する構成の蒸着装置を用
いることにより、レンズホルダーとレンズホルダーに接
触するレンズの部分との間の温度差を極力抑えてCaF
2 レンズ全体の均一加熱を実現することで、成膜時にお
ける面変化等の性能劣化を防止し、更にレンズ性能を向
上させ、高性能な反射防止膜をコートできる生産性の高
い連続自動蒸着装置を安価に提供することにある。
Therefore, in the heating process of the continuous automatic vapor deposition apparatus for forming an optical thin film, an object of the present invention is to perform a plurality of atmosphere-controlled atmospheric pressure heating furnaces, which are different from the conventional ones, and to perform vacuum exhaust / recovery pressure. By using a vapor deposition apparatus having a heat-retaining chamber and an inversion chamber for forming a film on the back surface of the lens, the temperature difference between the lens holder and the lens portion in contact with the lens holder is suppressed as much as possible, and the CaF
(2) By realizing uniform heating of the entire lens, performance deterioration such as surface change during film formation is prevented, lens performance is further improved, and a high-performance anti-reflection film can be coated. To provide at low cost.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る蒸着装置は、基板に真空中で膜を成膜す
るための蒸着装置であって、基板が収納されて大気圧中
でそれぞれが独立して室内の雰囲気および温度が制御可
能な複数個の加熱・徐冷室と、加熱・徐冷室とも接続が
可能で、移載された加熱されている基板の熱の逃げを防
止しながら大気圧と所望の真空度との間での排気と復圧
とが可能な保温室と、真空中で蒸着により基板に膜を成
膜する成膜室と、温度制御された基板搬送機構を有し、
その基板搬送機構が真空中にて基板を接続された保温室
と成膜室との間で搬送可能な移載室と、を備えたことを
特徴とする。
A vapor deposition apparatus according to the present invention for achieving the above object is a vapor deposition apparatus for depositing a film on a substrate in a vacuum, and the substrate is housed under atmospheric pressure. It is also possible to connect multiple heating / slow cooling chambers, each of which can control the atmosphere and temperature in the room independently, and to escape the heat of the transferred heated substrate. A greenhouse chamber capable of exhausting and restoring pressure between atmospheric pressure and a desired degree of vacuum while preventing it, a film forming chamber for forming a film on a substrate by vacuum evaporation, and a temperature-controlled substrate transfer Have a mechanism,
The substrate transfer mechanism is provided with a transfer chamber capable of transferring the substrate between the greenhouse and the film forming chamber to which the substrate is connected in vacuum.

【0010】さらに、成膜室において片面が成膜された
基板の裏面にも成膜するために、その基板を真空中で反
転させるための反転室を備え、移載室の基板搬送機構は
基板を反転室にも搬送が可能であってもよく、加熱・徐
冷室および保温室において、成膜時に基板の膜厚分布を
補正するための1枚または2枚の補正板を、基板と同時
に加熱・徐冷、保温処理するための保持手段が設けられ
ていてもよい。
Further, in order to form a film on the back surface of the substrate having one surface formed in the film forming chamber, an inversion chamber for inverting the substrate in vacuum is provided, and the substrate transfer mechanism in the transfer chamber is a substrate transfer mechanism. It may be possible to transfer the film to the reversing chamber, and in the heating / slow cooling chamber and the warming chamber, one or two correction plates for correcting the film thickness distribution of the substrate at the time of film formation are provided at the same time as the substrate. Holding means for heating / slow cooling and heat retention may be provided.

【0011】この蒸着装置は、この基板がCaF2 単結
晶レンズである場合に特に有効である。本発明に係る蒸
着方法は、基板に真空中で膜を成膜するための蒸着方法
であって、大気圧中におかれた複数の加熱・徐冷室のそ
れぞれに、基板と補正板とが保持されたトレイを配置し
て、室内の雰囲気および温度を所定のプログラムに従っ
て制御し、所定の雰囲気および温度となった加熱・徐冷
室を、室内が所定の雰囲気および温度である保温室に接
続して、前記基板と補正板とが保持されたトレイをその
保温室に移載し、その保温室内を真空排気して、所定の
真空度となっている移載室と成膜室に接続し、その移載
室の基板搬送機構によって基板と補正板とを成膜室に移
載し、真空中で蒸着により基板に所定の膜を成膜し、基
板の裏面にも成膜を行う場合は、真空中で基板搬送機構
によってその基板を反転室に移して反転して成膜室に戻
し、補正板を交換し、再度真空中で蒸着により基板に所
定の膜を成膜し、成膜の終わった基板を真空中で基板搬
送機構によって保温室に戻し、その保温室内を所定の雰
囲気および温度で復圧して、接続している所定の雰囲気
および温度に制御された加熱・徐冷室に移載して、その
加熱・徐冷室内の温度を所定のプログラムに従って制御
して徐冷して処理を終了することを特徴とする。本発明
の蒸着装置では、基板の加熱、徐冷を、基板ごとに複数
の加熱・徐冷室内で大気圧の条件で所定の雰囲気と温度
を制御することによって行うので、熱伝達は雰囲気と基
板との対流と熱伝導によって行われ、基板と基板を保持
する基板ホルダとの間の温度差が少なく、従って基板の
基板ホルダと接触する部分とそれ以外の部分との温度差
がなく均等な加熱と冷却が可能になる。また、加熱・徐
冷を複数の基板を収納した真空状態可能なロードロック
室とアンロード室で行うのではなく、大気圧の条件で複
数の加熱・徐冷室で行い、所定の条件となった加熱・徐
冷室を保温室と接続して基板を保温室に移載し、保温室
で真空状態として真空成膜室に接続して成膜を行い、か
つ加熱・徐冷を同一の加熱・徐冷室で行うので設備の規
模が縮小され設備費も節減できる。
This vapor deposition apparatus is particularly effective when this substrate is a CaF 2 single crystal lens. The vapor deposition method according to the present invention is a vapor deposition method for forming a film on a substrate in a vacuum, and a substrate and a correction plate are provided in each of a plurality of heating / slow cooling chambers placed under atmospheric pressure. Arrange the trays that are held, control the atmosphere and temperature in the room according to a specified program, and connect the heating / slow cooling room that has reached the specified atmosphere and temperature to the greenhouse that has the specified atmosphere and temperature. Then, the tray holding the substrate and the correction plate is transferred to the greenhouse, and the inside of the greenhouse is evacuated and connected to the transfer chamber and the film forming chamber which have a predetermined degree of vacuum. When the substrate and the correction plate are transferred to the film forming chamber by the substrate transfer mechanism of the transfer chamber, and a predetermined film is formed on the substrate by vapor deposition in vacuum, and when the film is also formed on the back surface of the substrate, In vacuum, the substrate transfer mechanism moves the substrate to the reversal chamber, reverses it, and returns it to the film formation chamber. Replace the correction plate and again form a predetermined film on the substrate by vapor deposition in vacuum.The substrate after film formation is returned to the greenhouse by the substrate transport mechanism in vacuum, and the inside of the greenhouse is heated to the specified atmosphere and temperature. After re-pressurizing, transfer to a connected heating / slow cooling chamber controlled to a predetermined atmosphere and temperature, and control the temperature in the heating / slow cooling chamber according to a predetermined program to gradually cool and process. It is characterized by terminating. In the vapor deposition apparatus of the present invention, the heating and slow cooling of the substrate is performed by controlling a predetermined atmosphere and temperature under a condition of atmospheric pressure in a plurality of heating / slow cooling chambers for each substrate. The temperature difference between the substrate and the substrate holder that holds the substrate is small, so there is no temperature difference between the part of the substrate that contacts the substrate holder and the other part, and uniform heating. And cooling becomes possible. In addition, heating / slow cooling is not performed in the load lock chamber and unload chamber in which multiple substrates can be stored in a vacuum state, but in multiple heating / slow cooling chambers under atmospheric pressure conditions. The heating / slow cooling chamber is connected to the greenhouse, the substrate is transferred to the greenhouse, the vacuum is maintained in the greenhouse to connect to the vacuum film forming chamber for film formation, and the heating / slow cooling is performed by the same heating.・ Since it is performed in the slow cooling room, the scale of the equipment can be reduced and the equipment cost can be reduced.

【0012】また、反転室を成膜室と同じ真空条件下に
設けているので、両面成膜の場合も一旦冷却の後反転さ
せて反対面の成膜を行う必要がないので、処理時間と所
要スペースを節減できる。
Further, since the reversing chamber is provided under the same vacuum condition as the film forming chamber, it is not necessary to reverse the film formation after cooling once to form the film on the opposite surface even in the case of double-sided film formation. The required space can be saved.

【0013】さらに、補正板を基板と組み合わせて同時
に加熱・冷却・保温を行うので補正膜のための真空保管
庫とそのための搬送装置が不要となる。
Further, since the correction plate is combined with the substrate to simultaneously perform heating, cooling and heat retention, a vacuum storage for the correction film and a transfer device therefor are not required.

