【0001】
【発明の属する技術分野】
本発明は、排ガス処理装置に関するものであり、詳しくは、排ガス温度が250℃以下の場合であっても、分解対象となる有機化合物を有効に分解することができ、なおかつ処理すべき排ガス量が増加したり、分解対象となる有機化合物の濃度が増加した場合であっても、オゾン化ガスの供給量を増加させる必要がなく、設備コストおよびランニングコストを極力抑制することのできる排ガス処理装置に関するものである。
【0002】
【従来の技術】
従来、例えば焼却炉から排出された排ガスは、次のような排ガス処理装置により処理されていた。
可燃性の廃棄物等が焼却炉で焼却されると約850℃程度の燃焼ガスが発生する。この燃焼ガスはボイラー等を介して650℃以下に冷却された後、減温塔に誘引され、ここでオゾン化ガス、過酸化水素および水を含む活性水が噴霧され排ガス中の被処理成分が分解されるとともに、約200℃まで急速に冷却される。冷却された後の燃焼ガスは電気集塵機で煤塵が除去された後、誘引送風機を経て煙突から大気に排気される(例えば、特許文献1参照)。
前記活性水は、減温塔内での冷却過程において、オゾン化ガスと過酸化水素との接触化学反応や、オゾン化ガスの熱分解反応等により強力な酸化力を有するOHラジカルを生成する。このOHラジカルは、排ガス中の塩素系有機化合物、例えばダイオキシン類またはダイオキシン類前駆体物質等を分解することができる。その結果、大気中へのダイオキシン類の排出が低減するとともに、電気集塵機で集塵された煤塵のダイオキシン類も低減する。
【0003】
【特許文献1】
特開2000−185217号公報
【0004】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示された排ガス処理装置では、排ガス温度が250℃以下の場合、塩素系有機化合物、例えばダイオキシン類またはダイオキシン類前駆体物質等の有効な分解効率が得られないという問題点がある(なお、排ガス温度が250〜600℃範囲であれば有効な分解効率が得られる)。
また、処理すべき排ガス量が増加したり、分解対象となる有機化合物の濃度が増加した場合、有効な分解効率を得るためには、活性水の供給量を増加させる必要がある。しかし、これに伴いオゾン発生器の能力を高める必要があり、設備コストおよびランニングコストが増加するという問題点もあった。
【0005】
本発明は、このような従来の問題点を解決するためになされたもので、排ガス温度が250℃以下の場合であっても、分解対象となる有機化合物を有効に分解することができ、なおかつ処理すべき排ガス量が増加したり、分解対象となる有機化合物の濃度が増加した場合であっても、オゾン化ガスの供給量を増加させる必要がなく、設備コストおよびランニングコストを極力抑制することのできる排ガス処理装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、排ガスをオゾンおよび過酸化水素水に接触させ、前記排ガスに含まれる分解対象の有機化合物を分解する排ガス処理装置において、前記排ガス処理装置が、前記排ガスをオゾンおよび過酸化水素に接触させて反応させる第一反応部と、前記第一反応部を通過した排ガスをさらに過酸化水素水と接触させて反応させる第二反応部とを備えたことを特徴とする排ガス処理装置を提供するものである。
【0007】
【発明の実施の形態】
図1は、本発明の一実施形態を説明するための排ガス処理装置の概略図である。図1において、本発明の排ガス処理装置は、反応管11において、排ガスをオゾンおよび過酸化水素に接触させて反応させる第一反応部111と、第一反応部111を通過した排ガスをさらに過酸化水素水と接触させて反応させる第二反応部112とを備えている。第一反応部111において、排ガスとオゾンおよび過酸化水素との接触は、噴霧ノズル12からオゾン化ガスおよび過酸化水素水を排ガス中に噴霧することにより行われる。また第二反応部112において、排ガスと過酸化水素水との接触は、噴霧ノズル15aおよび15bから過酸化水素水を、好ましくは空気とともに排ガス中に噴霧することにより行われる。噴霧ノズル12に供給されるオゾン化ガスは、酸素ボンベ14から流れる酸素を原料としてオゾン発生器13により生成される。また噴霧ノズル12に供給される過酸化水素水は、過酸化水素水タンク17、液体ポンプ16aを経て噴霧ノズル12に到達する。噴霧ノズル12は、外管および内管を有する二重管構造とし、例えばオゾン化ガスが内管と外管との間を通過し、過酸化水素水が内管を通過するようにし、二流体噴霧を達成できるようにすれば、排ガスとの混合効率が高まり好ましい。また、噴霧ノズル15aおよび15bに供給される過酸化水素水は、過酸化水素水タンク17、液体ポンプ16aおよび16bを経て噴霧ノズル15aおよび15bにそれぞれ到達する。噴霧ノズル15aおよび15bに供給される空気は、空気圧縮機18からそれぞれ供給され、過酸化水素水および空気は、前記と同様に二流体噴霧されるのが好ましい。
【0008】
排ガス中に供給されるオゾン化ガス量、過酸化水素水量は、分解対象となる有機化合物の種類、濃度、処理すべき排ガス量等を勘案して適宜決定すればよい。なお、過酸化水素水量は、分解対象の有機化合物の有効な分解を達成するために、換言すればオゾン量と過酸化水素水量の最適な比率を得るために、液体ポンプ16a、16b、16cによって独立して制御できることが好ましい。なお該比率は予備実験によって簡単に算出することができる。
