JP2003001063A - Method and device for treating nf3-containing exhaust gas - Google Patents
Method and device for treating nf3-containing exhaust gasInfo
- Publication number
- JP2003001063A JP2003001063A JP2001192613A JP2001192613A JP2003001063A JP 2003001063 A JP2003001063 A JP 2003001063A JP 2001192613 A JP2001192613 A JP 2001192613A JP 2001192613 A JP2001192613 A JP 2001192613A JP 2003001063 A JP2003001063 A JP 2003001063A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- heating
- ammonia water
- oxidation tank
- treating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、NF3含有排ガス
の処理方法に関し、特に詳しくは、半導体工業で半導体
製造装置の内面等をドライクリーニングする工程や、酸
化膜等の各種成膜をエッチングする工程などで排出され
るNF3含有排ガスを効率よく処理する方法及び装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating NF 3 -containing exhaust gas, and more particularly, in the semiconductor industry, a step of dry cleaning the inner surface of a semiconductor manufacturing apparatus and etching various film formations such as oxide films. The present invention relates to a method and an apparatus for efficiently treating NF 3 -containing exhaust gas discharged in a process or the like.
【0002】[0002]
【従来の技術】半導体工業においては、半導体製造工程
の中で各種の有害ガスが使用されており、環境汚染が懸
念されている。特に、NF3は、エッチングガスやクリ
ーニングガスとして近年その使用量が増大している。N
F3は人体に有害(許容濃度として10ppm)であるばか
りでなく、地球温暖化ガスとしてその除去システムの確
立が急務とされている。NF3を処理する方法として、
現在は、NF3と水とを反応させて加熱酸化分解する方
法や、NF3を水及びアンモニアガスと反応させて加熱
酸化分解する方法などが提案されている。しかしなが
ら、両方法とも、NF3は分解されるものの、副生成物
としてフッ化水素以外にNOxやN2Oが多量に発生し、
これらの副生成物は安価で確実な処理方法がないため、
これらが環境雰囲気中に許容濃度(NO:25ppm、N
O2:3ppm、N2O:50ppm)を超えて排出されてしま
うという問題がある。2. Description of the Related Art In the semiconductor industry, various harmful gases are used in the semiconductor manufacturing process, and there is concern about environmental pollution. In particular, the amount of NF 3 used has recently increased as an etching gas and a cleaning gas. N
Not only is F 3 harmful to the human body (allowable concentration is 10 ppm), but there is also an urgent need to establish a system for removing it as a greenhouse gas. As a method of processing NF 3 ,
At present, a method of reacting NF 3 with water for thermal oxidative decomposition and a method of reacting NF 3 with water and ammonia gas for thermal oxidative decomposition have been proposed. However, in both methods, although NF 3 is decomposed, a large amount of NO x and N 2 O are generated as by-products in addition to hydrogen fluoride,
Because these by-products are inexpensive and do not have a reliable treatment method,
These are permissible concentrations (NO: 25ppm, N
There is a problem that it is emitted in excess of O 2 : 3 ppm, N 2 O: 50 ppm).
【0003】[0003]
【発明が解決しようとする課題】そこで、本発明は、上
述の従来技術の問題点を解消し、低廉なランニングコス
トで、有害な副生成物の発生を抑制し、効率的に多量の
NF3を分解除去する処理方法及び処理装置を提供する
ことを目的とする。Therefore, the present invention solves the above-mentioned problems of the prior art, suppresses the generation of harmful by-products at a low running cost, and efficiently produces a large amount of NF 3 It is an object of the present invention to provide a processing method and a processing device for decomposing and removing slag.
【0004】[0004]
【課題を解決するための手段】上記の課題を解決するた
めに、本発明者らは鋭意研究を重ねた結果、NF3を含
む排ガスを、所定温度以上でアンモニア水と反応させる
ことによって、NOxやN2Oなどの副生成物を多量に発
生させることなく、NF3を窒素とフッ化物に分解する
ことができることを見出し本発明を完成するに至った。In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive studies, and as a result, by reacting exhaust gas containing NF 3 with ammonia water at a predetermined temperature or higher, NO The inventors have found that NF 3 can be decomposed into nitrogen and fluoride without generating a large amount of by-products such as x and N 2 O, and have completed the present invention.
【0005】即ち、本発明は、NF3を含む排ガスを処
理する方法であって、上記排ガスを加熱した状態でアン
モニア水と接触させて、NF3を窒素とフッ化物に分解
することを特徴とする排ガスの処理方法に関する。That is, the present invention is a method for treating exhaust gas containing NF 3 , wherein the exhaust gas is brought into contact with aqueous ammonia in a heated state to decompose NF 3 into nitrogen and fluoride. The present invention relates to a method for treating exhaust gas.
