JP2002373823A - Thin-film manufacturing method - Google Patents

Thin-film manufacturing method

Info

Publication number
JP2002373823A
JP2002373823A JP2001296186A JP2001296186A JP2002373823A JP 2002373823 A JP2002373823 A JP 2002373823A JP 2001296186 A JP2001296186 A JP 2001296186A JP 2001296186 A JP2001296186 A JP 2001296186A JP 2002373823 A JP2002373823 A JP 2002373823A
Authority
JP
Japan
Prior art keywords
thin film
nitrogen
substrate
magnetic
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001296186A
Other languages
Japanese (ja)
Other versions
JP4666852B2 (en
Inventor
Saki Sonoda
早紀 園田
Saburo Shimizu
三郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001296186A priority Critical patent/JP4666852B2/en
Publication of JP2002373823A publication Critical patent/JP2002373823A/en
Application granted granted Critical
Publication of JP4666852B2 publication Critical patent/JP4666852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide technology for forming a group-III nitride based thin magnetic semiconductor film. SOLUTION: After an AIN layer 22 is formed on the surface of a substrate 21, a buffer layer 23 is formed of a GaN-based thin film on the surface of the AIN layer; and nitrogen-atom containing gas such as ammonia gas is introduced into the surface of the buffer layer 23 to carry out pyrolysis, and irradiation with molecular rays of a group-III element and molecular rays of a magnetic impurity element is carried out to a thin semiconductor thin film 24. The thin semiconductor thin film 24 shows ferromagnetism at room temperature. Further, GaN and Mn are a p-type at room temperature, so they are usable for a p-type layer of a semiconductor element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希薄磁性半導体を
成長させる技術にかかり、特に、GaやAl等のIII族
金属を主成分とし、磁性不純物としてMn、V、Cr、
Fe、Ni等を主成分としたIII族窒化物希薄磁性半導
体を分子線エピタキシー法によって成長させる技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for growing a dilute magnetic semiconductor, and more particularly to a technique of using a group III metal such as Ga or Al as a main component and Mn, V, Cr,
The present invention relates to a technique for growing a group III nitride diluted magnetic semiconductor mainly containing Fe, Ni, or the like by a molecular beam epitaxy method.

【0002】[0002]

【従来の技術】近年では、金属多層膜における巨大磁気
抵抗効果を利用した素子が実用に供されており、磁気セ
ンサや磁性ランダムアクセスメモリの研究も盛んに行わ
れている。
2. Description of the Related Art In recent years, elements utilizing the giant magnetoresistance effect in a metal multilayer film have been put to practical use, and magnetic sensors and magnetic random access memories have been actively studied.

【0003】更に、磁性体と半導体の複合構造や、希薄
磁性半導体などの新材料のエレクトロニクスへの応用も
研究されている。ここで、希薄磁性半導体とは、非磁性
半導体と磁性原子の混晶半導体であって、通常、磁性原
子濃度が20at%以下のものを指している。
[0003] Further, application of new materials such as a composite structure of a magnetic substance and a semiconductor and a diluted magnetic semiconductor to electronics has been studied. Here, the diluted magnetic semiconductor is a mixed crystal semiconductor of a non-magnetic semiconductor and a magnetic atom, and generally indicates a semiconductor having a magnetic atom concentration of 20 at% or less.

【0004】希薄磁性半導体としては、強磁性を示す物
質として、既にGaAs:Mn、InAs:Mn、Cd
Te:Mnなどが実現されており、GaAs:Mnにお
いては、これをp層としてn−GaAsとで形成された
pn接合を利用した発光ダイオードが作製されている。
この発光ダイオードをGaAs:Mn層のキュリー温度
以下にして電流を流し、発光させると、その発光がスピ
ン偏極電流に基づく円偏光成分を持つことが確認され
た。これは、スピン偏極した電流がpn接合に流れたこ
とを示すものである(Y.Ohno, et al., NATURE, vol.40
2, 1999)。
As a diluted magnetic semiconductor, GaAs: Mn, InAs: Mn, Cd
Te: Mn and the like are realized, and in GaAs: Mn, a light emitting diode using a pn junction formed with n-GaAs using this as a p-layer has been manufactured.
When a current was applied to the light emitting diode at a temperature lower than the Curie temperature of the GaAs: Mn layer to emit light, it was confirmed that the light emission had a circularly polarized component based on the spin-polarized current. This indicates that a spin-polarized current flowed through the pn junction (Y. Ohno, et al., NATURE, vol. 40).
2, 1999).

【0005】しかし、これらの既存の希薄磁性半導体に
おいて、そのキュリー温度が室温を超えられるものは未
だ合成されていない。
However, none of these existing diluted magnetic semiconductors whose Curie temperature can exceed room temperature has been synthesized yet.

【0006】また、いくつかの理論的予測において、こ
れら既存の希薄磁性半導体が、室温を超えるキュリー点
を持つというものの報告はない(T.Dietl, et al., SCIE
NCE,vol.287, 2000等)。
Further, in some theoretical predictions, there is no report that these existing diluted magnetic semiconductors have a Curie point exceeding room temperature (T. Dietl, et al., SCIE
NCE, vol.287, 2000).

【0007】これに対して、ワイドバンドギャップ半導
体であるGaNを母体材料とした場合、Mn、V、Cr
を磁性不純物元素として含む強磁性を発現し、そのキュ
リー温度は室温を超えるという予測が成されている。ま
た、これらは可視光領域で透明となるため、透明室温強
磁性半導体として有望視されている。
On the other hand, when GaN which is a wide band gap semiconductor is used as a base material, Mn, V, Cr
Has been predicted to exhibit ferromagnetism containing as a magnetic impurity element, and its Curie temperature exceeds room temperature. In addition, since they are transparent in the visible light region, they are considered promising as transparent room-temperature ferromagnetic semiconductors.

【0008】これまでに、東京工業大学のグループでr
f励起窒素プラズマMBE法によるGaN:Mn、Ga
N:Feの成長が試みられているが、低温領域において
も強磁性を発現するには到っていない。
[0008] Until now, a group of Tokyo Institute of Technology
GaN: Mn, Ga by f-excited nitrogen plasma MBE
Attempts have been made to grow N: Fe, but it has not yet reached ferromagnetism even in a low-temperature region.