【0014】[0014]

【発明の実施の形態】次に本発明を具体化した蒸着装置
について説明する。以下の説明では基板は、最も効果が
期待できる熱に非常に弱い単結晶CaF2 レンズとして
説明するが、これに限定されるものではなく、熱に弱い
単結晶基板を含む基板全般の膜の蒸着に適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a vapor deposition apparatus embodying the present invention will be described. In the following description, the substrate will be described as a single crystal CaF 2 lens that is most vulnerable to heat and is extremely weak against heat, but the present invention is not limited to this, and deposition of films for all substrates including a single crystal substrate that is weak against heat. Applicable to

【0015】また、蒸着装置は特に自動連続蒸着装置と
限定していないが、本発明の構成は自動連続蒸着装置に
適用されることは当業者が容易に理解できることであ
る。次に、本発明の実施の形態について図面を参照して
説明する。図1は本発明の実施の形態における蒸着装置
の模式的平面配置図である。
Although the vapor deposition apparatus is not particularly limited to the automatic continuous vapor deposition apparatus, it can be easily understood by those skilled in the art that the structure of the present invention is applied to the automatic continuous vapor deposition apparatus. Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic plan layout view of a vapor deposition device according to an embodiment of the present invention.

【0016】図1に示す実施の形態の蒸着装置の基本構
成は、移動可能な複数の加熱・徐冷室2が配置されてい
るオーブンユニット1と、加熱されたレンズ等の温度を
一定に保ちながら大気から真空または真空から大気に排
気または復圧ができる保温室16と、レンズ等を保温室
16や成膜室31および反転室41に搬送する搬送ロボ
ット25を備えた移載室24と、レンズに多層膜を成膜
する成膜室31と、成膜されたレンズを反転する反転室
41とで構成されている。
The basic structure of the vapor deposition apparatus according to the embodiment shown in FIG. 1 is that the temperature of an oven unit 1 in which a plurality of movable heating / slow cooling chambers 2 are arranged and the temperature of heated lenses are kept constant. Meanwhile, a greenhouse chamber 16 that can evacuate from the atmosphere or evacuate or restore pressure from the atmosphere to the atmosphere; It is composed of a film forming chamber 31 for forming a multilayer film on the lens and an inversion chamber 41 for inverting the film formed lens.

【0017】オーブンユニット1には複数の加熱・徐冷
室2が格納されており、加熱・徐冷室2は立体駐車場の
様に循環しながら移動できる。加熱・徐冷室2の内部は
レンズの表面の有機物汚染を防止するためにN2 導入管
6からN2 ガスを導入してN 2 雰囲気に制御されてい
る。また、それぞれの加熱・徐冷室2は独立に温度制御
が可能で、加熱方法はヒーター3と温度制御器4で加熱
・徐冷室内部のN2 ガスを加熱し、ファン5で上から下
に循環する流れを形成している。
The oven unit 1 has a plurality of heating / slow cooling
Room 2 is stored, and heating / slow cooling room 2 is a multi-storey car park.
You can move while circulating. Inside the heating / slow cooling chamber 2
N to prevent organic contamination on the lens surface2Introductory pipe
6 to N2Introduce gas and N 2Controlled by the atmosphere
It The temperature of each heating / slow cooling chamber 2 is controlled independently.
The heating method is heating with the heater 3 and the temperature controller 4.
・ N in the slow cooling room2Heat the gas and use fan 5 from top to bottom
It forms a circulating flow into.

【0018】ファン5の下流には、加熱・徐冷室内部の
循環で捲き上がる0.1ミクロン以上のゴミや汚染有機
物を除去するためのフィルター7が配置されている。
A filter 7 is disposed downstream of the fan 5 for removing dust and contaminated organic substances of 0.1 μm or more that are wound up by circulation in the heating / slow cooling chamber.

【0019】加熱・徐冷室2の内部には、着脱可能なト
レイ8が収納されており、トレイ8にはCaF2 レンズ
9が保持された基板ホルダ10と2枚の補正板11、1
2とが収納されている。基板ホルダー10は蒸着装置の
搬送機構の関係上、外形の形状と外形寸法が規格化され
たSUS304で製作されており、基板ホルダー10の
中心部の段付穴にCaF2 レンズ9が落とし込まれ、C
aF2 レンズ9の外周部は基板ホルダー10の段付部と
同様な段付穴を有するSUS304で製作されたレンズ
保持リングで挟み込まれて基板ホルダーに保持され、補
正板11は蒸着時にこのCaF2 レンズ9の上面側(R
1面)の形状の膜むらを均一化させる補正板であり、補
正板12は蒸着時にレンズの裏面側(R2面)の形状の
膜むらを均一化させる補正板12であり、それぞれがト
レイ8にセットされている。上述のように、蒸着方法に
おける単結晶CaF2 レンズの加熱・徐冷プロセスで
は、熱の影響による面変化等の問題を回避するために、
数℃〜数十℃/時間といった傾斜が非常に緩やかな昇温
および降温カーブを用いる必要があり、そのため1バッ
チに数十時間を要する均一加熱プロセスで成膜する必要
がある。本発明の蒸着装置の加熱プロセスは、輻射によ
る加熱が主であった従来の加熱方法とは異なり、大気圧
で雰囲気および温度制御された加熱媒体を強制的に対流
させ、その加熱媒体との接触で対象物を加熱する、いわ
ゆる熱伝導による加熱方法で行われる。このため、輻射
が主の従来の加熱メカニズムの様に、使用されている真
空部品や基板材料によって近赤外線、赤外線、遠赤外線
の吸収率、反射率が異なることによって被加熱部材に温
度差が生ずるといった問題が回避された。例えば従来方
法では、材料からのガス放出が少ないことから一般的に
用いられているSUS304の真空材料で製作された基
板ホルダーにCaF2 材料のレンズが取り付けられてい
る。この場合、近赤外線、赤外線、遠赤外線の吸収率が
高い基板ホルダーは早く加熱されるが、長波長(赤外
光)側の吸収端が約10ミクロンのCaF2 レンズでは
近赤外線の光が透過するので加熱効率が悪く、あまり加
熱されないので温度差が発生していた。本発明の加熱媒
体を介在させた方法では、加熱媒体が基板ホルダー10
やCaF2 レンズ9と接触することで熱を伝える熱伝導
のため、異なった材料であっても均一な加熱が実現でき
る。加熱媒体としては比熱の大きなHeガスが最も好ま
しいが高価なので、本発明では、安価なN2 ガスを用い
ることが実用的に好ましい。また、加熱中にCaF2
ンズ9の表面の有機物汚染を防止するための炉内部材の
表面処理、フィルター7の設置等の考慮が必要である。
A detachable tray 8 is housed inside the heating / slow cooling chamber 2, and the tray 8 has a substrate holder 10 holding a CaF 2 lens 9 and two correction plates 11 and 1.
2 and are stored. Due to the transport mechanism of the vapor deposition apparatus, the substrate holder 10 is made of SUS304 whose outer shape and outer dimensions are standardized, and the CaF 2 lens 9 is dropped into the stepped hole at the center of the substrate holder 10. , C
The outer peripheral part of the aF 2 lens 9 is sandwiched by a lens holding ring made of SUS304 having a stepped hole similar to the stepped part of the substrate holder 10 and held by the substrate holder, and the correction plate 11 is made of CaF 2 during vapor deposition. The upper surface side of the lens 9 (R
The correction plate 12 is a correction plate that makes uniform the film unevenness in the shape of one surface), and the correction plate 12 is a correction plate 12 that makes the film unevenness in the shape of the back surface (R2 surface) of the lens uniform during vapor deposition, and each of them is a tray 8. Is set to. As described above, in the heating / slow cooling process of the single crystal CaF 2 lens in the vapor deposition method, in order to avoid problems such as surface change due to the influence of heat,
It is necessary to use a temperature rising / falling curve having a very gentle slope such as several degrees centigrade to several tens of degrees centigrade / hour, and therefore it is necessary to form a film by a uniform heating process that requires several tens of hours per batch. The heating process of the vapor deposition apparatus of the present invention is different from the conventional heating method in which heating by radiation is the main, and forcibly convects the atmosphere and the temperature-controlled heating medium at atmospheric pressure and makes contact with the heating medium. The object is heated by the so-called heat conduction heating method. For this reason, as in the conventional heating mechanism in which radiation is mainly used, the temperature difference occurs in the member to be heated due to the difference in absorption rate and reflectance rate of near-infrared rays, infrared rays, and far-infrared rays depending on the vacuum components and substrate materials used. The problem was avoided. For example, in the conventional method, a lens made of a CaF 2 material is attached to a substrate holder made of a vacuum material of SUS304 which is generally used because the material emits less gas. In this case, the substrate holder with high absorption rate of near-infrared ray, infrared ray, and far-infrared ray is heated quickly, but near-infrared ray is transmitted by the CaF 2 lens whose absorption edge on the long wavelength (infrared ray) side is about 10 microns. Therefore, the heating efficiency is poor, and the temperature difference occurs because the heating is not performed so much. In the method of interposing the heating medium of the present invention, the heating medium is the substrate holder 10.
Since heat is transferred by contacting the or CaF 2 lens 9, uniform heating can be realized even with different materials. He gas, which has a large specific heat, is most preferable as the heating medium, but is expensive. Therefore, in the present invention, it is practically preferable to use inexpensive N 2 gas. Further, it is necessary to consider the surface treatment of the furnace inner member, the installation of the filter 7 and the like in order to prevent the organic substance contamination on the surface of the CaF 2 lens 9 during heating.