【0006】[0006]
【発明の実施の形態】以下、本発明を更に詳細に説明す
る。以下の説明は、本発明の好ましい実施形態の具体例
を示すものであり、本発明はこれに限定されるものでは
ない。The present invention will be described in more detail below. The following description shows specific examples of preferred embodiments of the present invention, and the present invention is not limited thereto.
【0007】従来法にしたがって、アンモニアガスと水
とを用いてNF3の分解を行うと、次式の反応により、
N2とHFの他に副生成物としてNOやNO2等の窒素酸
化物が多量に発生する。When NF 3 is decomposed using ammonia gas and water according to the conventional method, the reaction of the following equation
In addition to N 2 and HF, a large amount of nitrogen oxides such as NO and NO 2 are generated as by-products.
【0008】[0008]
【式1】 [Formula 1]
【0009】本発明においては、アンモニア水とNF3
とを反応させることにより、上記のような副生成物の生
成を起こすことなしに、NF3をN2とHFとに分解でき
ることを見出した。In the present invention, ammonia water and NF 3
It was found that NF 3 can be decomposed into N 2 and HF without causing the formation of by-products as described above by reacting with.
【0010】本発明に係るNF3含有排ガスの処理方法
においては、NF3を含む排ガスを、所定温度以上に加
熱することのできる加熱酸化槽に通し、ここにアンモニ
ア水を導入する。この時、気相中で次の反応によって、
NF3はN2とHFとに分解する。In the method for treating exhaust gas containing NF 3 according to the present invention, the exhaust gas containing NF 3 is passed through a heating oxidation tank capable of heating above a predetermined temperature, and ammonia water is introduced therein. At this time, by the following reaction in the gas phase,
NF 3 decomposes into N 2 and HF.
【0011】[0011]
【式2】 [Formula 2]
【0012】本発明方法において、(2)式の反応により
生成したフッ化物(HF)は、その後、スクラバー等の
公知の処理装置によって処理することにより簡単に除去
することが可能である。In the method of the present invention, the fluoride (HF) produced by the reaction of the formula (2) can be easily removed by subsequent treatment with a known treatment device such as a scrubber.
【0013】本発明において、NF3とアンモニア水と
の反応を行わせる気相部の温度は、350〜650℃が
好ましく、450〜650℃が更に好ましく、550〜
600℃が最も好ましい。加熱酸化槽へのアンモニア水
の導入量は、NH3量として処理対象のNF3と等モル以
上であればよい。なお、用いるアンモニア水としては、
工業用の市販品でNH3含有量が10〜40wt%、好ま
しくは20〜30wt%、特に好ましくは25wt%程度の
ものを好適に用いることができる。In the present invention, the temperature of the gas phase portion in which the reaction between NF 3 and ammonia water is carried out is preferably 350 to 650 ° C, more preferably 450 to 650 ° C, and 550 to 550 ° C.
Most preferred is 600 ° C. The introduction amount of ammonia water to the heating oxidation vessel may be any processed by the NF 3 with an equimolar or more as NH 3 amount. In addition, as the ammonia water to be used,
Commercially available commercial products having an NH 3 content of 10 to 40 wt%, preferably 20 to 30 wt%, particularly preferably about 25 wt%, can be suitably used.
【0014】本発明は、また、上記に説明した排ガス処
理方法を実施するための装置をも提供する。即ち、本発
明の他の態様は、NF3を含む排ガスを処理する装置で
あって、上記排ガスを通気可能とする中空内部を有し、
排ガス導入口及びアンモニア水導入口を具備する加熱酸
化槽及び加熱酸化槽の内部雰囲気を加熱するための加熱
部材から構成されることを特徴とする装置に関する。The present invention also provides an apparatus for carrying out the exhaust gas treatment method described above. That is, another aspect of the present invention is an apparatus for treating exhaust gas containing NF 3 , which has a hollow interior that allows the exhaust gas to pass through,
The present invention relates to an apparatus comprising a heating oxidation tank equipped with an exhaust gas introduction port and an ammonia water introduction port, and a heating member for heating an internal atmosphere of the heating oxidation tank.