【0009】
本発明によれば、第一反応部111における排ガス温度が250℃以下である場合、第一反応部111を通過後の排ガス中にオゾン化ガスが残存し、これにより第二反応部112においてさらに過酸化水素水と接触することにより、この残存オゾン化ガスと過酸化水素水によって排ガス中の分解対象の有機化合物がさらに分解され、良好な分解効率が達成される。これにより、オゾン化ガスの供給量を増加させる必要がなくなり、設備コストおよびランニングコストの増大を抑制することができる。
この観点から、本発明によれば、第一反応部111における排ガス温度は、熱によるオゾンの自己分解反応がおこり過酸化水素水との混合によるOHラジカルが発生しやすい100℃以上、かつオゾンが残存する250℃以下が好ましい。なおこの温度範囲内ではより高温であることが好ましい。
また前記では、第二反応部112において、噴霧ノズルを排ガスの上流方向から下流方向に向かって2箇所設置したが、本発明はこれに限定されず、2箇所あるいは3箇所以上に該噴霧ノズルを設けることができる。
【0010】
【実施例】
以下、実施例および比較例により本発明をさらに説明するが、本発明はこれらの例に限定されるものではない。
(実施例)
図1に示すような排ガス処理装置を作製した。
反応管11は、内径3.5cm、長さ100cmの石英ガラス管を用いた。反応管11に供給する模擬排ガスは、熱風発生器により、50〜400℃の空気を送り込んだ。模擬排ガスの流速は2m/秒とした。模擬排ガスに含まれる模擬有機化合物は液体のジクロロベンゼンを空気によりバブリングすることにより気化させたものを送り込んだ。このとき反応管11内のジクロロベンゼン濃度は130ppmであった。
【0011】
オゾン化ガスと過酸化水素水の噴霧ノズル12と、空気および過酸化水素水の噴霧ノズル15a、15bは二重管構造となっており外管は内径1mm、内管は内径0.2mmのものを用いた。過酸化水素水は内管を通過し、オゾン化ガスまたは空気は内管と外管の間を通過するように接続した。
【0012】
オゾン発生器13は荏原実業社製OZSD−3000A型を、酸素ボンベ4は大阪太陽酸素社製の純度99.999%を用いた。これらはポリテトラフルオロエチレン製配管で接続した。
【0013】
液体ポンプ16a、16b、16cは、液体クロマトグラフ分析用の微量定量ポンプである日本分光社製PU980型を用いた。過酸化水素水タンク17はポリプロピレン製の1L容器を用い、和光純薬工業製30%過酸化水素水を用いた。これらはポリテトラフルオロエチレン製配管で接続した。
【0014】
まず、酸素ガスボンベ14から1L/分の酸素ガスを流し、オゾン発生器13でオゾン化したオゾン化ガスを反応管11内に導入した。このとき反応管11内のオゾン濃度は500ppmであった。また、過酸化水素水タンク17に入れた過酸化水素水を液体ポンプ16aにて0.1ml/分の割合で流した。なお、これら2流体は、噴霧ノズル12により反応管11中に同時に二流体噴霧された。
【0015】
また空気圧縮機18から1L/分の空気を流した。同時に、過酸化水素水タンク17に入れた過酸化水素水を液体ポンプ16bにて0.08ml/分、液体ポンプ16cにて過酸化水素水を0.06ml/分の割合で流した。なお、これら2流体は、噴霧ノズル15aおよび15bにより反応管11に同時に二流体噴霧された。
【0016】
また反応管11の内部のオゾン濃度を、噴霧ノズル12付近の下流(第一反応部)、噴霧ノズル15a、15b付近の下流(第二反応部)にそれぞれサンプリング管を設けてオゾン濃度測定器により測定した。オゾン濃度測定器は荏原実業社製EG2001型を用いた。
【0017】
また反応管11でのジクロロベンゼンの分解反応は、噴霧ノズル12の上流(まだ分解反応の起こっていない状態)、噴霧ノズル12付近の下流(第一反応部)、噴霧ノズル15a、15b付近の下流(第二反応部)に設けたサンプリング管から、活性炭チューブにより反応管11内の空気を捕集し、ガスクロマトグラフ分析にてジクロロベンゼンを定量することにより調べた。
【0018】
図2は、排ガス温度200℃における反応管11内のオゾン濃度測定結果を示す図である。噴霧ノズル12の上流側のオゾン濃度を100%とした場合、噴霧ノズル12付近の下流の第一反応部のオゾン濃度は90%(領域a)、噴霧ノズル15a付近の下流の第二反応部は70%(領域b)、噴霧ノズル15b付近の下流の第二反応部は50%(領域c)の濃度になった。これはオゾンと過酸化水素水との混合によるラジカル発生によるものでありオゾンの消費が段階的に進んでいるものである。
【0019】
図3は、排ガス温度200℃における反応管11内のジクロロベンゼン濃度測定結果を示す図である。噴霧ノズル12の上流側のオゾン濃度を100%とした場合、噴霧ノズル12付近の下流の第一反応部のオゾン濃度は60%(領域a)、噴霧ノズル15a付近の下流の第二反応部は45%(領域b)、噴霧ノズル15b付近の下流の第二反応部は35%(領域c)の濃度になった。このように本発明によれば、第二反応部に残存するオゾンが、過酸化水素水との混合によりさらにラジカルを発生させることにより、ジクロロベンゼンの分解反応が段階的に進み、分解効率が向上したものである。
【0020】
(比較例)
図4に示すような排ガス処理装置を作製した。図4の装置は、噴霧ノズル15aおよび15b、空気圧縮機18、液体ポンプ16bおよび16cを設けないこと以外は、図1の装置と同様である。図4のような装置構成で実施例と同様な試験を行い、反応管11内のオゾン濃度およびジクロロベンゼン濃度を測定した。
