JP2002368171A - Lead-type semiconductor element and manufacturing method therefor - Google Patents

Lead-type semiconductor element and manufacturing method therefor

Info

Publication number
JP2002368171A
JP2002368171A JP2001169811A JP2001169811A JP2002368171A JP 2002368171 A JP2002368171 A JP 2002368171A JP 2001169811 A JP2001169811 A JP 2001169811A JP 2001169811 A JP2001169811 A JP 2001169811A JP 2002368171 A JP2002368171 A JP 2002368171A
Authority
JP
Japan
Prior art keywords
lead
chip
solder
substrate
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001169811A
Other languages
Japanese (ja)
Inventor
Shinichi Matsumoto
信一 松本
Yasuhiro Koizumi
泰洋 小泉
Yoshiaki Inoue
義昭 井上
Noriyuki Morioka
典之 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Components Co Ltd
Original Assignee
Toshiba Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Components Co Ltd filed Critical Toshiba Components Co Ltd
Priority to JP2001169811A priority Critical patent/JP2002368171A/en
Publication of JP2002368171A publication Critical patent/JP2002368171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the yield and reliability of a lead-type semiconductor element and at the same time, to reduce the cost of the element by avoiding the occurrence of cracks in a chip by increasing the thicknesses of solder layers immediately below leads, and by reducing the thickness of solder a the terminating end sections of the chip, and so on. SOLUTION: The lead-type semiconductor element is provided with the chip 15, in which diffusion layers 12a and 12b and electrodes 14 connected to the layers 12a and 12b, are formed on the main surface of a substrate and leads 18 which are soldered to the main surfaces of the chip 15 and have truncated cone-shaped front ends. The front end angles of the leads 18 between tapered surfaces S of the leads 18 and the main surface of the substrate are adjusted to 10-18 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板に素子
部を形成したチップとリードを半田を用いて接触させた
リード型半導体素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead type semiconductor element in which a chip having an element portion formed on a semiconductor substrate and a lead are brought into contact with each other using solder, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、例えばSBD(ショットキーバリ
ヤーダイオード)素子を構成するチップの両主面に、リ
ードを半田を用いて接合する技術が知られている。図4
(A)〜(C)は、従来のリード型半導体素子の製造方
法を工程順に示している。
2. Description of the Related Art Conventionally, there has been known a technique in which leads are connected to both main surfaces of a chip constituting an SBD (Schottky barrier diode) element by using solder. FIG.
(A) to (C) show a conventional method for manufacturing a lead-type semiconductor element in the order of steps.

【0003】まず、n型のSi基板1の表面にp型不純
物を導入してp型の拡散層2a,2bを夫々形成する。
次に、前記基板1上に、拡散層2a,2bと一部オーバ
ーラップするように枠状の酸化膜3を形成する。次い
で、前記基板1の表面側に四角形状の電極4を端部が酸
化膜3まで延在するように形成し、SBDチップとす
る。この後、SBDチップの両主面側に半田タブレット
5a,5bを配置する(図4(A)参照)。
First, p-type impurities are introduced into the surface of an n-type Si substrate 1 to form p-type diffusion layers 2a and 2b, respectively.
Next, a frame-shaped oxide film 3 is formed on the substrate 1 so as to partially overlap the diffusion layers 2a and 2b. Next, a square electrode 4 is formed on the surface side of the substrate 1 so that the end portion extends to the oxide film 3 to obtain an SBD chip. Thereafter, the solder tablets 5a and 5b are arranged on both main surface sides of the SBD chip (see FIG. 4A).

【0004】次に、前記半田タブレット5a,5bを溶
融し、半田層6a,6bとする(図4(B)参照)。つ
づいて、SBDチップの両主面側に、図5に示すように
先端形状が円錐台形状のリード7をマウントする。この
際、半田層6a,6bは、リード7のテーパ面Sに沿っ
て這い上がる(図4(C)参照)。図示しないが、この
後、SBDチップ及びリード7の一部を封止するような
モールド樹脂成形を行う。
Next, the solder tablets 5a and 5b are melted to form solder layers 6a and 6b (see FIG. 4B). Subsequently, as shown in FIG. 5, a lead 7 having a truncated cone shape is mounted on both main surfaces of the SBD chip. At this time, the solder layers 6a and 6b crawl along the tapered surface S of the lead 7 (see FIG. 4C). Although not shown, after that, molding resin molding is performed to seal the SBD chip and a part of the lead 7.