【0015】本発明に係る排ガス処理装置の一具体例を
図1に示す。図1に示す本発明に係る装置は、主要構成
要素として、アンモニア水タンク1と、NF3含有排ガ
スとアンモニア水とを所定の温度で接触させる加熱酸化
槽6とを有する。更に、加熱酸化槽6の後段として、図
1に示すように、NF3とアンモニア水との反応によっ
て生成したフッ化物を除去するスクラバー8を配置する
ことができる。NF3を含む排ガスは、供給配管10を
通して加熱酸化槽6に供給される。アンモニア水は、加
熱酸化槽6内の雰囲気温度を下げないために、気化した
状態で加熱酸化槽6に供給することが好ましく、図1に
示す態様においては、アンモニア水は、タンク1からポ
ンプ2によって気化器4に供給される。気化器4で、ア
ンモニア水が気化され、窒素供給管3を通して供給され
る窒素ガスによって、気化されたアンモニア水が配管5
を通して加熱酸化槽6に圧送される。なお、気化アンモ
ニア水供給配管5には、バンドヒーターなどの加熱手段
を配置して、気化されたアンモニア水を予熱することに
より加熱酸化槽6内の雰囲気温度の低下を更に抑制する
ことが好ましい。勿論、アンモニア水を液体状態で加熱
酸化槽6に供給してもよいが、この場合にも、アンモニ
ア水供給配管5にはバンドヒーターなどの加熱手段を配
置してアンモニア水を予熱することが好ましい。また、
NF3含有排ガスとアンモニア水とは、加熱酸化槽6に
導入する前に予備混合させることもでき、その場合に
は、加熱酸化槽6の前段に予備混合槽を形成して、ここ
にNF3含有排ガスとアンモニア水とを供給すればよ
い。加熱酸化槽6には、セラミック電気管状炉などのセ
ラミックヒーターのような加熱手段9が配置されてお
り、加熱酸化槽6内の中空内部のガス温度が、上述の好
適な反応温度に加熱される。また、加熱酸化槽6の内部
には、反応物質の接触効率を高めるために、迂流板7を
配置することが好ましい。加熱された加熱酸化槽6内に
おいて、NF3がアンモニア水と反応してフッ化物(H
F)と窒素(N2)とに分解される。A specific example of the exhaust gas treating apparatus according to the present invention is shown in FIG. The apparatus according to the present invention shown in FIG. 1 has, as main components, an ammonia water tank 1 and a heating oxidation tank 6 for contacting NF 3 -containing exhaust gas with ammonia water at a predetermined temperature. Further, as shown in FIG. 1, a scrubber 8 for removing the fluoride generated by the reaction between NF 3 and ammonia water can be arranged as a subsequent stage of the heating oxidation tank 6. The exhaust gas containing NF 3 is supplied to the heating oxidation tank 6 through the supply pipe 10. Ammonia water is preferably supplied to the heating oxidation tank 6 in a vaporized state in order not to lower the atmospheric temperature in the heating oxidation tank 6. In the embodiment shown in FIG. Is supplied to the vaporizer 4. Ammonia water is vaporized in the vaporizer 4, and the vaporized ammonia water is supplied to the pipe 5 by the nitrogen gas supplied through the nitrogen supply pipe 3.
Is sent under pressure to the heating oxidation tank 6. It is preferable that a heating means such as a band heater is arranged in the vaporized ammonia water supply pipe 5 to preheat the vaporized ammonia water to further suppress a decrease in the atmospheric temperature in the heating oxidation tank 6. Of course, the ammonia water may be supplied to the heating oxidation tank 6 in a liquid state, but in this case as well, it is preferable to dispose a heating means such as a band heater in the ammonia water supply pipe 5 to preheat the ammonia water. . Also,
The NF 3 -containing exhaust gas and the ammonia water may be premixed before being introduced into the heating oxidation tank 6, and in that case, a premixing tank is formed in the preceding stage of the heating oxidation tank 6, and NF 3 is added here. It is sufficient to supply the contained exhaust gas and the ammonia water. A heating means 9 such as a ceramic heater such as a ceramic electric tubular furnace is arranged in the heating oxidation tank 6, and the gas temperature inside the hollow inside the heating oxidation tank 6 is heated to the above-mentioned suitable reaction temperature. . In addition, a bypass plate 7 is preferably arranged inside the heating oxidation tank 6 in order to enhance the contact efficiency of the reactants. In the heated heating oxidation tank 6, NF 3 reacts with aqueous ammonia to generate a fluoride (H
F) and nitrogen (N 2 ) are decomposed.
【0016】次に、排ガスは配管11を通して後段のス
クラバー8に送られ、加熱酸化槽6でのNF3分解反応
によって生成したフッ化物(HF)が除去される。スク
ラバー8としては、フッ化物を処理する性能を有する装
置であればよく、充填塔やスプレー塔などの水スクラバ
ー装置の他に、合成ゼオライトを充填した乾式吸着筒タ
イプのものを用いることもできる。スクラバー8によっ
てフッ化物が除去された排ガスは、排出管12より放出
される。Next, the exhaust gas is sent to the scrubber 8 in the subsequent stage through the pipe 11 to remove the fluoride (HF) produced by the NF 3 decomposition reaction in the heating oxidation tank 6. As the scrubber 8, any device having a capability of treating fluoride may be used, and in addition to a water scrubber device such as a packed tower or a spray tower, a dry adsorption cylinder type of packed synthetic zeolite may be used. The exhaust gas from which the fluoride has been removed by the scrubber 8 is discharged from the exhaust pipe 12.