【0009】[0009]

【発明が解決しようとする課題】本発明は、室温におい
て強磁性を発現する希薄磁性半導体を実現するものであ
る。従来の希薄磁性半導体における問題点である低いキ
ュリー温度を解決するものであり、室温において動作す
るスピン偏極を利用したデバイス等の構成要素としての
希薄磁性半導体薄膜を形成する方法を提供することを課
題としている。
SUMMARY OF THE INVENTION The present invention realizes a diluted magnetic semiconductor that exhibits ferromagnetism at room temperature. In order to solve the low Curie temperature which is a problem in the conventional diluted magnetic semiconductor, it is an object of the present invention to provide a method for forming a diluted magnetic semiconductor thin film as a component such as a device using spin polarization operating at room temperature. It is an issue.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、基板を真空雰囲気中に置
き、磁性不純物元素を含有し、III族元素と窒素とを主
成分とする材料から成る希薄磁性体薄膜を前記基板上に
形成する薄膜製造方法であって、窒素原子を含む含窒素
原子ガスを前記真空雰囲気中に導入し、前記含窒素原子
ガスを前記基板上あるいはその近傍で光分解又は熱分解
しながら、前記基板上に前記III族元素と前記磁性不純
物元素の分子線を照射し、前記希薄磁性体薄膜を成長さ
せる薄膜製造方法である。請求項2記載の発明は、前記
希薄磁性体薄膜は、III族元素としてガリウム、アルミ
ニウム又はインジウムが用いられる請求項1記載の薄膜
製造方法である。請求項3記載の発明は、前記磁性不純
物元素としてマンガン、バナジウム、クロム、鉄、又は
ニッケルのいずれか一種以上の元素が用いられる請求項
1又は請求項2のいずれか1項記載の薄膜製造方法であ
る。請求項4記載の発明は、前記含窒素原子ガスとし
て、アンモニアガス又はヒドラジンガスのいずれか1種
類以上のガスが用いられる請求項1乃至請求項3のいず
れか1項記載の薄膜製造方法である。請求項5記載の発
明は、前記基板上にIII族元素と窒素とを主成分とする
材料から成るバッファ層を形成した後、該バッファ層表
面に、前記希薄磁性体薄膜を成長させる請求項1乃至請
求項4のいずれか1項記載の薄膜製造方法である。請求
項6記載の発明は、前記バッファ層は、ガリウムと窒素
とを主成分とする請求項5記載の薄膜製造方法である。
請求項7記載の発明は、前記基板にはサファイア基板を
用い、前記サファイア基板表面に窒化アルミニウム層を
形成した後、該窒化アルミニウム層表面に前記バッファ
層を形成する請求項6記載の薄膜製造方法である。請求
項8記載の発明は、前記バッファ層は、アルミニウムと
窒素とを主成分とする請求項5記載の薄膜製造方法であ
る。請求項9記載の発明は、基板上に形成された希薄磁
性体薄膜であって、前記基板は窒素原子を構造中に有す
る含窒素原子ガスを含有する真空雰囲気中に置かれ、前
記含窒素原子ガスが光分解又は熱分解されると共に、前
記基板上にIII族元素と磁性不純物元素の分子線が照射
され、成長された希薄磁性体薄膜である。請求項10記
載の発明は、前記III族元素はガリウムであり、前記磁
性不純物元素はマンガンである請求項9記載の希薄磁性
体薄膜である。請求項11記載の発明は、前記III族元
素はアルミニウムであり、前記磁性不純物元素はマンガ
ンである請求項9記載の希薄磁性体薄膜である。請求項
12記載の発明は、マンガンを含有するガリウム窒化膜
であって、前記マンガンを2原子%以上含有し、キャリ
ア濃度が1×1018cm-3以上であるp型のガリウム窒
化膜である。請求項13記載の発明は、マンガンを含有
する窒化アルミニウム膜であって、前記マンガンを3原
子%以上含有し、キャリア濃度が1×1017cm-3以上
であるp型の窒化アルミニウム膜である。
In order to solve the above-mentioned problems, the invention according to claim 1 comprises placing a substrate in a vacuum atmosphere, containing a magnetic impurity element, and containing a group III element and nitrogen as main components. A thin film manufacturing method for forming a diluted magnetic thin film made of a material on the substrate, wherein a nitrogen-containing atomic gas containing nitrogen atoms is introduced into the vacuum atmosphere, and the nitrogen-containing atomic gas is placed on the substrate or the substrate. A thin film manufacturing method for irradiating the substrate with a molecular beam of the group III element and the magnetic impurity element while performing photolysis or thermal decomposition in the vicinity to grow the diluted magnetic thin film. The invention according to claim 2 is the thin film manufacturing method according to claim 1, wherein the diluted magnetic thin film uses gallium, aluminum, or indium as a group III element. The invention according to claim 3 is the method according to claim 1 or 2, wherein any one or more of manganese, vanadium, chromium, iron, and nickel is used as the magnetic impurity element. It is. The invention according to claim 4 is the thin film manufacturing method according to any one of claims 1 to 3, wherein at least one of ammonia gas and hydrazine gas is used as the nitrogen-containing atomic gas. . The invention according to claim 5 is to form a buffer layer made of a material containing a group III element and nitrogen as main components on the substrate, and then grow the diluted magnetic thin film on the surface of the buffer layer. A thin film manufacturing method according to any one of claims 1 to 4. The invention according to claim 6 is the thin film manufacturing method according to claim 5, wherein the buffer layer contains gallium and nitrogen as main components.
The invention according to claim 7, wherein the substrate is a sapphire substrate, and after forming an aluminum nitride layer on the surface of the sapphire substrate, the buffer layer is formed on the surface of the aluminum nitride layer. It is. The invention according to claim 8 is the method according to claim 5, wherein the buffer layer contains aluminum and nitrogen as main components. The invention according to claim 9 is a diluted magnetic thin film formed on a substrate, wherein the substrate is placed in a vacuum atmosphere containing a nitrogen-containing atomic gas having nitrogen atoms in its structure, This is a diluted magnetic thin film grown by irradiating a molecular beam of a group III element and a magnetic impurity element onto the substrate while the gas is subjected to photolysis or thermal decomposition. The invention according to claim 10 is the diluted magnetic thin film according to claim 9, wherein the group III element is gallium, and the magnetic impurity element is manganese. The invention according to claim 11 is the diluted magnetic thin film according to claim 9, wherein the group III element is aluminum and the magnetic impurity element is manganese. According to a twelfth aspect of the present invention, there is provided a gallium nitride film containing manganese, wherein the p-type gallium nitride film contains the manganese at 2 atomic% or more and has a carrier concentration of 1 × 10 18 cm −3 or more. . The invention according to claim 13 is an aluminum nitride film containing manganese, which is a p-type aluminum nitride film containing 3 at% or more of manganese and having a carrier concentration of 1 × 10 17 cm −3 or more. .