【0021】
図2に、反応管11でのオゾン濃度測定結果を実施例の場合と併記した。噴霧ノズル12の上流側のオゾン濃度を100%とした場合、噴霧ノズル12付近の下流の第一反応部のオゾン濃度は90%(領域a)、噴霧ノズル15a付近の下流と同じ位置では87%(領域b)、噴霧ノズル15b付近の下流と同じ位置では85%(領域c)の濃度になった。
【0022】
図3に、反応管11でのジクロロベンゼン濃度測定結果を実施例の場合と併記した。噴霧ノズル12の上流側のオゾン濃度を100%とした場合、噴霧ノズル12付近の下流の第一反応部のオゾン濃度は60%(領域a)、噴霧ノズル15a付近の下流と同じ位置では55%(領域b)、噴霧ノズル15b付近の下流と同じ位置では50%(領域c)の濃度になった。この比較例の分解効率は、実施例よりも悪化していることが明らかである。
【0023】
図5は、排ガス温度と反応管11内のオゾン濃度との関係を示す図である。オゾン濃度は噴霧ノズル15b付近の下流と同じ位置で測定した。排ガス温度50℃では、オゾンの自己分解が起こっていない。排ガス温度が100℃を超えるとオゾン濃度の減少が始まり、200℃では85%、250℃では50%となる。300℃以上ではオゾン濃度はほぼ0%となり、残存オゾンは存在しなかった。
【0024】
なお、前記の実施例では排ガスの処理を実験室レベルで実施したが、従来公知の工業的な装置においても本発明は実施可能である。例えば、前記特許文献1に記載した排ガス処理装置における減温塔や煙道に、噴霧ノズル12、15a、15bを設置することができる。あるいはこれ以上の複数箇所に噴霧ノズル設置してもよい。また従来公知の排ガス処理装置において、水噴霧を利用した急速減温塔が設けられている場合は、既設の冷却水噴霧ノズルを噴霧ノズル12、15aあるいは15bとして使用することもできる。
【0025】
【発明の効果】
本発明の排ガス処理装置は、排ガス温度が250℃以下の場合であっても、分解対象となる有機化合物を有効に分解することができ、なおかつ処理すべき排ガス量が増加したり、分解対象となる有機化合物の濃度が増加した場合であっても、オゾン化ガスの供給量を増加させる必要がなく、オゾンよりも安価な過酸化水素水を供給する装置を設けるだけでよいので、設備コストおよびランニングコストを極力抑制することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を説明するための排ガス処理装置の概略図である。
【図2】本発明の実施例および比較例において、排ガス温度200℃における反応管内のオゾン濃度測定結果を示す図である。
【図3】本発明の実施例および比較例において、排ガス温度200℃における反応管内のジクロロベンゼン濃度測定結果を示す図である。
【図4】本発明の比較例で用いた排ガス処理装置を説明するための図である。
【図5】排ガス温度と反応管内のオゾン濃度との関係を示す図である。
【符号の説明】
11 反応管、12 噴霧ノズル、13 オゾン発生器、14 酸素ボンベ、15a,15b 噴霧ノズル、16a,16b,16c 液体ポンプ、17 過酸化水素水タンク、18 空気圧縮機、111 第一反応部、112 第二反応部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas treatment apparatus, and more specifically, can effectively decompose an organic compound to be decomposed even when the exhaust gas temperature is 250 ° C. or lower, and the amount of exhaust gas to be treated is reduced. It is not necessary to increase the supply amount of ozonized gas even when the concentration of the organic compound to be decomposed increases or the concentration of the organic compound to be decomposed is increased. Things.
[0002]
[Prior art]
Conventionally, for example, exhaust gas discharged from an incinerator has been treated by the following exhaust gas treatment apparatus.