【0017】また、図2〜図6には、加熱酸化槽内でア
ンモニア水と処理対象のNF3含有排ガスとをより効率
的に混合させ、及び/又は、加熱酸化槽内での排ガス/
アンモニア水混合物の加熱効率を上げるための種々の構
成例を示す。2 to 6, the ammonia water and the NF 3 -containing exhaust gas to be treated are mixed more efficiently in the heating oxidation tank, and / or the exhaust gas / heating gas in the heating oxidation tank is mixed.
The various structural examples for raising the heating efficiency of an ammonia water mixture are shown.
【0018】図2に示す構成においては、加熱酸化槽6
内にアンモニア水を供給する供給配管5の先端をシャワ
ーノズル20の形状とする。これによって、アンモニア
水を霧状に加熱酸化槽6内に導入することができ、排ガ
スとの混合効率がより向上される。なお、図2〜図6に
示す各態様においても、アンモニア水は、液状で導入し
てもガス状(気化した状態)で導入してもよいが、加熱
酸化槽内の雰囲気温度を下げないためには、気化した状
態で導入することが好ましい。In the structure shown in FIG. 2, the heating oxidation tank 6 is used.
The tip of the supply pipe 5 for supplying ammonia water into the inside has the shape of the shower nozzle 20. As a result, the ammonia water can be introduced into the heating oxidation tank 6 in a mist state, and the mixing efficiency with the exhaust gas is further improved. In addition, in each of the embodiments shown in FIGS. 2 to 6, the ammonia water may be introduced in a liquid state or in a gaseous state (in a vaporized state), but the ambient temperature in the heating oxidation tank is not lowered. It is preferable to introduce it in a vaporized state.
【0019】図3に示す構成は、アンモニア水とNF3
含有排ガスとの混合物が加熱酸化槽6内で旋回流を形成
するようにしたものである。NF3含有排ガスの供給管
30は、複数本に分岐してそれぞれの分岐管が螺旋形状
を呈するように形成されて、加熱酸化槽6と接続してい
る(図3a)。図3bは、図3aのA−A’線の断面図
3である。加熱酸化槽6の上面部に3本に分岐した排ガ
ス供給管が接続されて、排ガス導入口31を形成してい
る。一方、アンモニア水は、アンモニア水供給配管35
から円環形状のアンモニア水導入部材36(図3c)へ
と供給される。アンモニア水供給配管35は、円環状の
アンモニア水導入部材36に斜め方向に接続されてお
り、導入部材36に供給されたアンモニア水は、円環内
を旋回する。円環の内側面には複数のアンモニア水ノズ
ル37が開口されており、アンモニア水は、このノズル
37から加熱酸化槽6内に噴出される。なお、ノズル3
7には円環の接線方向に向けた誘導部材(例えば管状の
ガイド)を配置して、アンモニア水が接線方向に噴出さ
れるようにしてもよいし、或いは酸化加熱槽6の中心部
に向かって噴出されるようにしてもよい。アンモニア水
は、円環状のアンモニア水導入部材36内で旋回流を形
成しているので、ノズル37から噴出された後も、旋回
流を形成して加熱酸化槽6内を下向きに流れる。一方、
NF3含有排ガスも、螺旋形状の排ガス供給管内を流れ
る際に旋回流を形成しており、排ガス導入口31から旋
回流を形成しながら噴出される。これにより、NF3含
有排ガスとアンモニア水とが、混合した旋回流を形成し
ながら加熱酸化槽6内を下降する(図3d)。これによ
り、加熱酸化槽6内でNF3含有排ガスとアンモニア水
とが極めて効率よく混合・接触せしめられる。The configuration shown in FIG. 3 has an ammonia water and NF 3
The mixture with the contained exhaust gas forms a swirling flow in the heating oxidation tank 6. The NF 3 -containing exhaust gas supply pipe 30 is branched into a plurality of pipes, each branch pipe having a spiral shape, and is connected to the heating oxidation tank 6 (FIG. 3 a). 3b is a cross-sectional view 3 taken along the line AA ′ of FIG. 3a. An exhaust gas supply pipe that is branched into three is connected to the upper surface of the heating oxidation tank 6 to form an exhaust gas inlet 31. On the other hand, the ammonia water is the ammonia water supply pipe 35.