【0011】本発明は上記のように構成されており、II
I族元素と窒素を主成分とし、磁性不純物元素を含有す
る希薄磁性半導体薄膜を基板上に形成する製造方法であ
る。
The present invention is configured as described above,
This is a manufacturing method in which a diluted magnetic semiconductor thin film containing a Group I element and nitrogen as main components and containing a magnetic impurity element is formed on a substrate.

【0012】本発明では、希薄磁性半導体薄膜をバッフ
ァ層表面に成長させるための窒素原子の供給源として、
アンモニアやヒドラジン等の含窒素原子ガスを光分解又
は熱分解し、窒素原子を生成している。ここで光分解の
過程、又は熱分解の過程は基板上あるいはその近傍で行
われる。
In the present invention, as a source of nitrogen atoms for growing a diluted magnetic semiconductor thin film on the surface of a buffer layer,
Nitrogen-containing gas such as ammonia and hydrazine is photo-decomposed or thermally decomposed to generate nitrogen atoms. Here, the process of photolysis or the process of thermal decomposition is performed on or near the substrate.

【0013】光分解又は熱分解して窒素原子を供給でき
る含窒素原子ガスであれば、アンモニアやヒドラジンの
他の化合物も用いることができる。アンモニアの場合は
流量5〜100sccmである。また、希薄磁性半導体
薄膜を形成する際の基板温度は550℃以上800℃以
下である。
As long as it is a nitrogen-containing atomic gas capable of supplying nitrogen atoms by photolysis or thermal decomposition, other compounds such as ammonia and hydrazine can also be used. In the case of ammonia, the flow rate is 5 to 100 sccm. The substrate temperature when forming the diluted magnetic semiconductor thin film is 550 ° C. or more and 800 ° C. or less.

【0014】また、アンモニアやヒドラジン等のガスの
一種によって含窒素原子ガスを構成させてもよいし、二
種以上を混合して含窒素原子ガスとすることができる。
The nitrogen-containing atomic gas may be constituted by one kind of gas such as ammonia or hydrazine, or two or more kinds may be mixed to form a nitrogen-containing atomic gas.

【0015】[0015]

【発明の実施の形態】<実施例1>以下この発明の実施
例を図面を参照して説明する。図1の符号10は、本発
明に用いることができる分子線エピタキシー装置を示し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiments of the present invention will be described below with reference to the drawings. Reference numeral 10 in FIG. 1 indicates a molecular beam epitaxy apparatus that can be used in the present invention.

【0016】この分子線エピタキシー装置10は、真空
槽11を有しており、その底壁側には、ガス導入ノズル
13と、第1、第2の蒸着源14、15とが配置されて
いる。真空槽11の天井側には、ヒータ17が配置され
ている。
The molecular beam epitaxy apparatus 10 has a vacuum chamber 11, and a gas introduction nozzle 13 and first and second evaporation sources 14 and 15 are arranged on the bottom wall side. . On the ceiling side of the vacuum chamber 11, a heater 17 is arranged.

【0017】第1、第2の蒸着源14、15内には、そ
れぞれGaを主成分とする第1の金属材料36と、Mn
を主成分とする第2の金属材料37が配置されている。
In the first and second evaporation sources 14 and 15, a first metal material 36 containing Ga as a main component and a Mn
The second metal material 37 having as a main component is disposed.

【0018】図1の符号21は、成膜対象であるサファ
イア基板を示している。このサファイア基板21は、そ
の表面に、サファイアC面28が露出されている。
Reference numeral 21 in FIG. 1 indicates a sapphire substrate on which a film is to be formed. The sapphire substrate 21 has a sapphire C surface 28 exposed on the surface.

【0019】先ず、成膜対象のサファイア基板21を、
そのサファイアC面を真空槽11の底壁側に向けてヒー
タ17近傍に配置した。
First, a sapphire substrate 21 for forming a film is
The sapphire C surface was arranged near the heater 17 with the sapphire C surface facing the bottom wall of the vacuum chamber 11.

【0020】図2(a)の符号21は、そのサファイア基
板を示しており、同図符号28は、そのサファイア基板
21のサファイアC面を示している。
Reference numeral 21 in FIG. 2A indicates the sapphire substrate, and reference numeral 28 indicates the sapphire C surface of the sapphire substrate 21.

【0021】その状態でヒータ17に通電して発熱さ
せ、サファイア基板21を950℃に加熱して清浄化処
理した後、900℃まで降温させ、ガスノズル13から
真空槽11内にアンモニアガスを導入し、サファイアC
面28に吹き付けると、AlN核が析出され、AlN層
22が形成される(図2(a))。
In this state, the heater 17 is energized to generate heat, the sapphire substrate 21 is heated to 950 ° C. to perform a cleaning process, then cooled to 900 ° C., and ammonia gas is introduced from the gas nozzle 13 into the vacuum chamber 11. , Sapphire C
When sprayed on the surface 28, AlN nuclei are deposited, and the AlN layer 22 is formed (FIG. 2A).

【0022】アンモニアガスの流量は5〜100scc
m、吹き付ける時間は5〜30分であればいずれの条件
においてもAlN層が形成された。
The flow rate of ammonia gas is 5 to 100 scc.
m, and the spray time was 5 to 30 minutes, the AlN layer was formed under any conditions.