【0020】加熱・徐冷室の外部には、トレイ8を出し
入れするゲートバルブ13が設けられており、加熱工程
が終了した加熱・徐冷室をオーブンユニット1の内部で
循環移動させて保温室16のゲートバルブ15と接続
し、接続したゲートバルブ13とゲートバルブ15の隙
間に、設定された温度に加熱されたN2 ガスをN2 導入
管14から導入して、N2 置換する。
A gate valve 13 for loading and unloading the tray 8 is provided outside the heating / slow cooling chamber, and the heating / slow cooling chamber after the heating process is circulated and moved inside the oven unit 1 to keep a greenhouse. Sixteen gate valves 15 are connected to each other, and N 2 gas heated to a set temperature is introduced into the gap between the connected gate valves 13 and 15 through the N 2 introducing pipe 14 to replace N 2 .

【0021】保温室16の内部には、温度を均一にさせ
る目的でトレイ8を回転させるための回転駆動部19が
配設されており、加熱されたレンズ9および補正板1
1、12の熱が逃げない様に保温室16の内部の全面が
ヒーター17で囲まれおり、ヒーター17は温度制御器
18で制御されている。なお、側面のヒーター17には
トレイ8やレンズ等を搬送する時、全面で囲まれたヒー
ターとの干渉を防止するためヒーター17の一部を回転
させる駆動系20が設けられている。
A rotary drive unit 19 for rotating the tray 8 for the purpose of making the temperature uniform is disposed inside the greenhouse 16, and the heated lens 9 and the correction plate 1 are provided.
The entire inside of the greenhouse 16 is surrounded by a heater 17 so that the heat of 1 and 12 does not escape, and the heater 17 is controlled by a temperature controller 18. The side heater 17 is provided with a drive system 20 for rotating a part of the heater 17 in order to prevent interference with the heater surrounded by the entire surface when the tray 8 and lenses are conveyed.

【0022】また、保温室16は保温室内部を排気する
排気ユニット21と保温室内部を復圧させるリーク弁2
2とを有している。均一に加熱された加熱・徐冷室2を
移動して保温室16にCaF2 レンズ9を搬送後、保温
室16内を排気する。この時、保温室16内を一気に排
気すると断熱膨張で周囲から熱を奪うので、排気の初期
はスロー排気を行う必要がある。スロー排気後は一気に
排気する。なお、保温室16は、全面がヒーターで囲ま
れた構成や基板ホルダー10接触部からの熱の入出を抑
え加熱されたCaF2 レンズ9の温度変化を抑えるため
の工夫がなされている。
The greenhouse 16 includes an exhaust unit 21 for exhausting the interior of the greenhouse and a leak valve 2 for restoring the pressure inside the greenhouse.
2 and. After the CaF 2 lens 9 is conveyed to the greenhouse 16 by moving the uniformly heated heating / slow cooling chamber 2, the inside of the greenhouse 16 is evacuated. At this time, if the inside of the greenhouse 16 is exhausted all at once, heat is taken from the surroundings by adiabatic expansion, so it is necessary to perform slow exhaust at the initial stage of exhaust. After slow exhaust, exhaust at once. The greenhouse 16 has a structure in which the entire surface is surrounded by a heater, and is devised to suppress the heat input / output from the contact portion of the substrate holder 10 and suppress the temperature change of the heated CaF 2 lens 9.

【0023】保温室16はゲートバルブ23を介して移
載室24と接続されている。移載室24の内部には、レ
ンズ9および補正板11、12を搬送する搬送ロボット
25、搬送中の温度低下を防止するヒーター27、およ
び温度制御器28が設置されている。ロボット25の先
端には、基板ホルダー10や補正板11、12をすくい
上げて搬送する搬送台26が取り付けられ、基板ホルダ
ー10を保温室16、成膜室31、および反転室41に
搬送することができる。また、移載室24には反転室4
1が接続されており、その2室の内部を排気する排気ユ
ニット29が取り付けられている。
The greenhouse 16 is connected to the transfer chamber 24 via a gate valve 23. Inside the transfer chamber 24, a transfer robot 25 that transfers the lens 9 and the correction plates 11 and 12, a heater 27 that prevents a temperature decrease during the transfer, and a temperature controller 28 are installed. A transfer table 26 for picking up and transferring the substrate holder 10 and the correction plates 11 and 12 is attached to the tip of the robot 25, and the substrate holder 10 can be transferred to the greenhouse 16, the film forming chamber 31, and the reversing chamber 41. it can. In addition, the transfer chamber 24 has a reversal chamber 4
1 is connected, and an exhaust unit 29 for exhausting the inside of the two chambers is attached.

【0024】反転室41の内部には、回転台42と反転
駆動ユニット43と反転操作時のレンズの温度低下を防
止するためにヒーター44と温度制御器45とが配設さ
れている。
Inside the reversing chamber 41, there are provided a rotary table 42, a reversing drive unit 43, a heater 44 and a temperature controller 45 for preventing the temperature of the lens from decreasing during the reversing operation.

【0025】移載室24にはゲートバルブ30を介して
成膜室31が接続されている。成膜室31の内部にはC
aF2 レンズ9’がセットされた基板ホルダー10が搬
送ロボット25で搬送されてドーム32にセットされ
る。セットされた基板ホルダー10は、自公転駆動ユニ
ット33により自転しながら公転するいわゆる自公転運
動をする。CaF2 レンズ9’にセットされた基板ホル
ダー10と蒸発源38との間には、成膜するレンズ面の
形状に合った補正板11’または補正板12’が搬送ロ
ボット25で搬送されて固定配置される。更に蒸発源3
8の前面近傍にシャッター駆動ユニット37で開閉する
シャッター板36が配置されている。前記蒸発源38の
内部には蒸発材料が入っており蒸着電源39で蒸発材料
を溶かしてレンズに成膜する。ドーム32の上部にはレ
ンズ加熱用のヒーター34と温度制御器35が配置され
てレンズの温度低下を防止している。また、成膜室31
には成膜室31の内部を排気する排気ユニット40が取
り付けられている。保温室が排気された後、CaF2
ンズ9と基板ホルダー10とは移載室24の搬送ロボッ
ト25によって成膜室31に搬送されて成膜が行われ、
さらに移載室24の搬送ロボット25によって反転室4
1で反転され、反転後搬送ロボット25によって再び成
膜室31に搬送されて裏面の成膜が行われ、これらの処
理工程が終了した後搬送ロボット25によって再び保温
室16に搬送される。保温室16に搬送された後、加熱
されたN2 ガスを導入するリーク操作に入る。この時、
排気操作時と同様の断熱膨張で熱が奪われるのでゆっく
りリークするスローリークを行う。リーク操作後、コー
トされたレンズ9を前と反対の操作で加熱・徐冷室2に
搬送し徐冷行程に入る。徐冷行程完了で一連の行程は完
了する。従って、傾斜が非常に緩やかな数℃〜数十℃/
時間の昇温および降温カーブを用いた均一加熱プロセス
が達成でき、昇温・降温および定値状態時に基板ホルダ
ー10とCaF2 レンズ9との間に温度差が発生し、C
aF2 レンズ9の面変化、ホモジニティー変化や結晶の
すべり等が発生してレンズ性能が劣化するなどの従来の
行程で発生する技術的な問題が解決できた。
A film forming chamber 31 is connected to the transfer chamber 24 via a gate valve 30. Inside the film forming chamber 31, C
The substrate holder 10 on which the aF 2 lens 9 ′ is set is transported by the transport robot 25 and set on the dome 32. The substrate holder 10 thus set performs a so-called revolving motion in which the revolving drive unit 33 revolves around its own axis. Between the substrate holder 10 set on the CaF 2 lens 9 ′ and the evaporation source 38, the correction plate 11 ′ or the correction plate 12 ′ that matches the shape of the lens surface to be formed is conveyed by the conveyance robot 25 and fixed. Will be placed. Further evaporation source 3
A shutter plate 36 that is opened and closed by a shutter drive unit 37 is arranged near the front surface of the shutter 8. The evaporation source 38 contains an evaporation material, and the evaporation power source 39 melts the evaporation material to form a film on the lens. A heater 34 for heating the lens and a temperature controller 35 are arranged above the dome 32 to prevent the temperature of the lens from decreasing. In addition, the film forming chamber 31
An exhaust unit 40 for exhausting the inside of the film forming chamber 31 is attached to the. After the greenhouse is evacuated, the CaF 2 lens 9 and the substrate holder 10 are transferred to the film forming chamber 31 by the transfer robot 25 in the transfer chamber 24 to perform film formation,
Further, the reversing chamber 4 is moved by the transfer robot 25 in the transfer chamber 24.
After being inverted, the robot is transported to the film forming chamber 31 again by the transport robot 25 after being inverted, and film formation is performed on the back surface. After these processing steps are finished, the robot is transported to the greenhouse 16 again. After being transported to the greenhouse 16, a leak operation for introducing heated N 2 gas is started. This time,
Since heat is taken away by the same adiabatic expansion as during exhaust operation, a slow leak that slowly leaks is performed. After the leak operation, the coated lens 9 is conveyed to the heating / slow cooling chamber 2 by the operation opposite to the above, and the slow cooling process is started. When the slow cooling process is completed, the series of processes is completed. Therefore, several degrees to several tens of degrees C
A uniform heating process using the temperature rising and falling curves can be achieved, and a temperature difference occurs between the substrate holder 10 and the CaF 2 lens 9 during the rising / falling and constant value states, and C
It has been possible to solve the technical problems that occur in the conventional process such as the surface change of the aF 2 lens 9, the change of homogeneity, the slip of crystals, and the like, which deteriorates the lens performance.