Is supplied to the annular water introducing member 36 (FIG. 3c). The ammonia water supply pipe 35 is obliquely connected to an annular ammonia water introducing member 36, and the ammonia water supplied to the introducing member 36 swirls in the annular ring. A plurality of ammonia water nozzles 37 are opened on the inner surface of the ring, and the ammonia water is ejected from the nozzles 37 into the heating oxidation tank 6. The nozzle 3
A guide member (for example, a tubular guide) directed in the tangential direction of the ring may be arranged in 7 so that the ammonia water is ejected in the tangential direction, or it may be directed toward the center of the oxidation heating tank 6. May be ejected. Since the ammonia water forms a swirl flow in the annular ammonia water introducing member 36, even after being ejected from the nozzle 37, the ammonia water forms a swirl flow and flows downward in the heating oxidation tank 6. on the other hand,
The NF 3 -containing exhaust gas also forms a swirl flow when flowing in the spiral exhaust gas supply pipe, and is ejected from the exhaust gas inlet 31 while forming a swirl flow. As a result, the NF 3 -containing exhaust gas and the ammonia water descend in the heating oxidation tank 6 while forming a mixed swirling flow (FIG. 3d). As a result, the NF 3 -containing exhaust gas and the ammonia water are extremely efficiently mixed and brought into contact with each other in the heating oxidation tank 6.
【0020】図4は、酸化加熱槽6内に案内板を設けた
例を示す。案内板は、酸化加熱槽内に排ガスとアンモニ
ア水との混合物が長く滞在するように形成されており、
図4に示す態様では、加熱酸化槽6の中心部に中空部5
2を形成すると共に、その周りに、案内板50が、螺旋
を描くように排ガス導入口及びアンモニア水導入口から
排出口に向かって形成されている。更に、中空管52の
内部に熱電対などのような当該技術において公知の温度
検知手段51を配置して、酸化加熱槽6内の温度を監視
することができる。図4に示す形態においては、NF3
含有排ガスとアンモニア水とが、それぞれ供給配管10
及び5を通して加熱酸化槽6内に導入され、ガスとアン
モニア水との混合物が案内板50に沿って螺旋状に加熱
酸化槽6内を流れる。したがって、NF3含有排ガスと
アンモニア水との混合物が加熱酸化槽6内に滞留する時
間を増大させることができ、反応をより効率的に進行さ
せることができるのに加えて、加熱媒体9による加熱を
より効率的に行うことが可能になる。FIG. 4 shows an example in which a guide plate is provided in the oxidation heating tank 6. The guide plate is formed so that the mixture of the exhaust gas and the ammonia water stays in the oxidation heating tank for a long time,
In the embodiment shown in FIG. 4, the hollow portion 5 is provided at the center of the heating oxidation tank 6.
2 is formed, and a guide plate 50 is formed around the same so as to draw a spiral from the exhaust gas introduction port and the ammonia water introduction port toward the discharge port. Furthermore, the temperature inside the oxidation heating tank 6 can be monitored by disposing the temperature detecting means 51 known in the art, such as a thermocouple, inside the hollow tube 52. In the configuration shown in FIG. 4, NF 3
The exhaust gas contained and the ammonia water are respectively supplied to the supply pipe 10
And 5 are introduced into the heating oxidation tank 6, and the mixture of gas and ammonia water flows in the heating oxidation tank 6 spirally along the guide plate 50. Therefore, the time during which the mixture of the NF 3 -containing exhaust gas and the ammonia water stays in the heating oxidation tank 6 can be increased, and the reaction can proceed more efficiently, as well as the heating by the heating medium 9. Can be performed more efficiently.
【0021】図5は、加熱酸化槽6内に複数枚の円盤状
部材60を配置した例を示す。各円盤状部材60には開
口61が形成されており、それぞれの円盤状部材の開口
が互い違いに位置するように配置されている。NF3含
有排ガスとアンモニア水とは、それぞれ供給配管10及
び5を通して加熱酸化槽6内に導入され、第1の円盤状
部材60の表面に沿って開口61に向かって流れ、次に
第2の円盤状部材60’ の表面に沿って、反対側に設
けられた開口61’に向かって流れる。このような構成
を採用することにより、NF3含有排ガスとアンモニア
水との混合物が加熱酸化槽6内に滞留する時間を増大さ
せることができ、反応をより効率的に進行させることが
できるのに加えて、加熱媒体9による加熱をより効率的
に行うことが可能になる。FIG. 5 shows an example in which a plurality of disk-shaped members 60 are arranged in the thermal oxidation tank 6. Openings 61 are formed in each disk-shaped member 60, and the openings of the respective disk-shaped members are arranged so as to be staggered. The NF 3 -containing exhaust gas and the ammonia water are introduced into the heating oxidation tank 6 through the supply pipes 10 and 5, respectively, and flow toward the opening 61 along the surface of the first disk-shaped member 60, and then to the second Flows along the surface of the disk-shaped member 60 'toward the opening 61' provided on the opposite side. By adopting such a configuration, the time during which the mixture of the NF 3 -containing exhaust gas and the ammonia water stays in the heating oxidation tank 6 can be increased, and the reaction can proceed more efficiently. In addition, heating by the heating medium 9 can be performed more efficiently.