【0023】次いで、サファイア基板21の温度を55
0℃まで降温させ、ガスノズル13からアンモニアガス
を噴出させ、AlN層22表面に吹き付けると共に、第
1の蒸着源14内の第1の金属材料36を加熱し、Ga
を主成分とする金属分子線(Gaを主成分とする第1の
金属材料36の蒸気)を発生させ、AlN層22表面に
照射すると、AlN層22の表面にGaN薄膜から成る
バッファ層が形成される。図2(b)の符号23は、その
バッファ層を示している。
Next, the temperature of the sapphire substrate 21 is set to 55
The temperature was lowered to 0 ° C., and ammonia gas was ejected from the gas nozzle 13 and sprayed on the surface of the AlN layer 22, and the first metal material 36 in the first evaporation source 14 was heated to obtain Ga.
When a metal molecular beam (vapor of the first metal material 36 containing Ga as a main component) is generated and irradiated on the surface of the AlN layer 22, a buffer layer composed of a GaN thin film is formed on the surface of the AlN layer 22. Is done. Reference numeral 23 in FIG. 2B indicates the buffer layer.

【0024】アンモニアガス流量は5〜100scc
m、第1の蒸着源の温度は850〜950℃の範囲でバ
ッファ層を形成し、バッファ層の厚さは0.1〜1μm
のものを用いた。
The flow rate of ammonia gas is 5-100 scc
m, the temperature of the first deposition source is in the range of 850 to 950 ° C. to form a buffer layer, and the thickness of the buffer layer is 0.1 to 1 μm.
Was used.

【0025】バッファ層23を所定膜厚に形成した後、
サファイア基板21を720℃に昇温させ、ガスノズル
13によってバッファ層23表面に含窒素原子ガス(こ
こではアンモニアガス)を直接吹き付け、熱分解させる
と共に、第1、第2の蒸着源14、15内の第1、第2
の金属材料36、37を加熱し、それぞれGaを主成分
とする分子線(Gaを主成分とする第1の金属材料36
の蒸気)とMnを主成分とする分子線(Mnを主成分とす
る第2の金属料37の蒸気)とを、それぞれバッファ層
23に向けて照射すると、バッファ層23表面にGa
N:Mn膜から成る希薄磁性半導体薄膜が形成される。
図2(c)の符号24は、その希薄磁性半導体薄膜を示し
ている。
After forming the buffer layer 23 to a predetermined thickness,
The temperature of the sapphire substrate 21 is increased to 720 ° C., and a nitrogen-containing atomic gas (here, an ammonia gas) is directly blown onto the surface of the buffer layer 23 by the gas nozzle 13 to thermally decompose the sapphire substrate 21. First and second
Are heated, and the molecular beam containing Ga as a main component (the first metal material 36 containing Ga as a main component) is heated.
Is irradiated to the buffer layer 23, and a molecular beam containing Mn as a main component (steam of the second metal material 37 containing Mn as a main component) is directed toward the buffer layer 23.
A diluted magnetic semiconductor thin film composed of an N: Mn film is formed.
Reference numeral 24 in FIG. 2C indicates the diluted magnetic semiconductor thin film.

【0026】膜厚0.1〜1μmのGaN:Mn膜を以
下の条件で成長させた。第1の蒸着源の温度850〜9
50℃、第2の蒸着源の温度475〜630℃、アンモ
ニアガスの流量5〜100sccm。
A GaN: Mn film having a thickness of 0.1 to 1 μm was grown under the following conditions. Temperature 850-9 of first vapor deposition source
50 ° C., temperature of the second evaporation source 475 to 630 ° C., flow rate of ammonia gas 5 to 100 sccm.

【0027】得られたGaN:Mn膜のMn含有率をE
PMA(Electron Probe Micro
Analyser)で測定したところ、0.5〜15a
t%であった。また、このMn含有率はアンモニアの流
量には依存しなかった。
The Mn content of the obtained GaN: Mn film was set to E
PMA (Electron Probe Micro)
(Analyser), 0.5 to 15a
t%. The Mn content did not depend on the flow rate of ammonia.

【0028】また、GaN:Mn膜のHall測定をV
an der Pauw法(日本バイオラット社 HL
5500PC)により行ったところ、p型の導電性を示
し、キャリヤ濃度は2×1017〜5×1019(cm-3
であった。Mn濃度が0.5原子%、3原子%、15原
子%のとき、キャリア濃度はそれぞれ2×1017、4×
1018、5×1019cm-3であった。図3に、得られた
GaN:Mn膜のMn含有率とキャリヤ濃度の関係を示
す。
In addition, Hall measurement of the GaN: Mn film
and der Pauw method (Nihon Biorat HL
5500PC), it showed p-type conductivity, and the carrier concentration was 2 × 10 17 to 5 × 10 19 (cm −3 ).
Met. When the Mn concentration is 0.5 at%, 3 at%, and 15 at%, the carrier concentrations are 2 × 10 17 and 4 ×, respectively.
It was 10 18 , 5 × 10 19 cm -3 . FIG. 3 shows the relationship between the Mn content and the carrier concentration of the obtained GaN: Mn film.

【0029】得られたGaN:Mn膜はp型を示すた
め、強磁性膜としてではなくパイポーラトランジスタ、
発光ダイオード、レーザ等の半導体素子のp型層として
用いることもできる。
Since the obtained GaN: Mn film shows p-type, it is not a ferromagnetic film but a bipolar transistor,
It can also be used as a p-type layer of a semiconductor element such as a light emitting diode and a laser.

【0030】室温でSQUIDを用いてこれらの膜の磁
気測定を行ったところ強磁性を示した。図4に、Mn濃
度3%のGaN:Mn膜の磁化曲線を示す。5本の曲線
は、それぞれ温度が1.8K、4.2K、8.0K、1
2K、300Kのときの磁化曲線である。
Magnetic measurements of these films using SQUID at room temperature showed ferromagnetism. FIG. 4 shows a magnetization curve of a GaN: Mn film having a Mn concentration of 3%. The five curves show temperatures of 1.8K, 4.2K, 8.0K, and 1K, respectively.
It is a magnetization curve at 2K and 300K.