【0026】上述の蒸着装置の説明の中で併せて蒸着方
法の概略を説明したが、次に、本発明の蒸着装置を用い
た蒸着方法の実際の工程を説明する。CaF2 レンズ9
をセットした基板ホルダー10と、R1面、R2面の補
正板11、12とをトレイ8にセットした後、加熱・徐
冷室2に搬送してゲートバルブ13を経由して加熱・徐
冷室2の内部に配置する。配置後、N2 導入管6からN
2 ガスを導入して加熱・徐冷室2の内部をN2 ガスに置
換する。この時、加熱・徐冷室2の内部の酸素濃度計で
酸素濃度を検出してN2 置換状態を確認する。酸素濃度
計が100ppm以下になったらN2 ガス導入量を絞り
酸素濃度計が100ppm以下を保持するようにする。
The outline of the vapor deposition method has been described together with the above description of the vapor deposition apparatus. Next, the actual steps of the vapor deposition method using the vapor deposition apparatus of the present invention will be described. CaF 2 lens 9
After setting the substrate holder 10 on which is set and the correction plates 11 and 12 of the R1 surface and the R2 surface on the tray 8, the substrate holder 10 is conveyed to the heating / slow cooling chamber 2 and heated / slow cooling chamber via the gate valve 13. Place inside 2. After the placement, N 2 introduction pipe 6 to N
2 gas is introduced to replace the inside of the heating / slow cooling chamber 2 with N 2 gas. At this time, the oxygen concentration is detected by an oxygen concentration meter inside the heating / slow cooling chamber 2 to confirm the N 2 substitution state. When the oxygen concentration meter becomes 100 ppm or less, the amount of N 2 gas introduced is reduced to keep the oxygen concentration meter at 100 ppm or less.

【0027】次に加熱工程に入る。加熱工程はプログラ
ム温度制御器4で数℃〜数十℃/時間の加熱レートで加
熱・徐冷室2内を300℃迄加熱する。加熱プロセスが
終了後、加熱・徐冷室2を移動して加熱・徐冷室2のゲ
ートバルブ13と保温室16のゲートバルブ15とをド
ッキングし、300℃に加熱されたN2 ガスをN2 導入
管14から導入してゲートバルブ13とゲートバルブ1
5との間の空気をN2ガスに置換する。この時酸素濃度
計で濃度を確認しながら置換操作をすることが好まし
い。
Next, the heating process is started. In the heating process, the program temperature controller 4 heats the inside of the heating / slow cooling chamber 2 up to 300 ° C. at a heating rate of several ° C. to several tens of ° C./hour. After the heating process is completed, the heating / slow cooling chamber 2 is moved to dock the gate valve 13 of the heating / slow cooling chamber 2 and the gate valve 15 of the greenhouse 16 and the N 2 gas heated to 300 ° C. 2 Gate valve 13 and gate valve 1 introduced from the inlet pipe 14
The air between 5 and 5 is replaced with N 2 gas. At this time, it is preferable to perform the substitution operation while confirming the concentration with an oxygen concentration meter.

【0028】置換操作終了後、加熱したN2 ガスの供給
を停止してゲートバルブ15およびゲートバルブ12を
開放する。この時、保温室16の内部は、予めN2 ガス
置換された状態とし、ヒーター17で300℃に加熱し
ておく。保温室16の駆動系20でヒーター17の一部
を回転させてトレー搬入口を開けトレー8を保温室16
に搬送する。搬送後、両方のゲートバルブ13、15を
閉じ、更に駆動系20でヒーター17の一部を回転させ
てトレー搬入口を閉じた後、排気ユニット21でスロー
排気を行う。保温室内部が100Pa以下になったら急
速排気を行い10E−4Pa以下になるまで排気する。
この時、トレー8は回転駆動部19で連続的に回転させ
て温度の均一化を達成させる。
After the replacement operation is completed, the supply of the heated N 2 gas is stopped and the gate valves 15 and 12 are opened. At this time, the inside of the greenhouse 16 is preliminarily replaced with N 2 gas and heated to 300 ° C. by the heater 17. A part of the heater 17 is rotated by the drive system 20 of the greenhouse 16 to open the tray carry-in port and keep the tray 8
Transport to. After the transfer, both gate valves 13 and 15 are closed, a part of the heater 17 is further rotated by the drive system 20 to close the tray carry-in port, and then the exhaust unit 21 performs slow exhaust. When the inside of the greenhouse is 100 Pa or less, rapid evacuation is performed until it reaches 10E-4 Pa or less.
At this time, the tray 8 is continuously rotated by the rotation driving unit 19 to achieve uniform temperature.

【0029】保温室16での排気が完了後、ゲートバル
ブ23、30を開き、また同時にヒーター17の一部を
回転させてトレー搬入口を開け、搬送ロボット25の搬
送台26で基板ホルダー10をすくいあげて保温室16
から成膜室31へ搬送する。
After the evacuation of the greenhouse 16 is completed, the gate valves 23 and 30 are opened, and at the same time, a part of the heater 17 is rotated to open the tray carry-in port, and the carrier table 26 of the carrier robot 25 holds the substrate holder 10 in place. Scoop and hold greenhouse 16
To the film forming chamber 31.

【0030】成膜室31では、搬送された基板ホルダー
10をドーム32にセットする。同様に保温室16から
R1面用の補正板11を搬送ロボット25で搬送して成
膜室31にセットする。搬送が完了後、ゲートバルブ2
3、30とヒーター17のトレー搬入口を閉じる。
In the film forming chamber 31, the transported substrate holder 10 is set on the dome 32. Similarly, the correction plate 11 for the R1 surface is transferred from the warming room 16 by the transfer robot 25 and set in the film forming chamber 31. After transportation is completed, gate valve 2
Close tray inlets for heaters 3 and 30 and heater 17.

【0031】成膜室31では、基板ホルダー10を自公
転駆動ユニット33で自転しながら公転するいわゆる自
公転運動をさせる。次に、蒸発源38の内部の蒸発材料
を蒸着電源39の抵抗加熱で溶かし、蒸発材料のガス放
出や蒸発が安定した後シャッター板36を開いてレンズ
9に成膜する。この様な蒸着作業を所望の材料および膜
厚で数層成膜することで所望の光学特性が得られる。
In the film forming chamber 31, the substrate holder 10 is caused to perform a so-called revolving motion in which the substrate holder 10 revolves while rotating on its own axis. Next, the evaporation material inside the evaporation source 38 is melted by resistance heating of the evaporation power source 39, and after the gas release and evaporation of the evaporation material is stabilized, the shutter plate 36 is opened to form a film on the lens 9. Desired optical characteristics can be obtained by depositing several layers of such a vapor deposition operation with a desired material and film thickness.

【0032】成膜工程が終了後、前記と同様にゲートバ
ルブ23、30とヒーター17のトレー搬入口を開き搬
送ロボット25でコートされたレンズ9の基板ホルダー
10を反転室41にまた、R1面の補正板11を元の保
温室16のトレイ8へ搬送する。
After the film forming process is completed, the gate valves 23 and 30 and the tray carrying inlet of the heater 17 are opened and the substrate holder 10 of the lens 9 coated by the carrying robot 25 is placed in the reversing chamber 41 in the reversing chamber 41 as described above. The correction plate 11 is conveyed to the original tray 8 of the greenhouse 16.

【0033】反転室41では、反転駆動ユニット43で
回転台42を反転させてレンズ9の反転操作を行う。反
転操作が終了後、再度反転された基板ホルダー10と保
温室16にあるR2面の補正板12とを成膜室31へ搬
送し成膜を行う。
In the reversing chamber 41, the turntable 42 is reversed by the reversing drive unit 43 to perform the reversing operation of the lens 9. After the inversion operation is completed, the substrate holder 10 and the R2 correction plate 12 in the greenhouse 16 which have been inverted again are transported to the film forming chamber 31 to form a film.

【0034】両面の成膜が完了した後、基板ホルダー1
0と補正板12とを搬送ロボット25で保温室16へ搬
送してトレイ8に戻す。その後、ゲートバルブ23、3
0とヒーター17のトレー搬入口を閉じ保温室16内の
復圧操作に入る。
After the film formation on both sides is completed, the substrate holder 1
0 and the correction plate 12 are transported to the greenhouse 16 by the transport robot 25 and returned to the tray 8. After that, the gate valves 23, 3
0 and the tray carry-in port of the heater 17 are closed, and the pressure recovery operation in the greenhouse 16 is started.

【0035】リーク操作では、リーク弁22を若干開き
300℃に加熱したN2 ガスを導入する。保温室内部の
圧力が1000Pa以上になったらリーク弁22を全開
する。復圧操作とゲートバルブ13、15間のN2 置換
操作との完了後、ゲートバルブ15、13とヒーター1
7のトレー搬入口を開き保温室16の内部の成膜完了し
たレンズ9を搭載したトレー8を接続している加熱・徐
冷室2へ搬送する。ゲートバルブ15、13を閉じ加熱
・徐冷室2を保温室16から切り離してオーブンユニッ
ト1内を移動する。再び加熱処理が終了した新しい加熱
・徐冷室2と保温室16とを接続して上記の工程を繰り
返す。
In the leak operation, the leak valve 22 is slightly opened and N 2 gas heated to 300 ° C. is introduced. When the pressure inside the greenhouse is 1000 Pa or more, the leak valve 22 is fully opened. After completion of the recompression operation and the N 2 replacement operation between the gate valves 13 and 15, the gate valves 15 and 13 and the heater 1
The tray 7 is opened to transfer it to the heating / slow cooling chamber 2 inside the greenhouse 16 to which the tray 8 having the film-formed lenses 9 mounted thereon is connected. The gate valves 15 and 13 are closed, the heating / slow cooling chamber 2 is separated from the greenhouse 16, and the oven unit 1 is moved. The new heating / slow cooling chamber 2 after the heat treatment is again connected to the greenhouse 16, and the above steps are repeated.

【0036】なお、成膜が終了した加熱・徐冷室は徐冷
工程に入り、ヒーター3と温度制御器4とで、設定され
た数℃〜数十℃/時間の温度カーブで数十時間かけて徐
冷を行う。
The heating / slow cooling chamber in which the film formation is completed enters a slow cooling step, and the heater 3 and the temperature controller 4 set a temperature curve of several to several tens of degrees Celsius / hour for several tens of hours. Slowly cool over.

【0037】以上の様に生産性の改善として非常に時間
を必要とする加熱・徐冷工程は独立した複数個の加熱・
徐冷室2を効率良く搬送移動することや、反転室41を
付加して減圧状態のまま両面のコートを実現することで
達成される。また、レンズ両面の形状に対応した補正板
をレンズと同時に搬送することで補正板を真空保管する
大きなチャンバー、駆動系が不要となり安価な自動蒸着
装置になった。
As described above, in order to improve productivity, the heating / slow cooling process, which requires a very long time, has a plurality of independent heating.
This can be achieved by efficiently carrying and moving the slow cooling chamber 2 or by adding the reversing chamber 41 to realize coating on both sides in a depressurized state. In addition, by transporting the correction plates corresponding to the shapes on both sides of the lens at the same time as the lenses, a large chamber for storing the correction plates in a vacuum and a drive system are not required, and an inexpensive automatic vapor deposition apparatus is obtained.

【0038】また、本発明によって次のように従来の課
題が解決された。 1) 加熱徐冷処理室等の蒸着装置の小型・低価格化 処理時間に数十時間を必要とする加熱・徐冷行程は、加
熱・徐冷室を独立に制御可能で移動可能な複数個の加熱
・徐冷室としたことで小型および低価格化を実現してい
る。例えば各加熱・徐冷室が立体駐車場の様に水平・垂
直に移動して保温室に接続して、レンズ等の搭載された
トレイを保温室に移して保温室で真空排気する構成とす
ることで、加熱・徐冷室は大気圧雰囲気処理用となり、
真空対応容器に比べ格段の低価格化になっている。
Further, the present invention has solved the conventional problems as follows. 1) Miniaturization and cost reduction of vapor deposition equipment such as heating / slow cooling chamber For heating / slow cooling process that requires dozens of hours for processing time, multiple heating / slow cooling chambers can be independently controlled and movable. The heating / slow cooling chamber of this model realizes downsizing and price reduction. For example, each heating / cooling room moves horizontally / vertically like a multi-storey car park and connects to the greenhouse, and the tray with lenses etc. is transferred to the greenhouse and vacuum exhausted in the greenhouse. Therefore, the heating / slow cooling chamber is for atmospheric pressure atmosphere processing,
It is much cheaper than vacuum-compatible containers.

【0039】また、従来技術では、複数のレンズに対応
する全自動蒸着装置が、レンズ形状に対応した表裏2種
の膜厚分布を補正する補正板を、コートする全てのレン
ズ形状に対応させて真空内でストックする大型の真空チ
ャンバーおよびロボット等の搬送系が必要であったが、
本発明では、CaF2 レンズとそのレンズ形状に合った
表裏2種の膜厚分布を補正する補正板を同時に処理する
ため、前記の真空チャンバーおよびロボット等の搬送系
が不要となり、蒸着装置は小型・低価格化となってい
る。 2) 生産性改善 生産性改善については、処理時間が数十時間を必要とす
る加熱・徐冷行程を、加熱・徐冷室を独立に制御可能な
複数個の加熱・徐冷室として効率の良い移動が可能とし
たことで対応し、また蒸着装置内に反転室を設けること
で表裏2面の同一工程での処理が可能となって、処理時
間が数十時間必要とする加熱・徐冷行程を再度繰り返す
必要がなくなり生産性の改善ができた。 《比較例》次に均一加熱の比較例として、CaF2 レン
ズをセットした基板ホルダーを真空中で加熱をした時
と、本発明の図1に示される実施の形態の蒸着装置を用
いてN2 雰囲気に制御された大気圧中で加熱した時との
比較を行った。この比較実験では、同一の基板ホルダー
を用いて、同一条件となる設定で温度測定を行った。温
度測定に使用したCaF2 レンズは凹凸面で外径φ20
0のメニスカス形状で中心肉厚約40mmのレンズを用
い、温度測定用の熱電対は、熱電対自体が加熱される影
響をできるだけ小さく抑えるために最小径のシース型φ
0.5をレンズの中央部、周辺部およびφ420のSU
S製の基板ホルダーに埋め込んで設置した。
Further, in the prior art, a fully automatic vapor deposition apparatus corresponding to a plurality of lenses is provided with a correction plate for correcting the film thickness distribution of two kinds of front and back corresponding to the lens shape, corresponding to all the lens shapes to be coated. A large vacuum chamber stocked in a vacuum and a transfer system such as a robot were required.
In the present invention, since the CaF 2 lens and the correction plate for correcting the film thickness distribution of the two types of the front and back that match the lens shape are processed at the same time, the vacuum chamber and a transfer system such as a robot are not required, and the vapor deposition apparatus is small.・ Lower prices. 2) Productivity improvement For productivity improvement, the heating / slow cooling process, which requires a processing time of several tens of hours, can be used as a plurality of heating / slow cooling chambers that can independently control the heating / slow cooling chamber. This is achieved by making good movement possible, and by providing a reversing chamber in the vapor deposition device, it is possible to perform processing in the same process on the front and back sides, and heating / slow cooling that requires a processing time of several tens of hours. There is no need to repeat the process again, improving productivity. As a comparative example of "Comparative Example" then uniformly heated, and when the heating in a vacuum substrate holder equipped with a CaF 2 lens, using a vapor deposition apparatus of the embodiment shown in Figure 1 of the present invention N 2 A comparison was made with the case of heating in an atmospheric pressure controlled atmosphere. In this comparative experiment, the same substrate holder was used to measure the temperature under the same conditions. The CaF 2 lens used for temperature measurement has an uneven surface with an outer diameter of φ20.
A lens with a meniscus shape of 0 and a center wall thickness of about 40 mm is used. The thermocouple for temperature measurement has a minimum diameter sheath type φ to minimize the effect of heating the thermocouple itself.
0.5 for the central and peripheral parts of the lens and SU of φ420
It was installed by embedding it in an S substrate holder.

【0040】図2は上記の条件にて、真空中で加熱した
ときと大気圧中で加熱した時の温度測定をした結果であ
る。
FIG. 2 shows the results of temperature measurement under the above conditions when heated in vacuum and at atmospheric pressure.

【0041】真空中での加熱では、基板ホルダーとCa
2 の吸熱効率の違いによって基板ホルダーの温度の方
が高くなり、CaF2 レンズが300℃の時に基板ホル
ダーとの間で約110℃程度の温度差が発生し、且つレ
ンズの中央と周辺では約30℃程度の温度差が認められ
た。これは、基板ホルダーからの熱の伝導による影響と
考えられる。
For heating in vacuum, the substrate holder and Ca
Due to the difference in the heat absorption efficiency of F 2 , the temperature of the substrate holder becomes higher, and when the temperature of the CaF 2 lens is 300 ° C., a temperature difference of about 110 ° C. occurs between the substrate holder and the center and the periphery of the lens. A temperature difference of about 30 ° C. was recognized. This is considered to be due to the conduction of heat from the substrate holder.

【0042】これに対してN2雰囲気で制御された大気
圧中の加熱では、基板ホルダー、CaF2 レンズ中心部
の表裏および周辺ともほぼ同じ温度に加熱され温度上昇
カーブも所望の特性を得ることができた。
On the other hand, in the heating under the atmospheric pressure controlled by the N 2 atmosphere, the substrate holder, the front and back surfaces of the central portion of the CaF 2 lens, and the periphery are heated to substantially the same temperature, and the temperature rising curve also obtains desired characteristics. I was able to.

【0043】図3は大気圧中の加熱で昇温および降温の
温度特性を測定した結果である。このグラフからわかる
ように均一加熱および均一徐冷が実現できたことがわか
る。
FIG. 3 shows the results of measuring the temperature characteristics of temperature increase and decrease by heating at atmospheric pressure. As can be seen from this graph, uniform heating and uniform gradual cooling were realized.

【0044】以上の通り、本実施の形態では、従来の真
空加熱方式とは異なり、優れた均一加熱特性の得られる
雰囲気制御された大気圧中の加熱にすることによって基
板と基板ホルダーとの温度差を減少でき、従って基板と
基板ホルダーとの接触する部分における両者の間の温度
差を極力抑えることができ、CaF2 レンズ全体の均一
加熱を実現することができた。
As described above, in the present embodiment, unlike the conventional vacuum heating method, the temperature of the substrate and the substrate holder is controlled by heating in the atmospheric pressure with controlled atmosphere, which provides excellent uniform heating characteristics. The difference can be reduced, and therefore the temperature difference between the substrate and the substrate holder in the contacting portion can be suppressed as much as possible, and uniform heating of the entire CaF 2 lens can be realized.

【0045】従って、本発明の目的である、CaF2
ンズの成膜時におけるレンズ性能劣化を防止しながら更
に、CaF2 レンズ全体が均一な成膜となり、膜特性を
向上させ、高性能な反射防止膜のコートが可能な生産性
の高い全自動蒸着装置を安価に提供することができた。
Therefore, the object of the present invention is to prevent the lens performance from deteriorating during the film formation of the CaF 2 lens, and further to form a uniform film over the entire CaF 2 lens, thereby improving the film characteristics and providing high-performance reflection. It was possible to provide at low cost a highly productive fully automatic vapor deposition device capable of coating an anti-prevention film.

【0046】[0046]

【発明の効果】以上説明した様に、本発明は以下に述べ
る効果を有する。即ち、従来の蒸着加熱プロセスで用い
られた真空中加熱では達成できなかったCaF2レンズ
全体の優れた均一加熱特性が達成できるという効果が得
られた。これは、雰囲気制御された大気圧中の加熱方式
にすることで、基板と基板ホルダーとの接触する部分に
おける両者の間の温度差が極力抑えられたことによる。
また、生産性が高く、小型化ができ、安価な蒸着装置が
得られ、その結果、蒸着やスパッタ等の成膜プロセスを
経ても面変化、結晶のすべり、およびホモジニティー変
化のない優れたCaF2 レンズを供給する生産性の高い
自動蒸着装置を安価に提供することができるという効果
が得られた。これは非常に時間を要した従来の加熱およ
び徐冷工程に対して、複数の加熱・徐冷室や反転室、更
にレンズと補正板を同時に搬送する構成としたことによ
る。
As described above, the present invention has the following effects. That is, the effect that excellent uniform heating characteristics of the entire CaF 2 lens, which could not be achieved by heating in vacuum used in the conventional vapor deposition heating process, can be achieved. This is because the temperature difference between the substrate and the substrate holder at the contacting portion was suppressed as much as possible by using the atmospherically controlled heating method at atmospheric pressure.
In addition, a highly efficient, compact, inexpensive vapor deposition apparatus can be obtained, and as a result, excellent CaF 2 that does not undergo surface change, crystal slip, and homogeneity change even after a film forming process such as vapor deposition or sputtering. The effect that an automatic vapor deposition apparatus that supplies lenses with high productivity can be provided at low cost was obtained. This is because a plurality of heating / slow cooling chambers, reversing chambers, and the lens and the correction plate are simultaneously conveyed, as compared with the conventional heating and slow cooling steps which require a very long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における蒸着装置の模式的
平面配置図である。
FIG. 1 is a schematic plan layout view of a vapor deposition device according to an embodiment of the present invention.

【図2】従来の真空中の加熱と本発明の図1のN2 雰囲
気に制御された大気圧中の加熱との温度特性比較結果を
示すグラフである。
FIG. 2 is a graph showing a comparison result of temperature characteristics between the conventional heating in vacuum and the heating in the atmospheric pressure controlled in the N 2 atmosphere of FIG. 1 of the present invention.

【図3】本発明の実施の形態の昇温および降温特性の結
果を示すグラフである。
FIG. 3 is a graph showing the results of temperature rising / falling characteristics according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 オーブンユニット 2 加熱・徐冷室 3、17、27、34、44 ヒーター 4、18、28、35、45 温度制御器 5 ファン 6、14 N2 導入管 7 フィルター 8 トレイ 9 CaF2 レンズ 10 基板ホルダー 11、12 補正板 13、15、23、30 ゲートバルブ 16 保温室 19 回転駆動部 20 駆動系 21、29、40 排気ユニット 22 リーク弁 24 移載室 25 搬送ロボット 26 搬送台 31 成膜室 32 ドーム 33 自公転駆動ユニット 36 シャッター板 37 シャッター駆動ユニット 38 蒸着源 39 蒸着電源 41 反転室 42 回転台 43 反転駆動ユニット1 Oven unit 2 Heating / slow cooling chamber 3, 17, 27, 34, 44 Heater 4, 18, 28, 35, 45 Temperature controller 5 Fan 6, 14 N 2 introduction pipe 7 Filter 8 Tray 9 CaF 2 lens 10 Substrate Holders 11, 12 Correction plates 13, 15, 23, 30 Gate valve 16 Greenhouse 19 Rotation drive unit 20 Drive systems 21, 29, 40 Exhaust unit 22 Leak valve 24 Transfer chamber 25 Transfer robot 26 Transfer table 31 Film forming chamber 32 Dome 33 Auto-rotation drive unit 36 Shutter plate 37 Shutter drive unit 38 Vapor deposition source 39 Vapor deposition power source 41 Inversion chamber 42 Rotating table 43 Inversion drive unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺西 康治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2K009 AA02 BB04 DD03 4K029 AA04 BB04 BC07 BD00 CA01 DA00 DA08 KA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koji Teranishi             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation F-term (reference) 2K009 AA02 BB04 DD03                 4K029 AA04 BB04 BC07 BD00 CA01                       DA00 DA08 KA01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板に真空中で膜を成膜するための蒸着
装置であって、 前記基板が収納されて、大気圧中でそれぞれが独立して
室内の雰囲気および温度が制御可能な複数個の加熱・徐
冷室と、 前記加熱・徐冷室とも接続が可能で、移載された加熱さ
れている前記基板の熱の逃げを防止しながら大気圧と所
望の真空度との間での排気と復圧とが可能な保温室と、 真空中で蒸着により前記基板に膜を成膜する成膜室と、 温度制御された基板搬送機構を有し、該基板搬送機構が
真空中にて前記基板を接続された前記保温室と前記成膜
室との間で搬送可能な移載室と、を備えたことを特徴と
する蒸着装置。
1. A vapor deposition apparatus for depositing a film on a substrate in a vacuum, wherein a plurality of the substrates are housed and are capable of independently controlling the atmosphere and temperature in a room under atmospheric pressure. The heating / slow cooling chamber and the heating / slow cooling chamber can be connected to prevent the heat of the transferred and heated substrate from escaping, and to prevent the heat between the atmospheric pressure and the desired vacuum degree. It has a greenhouse chamber capable of exhausting and restoring pressure, a film forming chamber for forming a film on the substrate by vapor deposition in vacuum, and a temperature controlled substrate transfer mechanism, and the substrate transfer mechanism is in vacuum. A vapor deposition apparatus comprising: a transfer chamber capable of being transported between the greenhouse and the film forming chamber to which the substrate is connected.
【請求項2】 さらに、前記成膜室において片面が成膜
された前記基板の裏面にも成膜するために、該基板を真
空中で反転させるための反転室を備え、 前記移載室の前記基板搬送機構は前記基板を前記反転室
にも搬送が可能である、請求項1に記載の蒸着装置。
2. A reversing chamber for reversing the substrate in a vacuum so as to form a film on the back surface of the substrate having one surface formed in the film forming chamber, further comprising: The vapor deposition apparatus according to claim 1, wherein the substrate transfer mechanism can transfer the substrate to the reversal chamber.
【請求項3】 前記加熱・徐冷室および前記保温室にお
いて、成膜時に前記基板の膜厚分布を補正するための補
正板を、前記基板と同時に加熱・徐冷、保温処理するた
めの保持手段が設けられている、請求項1に記載の蒸着
装置。
3. In the heating / slow cooling chamber and the greenhouse, a correction plate for correcting the film thickness distribution of the substrate during film formation is held simultaneously with the substrate for heating / slow cooling and heat retention processing. The vapor deposition apparatus according to claim 1, wherein means are provided.
【請求項4】 前記保持手段には、成膜時に前記基板の
片側の膜厚分布を補正するための第1の補正板と、反対
側の膜厚分布を補正するための第2の補正板とが保持さ
れる、請求項3に記載の蒸着装置。
4. The holding means includes a first correction plate for correcting the film thickness distribution on one side of the substrate during film formation and a second correction plate for correcting the film thickness distribution on the other side of the substrate. The vapor deposition apparatus according to claim 3, wherein and are held.
【請求項5】 内部に移動可能な複数の加熱・徐冷室が
配置されているオーブンユニットと、加熱された基板の
温度を一定に保ちながら大気圧と所定の真空度との間で
排気または復圧ができる保温室と、前記基板に多層膜の
成膜が可能な成膜室と、成膜されたレンズを反転する反
転室と、前記基板を前記保温室、前記成膜室および前記
反転室に搬送する基板搬送機構を備えた移載室と、で構
成され、 前記オーブンユニットには、複数の前記加熱・徐冷室
が、内部で移動可能で、かつ所望の加熱・徐冷室が前記
保温室と接続可能となるように格納されており、 各前記加熱・徐冷室には、内部に加熱媒体ガスを導入す
るためのガス導入管と、内部の温度を制御するためのヒ
ータと、加熱媒体ガスを循環させるためのファンと、前
記保温室と接続可能なゲートバルブとが設けられ、前記
基板と該基板に対応する2枚の補正板が保持されたトレ
イが出入り自在に格納可能となっており、 前記保温室には前記加熱・徐冷室と接続するためのゲー
トバルブと、前記移載室と接続するためのゲートバルブ
と、搬入された前記トレイを回転させるための回転駆動
部と、保温のためのヒータと、排気ユニットと、リーク
弁とが設けられ、 前記移載室には、前記成膜室と接続するためのゲートバ
ルブと、先端の搬送台で前記基板および前記補正板を搬
送する基板搬送機構と、ヒーターと、排気ユニットとが
設けられ、 前記移載室に接続している前記反転室には、前記基板を
反転させるための回転台と反転駆動ユニットと、ヒータ
ーとが設けられ、 前記成膜室には前記基板を収納するドームと、前記基板
を自公転運動させる自公転駆動ユニットと、補正板保持
部と、成膜のための蒸発材料を収納する蒸発源と、該蒸
発材料を蒸発させるための蒸着電源と、補正板と蒸発源
との間に設けられているシャッタと、ヒーターと、排気
ユニットとが設けられている、ことを特徴とする請求項
1から請求項4に記載の蒸着装置。
5. An oven unit in which a plurality of heating / slow cooling chambers which can be moved inside are arranged, and an exhaust unit between atmospheric pressure and a predetermined vacuum degree while keeping the temperature of a heated substrate constant. A greenhouse that can restore pressure, a deposition chamber that can form a multilayer film on the substrate, an inversion chamber that inverts the deposited lens, and the substrate that is the greenhouse, the deposition chamber, and the inversion. And a transfer chamber having a substrate transfer mechanism for transferring the chamber to the chamber, wherein the oven unit is provided with a plurality of heating / slow cooling chambers that are movable inside and desired heating / slow cooling chambers. The heating / slow cooling chambers are stored so that they can be connected to the greenhouse, and each of the heating / slow cooling chambers has a gas introducing pipe for introducing a heating medium gas, and a heater for controlling the internal temperature. , A fan for circulating heating medium gas can be connected to the greenhouse A gate valve is provided, and a tray holding the substrate and two correction plates corresponding to the substrate can be stored in and out freely, and the greenhouse is connected to the heating / slow cooling chamber. A gate valve for operating the transfer chamber, a gate valve for connecting to the transfer chamber, a rotary drive unit for rotating the loaded tray, a heater for keeping heat, an exhaust unit, and a leak valve. The transfer chamber is provided with a gate valve for connecting to the film forming chamber, a substrate transfer mechanism for transferring the substrate and the correction plate by a transfer table at the tip, a heater, and an exhaust unit. A revolving stage for reversing the substrate, a reversing drive unit, and a heater are provided in the reversing chamber connected to the transfer chamber, and the dome for accommodating the substrate in the film forming chamber. And the substrate Between a rotation and revolution drive unit for rotating and revolving, a correction plate holding portion, an evaporation source that stores an evaporation material for film formation, an evaporation power source for evaporating the evaporation material, and a correction plate and an evaporation source. The vapor deposition apparatus according to any one of claims 1 to 4, further comprising a shutter, a heater, and an exhaust unit provided in the.
【請求項6】 前記基板がCaF2 単結晶レンズであ
る、請求項1から請求項5に記載の蒸着装置。
6. The vapor deposition device according to claim 1, wherein the substrate is a CaF 2 single crystal lens.
【請求項7】 基板に真空中で膜を成膜するための蒸着
方法であって、 大気圧中におかれた複数の加熱・徐冷室のそれぞれに、
前記基板と補正板とが保持されたトレイを配置して、室
内の雰囲気および温度を所定のプログラムに従って制御
し、 所定の雰囲気および温度となった前記加熱・徐冷室を、
室内が所定の雰囲気および温度である保温室に接続し
て、前記基板と前記補正板とが保持された前記トレイを
該保温室に移載し、 該保温室内を真空排気して、所定の真空度となっている
移載室と成膜室に接続し、 該移載室の基板搬送機構によって前記基板と前記補正板
とを前記成膜室に移載し、 真空中で蒸着により前記基板に所定の膜を成膜し、 前記基板の裏面にも成膜を行う場合は、真空中で前記基
板搬送機構によって該基板を反転室に移して反転して前
記成膜室に戻し、前記補正板を交換し、再度真空中で蒸
着により前記基板に所定の膜を成膜し、 成膜の終わった前記基板を真空中で前記基板搬送機構に
よって前記保温室に戻し、 該保温室内を所定の雰囲気および温度で復圧して、接続
している所定の雰囲気および温度に制御された前記加熱
・徐冷室に移載して、該加熱・徐冷室内の温度を所定の
プログラムに従って制御して徐冷して処理を終了する、
ことを特徴とする蒸着方法。
7. A vapor deposition method for forming a film on a substrate in a vacuum, wherein each of a plurality of heating / slow cooling chambers placed under atmospheric pressure,
A tray holding the substrate and the correction plate is arranged, the atmosphere and temperature in the room are controlled according to a predetermined program, and the heating / slow cooling chamber having the predetermined atmosphere and temperature is
The chamber is connected to a greenhouse which has a predetermined atmosphere and temperature, the tray holding the substrate and the correction plate is transferred to the greenhouse, and the interior of the greenhouse is evacuated to a predetermined vacuum. Connected to the transfer chamber and the film forming chamber, the substrate transfer mechanism of the transfer chamber transfers the substrate and the correction plate to the film forming chamber, and the substrate is vacuum-deposited on the substrate. When a predetermined film is formed and is also formed on the back surface of the substrate, the substrate is transferred to an inversion chamber by the substrate transfer mechanism in vacuum, inverted, and returned to the film formation chamber, and the correction plate is used. And again to form a predetermined film on the substrate by vapor deposition in a vacuum, and return the film-formed substrate to the greenhouse by the substrate transfer mechanism in a vacuum, and set a predetermined atmosphere in the greenhouse. And re-pressurized at temperature to control the connected atmosphere and temperature. And transferred to the serial heating and slow cooling chamber, and ends the processing temperature of the heating-gradual cooling chamber slowly cooled by controlling in accordance with a predetermined program,
A vapor deposition method characterized by the above.
【請求項8】 基板に真空中で膜を成膜するための蒸着
方法であって、 前記基板と補正板とをトレイに保持した後、加熱・徐冷
室に搬入して配置し、該加熱・徐冷室に加熱媒体ガスを
導入して加熱・徐冷室内部を加熱媒体ガスに置換し、 該加熱・徐冷室に設けられたヒータを制御して所定のプ
ログラムで内部の加熱媒体ガスを加熱し、 加熱プロセスが終了後、該加熱・徐冷室を移動して該加
熱・徐冷室のゲートバルブと保温室のゲートバルブとを
接続して、両ゲートバルブ間の空気を加熱された加熱媒
体ガスに置換し、 置換操作終了後、前記両ゲートバルブを開放し、予め加
熱媒体ガスに置換され所定の温度に加熱された前記保温
室に前記トレーを搬送して、両ゲートバルブを閉じ、 排気ユニットで前記保温室内部の排気を行い、 該保温室内部の真空度が所定の値に達したら該保温室と
予め所定の真空度に減圧されている移載室との間のゲー
トバルブと、該移載室と予め所定の真空度に減圧されて
いる成膜室との間のゲートバルブとを開き、 前記移載室の基板搬送機構の搬送台で前記基板を前記保
温室の前記トレイから前記成膜室へ搬送して、該成膜室
内のドームに設置するとともに、前記保温室の前記トレ
イから前記補正板を搬送して前記成膜室の所定の位置に
設置して、前記保温室と前記移載室との間のゲートバル
ブと前記移載室と前記成膜室との間のゲートバルブとを
閉じ、 前記ドームに設置された前記基板を自公転運動させなが
ら、該成膜室内の蒸発源の内部の蒸発材料を加熱して溶
かし、蒸発材料のガス放出や蒸発が安定した後で前記基
板と前記蒸発源との間に設けられたシャッター板を開い
て該基板に成膜し、所望の光学特性となるように蒸着作
業を繰り返して所望の材料および膜厚で該基板上に数層
を成膜し、 前記保温室と前記移載室との間のゲートバルブと前記移
載室と前記成膜室との間のゲートバルブとを開き、 前記基板の反対面に成膜を行わない場合は、前記基板搬
送機構により片面に成膜された前記基板と前記成膜室の
補正板とを保温室の前記トレイに戻し、 前記基板の反対面にも成膜を行う場合は、前記基板搬送
機構により片面に成膜された前記基板を反転室に移送し
て回転台に配置し、前記成膜室の前記補正板を前記保温
室の前記トレイに戻すとともに、該保温室の該トレイの
他の補正板を前記成膜室の所定の位置に配置し、前記反
転室の前記回転台を回転させて前記基板を反転させて、
反転した該基板を前記基板搬送機構により前記成膜室に
移送して前記ドーム内に設置して、前記保温室と前記移
載室との間のゲートバルブと前記移載室と前記成膜室と
の間のゲートバルブとを閉じ、所望の成膜を行った後、
前記保温室と前記移載室との間のゲートバルブと前記移
載室と前記成膜室との間のゲートバルブとを開き、前記
基板搬送機構により両面に成膜された前記基板と前記成
膜室の前記補正板とを前記保温室の前記トレイに戻し、 前記保温室と前記移載室との間のゲートバルブを閉じ
て、該保温室内に所定の温度に加熱された加熱媒体ガス
を導入して復圧し、 復圧後に前記保温室と前記加熱・徐冷室との間のゲート
バルブを開いて、前記トレイを前記加熱・徐冷室内に移
送して、前記保温室と前記加熱・徐冷室との間のゲート
バルブを閉じ、 該加熱・徐冷室を前記保温室から切り離して所定のプロ
グラムで内部の徐冷を行う、請求項7に記載の蒸着方
法。
8. A vapor deposition method for forming a film on a substrate in a vacuum, wherein the substrate and the correction plate are held on a tray, and then carried into a heating / slow cooling chamber and disposed.・ Introducing a heating medium gas into the slow cooling chamber to replace the inside of the heating / slow cooling chamber with the heating medium gas, and control the heater provided in the heating / slow cooling chamber to control the internal heating medium gas by a predetermined program. After the heating process is completed, the heating / slow cooling chamber is moved to connect the gate valve of the heating / slow cooling chamber and the gate valve of the greenhouse to heat the air between both gate valves. After the replacement operation is completed, both gate valves are opened, and the tray is conveyed to the greenhouse which is replaced with the heating medium gas and heated to a predetermined temperature in advance, and both gate valves are opened. Close and exhaust the inside of the greenhouse with an exhaust unit. When the internal degree of vacuum reaches a predetermined value, the gate valve between the greenhouse and the transfer chamber, which has been previously depressurized to a predetermined vacuum degree, and the transfer chamber and the transfer chamber, which are depressurized to a predetermined vacuum degree, are depressurized. And a gate valve between the film forming chamber and a transfer chamber of the substrate transfer mechanism of the transfer chamber to transfer the substrate from the tray of the greenhouse to the film forming chamber, It is installed in a dome, and the correction plate is conveyed from the tray of the greenhouse to be installed at a predetermined position of the film forming chamber, and the gate valve and the transfer between the greenhouse and the transfer chamber are installed. A gate valve between the mounting chamber and the film forming chamber is closed, and while rotating the substrate installed on the dome, the evaporation material inside the evaporation source in the film forming chamber is heated and melted, Provided between the substrate and the evaporation source after the gas release or evaporation of the evaporation material is stabilized The shutter plate is opened to form a film on the substrate, and the vapor deposition operation is repeated to obtain desired optical characteristics to form several layers on the substrate with a desired material and film thickness. If the gate valve between the transfer chamber and the gate valve between the transfer chamber and the film formation chamber are opened, and film formation is not performed on the opposite surface of the substrate, the substrate transfer mechanism is used for one surface. When the substrate on which the film has been formed and the correction plate of the film forming chamber are returned to the tray of the greenhouse and the film is formed on the opposite surface of the substrate, the film formed on one surface by the substrate transfer mechanism is The substrate is transferred to an inversion chamber and placed on a turntable, the correction plate of the film forming chamber is returned to the tray of the greenhouse, and the other correction plate of the tray of the greenhouse is set in the film forming chamber. Arranged at a predetermined position, the rotary table of the reversal chamber is rotated to invert the substrate,
The inverted substrate is transferred to the film forming chamber by the substrate transfer mechanism and installed in the dome, and a gate valve between the greenhouse and the transfer chamber, the transfer chamber, and the film forming chamber are provided. After closing the gate valve between and and forming the desired film,
The gate valve between the warming room and the transfer chamber and the gate valve between the transfer chamber and the film formation chamber are opened, and the substrate formed on both sides by the substrate transfer mechanism and the growth film. The correction plate of the film chamber is returned to the tray of the greenhouse, the gate valve between the greenhouse and the transfer chamber is closed, and the heating medium gas heated to a predetermined temperature is stored in the greenhouse. After introducing and repressurizing, after repressurizing, open the gate valve between the greenhouse and the heating / slow cooling chamber, transfer the tray to the heating / slow cooling chamber, and The vapor deposition method according to claim 7, wherein a gate valve between the slow cooling chamber and the heating / slow cooling chamber is closed, and the interior of the heating / slow cooling chamber is gradually cooled according to a predetermined program.
【請求項9】 成膜が行われる前記基板がCaF2 単結
晶レンズである、請求項7または請求項8に記載の蒸着
方法。
9. The vapor deposition method according to claim 7, wherein the substrate on which the film is formed is a CaF 2 single crystal lens.
JP2001191341A 2001-06-25 2001-06-25 Vapor deposition system and method Pending JP2003003253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191341A JP2003003253A (en) 2001-06-25 2001-06-25 Vapor deposition system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001191341A JP2003003253A (en) 2001-06-25 2001-06-25 Vapor deposition system and method

Publications (1)

Publication Number Publication Date
JP2003003253A true JP2003003253A (en) 2003-01-08

Family

ID=19029976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191341A Pending JP2003003253A (en) 2001-06-25 2001-06-25 Vapor deposition system and method

Country Status (1)

Country Link
JP (1) JP2003003253A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828269B1 (en) 2007-09-04 2008-05-07 최용태 Wafer processing apparatus and semiconductor device manufacturing equipment having the same
WO2013125159A1 (en) * 2012-02-20 2013-08-29 新明和工業株式会社 Conveyance system
CN114657519A (en) * 2020-12-22 2022-06-24 东京毅力科创株式会社 Substrate processing apparatus, temperature control method thereof, program, and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828269B1 (en) 2007-09-04 2008-05-07 최용태 Wafer processing apparatus and semiconductor device manufacturing equipment having the same
WO2013125159A1 (en) * 2012-02-20 2013-08-29 新明和工業株式会社 Conveyance system
CN114657519A (en) * 2020-12-22 2022-06-24 东京毅力科创株式会社 Substrate processing apparatus, temperature control method thereof, program, and storage medium

Similar Documents

Publication Publication Date Title
US6578589B1 (en) Apparatus for manufacturing semiconductor wafer
US5674786A (en) Method of heating and cooling large area glass substrates
JP4237939B2 (en) Vacuum processing equipment with improved substrate heating and cooling
US5512320A (en) Vacuum processing apparatus having improved throughput
TWI452608B (en) Photo resist coating/developing apparatus, substrate transfer method and interface apparatus
JP5034138B2 (en) Heat treatment method and heat treatment apparatus
US11018033B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
KR20010086378A (en) Method and Apparatus for Cooling Substrates
US6234788B1 (en) Disk furnace for thermal processing
JP2019062194A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and program
JPH04329881A (en) Deposited film forming device by microwave plasma cvd method
TW201937668A (en) Substrate treatment device, method for manufacturing semiconductor device, and program
JP2003003253A (en) Vapor deposition system and method
JP3499145B2 (en) Heat treatment method, heat treatment apparatus and treatment system
JP6857156B2 (en) Manufacturing method of substrate processing equipment, substrate holder and semiconductor equipment
JP2000091218A (en) Heating method and apparatus
TW201118024A (en) Transfer device and processing system having same
KR20220041218A (en) Vapor Delivery Methods and Apparatus
JPH09115985A (en) Wafer transfer chamber and preheating method for wafer
JPH07201724A (en) Method and device for forming coating film
JPH09181060A (en) Thin-film formation device
JP5579991B2 (en) Substrate processing apparatus and substrate processing method
JP3580916B2 (en) Substrate heating device
JP3447974B2 (en) Substrate processing equipment
US20220122859A1 (en) Method of manufacturing semiconductor device and apparatus for manufacturing semiconductor device