【0022】図6は、加熱酸化槽6を、加熱媒体9に沿
ってクランク型に形成した例を示す。NF3含有排ガス
とアンモニア水とは、それぞれ供給配管10及び5を通
して加熱酸化槽6内に導入され、流路70を通過しなが
ら排出管11に向かって流れる。これにより、NF3含
有排ガスとアンモニア水との混合物の流路を長くとるこ
とができるので、この混合物が加熱酸化槽6内に滞留す
る時間を増大させることができ、反応をより効率的に進
行させることができるのに加えて、流路70と加熱媒体
9との接触面積を大きくとることができるので、加熱を
より効率的に行うことが可能になる。FIG. 6 shows an example in which the heating oxidation tank 6 is formed in a crank shape along the heating medium 9. The NF 3 -containing exhaust gas and the ammonia water are introduced into the heating oxidation tank 6 through the supply pipes 10 and 5, respectively, and flow toward the discharge pipe 11 while passing through the flow path 70. As a result, the flow path of the mixture of the NF 3 -containing exhaust gas and the ammonia water can be made long, so that the time for which this mixture stays in the heating oxidation tank 6 can be increased and the reaction proceeds more efficiently. In addition to this, it is possible to increase the contact area between the flow path 70 and the heating medium 9, so that heating can be performed more efficiently.
【0023】[0023]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.
【0024】実施例1
内径110mm、長さ400mmのSUS製の中空カラムの
外部にセラミックヒーターを取り付けたものを反応容器
として用いた。この反応容器に、NF3を1.5L/min、
アンモニア水(25wt%、比重0.898)を5mL/min
(NH3として1.5L/min相当)、N2を80L/minの流
量で流した。Example 1 An SUS hollow column having an inner diameter of 110 mm and a length of 400 mm with a ceramic heater attached to the outside was used as a reaction vessel. 1.5 L / min of NF 3 was added to this reaction vessel,
Ammonia water (25 wt%, specific gravity 0.898) 5 mL / min
(Equivalent to 1.5 L / min as NH 3 ) and N 2 were flown at a flow rate of 80 L / min.
【0025】反応容器の気相部の温度を600℃に調整
し、通ガス時の出口ガスを分析した。分析は、NF3及
びN2Oについてはガスクロマトグラフ質量分析計(ア
ネルバ製、AGS−7000U)、NO及びNO2につ
いては化学発光分析計(島津製作所製、NOA−700
0)、NH3及びHFについては検知管(ガステック
製)を用いて行った。ガス出し後20分経過した次点で
の出口ガス分析結果を表1に示す。NF3、NO、N
O2、N2Oは全て許容濃度以下及至検出限界以下であっ
た。また、NF3の分解によってHFが排出されてい
た。The temperature of the gas phase portion of the reaction vessel was adjusted to 600 ° C., and the outlet gas at the time of passing gas was analyzed. The analysis was carried out by using a gas chromatograph mass spectrometer (Anerva, AGS-7000U) for NF 3 and N 2 O, and a chemiluminescence spectrometer (NOA-700, manufactured by Shimadzu Corporation) for NO and NO 2.
0), NH 3 and HF were measured using a detector tube (manufactured by Gastec). Table 1 shows the results of the outlet gas analysis at the next point after 20 minutes have passed after the gas was discharged. NF 3 , NO, N
O 2 and N 2 O were all below the allowable concentration and below the detection limit. Further, HF was discharged by decomposition of NF 3 .
【0026】[0026]
【表1】 [Table 1]
【0027】比較例1
実施例1と同じ反応容器を用いて、水導入によるNF3
の処理性能を調べた。反応容器に、NF3を0.82L/m
in、水を5mL/min、N2を80L/minの流量で流した。反
応容器の気相部の温度を600℃に調整し、通ガス時の
出口ガスを分析した。ガス出し後20分経過した次点で
の出口ガス分析結果を表2に示す。NF 3は検出限界以
下に処理されたが、NO、NO2、N2Oが許容濃度を超
えて多量に生成した。Comparative Example 1
Using the same reaction vessel as in Example 1, NF was introduced by introducing water.3
The processing performance of was investigated. In the reaction vessel, NF30.82 L / m
in, water 5mL / min, N2At a flow rate of 80 L / min. Anti
Adjust the temperature of the gas phase of the reaction vessel to 600 ° C, and
The outlet gas was analyzed. 20 minutes after degassing, at the next point
Table 2 shows the results of the outlet gas analysis of the above. NF 3Is below the detection limit
Processed below, no, no2, N2O exceeds allowable concentration
Produced in large quantities.