【0031】以上は、同じ真空槽11内で、AlN層2
2と、GaN系薄膜のバッファ層23と、希薄磁性半導
体薄膜24を形成したが、異なる真空槽11内で形成し
てもよい。
In the above, the AlN layer 2 is placed in the same vacuum chamber 11.
2, the GaN-based thin film buffer layer 23, and the diluted magnetic semiconductor thin film 24 are formed, but they may be formed in different vacuum chambers 11.

【0032】また、AlN層22を形成せずに直接Ga
N系薄膜のバッファ層23を形成させてもよい。
Further, Ga is directly formed without forming the AlN layer 22.
The buffer layer 23 of an N-based thin film may be formed.

【0033】また、AIN層22や、GaN系薄膜から
成るバッファ層23は、MBE、スパッタ、CVD、レ
ーザーデポジッション等種々の成長法を用いて形成する
ことができる。
The AIN layer 22 and the buffer layer 23 made of a GaN-based thin film can be formed by various growth methods such as MBE, sputtering, CVD, and laser deposition.

【0034】<実施例2>実施例1と同じ分子線エピタ
キシー装置10を用いて下記のように希薄磁性半導体薄
膜を形成した。ここでは第3の蒸着源16内にはAlを
主成分とする金属材料38が配置されている。
Example 2 Using the same molecular beam epitaxy apparatus 10 as in Example 1, a thin magnetic semiconductor thin film was formed as follows. Here, a metal material 38 containing Al as a main component is disposed in the third evaporation source 16.

【0035】先ず、実施例1と同様に、成膜対象のサフ
ァイア基板を、そのサファイアC面を真空槽11の底壁
側に向けてヒータ17近傍に配置した。
First, as in the first embodiment, the sapphire substrate to be formed was placed near the heater 17 with its sapphire C surface facing the bottom wall of the vacuum chamber 11.

【0036】図5(a)の符号61は、そのサファイア基
板を示しており、同図符号68は、そのサファイア基板
61のサファイアC面を示している。
Reference numeral 61 in FIG. 5A indicates the sapphire substrate, and reference numeral 68 indicates the sapphire C surface of the sapphire substrate 61.

【0037】その状態でヒータ17に通電して発熱さ
せ、サファイア基板61を950℃に加熱して清浄化処
理した後、900℃まで降温させ、サファイア基板61
をその温度に保持する。
In this state, the heater 17 is energized to generate heat, the sapphire substrate 61 is heated to 950.degree. C. for cleaning, and then cooled to 900.degree.
At that temperature.

【0038】次いで、ガスノズル13からアンモニアガ
スを導入し、サファイア基板61のサファイアC面68
に吹き付けることにより、サファイアC面68上に所定
膜厚のAIN層を形成した。図5(a)の符号62は、そ
のAlN薄膜を示している。
Next, ammonia gas is introduced from the gas nozzle 13 and the sapphire C surface 68 of the sapphire substrate 61 is introduced.
To form an AIN layer having a predetermined thickness on the sapphire C surface 68. Reference numeral 62 in FIG. 5A indicates the AlN thin film.

【0039】アンモニアガスの流量は5〜100scc
m、吹き付ける時間は5〜30分であればいずれの条件
においてもAlN層が形成された。
The flow rate of ammonia gas is 5 to 100 scc
m, and the spray time was 5 to 30 minutes, the AlN layer was formed under any conditions.

【0040】次いで、サファイア基板61を760℃に
降温させ、ガスノズル13から真空槽11内に含窒素ガ
スを導入し、AlN層62の表面に直接吹き付け、熱分
解させると共に、第3の蒸着源16からAlを主成分と
する分子線をAlN層62表面に向けて射出させ、同時
に第2の蒸着源15からMnを主成分とする分子線をA
lN層62に向けて照射すると、AlN層62の表面に
AlN:Mn膜から成る希薄磁性半導体薄膜が形成され
る。
Next, the temperature of the sapphire substrate 61 is lowered to 760 ° C., a nitrogen-containing gas is introduced from the gas nozzle 13 into the vacuum chamber 11, and is directly blown onto the surface of the AlN layer 62 to be thermally decomposed. A molecular beam mainly composed of Mn is emitted toward the surface of the AlN layer 62, and simultaneously, a molecular beam mainly composed of Mn is extracted from the second evaporation source 15 by A.
When irradiation is performed toward the 1N layer 62, a dilute magnetic semiconductor thin film composed of an AlN: Mn film is formed on the surface of the AlN layer 62.

【0041】図5(b)の符号64は、その希薄磁性半導
体薄膜を示している。
Reference numeral 64 in FIG. 5B indicates the diluted magnetic semiconductor thin film.

【0042】膜厚0.1〜1μmのAlN:Mn膜を以
下の条件で成長させた。第3の蒸着源の温度850〜1
000℃、第2の蒸着源の温度475〜680℃、アン
モニアガスの流量5〜100sccm。
An AlN: Mn film having a thickness of 0.1 to 1 μm was grown under the following conditions. Third deposition source temperature 850-1
000 ° C., the temperature of the second deposition source is 475 to 680 ° C., and the flow rate of ammonia gas is 5 to 100 sccm.

【0043】得られたAlN:Mn膜のMn含有率をE
PMAで測定したところ、0.5〜15at%であっ
た。また、このMn含有率はアンモニアの流量には依存
しなかった。
The Mn content of the obtained AlN: Mn film was E
It was 0.5-15 at% as measured by PMA. The Mn content did not depend on the flow rate of ammonia.