【0005】ところで、従来のリード型半導体素子にお
いて、リード7は、図5に示すように、リード7のテー
パ面Sと基板(SBDチップ)主面とがなす先端角度
(θ)が約32°と大きい。このように先端角度が大き
いのは、リード加工がし易いという理由に基づくもので
ある。
In the conventional lead type semiconductor device, as shown in FIG. 5, the lead 7 has a tip angle (θ) between the tapered surface S of the lead 7 and the main surface of the substrate (SBD chip) of about 32 °. And big. Such a large tip angle is based on the reason that lead processing is easy.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来技
術によれば、リード7をSBDチップに半田付けする
際、半田層6a(又は6b)がリード7のテーパ面Sの
根元P付近まで這い上がり、リード直下(リードがチッ
プに接する部分)の半田層厚みが薄くなったり、基板1
の終端部の酸化膜3上の半田層6aの厚みが厚くなった
りする。従って、接合時の温度膨張・収縮、及びモール
ド樹脂成形時の機械的な応力により、ショットキーバリ
ヤーが破壊され、逆方向電圧特性が劣化する(チップク
ラック)。
However, according to the prior art, when the lead 7 is soldered to the SBD chip, the solder layer 6a (or 6b) climbs up to near the base P of the tapered surface S of the lead 7, The thickness of the solder layer directly under the lead (the part where the lead contacts the chip) is reduced,
Or the thickness of the solder layer 6a on the oxide film 3 at the end of the solder layer 6 increases. Therefore, the Schottky barrier is destroyed by the temperature expansion and contraction at the time of joining and the mechanical stress at the time of molding the molding resin, and the reverse voltage characteristic is deteriorated (chip crack).

【0007】なお、こうした問題を解消するために半田
盛り量を増やしてリード直下の半田層厚みを厚くするこ
とが考えられる。しかし、この場合、チップ終端部(酸
化膜3と基板1との界面部)でも半田層が厚くなり、接
合時の熱応力及びモールド樹脂成形時の機械的な応力で
ショットキーバリヤーが破壊され、逆方向電圧特性が劣
化する。このようなことから、歩留低下及び信頼性評価
(熱ストレス評価)にて逆方向電圧特性の不良が発生す
るとともに、コストアップを招いていた。
In order to solve such a problem, it is conceivable to increase the thickness of the solder layer immediately below the leads by increasing the amount of the solder pile. However, in this case, the solder layer also becomes thicker at the chip termination (the interface between the oxide film 3 and the substrate 1), and the Schottky barrier is broken by thermal stress at the time of joining and mechanical stress at the time of molding resin molding. Reverse voltage characteristics deteriorate. For this reason, in the yield reduction and the reliability evaluation (thermal stress evaluation), the reverse voltage characteristics are defective and the cost is increased.

【0008】本発明はこうした事情を考慮してなされた
もので、基板主面に拡散層及び該拡散層に接続する電極
を形成したチップと、このチップ主面に半田付けされ
た,先端部が逆円錐台状のリードとを具備し、前記リー
ドのテーパ面と基板主面とがなす先端角度を10°〜1
8°にする構成にすることにより、リード直下の半田層
厚みを厚くするとともに、チップ終端部での半田厚みを
薄くしてチップクラックを回避しえ、歩留及び信頼性を
高めることが可能な低コストのリード型半導体素子を提
供することを目的とする。
The present invention has been made in view of such circumstances. A chip having a diffusion layer and an electrode connected to the diffusion layer formed on a main surface of a substrate and a tip soldered to the chip main surface are provided. An inverted truncated-cone-shaped lead, and a tip angle between the tapered surface of the lead and the main surface of the substrate is 10 ° to 1 °.
By adopting the configuration of 8 °, the thickness of the solder layer immediately below the leads is increased, and the thickness of the solder at the chip end portion is reduced, so that chip cracks can be avoided and the yield and reliability can be improved. An object is to provide a low-cost lead-type semiconductor element.

【0009】また、本発明は、基板主面に拡散層及び該
拡散層に接続する電極を形成したチップの少なくとも片
面側に半田タブレットを載置し、前記半田タブレットを
溶融して半田盛りを行った後、前記チップの半田盛りを
した部分にテーパ面と基板主面とがなす先端角度が10
°〜18°の円錐台形状のリードをマウントすることに
より、上記と同様な効果が得られるリード型半導体素子
の製造方法を提供することを目的とする。
Further, according to the present invention, a solder tablet is placed on at least one side of a chip having a diffusion layer and an electrode connected to the diffusion layer formed on the main surface of the substrate, and the solder tablet is melted to perform solder filling. After that, the tip angle between the tapered surface and the main surface of the substrate at the soldered portion of the chip is 10 °.
It is an object of the present invention to provide a method for manufacturing a lead-type semiconductor element in which the same effect as described above can be obtained by mounting a lead having a truncated conical shape having an angle of 18 ° to 18 °.

【0010】[0010]

【課題を解決するための手段】本願第1の発明は、基板
主面に拡散層及び該拡散層に接続する電極を形成したチ
ップと、このチップ主面に半田付けされた,先端部が円
錐台形状のリードとを具備し、前記リードのテーパ面と
基板主面とがなす先端角度を10°〜18°としたこと
を特徴とするリード型半導体素子である。
According to a first aspect of the present invention, there is provided a chip in which a diffusion layer and an electrode connected to the diffusion layer are formed on a main surface of a substrate, and a tip soldered to the main surface of the chip has a conical tip. A lead-type semiconductor device comprising a trapezoidal lead, wherein a tip angle between a tapered surface of the lead and a main surface of the substrate is 10 ° to 18 °.

【0011】本願第2の発明は、基板主面に拡散層及び
該拡散層に接続する電極を形成したチップの少なくとも
片面側に半田タブレットを載置する工程と、前記半田タ
ブレットを溶融して半田盛りを行う工程と、前記チップ
の半田盛りをした部分にテーパ面と基板主面とがなす先
端角度が10°〜18°の円錐台形状のリードをマウン
トする工程とを具備することを特徴とするリード型半導
体素子の製造方法である。
[0011] The second invention of the present application is a step of placing a solder tablet on at least one side of a chip having a diffusion layer and an electrode connected to the diffusion layer on the main surface of the substrate, and melting the solder tablet to form a solder. A step of mounting, and a step of mounting a truncated-cone-shaped lead having a tip angle of 10 ° to 18 ° between a tapered surface and a main surface of the substrate at a solder-filled portion of the chip, This is a method for manufacturing a lead-type semiconductor device.

【0012】本発明において、先端角度を上記のように
規定したのは、先端角度が10°未満ではリードの加工
がしにくく、先端角度が18°を超えるとリード直下の
半田層の厚みが薄くなったり、あるいは酸化膜上の半田
層の厚みが厚くなってチップクラックを引き起こし易い
からである。
In the present invention, the reason why the tip angle is defined as described above is that when the tip angle is less than 10 °, it is difficult to process the lead, and when the tip angle exceeds 18 °, the thickness of the solder layer immediately below the lead becomes thin. This is because the thickness of the solder layer on the oxide film is increased or chip cracks are easily caused.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施例に係るリ
ード型半導体素子について図1(A)〜(C)を参照し
て製造工程を併記しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A lead type semiconductor device according to one embodiment of the present invention will be described below with reference to FIGS.

【0014】(1)まず、n型Si基板11の表面にp
型不純物例えばホウ素を導入し、四角形状のp型の拡散
層12a,12bを夫々離間して形成した。次に、前記
基板11上に、一部が前記拡散層12a,12bと夫々
オーバーラップするように枠状の酸化膜13を形成し
た。次いで、前記基板11の表面側に縁部が前記酸化膜
13上に延出するように四角形状の電極14を形成し、
SBDチップ15とした。この後、SBDチップ15の
両主面側に半田タブレット16a,16bを配置した
(図1(A)参照)。
(1) First, the surface of the n-type Si substrate 11 is
A p-type diffusion layer 12a, 12b having a rectangular shape was formed by introducing a type impurity such as boron. Next, a frame-shaped oxide film 13 was formed on the substrate 11 so as to partially overlap the diffusion layers 12a and 12b. Next, a square-shaped electrode 14 is formed on the surface side of the substrate 11 so that an edge portion extends over the oxide film 13.
The SBD chip 15 was used. Thereafter, solder tablets 16a and 16b were arranged on both main surfaces of the SBD chip 15 (see FIG. 1A).

【0015】(2)次に、前記タブレット16a,16
bを溶融し、半田層17a,17bとした(図1(B)
参照)。つづいて、SBDチップ15の両主面側に、図
2に示すように先端形状が円錐台形状のニッケルメッキ
された銅製リード18をマウントした。なお、このマウ
ントは、2個のリード18をSBDチップ15の上下に
配置してSBDチップを挟み込み、この状態で例えば3
00℃で熱処理して行った。ここで、リード18のテー
パ面Sと基板主面とがなす先端角度θは10°〜18°
である。なお、マウントの際、半田層17a,17b
は、リード18のテーパ面Sに沿って這い上がった(図
1(C)参照)。図示しないが、この後、SBDチップ
15、半田層17a,17b及びリード18の一部を封
止するようなモールド樹脂成形を行った。
(2) Next, the tablets 16a, 16
b was melted to form solder layers 17a and 17b (FIG. 1B).
reference). Subsequently, as shown in FIG. 2, nickel-plated copper leads 18 having a truncated cone shape were mounted on both main surfaces of the SBD chip 15. In this mount, two leads 18 are arranged above and below the SBD chip 15 to sandwich the SBD chip.
The heat treatment was performed at 00 ° C. Here, the tip angle θ between the tapered surface S of the lead 18 and the main surface of the substrate is 10 ° to 18 °.
It is. At the time of mounting, the solder layers 17a, 17b
Crawled up along the tapered surface S of the lead 18 (see FIG. 1C). Although not shown, after that, a molding resin molding was performed to seal the SBD chip 15, the solder layers 17a and 17b, and part of the leads 18.

【0016】このようにして製造されるリード型半導体
素子は、SBDチップ15の主面にリード18のテーパ
面Sの基板主面に対する先端角度が10°〜18°にな
るようにマウントした構成となっているため、半田層1
7a(又は7b)がリード18のテーパ面Sの根元P付
近まで這い上がるのを抑制できる。従って、リード直下
の半田層17a,17bの厚みを図1(C)に示すよう
に従来と比べて厚くすることができるとともに、基板1
1の終端部の酸化膜13上の半田層17aの厚みが厚く
なるのを回避でき、テスト工程での逆方向電気特性の劣
化を極端に少なくすることができる。
The lead type semiconductor device manufactured in this manner has a configuration in which the taper surface S of the lead 18 is mounted on the main surface of the SBD chip 15 so that the tip angle of the taper surface S with respect to the main surface of the substrate is 10 ° to 18 °. The solder layer 1
7a (or 7b) can be suppressed from climbing up to the vicinity of the root P of the tapered surface S of the lead 18. Therefore, the thickness of the solder layers 17a and 17b immediately below the leads can be made thicker as compared with the conventional one as shown in FIG.
It can be avoided that the thickness of the solder layer 17a on the oxide film 13 at the end of the first layer becomes large, and the deterioration of the reverse electrical characteristics in the test process can be extremely reduced.

【0017】また、チップ半田盛り量を増やさずにリー
ド直下の半田層厚みを厚くできるので、チップ終端部で
の半田層厚みを薄くすることができる。従って、熱・機
械的な応力を大幅に緩和することができる。
Further, since the thickness of the solder layer immediately under the leads can be increased without increasing the amount of chip solder, the thickness of the solder layer at the end of the chip can be reduced. Therefore, thermal and mechanical stress can be greatly reduced.

【0018】以上より、歩留りが大幅に向上し、熱サイ
クルによる信頼性の低下を防止することができる。事
実、従来及び本発明によるリード型半導体素子によるリ
ード直下の半田層の厚み分布は、図3に示すとおりであ
る。図3より、本発明の半導体素子の場合の方が従来の
それに比べて、半田層の厚みが著しく厚い部分に分布し
ていることが明らかである。
As described above, the yield is greatly improved, and a decrease in reliability due to a heat cycle can be prevented. In fact, FIG. 3 shows the thickness distribution of the solder layer immediately under the leads of the conventional and lead semiconductor devices according to the present invention. From FIG. 3, it is clear that the semiconductor element of the present invention is distributed in a portion where the thickness of the solder layer is significantly larger than that of the conventional semiconductor element.

【0019】なお、上記実施例では、SBDダイオード
に適用した場合について述べたが,これに限らず、リー
ドを有した全ての半導体素子に適用できる。
In the above embodiment, the case where the present invention is applied to an SBD diode has been described. However, the present invention is not limited to this and can be applied to all semiconductor devices having leads.

【0020】[0020]

【発明の効果】以上詳述したように本発明のリード型半
導体素子によれば、基板主面に拡散層及び該拡散層に接
続する電極を形成したチップと、このチップ主面に半田
付けされた,先端部が逆円錐台状のリードとを具備し、
前記リードのテーパ面と基板主面とがなす先端角度を1
0°〜18°にする構成にすることにより、リード直下
の半田層厚みを厚くするとともに、チップ終端部での半
田厚みを薄くする等してチップクラックを回避でき、も
って歩留及び信頼性を高め、コスト低減を実現できる。
As described above in detail, according to the lead type semiconductor device of the present invention, a chip having a diffusion layer and an electrode connected to the diffusion layer formed on the main surface of the substrate, and a chip soldered to the chip main surface. A tip having an inverted truncated cone-shaped lead;
The tip angle between the tapered surface of the lead and the main surface of the substrate is 1
By adopting a configuration of 0 ° to 18 °, the thickness of the solder layer immediately below the leads is increased, and the chip thickness can be avoided by reducing the thickness of the solder at the end of the chip, thereby improving the yield and reliability. And cost reduction.

【0021】また、本発明のリード型半導体素子の製造
方法によれば、基板主面に拡散層及び該拡散層に接続す
る電極を形成したチップの少なくとも片面側に半田タブ
レットを載置し、前記半田タブレットを溶融して半田盛
りを行った後、前記チップの半田盛りをした部分にテー
パ面と基板主面とがなす先端角度が10°〜18°の円
錐台形状のリードをマウントすることにより、上記と同
様な効果が得られる。
According to the method of manufacturing a lead-type semiconductor device of the present invention, a solder tablet is placed on at least one side of a chip having a diffusion layer formed on a main surface of a substrate and electrodes connected to the diffusion layer. After the solder tablet is melted and solder piled up, by mounting a lead in the shape of a truncated cone with a tip angle of 10 ° to 18 ° formed between the tapered surface and the main surface of the substrate on the soldered portion of the chip, The same effect as described above can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るリード型半導体素子の
製造方法を工程順に示す説明図。
FIG. 1 is an explanatory view showing a method of manufacturing a lead-type semiconductor device according to one embodiment of the present invention in the order of steps.

【図2】図1(C)のリード型半導体素子の一構成であ
るリードの説明図。
FIG. 2 is an explanatory diagram of a lead which is one configuration of the lead-type semiconductor element in FIG.

【図3】従来及び本発明に係るリード型半導体素子によ
るリード直下の半田層の厚みを示す分布図。
FIG. 3 is a distribution diagram showing a thickness of a solder layer immediately below a lead in a conventional lead type semiconductor device according to the present invention.

【図4】従来のリード型半導体素子の製造方法を工程順
に示す説明図。
FIG. 4 is an explanatory view showing a conventional method for manufacturing a lead-type semiconductor element in the order of steps.

【図5】図4(C)のリード型半導体素子の一構成であ
るリードの説明図。
FIG. 5 is an explanatory diagram of a lead which is one configuration of the lead-type semiconductor element in FIG. 4C.

【符号の説明】[Explanation of symbols]

11…n型のSiチップ、 12a,12b…p型の拡散層、 13…酸化膜、 14…電極、 15…SBDチップ、 16a,16b…半田タブレット、 17a,17b…半田層、 18…リード。 11: n-type Si chip, 12a, 12b: p-type diffusion layer, 13: oxide film, 14: electrode, 15: SBD chip, 16a, 16b: solder tablet, 17a, 17b: solder layer, 18: lead.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 義昭 千葉県茂原市茂原647番地 東芝コンポー ネンツ株式会社内 (72)発明者 森岡 典之 千葉県君津市内箕輪70番地 東芝コンポー ネンツ株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yoshiaki Inoue 647 Mobara, Mobara-shi, Chiba Prefecture Toshiba Components Corporation (72) Inventor Noriyuki Morioka 70 Minowa, Kimitsu-shi, Chiba Prefecture Toshiba Components Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板主面に拡散層及び該拡散層に接続す
る電極を形成したチップと、このチップ主面に半田付け
された,先端部が円錐台形状のリードとを具備し、前記
リードのテーパ面と基板主面とがなす先端角度を10°
〜18°としたことを特徴とするリード型半導体素子。
1. A chip having a diffusion layer and an electrode connected to the diffusion layer on a main surface of a substrate, and a lead soldered to the main surface of the chip and having a truncated conical tip. 10 ° angle between the tapered surface and the main surface of the substrate
A lead-type semiconductor device, wherein the angle is set to 18 °.
【請求項2】 基板主面に拡散層及び該拡散層に接続す
る電極を形成したチップの少なくとも片面側に半田タブ
レットを載置する工程と、前記半田タブレットを溶融し
て半田盛りを行う工程と、前記チップの半田盛りをした
部分にテーパ面と基板主面とがなす先端角度が10°〜
18°の円錐台形状のリードをマウントする工程とを具
備することを特徴とするリード型半導体素子の製造方
法。
2. A step of placing a solder tablet on at least one side of a chip having a diffusion layer and an electrode connected to the diffusion layer formed on the main surface of the substrate, and a step of melting the solder tablet to perform solder filling. The tip angle between the tapered surface and the main surface of the substrate in the solder-filled portion of the chip is 10 ° or more.
Mounting a lead having a shape of a truncated cone of 18 [deg.].
JP2001169811A 2001-06-05 2001-06-05 Lead-type semiconductor element and manufacturing method therefor Pending JP2002368171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169811A JP2002368171A (en) 2001-06-05 2001-06-05 Lead-type semiconductor element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169811A JP2002368171A (en) 2001-06-05 2001-06-05 Lead-type semiconductor element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002368171A true JP2002368171A (en) 2002-12-20

Family

ID=19011838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169811A Pending JP2002368171A (en) 2001-06-05 2001-06-05 Lead-type semiconductor element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002368171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166255A1 (en) * 2019-02-13 2020-08-20 日立オートモティブシステムズ株式会社 Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166255A1 (en) * 2019-02-13 2020-08-20 日立オートモティブシステムズ株式会社 Semiconductor device
JPWO2020166255A1 (en) * 2019-02-13 2021-12-02 日立Astemo株式会社 Semiconductor device
JP7124133B2 (en) 2019-02-13 2022-08-23 日立Astemo株式会社 semiconductor equipment
US11929307B2 (en) 2019-02-13 2024-03-12 Hitachi Astemo, Ltd. Plurality of lead frames for cooling a power device

Similar Documents

Publication Publication Date Title
CN101740382B (en) Process for forming semiconductor device
JP6416934B2 (en) Semiconductor device, manufacturing method thereof, and semiconductor module
JPH10326806A (en) Semiconductor device and its manufacture
US9224698B1 (en) Semiconductor device
JP2009099838A (en) Semiconductor device and manufacturing method thereof
JP2006024829A (en) Semiconductor device and its manufacturing method
JPH10242383A (en) Semiconductor device
EP2933841B1 (en) Semiconductor device
CN100578809C (en) Solderable top metal for SiC device
JP2002368171A (en) Lead-type semiconductor element and manufacturing method therefor
JP2005019798A (en) Mold type semiconductor device and method for manufacturing the same
JP2000323647A (en) Module semiconductor device and manufacture thereof
JP2014120728A (en) Semiconductor device and manufacturing method therefor
US10510683B2 (en) Packaging structures for metallic bonding based opto-electronic device and manufacturing methods thereof
US7880281B2 (en) Switching assembly for an aircraft ignition system
TWI427717B (en) A method of flip chip package
KR102394542B1 (en) Semiconductor package and method manufacturing the same
JP2003273357A (en) Semiconductor device and manufacturing method thereof
CN211788920U (en) Semiconductor device with a plurality of semiconductor chips
JP2527630Y2 (en) Semiconductor device
KR102264850B1 (en) Power semiconductor chip and power semiconductor module
JP2003332393A (en) Semiconductor device
CN110277321B (en) Power chip pre-packaging method, power chip pre-packaging structure, power chip pre-packaging method, power chip pre-packaging structure and wafer pre-packaging structure
TWI306301B (en) Semiconductor package and substrate thereof
JPH07142490A (en) Semiconductor integrated circuit and fabrication thereof