【0028】[0028]
【表2】 [Table 2]
【0029】比較例2
実施例1と同じ反応容器を用いて、アンモニアガスと水
の導入によるNF3の処理性能を調べた。反応容器に、
NF3を1.5L/min、アンモニアガスを1.5L/min、
水を5mL/min、N2を80L/minの流量で流した。反応容
器の気相部の温度を600℃に調整し、通ガス時の出口
ガスを分析した。ガス出し後20分経過した次点での出
口ガス分析結果を表3に示す。NF3は検出限界以下に
処理されたが、副生成物としてNO、NO2、N2Oが許
容濃度を超えて多量に生成した。Comparative Example 2 Using the same reaction vessel as in Example 1, the treatment performance of NF 3 by introducing ammonia gas and water was examined. In the reaction vessel,
NF 3 1.5 L / min, ammonia gas 1.5 L / min,
Water was flown at 5 mL / min and N 2 was flowed at 80 L / min. The temperature of the gas phase part of the reaction vessel was adjusted to 600 ° C., and the outlet gas at the time of passing gas was analyzed. Table 3 shows the results of the outlet gas analysis at the next point after 20 minutes have passed after the gas was discharged. Although NF 3 was processed below the detection limit, NO, NO 2 , and N 2 O were produced in large amounts as by-products, exceeding the permissible concentration.
【0030】[0030]
【表3】 [Table 3]
【0031】実施例2
実施例1で用いた試験カラムの後段に、水洗浄塔(内径
210mm×高さ430mm、ラシヒリング充填高さ170
mm)を接続した。試験カラムに、実施例1と同様に、N
F3を1.5L/min、アンモニア水(25wt%、比重0.
898)を5mL/min(NH3として1.5L/min相当)、
N2を80L/minの流量で流した。水洗浄塔での散水量は
3L/minとした。実施例1と同様に反応容器の気相部の
温度を600℃に調整し、通ガス時の水洗浄塔出口ガス
を分析した。ガス出し後20分経過した次点での出口ガ
ス分析結果を表4に示す。NF3、NO、NO2、N2O
並びにHFは全て許容濃度以下及至検出限界以下であっ
た。Example 2 A water washing tower (inner diameter 210 mm × height 430 mm, Raschig ring filling height 170) was added after the test column used in Example 1.
mm) connected. In the test column, as in Example 1, N
F 3 at 1.5 L / min, ammonia water (25 wt%, specific gravity of 0.1.
898) at 5 mL / min (equivalent to 1.5 L / min as NH 3 ),
N 2 was flown at a flow rate of 80 L / min. The amount of water sprayed in the water washing tower was 3 L / min. In the same manner as in Example 1, the temperature of the gas phase part of the reaction vessel was adjusted to 600 ° C., and the gas at the outlet of the water washing tower during gas passage was analyzed. Table 4 shows the results of the outlet gas analysis at the next point 20 minutes after the gas was discharged. NF 3 , NO, NO 2 , N 2 O
In addition, HF was below the allowable concentration and below the detection limit.
【0032】[0032]
【表4】 [Table 4]
【0033】[0033]
【発明の効果】本発明によれば、NF3を含む排ガスを
処理して、有害な副生成物の発生を抑制しながら多量の
NF3を低廉なランニングコストで効率的に除去するこ
とができる。According to the present invention, a large amount of NF 3 can be efficiently removed at a low running cost by treating exhaust gas containing NF 3 and suppressing the generation of harmful by-products. .
【図1】本発明の一実施態様に係る排ガス処理装置の構
成を示す概念図である。FIG. 1 is a conceptual diagram showing a configuration of an exhaust gas treatment apparatus according to an embodiment of the present invention.
【図2】本発明において用いることのできる加熱酸化槽
の構成例を示す図である。FIG. 2 is a diagram showing a structural example of a heating oxidation tank that can be used in the present invention.
【図3】本発明において用いることのできる加熱酸化槽
の他の構成例を示す図である。FIG. 3 is a diagram showing another structural example of a heating oxidation tank that can be used in the present invention.
【図4】本発明において用いることのできる加熱酸化槽
の他の構成例を示す図である。FIG. 4 is a diagram showing another structural example of a heating and oxidizing tank that can be used in the present invention.
【図5】本発明において用いることのできる加熱酸化槽
の他の構成例を示す図である。FIG. 5 is a diagram showing another configuration example of a heating oxidation tank that can be used in the present invention.
【図6】本発明において用いることのできる加熱酸化槽
の他の構成例を示す図である。FIG. 6 is a diagram showing another structural example of a heating and oxidizing tank that can be used in the present invention.
Claims (4)
って、上記排ガスを加熱した状態でアンモニア水と接触
させて、NF3を窒素とフッ化物に分解することを特徴
とする排ガスの処理方法。1. A method for treating exhaust gas containing NF 3 , comprising treating the exhaust gas with ammonia water in a heated state to decompose NF 3 into nitrogen and fluoride. Method.
生成するフッ化物をスクラバーによって除去する工程を
更に含む請求項1に記載の方法。2. The method according to claim 1, further comprising a step of removing a fluoride produced by the reaction of NF 3 and aqueous ammonia with a scrubber.