When combustible waste and the like are incinerated in an incinerator, a combustion gas of about 850 ° C. is generated. After the combustion gas is cooled to 650 ° C. or lower through a boiler or the like, it is led to a cooling tower, where active water containing ozonized gas, hydrogen peroxide and water is sprayed, and the components to be treated in the exhaust gas are reduced. Decomposed and rapidly cooled to about 200 ° C. After the cooled combustion gas is subjected to dust removal by an electric precipitator, it is exhausted from a chimney to the atmosphere via an induction blower (for example, see Patent Document 1).
The activated water generates OH radicals having strong oxidizing power by a catalytic chemical reaction between the ozonized gas and hydrogen peroxide and a thermal decomposition reaction of the ozonized gas in a cooling process in the cooling tower. These OH radicals can decompose chlorine-based organic compounds in exhaust gas, such as dioxins or dioxin precursors. As a result, emission of dioxins into the atmosphere is reduced, and dioxins in dust collected by the electric dust collector are also reduced.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-185217
[Problems to be solved by the invention]
However, in the exhaust gas treatment apparatus disclosed in Patent Document 1, when the exhaust gas temperature is 250 ° C. or lower, there is a problem that effective decomposition efficiency of a chlorine-based organic compound such as dioxins or dioxin precursors cannot be obtained. (Effective decomposition efficiency can be obtained if the exhaust gas temperature is in the range of 250 to 600 ° C.).
Further, when the amount of exhaust gas to be treated increases or the concentration of the organic compound to be decomposed increases, it is necessary to increase the supply amount of active water in order to obtain effective decomposition efficiency. However, there is a problem that the capacity of the ozone generator needs to be increased, which leads to an increase in equipment cost and running cost.
[0005]
The present invention has been made to solve such a conventional problem, and even when the exhaust gas temperature is 250 ° C. or lower, the organic compound to be decomposed can be effectively decomposed, and Even if the amount of exhaust gas to be treated increases or the concentration of organic compounds to be decomposed increases, there is no need to increase the supply of ozonized gas, and equipment costs and running costs are minimized. It is an object of the present invention to provide an exhaust gas treatment device that can perform the following.