【0044】また、AlN:Mn膜のHall測定をV
an der Pauw法(日本バイオラット社 HL
5500PC)により行ったところ、p型の導電性を示
し、キャリヤ濃度は1×1017〜1×1019(cm-3
であった。Mn濃度が1原子%、6原子%、15原子%
のとき、キャリア濃度はそれぞれ1×1017、5×10
17、1×1019cm-3であった。図6に、得られたAl
N:Mn膜のMn含有率とキャリヤ濃度の関係を示す。
In addition, Hall measurement of the AlN: Mn film
and der Pauw method (Nihon Biorat HL
5500PC), it showed p-type conductivity and the carrier concentration was 1 × 10 17 to 1 × 10 19 (cm −3 ).
Met. Mn concentration of 1 atomic%, 6 atomic%, 15 atomic%
, The carrier concentrations are 1 × 10 17 and 5 × 10 17 , respectively.
17 and 1 × 10 19 cm −3 . FIG. 6 shows the obtained Al
N: Relationship between Mn content of Mn film and carrier concentration.

【0045】得られたAlN:Mn膜はp型を示すた
め、強磁性膜としてではなくパイポーラトランジスタ、
発光ダイオード、レーザ等のp型層として用いることも
できる。
Since the obtained AlN: Mn film shows p-type, it is not a ferromagnetic film but a bipolar transistor.
It can also be used as a p-type layer for light emitting diodes, lasers, and the like.

【0046】<他の実施例>上記希薄磁性半導体薄膜2
4、64はサファイアC面28、68上に形成したが、
サファイア基板C面以外の面を用いてもよい。また、S
iC基板、GaN基板、Si基板、GaAs基板等を用
いることができる。
<Other Embodiments> The Dilute Magnetic Semiconductor Thin Film 2
4 and 64 were formed on the sapphire C surfaces 28 and 68,
A surface other than the sapphire substrate C surface may be used. Also, S
An iC substrate, a GaN substrate, a Si substrate, a GaAs substrate, or the like can be used.

【0047】また、上記実施例では希薄磁性半導体薄膜
に含有させる磁性不純物としてマンガン(Mn)を用いた
が、マンガンに替え、V、Cr、Fe、Ni等を主成分
とする材料を第2の蒸着源15に配置し、上記実施例1
〜2と同じ工程を行っても、希薄磁性半導体薄膜が形成
できることは確認されている。
In the above embodiment, manganese (Mn) was used as the magnetic impurity contained in the diluted magnetic semiconductor thin film. However, instead of manganese, a material mainly containing V, Cr, Fe, Ni or the like was used as the second impurity. Example 1 placed in the vapor deposition source 15
It has been confirmed that a dilute magnetic semiconductor thin film can be formed even by performing the same steps as in Steps 2 and 3.

【0048】以上のように、本発明は、一旦成膜対象物
の表面に、III族元素と窒素原子から成るIII族窒化物を
形成させ、更に、アンモニアガスやヒドラジンガス等の
窒素原子を化学構造中に含む含窒素ガスを真空雰囲気中
に導入し、光分解又は熱分解して窒素原子をIII族窒化
物の表面に導入すると共に、III族元素の分子線と磁性
不純物元素の分子線を成膜対象物表面に照射し、希薄磁
性半導体薄膜を製造している。
As described above, according to the present invention, a group III nitride composed of a group III element and a nitrogen atom is once formed on the surface of a film-forming target, and a nitrogen atom such as an ammonia gas or a hydrazine gas is chemically formed. The nitrogen-containing gas contained in the structure is introduced into a vacuum atmosphere, and photolysis or thermal decomposition is performed to introduce nitrogen atoms to the surface of the group III nitride. A thin magnetic semiconductor thin film is manufactured by irradiating the surface of a film formation target.

【0049】要するに、本発明は希薄磁性半導体薄膜形
成時には窒素プラズマを用いず、含窒素原子を光分解又
は熱分解して窒素源とし、それとIII族元素の分子線と
磁性不純物元素の分子線とによって希薄磁性半導体薄膜
を形成する方法を広く含むものである。
In short, the present invention does not use nitrogen plasma at the time of forming a diluted magnetic semiconductor thin film, but rather photo-decomposes or thermally decomposes nitrogen-containing atoms into a nitrogen source, which is combined with a molecular beam of a group III element and a molecular beam of a magnetic impurity element. And a method of forming a diluted magnetic semiconductor thin film.

【0050】以上のようにして形成されたGaN系やA
lN系の希薄磁性半導体薄膜24、64は、所望のタイ
プの電子デバイス、光電子デバイス、アイソレーター、
磁気ランダムアクセスメモリ(MRAM)などに組み込ま
れて利用出来る。本発明方法で形成できる基板及び希薄
磁性半導体薄膜の構造を下記表1に示す。
The GaN or A formed as described above
The 1N-based diluted magnetic semiconductor thin films 24 and 64 are formed of a desired type of electronic device, optoelectronic device, isolator,
It can be used by being incorporated in a magnetic random access memory (MRAM) or the like. Table 1 below shows the structures of the substrate and the diluted magnetic semiconductor thin film that can be formed by the method of the present invention.

【0051】[0051]

【表1】 [Table 1]

【0052】得られた希薄磁性半導体薄膜はp型を示す
ため、強磁性膜としてではなく、パイポーラトランジス
タ、発光ダイオード、レーザ等のp型層として用いるこ
ともできる。
Since the obtained diluted magnetic semiconductor thin film shows p-type, it can be used not only as a ferromagnetic film but also as a p-type layer of a bipolar transistor, a light emitting diode, a laser, or the like.

【0053】表中、「バッファ層」の欄に、「表面窒化
AlN/GaN」とあるのは、基板表面を窒化してAl
N層を形成した後、そのAlN層表面にGaN薄膜を形
成してバッファ層を構成させた場合である。
In the table, "Surface nitrided AlN / GaN" in the column of "buffer layer" means that the surface of the substrate is nitrided to obtain AlN / GaN.
In this case, a buffer layer is formed by forming a GaN thin film on the surface of the AlN layer after forming the N layer.

【0054】[0054]

【発明の効果】本発明によれば、既存の希薄磁性半導体
薄膜では不可能であった室温強磁性を持ち、室温におい
て動作する希薄磁性半導体薄膜を構成要素とするデバイ
スの作製が可能になる。成長後の加熱処理などを行わな
くても室温において強磁性を発現する希薄磁性半導体薄
膜が得られる。
According to the present invention, it is possible to manufacture a device having room temperature ferromagnetism that cannot be achieved by the existing diluted magnetic semiconductor thin film and operating at room temperature as a component. A dilute magnetic semiconductor thin film exhibiting ferromagnetism at room temperature can be obtained without performing a heat treatment or the like after growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いることができる分子線エピタキシ
ャル装置の一例
FIG. 1 shows an example of a molecular beam epitaxial apparatus that can be used in the present invention.

【図2】(a)〜(c):本発明方法の一例による希薄磁性
体薄膜の形成工程を説明するための図
FIGS. 2A to 2C are diagrams for explaining a step of forming a diluted magnetic thin film according to an example of the method of the present invention.

【図3】GaN:Mn膜のMn含有率とキャリヤ濃度の
関係を示すグラフ
FIG. 3 is a graph showing the relationship between the Mn content of a GaN: Mn film and the carrier concentration.

【図4】Mn濃度3%のGaN:Mn膜の磁化曲線を示
すグラフ
FIG. 4 is a graph showing a magnetization curve of a GaN: Mn film having a Mn concentration of 3%.

【図5】(a)、(b):本発明方法の他の例による希薄磁
性体薄膜の形成工程を説明するための図
FIGS. 5A and 5B are diagrams for explaining a process of forming a diluted magnetic thin film according to another example of the method of the present invention.

【図6】AlN:Mn膜のMn含有率とキャリヤ濃度の
関係を示すグラフ
FIG. 6 is a graph showing the relationship between the Mn content of the AlN: Mn film and the carrier concentration.

【符号の説明】[Explanation of symbols]

21、61……サファイア基板 22、62……AlN層 23……バッファ層 24、64……希薄磁性半導体薄膜 28、68……サファイアC面 21, 61 sapphire substrate 22, 62 AlN layer 23 buffer layer 24, 64 diluted magnetic semiconductor thin film 28, 68 sapphire C-plane

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K029 AA04 BA58 BB02 BC06 BD01 CA01 5E049 CC08 EB06 HC05 JC01 MC01 5F103 AA04 DD01 HH03 HH04 JJ01 KK10 LL02 LL03 LL20 NN01 NN06 PP02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K029 AA04 BA58 BB02 BC06 BD01 CA01 5E049 CC08 EB06 HC05 JC01 MC01 5F103 AA04 DD01 HH03 HH04 JJ01 KK10 LL02 LL03 LL20 NN01 NN06 PP02

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】基板を真空雰囲気中に置き、磁性不純物元
素を含有し、III族元素と窒素とを主成分とする材料か
ら成る希薄磁性体薄膜を前記基板上に形成する薄膜製造
方法であって、 窒素原子を含む含窒素原子ガスを前記真空雰囲気中に導
入し、前記含窒素原子ガスを前記基板上あるいはその近
傍で光分解又は熱分解しながら、前記基板上に前記III
族元素と前記磁性不純物元素の分子線を照射し、前記希
薄磁性体薄膜を成長させる薄膜製造方法。
1. A method for manufacturing a thin film, comprising: placing a substrate in a vacuum atmosphere; and forming a diluted magnetic thin film comprising a material containing a magnetic impurity element and containing a group III element and nitrogen as main components on the substrate. Introducing a nitrogen-containing atomic gas containing nitrogen atoms into the vacuum atmosphere, and performing photolysis or thermal decomposition of the nitrogen-containing atomic gas on or in the vicinity of the substrate, thereby forming the III on the substrate.
A thin film manufacturing method for irradiating a molecular beam of a group III element and the magnetic impurity element to grow the diluted magnetic thin film.
【請求項2】前記希薄磁性体薄膜は、III族元素として
ガリウム、アルミニウム又はインジウムが用いられる請
求項1記載の薄膜製造方法。
2. The thin film manufacturing method according to claim 1, wherein said diluted magnetic thin film uses gallium, aluminum or indium as a group III element.
【請求項3】前記磁性不純物元素としてマンガン、バナ
ジウム、クロム、鉄、又はニッケルのいずれか一種以上
の元素が用いられる請求項1又は請求項2のいずれか1
項記載の薄膜製造方法。
3. The magnetic impurity element according to claim 1, wherein at least one of manganese, vanadium, chromium, iron, and nickel is used.
Item.
【請求項4】前記含窒素原子ガスとして、アンモニアガ
ス又はヒドラジンガスのいずれか1種類以上のガスが用
いられる請求項1乃至請求項3のいずれか1項記載の薄
膜製造方法。
4. The method according to claim 1, wherein at least one of ammonia gas and hydrazine gas is used as the nitrogen-containing atomic gas.
【請求項5】前記基板上にIII族元素と窒素とを主成分
とする材料から成るバッファ層を形成した後、該バッフ
ァ層表面に、前記希薄磁性体薄膜を成長させる請求項1
乃至請求項4のいずれか1項記載の薄膜製造方法。
5. A buffer layer comprising a material containing a group III element and nitrogen as main components is formed on the substrate, and the diluted magnetic thin film is grown on the surface of the buffer layer.
The method for producing a thin film according to claim 1.
【請求項6】前記バッファ層は、ガリウムと窒素とを主
成分とする請求項5記載の薄膜製造方法。
6. The method according to claim 5, wherein said buffer layer contains gallium and nitrogen as main components.
【請求項7】前記基板にはサファイア基板を用い、 前記サファイア基板表面に窒化アルミニウム層を形成し
た後、該窒化アルミニウム層表面に前記バッファ層を形
成する請求項6記載の薄膜製造方法。
7. The method according to claim 6, wherein a sapphire substrate is used as the substrate, and after forming an aluminum nitride layer on the surface of the sapphire substrate, the buffer layer is formed on the surface of the aluminum nitride layer.
【請求項8】前記バッファ層は、アルミニウムと窒素と
を主成分とする請求項5記載の薄膜製造方法。
8. The method according to claim 5, wherein the buffer layer contains aluminum and nitrogen as main components.
【請求項9】基板上に形成された希薄磁性体薄膜であっ
て、 前記基板は窒素原子を構造中に有する含窒素原子ガスを
含有する真空雰囲気中に置かれ、前記含窒素原子ガスが
光分解又は熱分解されると共に、前記基板上にIII族元
素と磁性不純物元素の分子線が照射され、成長された希
薄磁性体薄膜。
9. A thin magnetic thin film formed on a substrate, wherein the substrate is placed in a vacuum atmosphere containing a nitrogen-containing atomic gas having nitrogen atoms in its structure, and the nitrogen-containing atomic gas is irradiated with light. A diluted magnetic thin film grown by being decomposed or thermally decomposed and irradiated with a molecular beam of a group III element and a magnetic impurity element on the substrate.
【請求項10】前記III族元素はガリウムであり、前記
磁性不純物元素はマンガンである請求項9記載の希薄磁
性体薄膜。
10. The thin magnetic thin film according to claim 9, wherein the group III element is gallium, and the magnetic impurity element is manganese.
【請求項11】前記III族元素はアルミニウムであり、
前記磁性不純物元素はマンガンである請求項9記載の希
薄磁性体薄膜。
11. The group III element is aluminum,
The diluted magnetic thin film according to claim 9, wherein the magnetic impurity element is manganese.
【請求項12】マンガンを含有するガリウム窒化膜であ
って、前記マンガンを2原子%以上含有し、キャリア濃
度が1×1018cm-3以上であるp型のガリウム窒化
膜。
12. A p-type gallium nitride film containing manganese, wherein the p-type gallium nitride film contains 2 atomic% or more of manganese and has a carrier concentration of 1 × 10 18 cm −3 or more.
【請求項13】マンガンを含有する窒化アルミニウム膜
であって、前記マンガンを3原子%以上含有し、キャリ
ア濃度が1×1017cm-3以上であるp型の窒化アルミ
ニウム膜。
13. A p-type aluminum nitride film containing manganese, wherein the manganese is contained at 3 atomic% or more and the carrier concentration is 1 × 10 17 cm -3 or more.
JP2001296186A 2001-04-12 2001-09-27 Thin film manufacturing method Expired - Lifetime JP4666852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296186A JP4666852B2 (en) 2001-04-12 2001-09-27 Thin film manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001113905 2001-04-12
JP2001-113905 2001-04-12
JP2001296186A JP4666852B2 (en) 2001-04-12 2001-09-27 Thin film manufacturing method

Publications (2)

Publication Number Publication Date
JP2002373823A true JP2002373823A (en) 2002-12-26
JP4666852B2 JP4666852B2 (en) 2011-04-06

Family

ID=26613496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296186A Expired - Lifetime JP4666852B2 (en) 2001-04-12 2001-09-27 Thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP4666852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256718A (en) * 2013-08-07 2013-12-26 Kobe Steel Ltd Conductive thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963962A (en) * 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd Crystal growth and semiconductor light-emitting element
JPH1126383A (en) * 1997-07-03 1999-01-29 Furukawa Electric Co Ltd:The Crystal growth method of nitride semiconductor
JP2001230447A (en) * 2000-02-16 2001-08-24 Toyoda Gosei Co Ltd Manufacture method for iii nitride-based compound semiconductor element
JP2001291667A (en) * 2000-03-23 2001-10-19 Samsung Electronics Co Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963962A (en) * 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd Crystal growth and semiconductor light-emitting element
JPH1126383A (en) * 1997-07-03 1999-01-29 Furukawa Electric Co Ltd:The Crystal growth method of nitride semiconductor
JP2001230447A (en) * 2000-02-16 2001-08-24 Toyoda Gosei Co Ltd Manufacture method for iii nitride-based compound semiconductor element
JP2001291667A (en) * 2000-03-23 2001-10-19 Samsung Electronics Co Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256718A (en) * 2013-08-07 2013-12-26 Kobe Steel Ltd Conductive thin film

Also Published As

Publication number Publication date
JP4666852B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
Higashiwaki et al. High-quality InN film grown on a low-temperature-grown GaN intermediate layer by plasma-assisted molecular-beam epitaxy
Ramachandran et al. Inversion of wurtzite GaN (0001) by exposure to magnesium
US6104039A (en) P-type nitrogen compound semiconductor and method of manufacturing same
Reed et al. Room temperature magnetic (Ga, Mn) N: a new material for spin electronic devices
US8222674B2 (en) Semiconductor device having a group-III nitride superlattice layer on a silicon substrate
US6218269B1 (en) Process for producing III-V nitride pn junctions and p-i-n junctions
KR20070095364A (en) Nitride semiconductor device and method of growing nitride semiconductor crystal layer
JP4618465B2 (en) P-type nitride III-V compound semiconductor manufacturing method and semiconductor device manufacturing method
US7989926B2 (en) Semiconductor device including non-stoichiometric silicon carbide layer and method of fabrication thereof
Lin et al. Growth and characterizations of GaN on SiC substrates with buffer layers
Kamp et al. On surface cracking of ammonia for MBE growth of GaN
JP2003137698A (en) Iii-v compound semiconductor material
JP2007087992A (en) Semiconductor device and its fabrication process
TW201926582A (en) Nitride semiconductor structure
US6955858B2 (en) Transition metal doped ferromagnetic III-V nitride material films and methods of fabricating the same
JPH08264899A (en) Manufacture of gallium nitride semiconductor
JP4666852B2 (en) Thin film manufacturing method
TW200302515A (en) 3-5 Group compound semiconductor, process for producing the same, and compound semiconductor element using the same
Dorokhin et al. Influence of delta doping parameters of the GaAs barrier on circularly polarized luminescence of GaAs/InGaAs heterostructures
TWI275136B (en) Germanium-adding source for compound semiconductor, production method of compound semiconductor using the same and compound semiconductor
JP2739778B2 (en) Method for selective growth of group 3-5 compound semiconductor
CN111128689B (en) Polarity control method, nitride film preparation method and nitride film
Dorokhin et al. Formation of magnetic GaAs: Mn layers for InGaAs/GaAs light emitting quantum-size structures
Frazier et al. Synthesis and characterization of ferromagnetic AlN and AlGaN layers
JP2006128536A (en) Semiconductor epitaxial wafer and semiconductor device cut therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101013

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250