JP2002372395A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2002372395A
JP2002372395A JP2001183600A JP2001183600A JP2002372395A JP 2002372395 A JP2002372395 A JP 2002372395A JP 2001183600 A JP2001183600 A JP 2001183600A JP 2001183600 A JP2001183600 A JP 2001183600A JP 2002372395 A JP2002372395 A JP 2002372395A
Authority
JP
Japan
Prior art keywords
evaporator
raw material
superheater
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001183600A
Other languages
Japanese (ja)
Inventor
Keiichi Sato
恵一 佐藤
Kazutoshi Yokoo
和俊 横尾
Ritsuo Hashimoto
律男 橋本
Etsuro Hirai
悦郎 平井
Keiji Tanizaki
桂二 谷崎
Naohiko Matsuda
直彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001183600A priority Critical patent/JP2002372395A/en
Publication of JP2002372395A publication Critical patent/JP2002372395A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the service life of the evaporator of a heat exchanger by lowering the temperature of combustion gas in the evaporator. SOLUTION: The heat exchanger which vaporizes and superheats a liquid raw material 24 is provided with the evaporator 11 which vaporizes the material 24, and a superheater 17 which partially vaporizes the material 24 and superheats a gaseous raw material produced by the partial vaporization of the material 24. The evaporator 11 is constituted of fins 13 and plates 14 both of which are coated with a catalyst. The superheater 17 is constituted of fins 20 and a tube 19 both of which are coated with the catalyst. The superheater 17 and evaporator 11 are arranged in this order from the flowing direction of the combustion gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池等に適用
可能な水/メタノール混合液などの液体原料の蒸発、過
熱を行う熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger which evaporates and superheats a liquid material such as a water / methanol mixed liquid applicable to a fuel cell or the like.

【0002】[0002]

【従来の技術】従来、熱交換器としては、例えば図2
(A),(B)に示すものが知られている。この熱交換
器は、例えば、図3に示す燃料電池のFCシステムに組
み込まれて、後述する蒸発・過熱器1を経て得られた気
体原料(水素)と空気(Air)とがFC(燃料電池)
25に送られ、このFC25での反応により電気エネル
ギーが生じ、これによりFC25とインバーター26を
介して接続したモーター27が駆動するようになってい
る。ここで、図2(A)は熱交換器の全体概略図、図2
(B)は図2(A)の蒸発・過熱器の説明図(要部Xの
拡大図)を示す。
2. Description of the Related Art Conventionally, as a heat exchanger, for example, FIG.
(A) and (B) are known. This heat exchanger is incorporated in, for example, an FC system of a fuel cell shown in FIG. 3, and a gaseous raw material (hydrogen) and air (Air) obtained through an evaporator / superheater 1 described later are converted into an FC (fuel cell). )
25, and the reaction in the FC 25 generates electric energy, whereby the motor 27 connected to the FC 25 via the inverter 26 is driven. Here, FIG. 2A is an overall schematic diagram of the heat exchanger, and FIG.
FIG. 2B is an explanatory view (an enlarged view of a main part X) of the evaporator / superheater in FIG.

【0003】図中の符番1は、蒸発・過熱器を示す。こ
の蒸発・過熱器1は、原料ヘッダー2を有し、図2
(B)に示すように表面に触媒が塗布された波板状フィ
ン3とプレート4とから構成されている。前記蒸発・過
熱器1には、水/メタノール混合液などの液体原料24
が原料供給口5より投入されて原料ヘッダー2に供給さ
れる。一方、水素やメタノール等を燃料とする燃料空気
混合ガス7が蒸発・過熱器1内へ供給され、この蒸発・
過熱器1内に設けられたフィン3の表面の触媒によって
着火・燃焼することにより、約400℃〜700℃の高
温に加熱される。
[0003] Reference numeral 1 in the figure indicates an evaporator / superheater. This evaporator / superheater 1 has a raw material header 2, as shown in FIG.
As shown in (B), the plate is composed of corrugated fins 3 whose surfaces are coated with a catalyst and a plate 4. The evaporator / superheater 1 has a liquid raw material 24 such as a water / methanol mixed liquid.
Is supplied from the raw material supply port 5 and supplied to the raw material header 2. On the other hand, a fuel-air mixed gas 7 using hydrogen, methanol, or the like as a fuel is supplied into the evaporator / superheater 1,
The fins 3 provided in the superheater 1 are heated to a high temperature of about 400 ° C. to 700 ° C. by being ignited and burned by a catalyst on the surface thereof.

【0004】そして、原料供給口5から供給された液体
原料24は、プレート4部を通す際にフィン3を介し
て、高温の燃料空気混合ガス7により熱交換が行われ
る。即ち、液体原料24は熱エネルギーを吸収し、蒸発
及び過熱が行われる。約200℃〜300℃まで蒸発・
過熱された液体原料24は、原料排出口6より排出され
る。つまり、蒸発・過熱されて気液二相流となった液体
原料24が供給されて気相・液相に分離され、このうち
気相の気体原料が取り出される。この気体原料は、図3
に示す燃料電池におけるFCシステムの発電用燃料とし
て用いられる。
[0004] When the liquid raw material 24 supplied from the raw material supply port 5 passes through the plate 4, heat exchange is performed by the high-temperature fuel / air mixed gas 7 via the fins 3. That is, the liquid raw material 24 absorbs thermal energy, and is evaporated and overheated. Evaporates to about 200-300 ° C
The superheated liquid raw material 24 is discharged from the raw material discharge port 6. That is, the liquid raw material 24 that has been vaporized and overheated into a gas-liquid two-phase flow is supplied and separated into a gaseous phase and a liquid phase. This gaseous raw material is shown in FIG.
As fuel for power generation of the FC system in the fuel cell shown in FIG.

【0005】上述のように従来の熱交換器では、1つの
プレート4において液体原料24には蒸発領域と過熱領
域が存在する。ここで、液体原料24の蒸発領域では気
液2相流となっているため、高温の燃料空気混合ガス7
によって加熱されたプレート4内壁面と液体原料24と
の熱交換効率がよい。従って、プレート4の内壁温度は
常温の液体原料温度に比較的近い値に収束されている。
As described above, in the conventional heat exchanger, the liquid raw material 24 in one plate 4 has an evaporation region and a superheat region. Since the gas-liquid two-phase flow is formed in the evaporation region of the liquid raw material 24, the high-temperature fuel-air mixed gas 7
The heat exchange efficiency between the inner wall surface of the plate 4 and the liquid raw material 24 heated by the heating is good. Therefore, the temperature of the inner wall of the plate 4 is converged to a value relatively close to the temperature of the liquid material at room temperature.

【0006】一方、液体原料24の過熱領域では蒸気の
単相流となっているため、プレート4内壁面と液体原料
24との熱交換効率が悪く、よってプレート4の内壁温
度は燃料空気混合ガス7の燃料ガス温度のままとなって
いる。従って、プレート4内では燃焼後の燃料ガス温度
400℃〜700℃と常温の液体原料温度との温度差に
より、大きな熱応力が生じるため、蒸発・過熱器1の耐
寿命性が低いという欠点がある。
On the other hand, in the superheated region of the liquid raw material 24, the vapor has a single-phase flow, so that the heat exchange efficiency between the inner wall surface of the plate 4 and the liquid raw material 24 is poor, and the temperature of the inner wall of the plate 4 is a fuel-air mixed gas. 7 remains at the fuel gas temperature. Therefore, a large thermal stress is generated in the plate 4 due to a temperature difference between the fuel gas temperature after combustion of 400 ° C. to 700 ° C. and the temperature of the liquid raw material at room temperature, so that the lifetime resistance of the evaporator / superheater 1 is low. is there.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の課題を
解決するためになされたもので、触媒を塗布したフィン
とプレートから構成された,液体原料の蒸発を行う蒸発
器と、触媒を塗布したフィンとチューブとから構成され
た,液体原料の一部蒸発と前記蒸発により液体原料が一
部気化した気体原料の過熱を行う過熱器とを具備し、前
記蒸発器及び過熱器をガス流れ方向から過熱器、蒸発器
の順に配置した構成にすることにより、過熱器でほぼ触
媒燃焼が終了するため、一部の未燃分しか蒸発器で燃焼
しないので、蒸発器におけるプレート温度を低くして熱
応力を小さくし、また過熱器にて原料と燃焼ガスを熱交
換することにより、蒸発器での燃焼ガス温度を下げ、も
って蒸発器の寿命を向上し得る熱交換器を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and comprises an evaporator for evaporating a liquid raw material, which comprises a fin and a plate on which a catalyst is applied, and an evaporator for applying the catalyst. A fin and a tube configured to partially evaporate the liquid material and superheat a gaseous material in which the liquid material is partially vaporized by the evaporation, wherein the evaporator and the superheater are arranged in a gas flow direction. Since the superheater and the evaporator are arranged in this order, the catalytic combustion is almost completed in the superheater, and only a part of the unburned portion is burned in the evaporator. An object of the present invention is to provide a heat exchanger capable of lowering the temperature of combustion gas in an evaporator and thereby improving the life of the evaporator by reducing thermal stress and exchanging heat between the raw material and combustion gas in a superheater. And

【0008】[0008]

【課題を解決するための手段】本発明は、液体原料の蒸
発、過熱を行う熱交換器において、液体原料の蒸発を行
う蒸発器と、液体原料の一部蒸発と前記蒸発により液体
原料が一部気化した気体原料の過熱を行う過熱器とを具
備し、前記蒸発器は触媒を塗布したフィンとプレートか
ら構成され、前記過熱器は触媒を塗布したフィンとチュ
ーブとから構成され、前記蒸発器及び過熱器をガス流れ
方向から過熱器、蒸発器の順に配置したことを特徴とす
る熱交換器である。
According to the present invention, there is provided a heat exchanger for evaporating and superheating a liquid raw material, comprising: an evaporator for evaporating the liquid raw material; a partial evaporation of the liquid raw material; A superheater for superheating the partially vaporized gaseous raw material, wherein the evaporator is composed of a fin and a plate coated with a catalyst, and the superheater is composed of a fin and a tube coated with a catalyst; And a heat exchanger in which the superheater and the evaporator are arranged in this order from the gas flow direction.

【0009】本発明において、前記過熱器の下流側に、
液体原料と蒸発した気体原料を分離する気液分離器を設
け、分離された液体原料を前記蒸発器の原料供給口に戻
すことが好ましい。このような構成にすれば、蒸発器の
起動時にまだガス温度は低い燃料ガスと液体原料が十分
に熱交換されず、液体原料のまま次工程に送られるのを
回避することができる。従って、起動時に液体原料が発
生することを許容できるため、起動時に予め過熱器、蒸
発器に液体原料を満たしておくことができる。これによ
り、起動時も蒸発器の温度が低く、発生する熱効力を小
さくすることができるため、蒸発器の寿命を向上でき
る。
In the present invention, on the downstream side of the superheater,
It is preferable to provide a gas-liquid separator for separating the liquid raw material and the vaporized gas raw material, and return the separated liquid raw material to the raw material supply port of the evaporator. With such a configuration, when the evaporator is started, the fuel gas whose gas temperature is still low and the liquid raw material are not sufficiently heat-exchanged, and the liquid raw material can be prevented from being sent to the next step as it is. Therefore, since the generation of the liquid material at the time of startup can be permitted, the superheater and the evaporator can be filled with the liquid material at the time of startup. Accordingly, the temperature of the evaporator is low even at the time of startup, and the generated thermal effect can be reduced, so that the life of the evaporator can be improved.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施例に係る熱
交換器について、図1(A),(B),(C)を参照し
て説明する。本実施例に係る熱交換器は、図4に示す燃
料電池のFCシステムに組み込まれて使用され、後述す
る蒸発器11、過熱器17を経て得られた気体原料(水
素)と空気(Air)がFC25に送られ、これにより
FC25とインバーター26を介して接続したモーター
27が駆動するようになっている。ここで、図1(A)
は熱交換器の全体図、図1(B)は同熱交換器の一構成
要素である蒸発器の説明図(要部Xの拡大図)、図1
(C)は同熱交換器の一構成要素である過熱器の説明図
(要部Yの拡大図)を示す。なお、下記実施例で述べる
各構成部材の材料や形状は一例を示すもので、本発明の
権利範囲を特定するものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a heat exchanger according to one embodiment of the present invention will be described with reference to FIGS. 1 (A), 1 (B) and 1 (C). The heat exchanger according to the present embodiment is used by being incorporated in an FC system of a fuel cell shown in FIG. 4, and a gaseous raw material (hydrogen) and air (Air) obtained through an evaporator 11 and a superheater 17 described later. Is sent to the FC 25, whereby the motor 27 connected to the FC 25 via the inverter 26 is driven. Here, FIG.
1 is an overall view of the heat exchanger, FIG. 1B is an explanatory view of an evaporator (an enlarged view of a main part X) as one component of the heat exchanger, FIG.
(C) is an explanatory view (an enlarged view of a main part Y) of a superheater which is a component of the heat exchanger. It should be noted that the materials and shapes of the constituent members described in the following examples are merely examples, and do not specify the scope of the present invention.

【0011】図中の符番11は、熱交換作用によって液
体原料24の蒸発が行われる蒸発器を示す。この蒸発器
11は原料ヘッダー12を有し、図1(B)に示すよう
に表面に触媒を塗布した波板状のSUS製フィン13と
該フィン13を挟む2枚のSUS製プレート14とから
構成されている。前記蒸発器11には、水/メタノール
混合液などからなる液体原料24が原料供給口15から
投入される。この原料供給口15から投入された液体原
料24は、蒸発器11内のプレート14部を通過して、
後述する過熱器17において高温となった燃料空気混合
ガス23と熱交換が行なわれる。即ち、該燃焼ガスから
フィン13を介して受熱し、蒸発が進む。そして、蒸発
器11の原料排出口16において、液体原料24はその
原料温度が飽和蒸気温度以下の状態、即ち気液二相状態
となって、次の過熱器17の原料供給口18に供給され
る。
Reference numeral 11 in the figure denotes an evaporator in which the liquid raw material 24 is evaporated by a heat exchange action. This evaporator 11 has a raw material header 12 and, as shown in FIG. 1B, a corrugated SUS fin 13 coated with a catalyst on its surface and two SUS plates 14 sandwiching the fin 13. It is configured. A liquid raw material 24 made of a water / methanol mixture or the like is supplied to the evaporator 11 from a raw material supply port 15. The liquid raw material 24 introduced from the raw material supply port 15 passes through the plate 14 in the evaporator 11,
In a superheater 17 described later, heat exchange is performed with the fuel-air mixed gas 23 having a high temperature. That is, heat is received from the combustion gas via the fins 13 and evaporation proceeds. At the raw material discharge port 16 of the evaporator 11, the liquid raw material 24 is supplied to the raw material supply port 18 of the next superheater 17 in a state where the raw material temperature is equal to or lower than the saturated vapor temperature, that is, in a gas-liquid two-phase state. You.

【0012】過熱器17は、液体原料(液相状態)24
の一部蒸発と気体原料(気相状態)の過熱を行うもの
で、図1(C)に示すようにチューブ19と表面に触媒
を塗布した複数の環状のSUS製フィン20とから構成
され、燃料空気混合ガス23の流れ方向に沿って、前記
蒸発器11に対し直列に接続されている。原料供給口1
8より投入された気液二相状態の液体原料24は、過熱
器17内部のチューブ19を通過するときフィン20を
介して、該フィン20表面の触媒により着火・燃焼し、
高温となった燃焼空気混合ガス23から受熱し、過熱器
17の原料排出口21より飽和蒸気温度以上の過熱蒸気
として排出される。前記過熱器17の下流側には、気液
分離器22が接続されている。この気液分離器22に
は、過熱器17の原料排出口21からの飽和蒸気温度以
上の前記過熱蒸気が送られる。気液分離器22により加
熱蒸気は気相体と液相体とに分離され、このうち液相状
態の液体原料24は蒸発器11の原料供給口15に戻さ
れる。一方、この気液分離器22で分離された気相状態
の気体原料は、次工程において、図4に示す燃料電池に
係るFCシステムにおける発電用燃料として用いられ
る。
The superheater 17 comprises a liquid raw material (liquid phase state) 24
1C, and comprises a tube 19 and a plurality of annular SUS fins 20 coated with a catalyst on the surface, as shown in FIG. 1C. It is connected in series to the evaporator 11 along the flow direction of the fuel-air mixed gas 23. Raw material supply port 1
The gas-liquid two-phase liquid raw material 24 supplied from 8 is ignited and burned by the catalyst on the surface of the fin 20 through the fin 20 when passing through the tube 19 inside the superheater 17,
Heat is received from the high-temperature combustion air mixed gas 23 and is discharged from the raw material discharge port 21 of the superheater 17 as superheated steam having a temperature equal to or higher than the saturated steam temperature. A gas-liquid separator 22 is connected downstream of the superheater 17. The superheated steam having a temperature equal to or higher than the saturated vapor temperature from the raw material discharge port 21 of the superheater 17 is sent to the gas-liquid separator 22. The heating vapor is separated into a gas phase and a liquid phase by the gas-liquid separator 22, and the liquid raw material 24 in the liquid phase is returned to the raw material supply port 15 of the evaporator 11. On the other hand, the gaseous gaseous material separated by the gas-liquid separator 22 is used as a fuel for power generation in the FC system shown in FIG. 4 in the next step.

【0013】次に、上記構成の熱交換器の動作について
説明する。まず、前記蒸発器11の原料供給口15か
ら、水/メタノール混合液等からなる液体原料24を投
入する。投入された液体原料24は蒸発器11のプレー
ト14内を通過する際、後述する過熱器17における燃
焼によって、高温となった燃焼空気混合ガス23から前
記フィン13を介して受熱し、蒸発が進む。そして、蒸
発器11の原料排出口16において、液体原料24の原
料温度が飽和蒸気温度以下の状態(気液二相状態)で、
過熱器17の原料供給口18に供給される。
Next, the operation of the heat exchanger having the above configuration will be described. First, a liquid raw material 24 composed of a water / methanol mixed liquid or the like is introduced from the raw material supply port 15 of the evaporator 11. When the charged liquid raw material 24 passes through the inside of the plate 14 of the evaporator 11, it receives heat from the high-temperature combustion air mixed gas 23 via the fins 13 due to combustion in a superheater 17 to be described later, and the evaporation proceeds. . Then, at the raw material discharge port 16 of the evaporator 11, when the raw material temperature of the liquid raw material 24 is equal to or lower than the saturated vapor temperature (gas-liquid two-phase state),
The raw material is supplied to the raw material supply port 18 of the superheater 17.

【0014】原料供給口18より投入された気液二相状
態の液体原料24は、チューブ19を通過する時、フィ
ン20表面の触媒により着火・燃焼して高温となった燃
料空気混合ガス23からフィン20を介して受熱し、過
熱器17の原料排出口21より飽和温度以上の過熱蒸気
として排出される。この過熱蒸気は、下流側に配置され
た気液分離器22に送られて気相体と液相体とに分離さ
れ、このうち液体原料24は蒸発器11の原料供給口1
5に戻される。一方、気相体として分離された気体原料
は気液分離器22から取り出され、この気体原料は次工
程において、図3に示す燃料電池にかかるFCシステム
における発電用燃料として用いられる。
The liquid raw material 24 in a gas-liquid two-phase state supplied from the raw material supply port 18, when passing through the tube 19, is ignited and burned by the catalyst on the surface of the fin 20, from the fuel-air mixed gas 23 which has become high temperature. The heat is received via the fins 20 and discharged as superheated steam having a saturation temperature or higher from the raw material discharge port 21 of the superheater 17. The superheated steam is sent to a gas-liquid separator 22 disposed on the downstream side to be separated into a gas phase and a liquid phase. Among them, the liquid raw material 24 is supplied to the raw material supply port 1 of the evaporator 11.
Returned to 5. On the other hand, the gaseous raw material separated as a gas phase is taken out from the gas-liquid separator 22, and this gaseous raw material is used as a fuel for power generation in the FC system shown in FIG. 3 in the next step.

【0015】このように、上記実施例に係る熱交換器
は、液体原料24の蒸発を行う,プレート14及びフィ
ン15からなる蒸発器11と、液体原料24の一部蒸発
と気体原料の加熱を行う,チューブ19及びフィン20
からなる過熱器17とを具備し、前記蒸発器11及び過
熱器17を燃料空気混合ガス23の流れ方向に沿って過
熱器17、蒸発器11の順に配置した構成となってい
る。
As described above, the heat exchanger according to the embodiment described above evaporates the liquid raw material 24, and the evaporator 11 including the plate 14 and the fins 15, and performs the partial evaporation of the liquid raw material 24 and the heating of the gas raw material. Do, tube 19 and fin 20
The evaporator 11 and the superheater 17 are disposed in the order of the superheater 17 and the evaporator 11 along the flow direction of the fuel-air mixed gas 23.

【0016】つまり、上記実施例では、蒸発器11に
は、液体原料24と燃焼空気混合ガス23との熱交換部
に、体積に占める蒸発部(熱交換部)の表面積が大き
く、即ち交換熱量(熱交換率)の大きいフィン13及び
プレート14からなるフィン&プレート型熱交換構造を
適用している。また、過熱器17には、体積に占める過
熱部(熱交換部)の表面積が比較的小さいため交換熱量
(熱交換率)は少ないが、チューブ19内での温度差が
大きく且つ熱応力が大きいフィン20及びチューブ19
からなるフィン&チューブ型熱交換構造を適用してい
る。従って、装置体積を小さくすることができるだけで
なく、蒸発器11及び過熱器17の寿命を向上させるこ
とができる。
That is, in the above-described embodiment, the evaporator 11 has a large heat exchange area between the liquid raw material 24 and the combustion air mixed gas 23 in the evaporator 11 in which the surface area of the evaporation section (heat exchange section) is large, that is, the heat exchange amount. A fin & plate type heat exchange structure including a fin 13 and a plate 14 having a large (heat exchange rate) is applied. Further, the superheater 17 has a relatively small surface area of the superheated portion (heat exchange portion) occupying a relatively small amount of heat exchanged (heat exchange rate), but has a large temperature difference in the tube 19 and a large thermal stress. Fin 20 and tube 19
A fin & tube type heat exchange structure consisting of Therefore, not only can the volume of the device be reduced, but also the life of the evaporator 11 and the superheater 17 can be improved.

【0017】また、過熱器17で触媒による燃料空気混
合ガス23の燃焼及び一部熱交換が行われるため、蒸発
器11には未燃分が少ない燃焼後の高温排ガスが送られ
る。従って、蒸発器11のフィン13表面で触媒燃焼の
割合が少ないこと、また過熱器17で熱交換された後の
燃料空気混合高温ガス23が蒸発器11へ供給されるた
め、該蒸発器11内部において大きな温度差がつくこと
を回避することができる。これにより、蒸発器11の寿
命を向上させることができる。
Further, since the combustion of the fuel-air mixture gas 23 and the partial heat exchange are performed by the catalyst in the superheater 17, high-temperature exhaust gas after combustion having a small unburned portion is sent to the evaporator 11. Therefore, the rate of catalytic combustion on the surface of the fins 13 of the evaporator 11 is small, and the fuel-air mixed high-temperature gas 23 subjected to heat exchange in the superheater 17 is supplied to the evaporator 11. , A large temperature difference can be avoided. Thereby, the life of the evaporator 11 can be improved.

【0018】更に、過熱器17の下流側に、液体原料2
4とこれが一部蒸発した気体原料とを分離する気液分離
器22を設け、分離された液体原料24を前記蒸発器1
1の原料供給口15に戻す構成となっているため、蒸発
器11の起動時に液体原料24が高温の燃料空気混合ガ
ス23と十分に熱交換されず、液体原料24のまま次工
程に送られるのを回避することができる。つまり、起動
時に液体原料24が発生することを許容できるため、起
動時に予め過熱器17、蒸発器11に液体原料を満たし
ておくことができる。これにより、起動時も蒸発器11
の温度が低く、発生する熱効力を小さくすることができ
るため、蒸発器11の寿命を向上できる。
Further, downstream of the superheater 17, the liquid raw material 2
4 and a gas-liquid separator 22 for separating the gaseous raw material partially evaporated therefrom.
Since the structure is returned to the first raw material supply port 15, the liquid raw material 24 is not sufficiently heat-exchanged with the high-temperature fuel / air mixed gas 23 when the evaporator 11 is started, and is sent to the next step as it is. Can be avoided. That is, since the generation of the liquid raw material 24 at the time of startup can be permitted, the superheater 17 and the evaporator 11 can be filled with the liquid raw material in advance at the time of startup. As a result, the evaporator 11 can be operated at the time of startup.
Is low, and the generated thermal effect can be reduced, so that the life of the evaporator 11 can be improved.

【0019】[0019]

【発明の効果】以上詳記したように本発明によれば、触
媒を塗布したフィンとプレートから構成された,液体原
料の蒸発を行う蒸発器と、触媒を塗布したフィンとチュ
ーブとから構成された,液体原料の一部蒸発と前記蒸発
により液体原料が一部気化した気体原料の過熱を行う過
熱器とを具備し、前記蒸発器及び過熱器をガス流れ方向
から過熱器、蒸発器の順に配置した構成にすることによ
り、蒸発器におけるプレート温度を低くして熱応力を小
さくし、また過熱器にて原料と燃焼ガスを熱交換するこ
とにより、蒸発器での燃焼ガス温度を下げ、もって蒸発
器の寿命を向上し得る熱交換器を提供できる。
As described above in detail, according to the present invention, there are provided an evaporator for evaporating a liquid raw material, comprising a fin and a plate coated with a catalyst, and a fin and a tube coated with a catalyst. A superheater for partially evaporating the liquid raw material and for superheating the gaseous raw material in which the liquid raw material is partially vaporized by the evaporation, wherein the evaporator and the superheater are arranged in the order of gas flow in the order of By adopting the arrangement, the plate temperature in the evaporator is lowered to reduce the thermal stress, and the heat exchange between the raw material and the combustion gas in the superheater reduces the temperature of the combustion gas in the evaporator. A heat exchanger that can improve the life of the evaporator can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る熱交換器の説明図。FIG. 1 is an explanatory diagram of a heat exchanger according to one embodiment of the present invention.

【図2】従来の熱交換器の説明図。FIG. 2 is an explanatory view of a conventional heat exchanger.

【図3】従来の熱交換器を燃料電池のFCシステムに組
み込んだ状態の説明図。
FIG. 3 is an explanatory view showing a state in which a conventional heat exchanger is incorporated in a fuel cell FC system.

【図4】本発明の熱交換器を燃料電池のFCシステムに
組み込んだ状態の説明図。
FIG. 4 is an explanatory view showing a state where the heat exchanger of the present invention is incorporated in an FC system of a fuel cell.

【符号の説明】[Explanation of symbols]

11…蒸発器、 12…原料ヘッダー、 13,20…フィン、 14…プレート、 15,18…原料供給口、 16,21…原料排出口、 17…過熱器、 19…チューブ、 22…気液分離器、 23…燃料空気混合ガス、 24…液体原料、 25…燃料電池(FC)、 26…インバーター、 27…モーター。 11 evaporator, 12 raw material header, 13, 20 fin, 14 plate, 15, 18 raw material supply port, 16, 21 raw material outlet, 17 superheater, 19 tube, 22 gas-liquid separation 23, fuel-air mixture gas, 24, liquid raw material, 25, fuel cell (FC), 26, inverter, 27, motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 律男 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 平井 悦郎 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 谷崎 桂二 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 松田 直彦 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 5H027 AA02 BA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ritsuo Hashimoto 4-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside the Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Etsuro Hirai 4-chome Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture No. 6-22 Mitsubishi Heavy Industries, Ltd.Hiroshima Research Institute (72) Inventor Keiji Tanizaki 4-2-2 Kanon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd.Hiroshima Research Center (72) Inventor Naohiko Matsuda Hiroshima City, Hiroshima Prefecture F-term (reference) 5H027 AA02 BA01 in Hiroshima Laboratory, Mitsubishi Heavy Industries, Ltd. 4-6-22 Kannon Shinmachi, Nishi-ku

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体原料の蒸発、過熱を行う熱交換器に
おいて、液体原料の蒸発を行う蒸発器と、液体原料の一
部蒸発と前記蒸発により液体原料が一部気化した気体原
料の過熱を行う過熱器とを具備し、前記蒸発器は触媒を
塗布したフィンとプレートから構成され、前記過熱器は
触媒を塗布したフィンとチューブとから構成され、前記
蒸発器及び過熱器をガス流れ方向から過熱器、蒸発器の
順に配置したことを特徴とする熱交換器。
1. A heat exchanger for evaporating and superheating a liquid material, comprising: an evaporator for evaporating the liquid material; a partial evaporator for the liquid material; and a superheat for a gaseous material in which the liquid material is partially vaporized by the evaporation. A superheater, wherein the evaporator is composed of a fin and a plate coated with a catalyst, the superheater is composed of a fin and a tube coated with a catalyst, and the evaporator and the superheater are separated from the gas flow direction. A heat exchanger wherein a superheater and an evaporator are arranged in this order.
【請求項2】 前記過熱器の下流側に、液体原料と蒸発
した気体原料とを分離する気液分離器を設け、分離され
た液体原料を前記蒸発器の原料供給口に戻すことを特徴
とする請求項1記載の熱交換器。
2. A gas-liquid separator for separating a liquid material and a vaporized gaseous material is provided downstream of the superheater, and the separated liquid material is returned to a material supply port of the evaporator. The heat exchanger according to claim 1.
JP2001183600A 2001-06-18 2001-06-18 Heat exchanger Withdrawn JP2002372395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183600A JP2002372395A (en) 2001-06-18 2001-06-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183600A JP2002372395A (en) 2001-06-18 2001-06-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2002372395A true JP2002372395A (en) 2002-12-26

Family

ID=19023528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183600A Withdrawn JP2002372395A (en) 2001-06-18 2001-06-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2002372395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296194A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Starting method of evaporator
JP2005108649A (en) * 2003-09-30 2005-04-21 Aisin Seiki Co Ltd Stopping method of fuel cell system, start-up method of fuel cell system and fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296194A (en) * 2003-03-26 2004-10-21 Nissan Motor Co Ltd Starting method of evaporator
JP4506091B2 (en) * 2003-03-26 2010-07-21 日産自動車株式会社 How to start the evaporator
JP2005108649A (en) * 2003-09-30 2005-04-21 Aisin Seiki Co Ltd Stopping method of fuel cell system, start-up method of fuel cell system and fuel cell system

Similar Documents

Publication Publication Date Title
JP2006514411A (en) Three-fluid evaporative heat exchanger
JP2004309031A (en) Heat exchanger and evaporator
JP2023075231A (en) Evaporator with integrated heat recovery
US20150060028A1 (en) Heat exchanger
JPH08148166A (en) On-site solid electrolyte fuel cell system
JP5580225B2 (en) Vacuum water heater
JP3644891B2 (en) Device for evaporating and / or superheating hydrocarbons
JP2002372395A (en) Heat exchanger
JP3603274B2 (en) Fuel evaporator
JPH0113023B2 (en)
JP2001332283A (en) Evaporator for fuel cell
JP5580224B2 (en) Vacuum water heater
JP5959222B2 (en) Solid oxide fuel cell
JP3554921B2 (en) Fuel evaporator
JP2000329489A (en) Evaporator and manufacture thereof
KR100915267B1 (en) Absorptive type cooler system using fuel cell generation system and method thereof
RU2375660C2 (en) Heat recovery unit
KR20120016927A (en) The structure of exhaust gas flow passage of supplementary boiler in micro combined heat and power unit
JP2001210335A (en) Solid polymer type fuel cell power generator
JP2005002928A (en) Method for cooling high temperature part of gas turbine and gas turbine using the same
CN106784937A (en) The vaporizer flow passage structure of methanol fuel cell
KR100314471B1 (en) Generator of absorption heat pump using ammonia
JPH08105305A (en) Absorption type rankine cycle generation apparatus
JPH04206157A (en) Power generation system by fuel cell
JP2006132867A (en) Water heater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902