[0006]
[Means for Solving the Problems]
The present invention relates to an exhaust gas treatment device for contacting exhaust gas with ozone and hydrogen peroxide water to decompose an organic compound to be decomposed contained in the exhaust gas, wherein the exhaust gas treatment device contacts the exhaust gas with ozone and hydrogen peroxide. An exhaust gas treatment device, comprising: a first reaction unit for causing a reaction by allowing the exhaust gas to pass through the first reaction unit; and a second reaction unit for causing the exhaust gas that has passed through the first reaction unit to further contact and react with a hydrogen peroxide solution. Things.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram of an exhaust gas treatment apparatus for explaining an embodiment of the present invention. In FIG. 1, an exhaust gas treatment apparatus of the present invention includes a first reaction section 111 for causing an exhaust gas to contact and react with ozone and hydrogen peroxide in a reaction tube 11, and an exhaust gas passing through the first reaction section 111 for further peroxidation. A second reaction unit 112 that is brought into contact with and reacted with hydrogen water. In the first reaction section 111, contact between the exhaust gas and ozone and hydrogen peroxide is performed by spraying the ozonized gas and hydrogen peroxide water into the exhaust gas from the spray nozzle 12. In the second reaction section 112, the contact between the exhaust gas and the hydrogen peroxide solution is performed by spraying the hydrogen peroxide solution, preferably together with air, into the exhaust gas from the spray nozzles 15a and 15b. The ozonized gas supplied to the spray nozzle 12 is generated by the ozone generator 13 using oxygen flowing from the oxygen cylinder 14 as a raw material. The hydrogen peroxide solution supplied to the spray nozzle 12 reaches the spray nozzle 12 via the hydrogen peroxide solution tank 17 and the liquid pump 16a. The spray nozzle 12 has a double pipe structure having an outer pipe and an inner pipe. For example, an ozonized gas passes between the inner pipe and the outer pipe, and a hydrogen peroxide solution passes through the inner pipe. If the spraying can be achieved, the mixing efficiency with the exhaust gas is enhanced, which is preferable. The hydrogen peroxide solution supplied to the spray nozzles 15a and 15b reaches the spray nozzles 15a and 15b via the hydrogen peroxide solution tank 17 and the liquid pumps 16a and 16b, respectively. The air supplied to the spray nozzles 15a and 15b is supplied from the air compressor 18, respectively, and the hydrogen peroxide solution and the air are preferably subjected to two-fluid spraying as described above.
[0008]
The amount of the ozonized gas and the amount of the hydrogen peroxide solution supplied to the exhaust gas may be appropriately determined in consideration of the type and concentration of the organic compound to be decomposed, the amount of the exhaust gas to be treated, and the like. In addition, in order to achieve the effective decomposition of the organic compound to be decomposed, in other words, to obtain the optimal ratio between the amount of ozone and the amount of hydrogen peroxide, the amount of hydrogen peroxide is determined by the liquid pumps 16a, 16b, and 16c. Preferably, it can be controlled independently. The ratio can be easily calculated by a preliminary experiment.
[0009]
According to the present invention, when the temperature of the exhaust gas in the first reaction section 111 is 250 ° C. or less, the ozonized gas remains in the exhaust gas after passing through the first reaction section 111, and thereby the second reaction section 112 further By coming into contact with the hydrogen peroxide solution, the organic compound to be decomposed in the exhaust gas is further decomposed by the residual ozonized gas and the hydrogen peroxide solution, and good decomposition efficiency is achieved. Accordingly, it is not necessary to increase the supply amount of the ozonized gas, and it is possible to suppress an increase in equipment cost and running cost.
From this viewpoint, according to the present invention, the temperature of the exhaust gas in the first reaction section 111 is 100 ° C. or higher, at which the self-decomposition reaction of ozone due to heat occurs and OH radicals are easily generated by mixing with the hydrogen peroxide solution. The remaining temperature is preferably 250 ° C. or lower. It is preferable that the temperature be higher within this temperature range.
Further, in the above description, in the second reaction section 112, the spray nozzles are provided at two places from the upstream direction to the downstream direction of the exhaust gas, but the present invention is not limited to this, and the spray nozzles are provided at two places or three or more places. Can be provided.
[0010]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
(Example)
An exhaust gas treatment device as shown in FIG. 1 was manufactured.
As the reaction tube 11, a quartz glass tube having an inner diameter of 3.5 cm and a length of 100 cm was used. The simulated exhaust gas supplied to the reaction tube 11 was supplied with air at 50 to 400 ° C. by a hot air generator. The flow rate of the simulated exhaust gas was 2 m / sec. The simulated organic compound contained in the simulated exhaust gas was obtained by vaporizing liquid dichlorobenzene by bubbling with air. At this time, the concentration of dichlorobenzene in the reaction tube 11 was 130 ppm.
[0011]
The atomizing nozzle 12 of the ozonized gas and the hydrogen peroxide solution, and the spray nozzles 15a and 15b of the air and the hydrogen peroxide solution have a double pipe structure, the outer pipe having an inner diameter of 1 mm and the inner pipe having an inner diameter of 0.2 mm. Was used. The hydrogen peroxide solution passed through the inner tube, and the ozonized gas or air was connected so as to pass between the inner tube and the outer tube.
[0012]
The ozone generator 13 used was OZSD-3000A type manufactured by EBARA BUSINESS, and the oxygen cylinder 4 used was 99.999% purity manufactured by Osaka Taiyo Oxygen. These were connected by a polytetrafluoroethylene pipe.
[0013]
As the liquid pumps 16a, 16b, and 16c, PU980 type manufactured by JASCO Corporation, which is a micro-quantification pump for liquid chromatography analysis, was used. The hydrogen peroxide water tank 17 used a 1 L container made of polypropylene, and used 30% hydrogen peroxide water manufactured by Wako Pure Chemical Industries. These were connected by a polytetrafluoroethylene pipe.
[0014]
First, 1 L / min of oxygen gas was flowed from the oxygen gas cylinder 14, and the ozonized gas ozonized by the ozone generator 13 was introduced into the reaction tube 11. At this time, the ozone concentration in the reaction tube 11 was 500 ppm. Further, the hydrogen peroxide solution put in the hydrogen peroxide solution tank 17 was flowed at a rate of 0.1 ml / min by the liquid pump 16a. Note that these two fluids were simultaneously sprayed into the reaction tube 11 by the spray nozzle 12.
[0015]
Further, 1 L / min of air was flown from the air compressor 18. At the same time, the aqueous solution of hydrogen peroxide put in the aqueous hydrogen peroxide tank 17 was flowed at a rate of 0.08 ml / min by the liquid pump 16b and the aqueous solution of hydrogen peroxide at a rate of 0.06 ml / min by the liquid pump 16c. The two fluids were simultaneously sprayed onto the reaction tube 11 by the spray nozzles 15a and 15b.
[0016]
In addition, the ozone concentration inside the reaction tube 11 is measured by an ozone concentration measuring device by providing sampling tubes downstream (first reaction section) near the spray nozzle 12 and downstream (second reaction section) near the spray nozzles 15a and 15b. It was measured. The ozone concentration meter used was EG2001 manufactured by EBARA BUSINESS CO., LTD.
[0017]
The decomposition reaction of dichlorobenzene in the reaction tube 11 is performed upstream of the spray nozzle 12 (in a state where the decomposition reaction has not yet occurred), downstream of the spray nozzle 12 (first reaction section), and downstream of the spray nozzles 15a and 15b. The air in the reaction tube 11 was collected from the sampling tube provided in the (second reaction section) by an activated carbon tube, and the amount of dichlorobenzene was determined by gas chromatography analysis.
[0018]
FIG. 2 is a diagram showing the results of measuring the ozone concentration in the reaction tube 11 at an exhaust gas temperature of 200 ° C. Assuming that the ozone concentration on the upstream side of the spray nozzle 12 is 100%, the ozone concentration of the downstream first reaction unit near the spray nozzle 12 is 90% (region a), and the downstream second reaction unit near the spray nozzle 15a is The concentration in the downstream second reaction section near 70% (area b) and the spray nozzle 15b was 50% (area c). This is due to the generation of radicals due to the mixing of ozone and hydrogen peroxide solution, and the consumption of ozone is progressing stepwise.
[0019]
FIG. 3 is a diagram showing the results of measuring the concentration of dichlorobenzene in the reaction tube 11 at an exhaust gas temperature of 200 ° C. Assuming that the ozone concentration on the upstream side of the spray nozzle 12 is 100%, the ozone concentration of the downstream first reaction unit near the spray nozzle 12 is 60% (region a), and the downstream second reaction unit near the spray nozzle 15a is The concentration of the second reaction part downstream of the spray nozzle 15b was 45% (region b) and 35% (region c). As described above, according to the present invention, the ozone remaining in the second reaction section further generates radicals by mixing with the hydrogen peroxide solution, whereby the decomposition reaction of dichlorobenzene proceeds stepwise, and the decomposition efficiency is improved. It was done.
[0020]
(Comparative example)
An exhaust gas treatment device as shown in FIG. 4 was manufactured. The apparatus of FIG. 4 is the same as the apparatus of FIG. 1 except that the spray nozzles 15a and 15b, the air compressor 18, and the liquid pumps 16b and 16c are not provided. A test similar to that of the example was performed using the apparatus configuration shown in FIG. 4, and the ozone concentration and dichlorobenzene concentration in the reaction tube 11 were measured.
[0021]
FIG. 2 also shows the results of measuring the ozone concentration in the reaction tube 11 together with the results of the example. Assuming that the ozone concentration on the upstream side of the spray nozzle 12 is 100%, the ozone concentration of the downstream first reaction section near the spray nozzle 12 is 90% (region a), and 87% at the same position as the downstream near the spray nozzle 15a. (Region b), at the same position as the downstream near the spray nozzle 15b, the density was 85% (region c).
[0022]
FIG. 3 also shows the results of measuring the concentration of dichlorobenzene in the reaction tube 11 together with the results of the example. Assuming that the ozone concentration on the upstream side of the spray nozzle 12 is 100%, the ozone concentration of the downstream first reaction section near the spray nozzle 12 is 60% (area a), and 55% at the same position as the downstream near the spray nozzle 15a. (Region b), at the same position as the downstream near the spray nozzle 15b, the density was 50% (region c). It is clear that the decomposition efficiency of this comparative example is worse than that of the example.
[0023]
FIG. 5 is a diagram showing the relationship between the exhaust gas temperature and the ozone concentration in the reaction tube 11. The ozone concentration was measured at the same position as the downstream near the spray nozzle 15b. At an exhaust gas temperature of 50 ° C., no self-decomposition of ozone has occurred. When the exhaust gas temperature exceeds 100 ° C., the ozone concentration starts to decrease, and becomes 85% at 200 ° C. and 50% at 250 ° C. At 300 ° C. or higher, the ozone concentration was almost 0%, and there was no residual ozone.
[0024]
In the above-described embodiment, the treatment of the exhaust gas is performed at the laboratory level. However, the present invention can be implemented in a conventionally known industrial apparatus. For example, the spray nozzles 12, 15a, and 15b can be installed in the cooling tower or the flue of the exhaust gas treatment device described in Patent Document 1. Alternatively, spray nozzles may be installed at a plurality of more locations. In addition, in a conventionally known exhaust gas treatment apparatus, when a rapid cooling tower using water spray is provided, an existing cooling water spray nozzle can be used as the spray nozzle 12, 15a or 15b.
[0025]
【The invention's effect】
The exhaust gas treatment device of the present invention can effectively decompose the organic compound to be decomposed even when the exhaust gas temperature is 250 ° C or lower, and further increases the amount of exhaust gas to be treated, Even when the concentration of the organic compound increases, it is not necessary to increase the supply amount of the ozonized gas, and it is only necessary to provide a device for supplying a hydrogen peroxide solution that is cheaper than ozone, so that equipment costs and Running costs can be minimized.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an exhaust gas treatment apparatus for explaining an embodiment of the present invention.
FIG. 2 is a diagram showing a measurement result of ozone concentration in a reaction tube at an exhaust gas temperature of 200 ° C. in Examples and Comparative Examples of the present invention.
FIG. 3 is a view showing the results of measuring the concentration of dichlorobenzene in a reaction tube at an exhaust gas temperature of 200 ° C. in Examples and Comparative Examples of the present invention.
FIG. 4 is a diagram for explaining an exhaust gas treatment device used in a comparative example of the present invention.
FIG. 5 is a diagram showing a relationship between an exhaust gas temperature and an ozone concentration in a reaction tube.
[Explanation of symbols]
Reference Signs List 11 reaction tube, 12 spray nozzle, 13 ozone generator, 14 oxygen cylinder, 15a, 15b spray nozzle, 16a, 16b, 16c liquid pump, 17 hydrogen peroxide water tank, 18 air compressor, 111 first reaction section, 112 Second reaction section.