って、上記排ガスを通気可能とする中空内部を有し、排
ガス導入口及びアンモニア水導入口を具備する加熱酸化
槽、及び加熱酸化槽の内部雰囲気を加熱するための加熱
部材から構成されることを特徴とする装置。 3. An apparatus for treating exhaust gas containing NF 3 , which has a hollow interior for allowing the exhaust gas to pass therethrough, and a heating oxidation tank having an exhaust gas inlet and an ammonia water inlet, and a heating oxidation tank. A device comprising a heating member for heating the internal atmosphere of the device.
更に具備することを特徴とする請求項3に記載の装置。4. The apparatus according to claim 3, further comprising a scrubber after the heating oxidation tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001192613A JP3877980B2 (en) | 2001-06-26 | 2001-06-26 | NF3-containing exhaust gas treatment method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001192613A JP3877980B2 (en) | 2001-06-26 | 2001-06-26 | NF3-containing exhaust gas treatment method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003001063A true JP2003001063A (en) | 2003-01-07 |
JP3877980B2 JP3877980B2 (en) | 2007-02-07 |
Family
ID=19031042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001192613A Expired - Lifetime JP3877980B2 (en) | 2001-06-26 | 2001-06-26 | NF3-containing exhaust gas treatment method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3877980B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182094A1 (en) * | 2014-05-26 | 2015-12-03 | カンケンテクノ株式会社 | Heat exchanger and exhaust gas treatment device using said heat exchanger |
CN106582229A (en) * | 2016-12-16 | 2017-04-26 | 广西红润化工科技有限公司 | Combined multistage waste gas treatment apparatus employing combined wet process and heating process treatment |
-
2001
- 2001-06-26 JP JP2001192613A patent/JP3877980B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015182094A1 (en) * | 2014-05-26 | 2015-12-03 | カンケンテクノ株式会社 | Heat exchanger and exhaust gas treatment device using said heat exchanger |
WO2015181846A1 (en) * | 2014-05-26 | 2015-12-03 | カンケンテクノ株式会社 | Heat exchanger and exhaust gas treatment device using said heat exchanger |
JPWO2015182094A1 (en) * | 2014-05-26 | 2017-04-20 | カンケンテクノ株式会社 | Heat exchanger and exhaust gas treatment apparatus using the heat exchanger |
CN106582229A (en) * | 2016-12-16 | 2017-04-26 | 广西红润化工科技有限公司 | Combined multistage waste gas treatment apparatus employing combined wet process and heating process treatment |
Also Published As
Publication number | Publication date |
---|---|
JP3877980B2 (en) | 2007-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100962695B1 (en) | Method and apparatus for treating exhaust gas | |
KR100637884B1 (en) | Method and apparatus for treating waste gas containing fluorochemical | |
US5891404A (en) | Exhaust gas treatment unit | |
US6261524B1 (en) | Advanced apparatus for abatement of gaseous pollutants | |
JP2009540126A (en) | Method and apparatus for removing fluorine from a gas stream | |
KR101724358B1 (en) | Method for the Simultaneous Removal of Nitrogen Oxides and Sulfur Dioxide using Ozone Oxidation and Wet Scrubber | |
JP2006075832A (en) | Treating method and device of exhaust gas | |
KR101097240B1 (en) | Method and apparatus for treating exhaust gas | |
JPH0268414A (en) | Combustion treatment of poisonous gas and its device | |
US7220396B2 (en) | Processes for treating halogen-containing gases | |
JP6178141B2 (en) | Exhaust gas treatment method and exhaust gas treatment apparatus | |
JP2003001063A (en) | Method and device for treating nf3-containing exhaust gas | |
JP2009279567A (en) | Method and apparatus for treating exhaust gas containing chloropolysilane | |
JP4629967B2 (en) | Method and apparatus for treating N2O-containing exhaust gas | |
US7455819B2 (en) | Apparatus for simultaneous dry desulfurization/denitrification | |
JP4130099B2 (en) | Method for decomposing and removing urea from exhaust gas, method for treating exhaust gas, and exhaust gas treatment apparatus | |
JP2001054722A (en) | Removal of waste gas in semiconductor production | |
KR20180136992A (en) | Method and apparatus for producing a product gas stream | |
JP2009028647A (en) | Exhaust gas treating method and device | |
JP4265939B2 (en) | Method for removing nitrogen compounds | |
JP2007216229A (en) | Apparatus for treating exhaust gas including fluorine-containing compound | |
JP2008100193A (en) | Method of treating nitrogen oxide-containing gas and apparatus for treating nitrogen oxide-containing gas | |
JP2004209442A (en) | Exhaust gas treatment device | |
JPH10286433A (en) | Method of eliminating gaseous ozone | |
RU2450850C2 (en) | Method of removing waste gases of silane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061101 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3877980 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091110 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101110 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111110 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121110 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131110 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |