JP2002367772A - Sealing can for stainless-steel organic el element - Google Patents

Sealing can for stainless-steel organic el element

Info

Publication number
JP2002367772A
JP2002367772A JP2001176777A JP2001176777A JP2002367772A JP 2002367772 A JP2002367772 A JP 2002367772A JP 2001176777 A JP2001176777 A JP 2001176777A JP 2001176777 A JP2001176777 A JP 2001176777A JP 2002367772 A JP2002367772 A JP 2002367772A
Authority
JP
Japan
Prior art keywords
sealing
organic
stainless steel
mass
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001176777A
Other languages
Japanese (ja)
Inventor
Hiroki Tomimura
宏紀 冨村
Hiroshi Fujimoto
廣 藤本
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001176777A priority Critical patent/JP2002367772A/en
Publication of JP2002367772A publication Critical patent/JP2002367772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealing can for an organic EL element, suitable for preventing degradation of luminous characteristics due to infiltration of oxygen, moisture, or the like. SOLUTION: The sealing can for the organic EL element consists of a stainless steel plate including 0.10 percent by mass or less of C, 0.05 percent by mass or less of N, and 8.0 to 22.0 percent by mass of Cr, and is made of a sealing can material with in-plane anisotropy of thermal expansion coefficient not more than 0.50×10<-6> / deg.C. The stainless steel plate used for the sealing can material is preferred to have a 0.2% yield strength along any direction of not more than 350 N/mm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気密性良くガラス基板
等の透明基板に接着でき、薄型化に適した有機EL素子
用の封止缶に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing can for an organic EL device which can be adhered to a transparent substrate such as a glass substrate with good airtightness and is suitable for thinning.

【0002】[0002]

【従来の技術】電界の印加で発光する有機EL素子は、
自発光で必要画像を表示することから、バックライトが
必要な液晶ディスプレイに比較して明るく鮮明な画像が
得られ、視野角度の影響も受けない。この長所を活用
し、次世代表示装置として脚光を浴びており、携帯電話
の表示画面等ですでに実用化されている。有機EL素子
は、ガラス,プラスチック等の透明基板1上に透明電極
2(陽極),有機発光層3,背面電極4(陰極)が順次
積層された多層構造をもっている。透明電極2と背面電
極4との間に駆動電流を供給すると、透明電極2からホ
ール,背面電極4から電子が有機発光層3に注入され、
ホール・電子の再結合により有機発光層3の有機発光体
が励起され、発光が外部に発せられる。この発光によっ
て、必要とする画像が再生される。有機EL素子は、雰
囲気に含まれている水分や酸素との反応によって発光寿
命が低下しやすい。有機EL素子に覆い被さるように、
窒素雰囲気中で透明基板1に封止缶5を接着している。
2. Description of the Related Art An organic EL device that emits light when an electric field is applied thereto,
Since the necessary image is displayed by self-emission, a brighter and clearer image can be obtained as compared with a liquid crystal display which requires a backlight, and is not affected by the viewing angle. Taking advantage of this advantage, it has been spotlighted as a next-generation display device, and has already been put to practical use in display screens of mobile phones. The organic EL element has a multilayer structure in which a transparent electrode 2 (anode), an organic luminescent layer 3, and a back electrode 4 (cathode) are sequentially laminated on a transparent substrate 1 such as glass or plastic. When a drive current is supplied between the transparent electrode 2 and the back electrode 4, holes are injected from the transparent electrode 2 and electrons are injected from the back electrode 4 into the organic light emitting layer 3,
The organic luminous body of the organic luminous layer 3 is excited by recombination of holes and electrons, and luminescence is emitted to the outside. The required image is reproduced by this light emission. The organic EL element is liable to have a shorter luminescent life due to a reaction with moisture or oxygen contained in the atmosphere. So as to cover the organic EL element,
The sealing can 5 is bonded to the transparent substrate 1 in a nitrogen atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかし、封止缶5と透
明基板1との接着が不十分な場合、発光寿命低下の原因
となる外気の侵入が避けられない。具体的には、何らか
の原因によって接着界面6に隙間が生じると、隙間を介
して外気が封止缶5の内部に侵入し、外気に含まれてい
る酸素や水分に有機EL素子が曝される。隙間の発生に
は種々の要因が挙げられるが、その一つとして封止缶5
と透明基板1を接着するために封止面に塗布した接着剤
が塗布後の熱硬化過程で封止面から剥離しやすくなるこ
とがある。接着剤の剥離は、熱硬化処理時に生じる封止
缶素材の熱膨張,封止缶の残留応力等が原因である。
However, if the adhesion between the sealing can 5 and the transparent substrate 1 is insufficient, invasion of outside air, which causes a reduction in light emission lifetime, cannot be avoided. Specifically, when a gap is formed in the bonding interface 6 for some reason, outside air enters the inside of the sealing can 5 through the gap, and the organic EL element is exposed to oxygen and moisture contained in the outside air. . There are various factors in the generation of the gap, one of which is the sealing can 5
In some cases, the adhesive applied to the sealing surface for bonding the transparent substrate 1 to the sealing substrate may be easily separated from the sealing surface during the thermosetting process after the application. The peeling of the adhesive is caused by the thermal expansion of the sealing can material and the residual stress of the sealing can, which occur during the thermosetting treatment.

【0004】[0004]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、熱膨張異方性が
小さな軟質ステンレス鋼を封止缶素材に使用することに
より、熱硬化処理後でも封止缶の形状保持性を高位に維
持し、透明基板に高い気密度で封止接着できる封止缶を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve such a problem, and uses soft stainless steel having a small thermal expansion anisotropy for a sealing can material. It is an object of the present invention to provide a sealing can that maintains the shape retention of the sealing can at a high level even after the thermosetting treatment, and can seal and adhere to a transparent substrate with high air density.

【0005】本発明の有機EL素子用封止缶は、その目
的を達成するため、C:0.10質量%以下,N:0.
05質量%以下に規制されたCr:8.0〜22.0質
量%を含むステンレス鋼板からなり、熱膨張係数の面内
異方性が0.50×10-6/℃以下である封止缶素材で
作製されていることを特徴とする。封止缶素材に使用さ
れるステンレス鋼板は、何れの方向に沿った0.2%耐
力も350N/mm2以下となっていることが好まし
い。
[0005] In order to achieve the object, the sealing can for organic EL device of the present invention has a C content of 0.10% by mass or less, and a N content of 0.
Encapsulation made of a stainless steel sheet containing Cr: 8.0 to 22.0 mass% regulated to not more than 05 mass% and having an in-plane anisotropy of thermal expansion coefficient of not more than 0.50 × 10 −6 / ° C. It is characterized by being made of a can material. The stainless steel sheet used for the sealing can material preferably has a 0.2% proof stress in any direction of 350 N / mm 2 or less.

【0006】[0006]

【作用】接着剤を用いて封止缶5を透明基板1に接着し
有機EL素子を気密封止するとき、作業の容易性から熱
硬化型接着剤として多用されている。透明基板1,封止
缶5の封止面に塗布された熱硬化型接着剤は加熱硬化し
て接着界面6を形成するが、接着剤の熱硬化時に封止缶
材料であるステンレス鋼板が熱膨張する。ステンレス鋼
板の熱膨張特性は、圧延集合組織によって影響を受け、
圧延直交方向に比較して圧延集合組織が長く成長してい
る圧延方向に沿った熱膨張が小さくなる。このような熱
膨張に面内異方性のあるステンレス鋼製封止缶を用いて
有機EL素子を封止すると、熱硬化時の温度上昇,冷却
により封止缶材料が不均一に熱膨張・収縮し、接着界面
6にある接着剤に応力となって残留する。その結果、気
密性を損なう隙間が接着界面6に生じやすくなる。
When the sealing can 5 is adhered to the transparent substrate 1 using an adhesive to hermetically seal the organic EL element, it is frequently used as a thermosetting adhesive because of the easiness of the operation. The thermosetting adhesive applied to the transparent substrate 1 and the sealing surface of the sealing can 5 is heat-cured to form an adhesive interface 6, but when the adhesive is thermoset, the stainless steel sheet as the sealing can material becomes hot. Expands. The thermal expansion characteristics of stainless steel sheets are affected by the rolling texture,
The thermal expansion along the rolling direction in which the rolling texture grows longer than in the direction perpendicular to the rolling becomes smaller. When an organic EL device is sealed using a stainless steel sealing can having in-plane anisotropy in thermal expansion, the sealing can material undergoes uneven thermal expansion and cooling due to temperature rise and cooling during thermosetting. It shrinks and remains in the adhesive at the bonding interface 6 as stress. As a result, a gap that impairs airtightness is likely to be formed at the bonding interface 6.

【0007】封止缶5は、ステンレス鋼板の成形加工に
よって作製されるが、加工応力が封止缶材料に残留して
いる。ところが、接着時に封止缶5を加熱すると残留応
力がスプリングバック力として解放され、封止缶5を歪
変形させる原因となる。封止缶5の歪変形は、封止面5
a/透明基板1の間隙を不規則に変動させる。この間隙
変動も、接着界面6に隙間を発生させる要因である。
[0007] The sealing can 5 is manufactured by forming a stainless steel plate, but processing stress remains in the sealing can material. However, when the sealing can 5 is heated at the time of bonding, the residual stress is released as a springback force, which causes the sealing can 5 to be deformed. The deformation of the sealing can 5 is caused by the deformation of the sealing surface 5.
a / The gap of the transparent substrate 1 is fluctuated irregularly. This gap variation is also a factor that causes a gap at the bonding interface 6.

【0008】本発明者等は、このような封止缶5及び接
着時における特有の現象を解明した結果、熱膨張係数の
面内異方性が0.50×10-6/℃以下のステンレス鋼
板を封止缶素材に使用することが接着界面6の隙間発生
防止に有効であることを見出した。また、組成の調整に
よって、封止缶形状への塑性加工時に変形応力が歪伝播
で解消される(換言すると、形状凍結性が良好な)軟質
ステンレス鋼を封止缶素材に使用すると、成形加工後の
封止缶5や接着剤の熱硬化時に生じるスプリングバック
が小さく、一定した厚みの接着界面6が形成され、気密
性に優れた封止接着部が得られることを見出した。
As a result of elucidating such a phenomenon peculiar to the sealing can 5 and bonding, the inventors of the present invention have found that stainless steel having an in-plane anisotropy of thermal expansion coefficient of 0.50 × 10 −6 / ° C. or less. It has been found that the use of a steel sheet as a material for a sealing can is effective in preventing the generation of a gap at the bonding interface 6. In addition, by adjusting the composition, the deformation stress is eliminated by strain propagation during plastic working to the shape of the sealing can (in other words, when soft stainless steel having good shape freezing properties) is used for the sealing can material, the forming process becomes difficult. It has been found that a small amount of springback occurs when the sealing can 5 or the adhesive is thermally cured later, the bonding interface 6 having a constant thickness is formed, and a sealed bonded portion having excellent airtightness can be obtained.

【0009】本発明で封止缶素材として使用するステン
レス鋼板は、C:0.10質量%以下,N:0.05質
量%以下に規制され、Cr含有量が8.0〜22.0質
量%の範囲にある軟質ステンレス鋼板であり、熱膨張係
数の面内異方性が0.50×10-6/℃以下に抑えられ
ている。熱膨張係数の面内異方性は、圧延方向(L方
向),圧延方向に直交する方向(T方向),圧延方向に
対して45度の方向(D方向)に沿って測定した熱膨張
係数の最大値と最小値の差で表される。
The stainless steel sheet used as the sealing can material in the present invention is restricted to C: 0.10% by mass or less, N: 0.05% by mass or less, and has a Cr content of 8.0 to 22.0%. %, And the in-plane anisotropy of the coefficient of thermal expansion is suppressed to 0.50 × 10 −6 / ° C. or less. The in-plane anisotropy of the thermal expansion coefficient is the coefficient of thermal expansion measured along the rolling direction (L direction), a direction perpendicular to the rolling direction (T direction), and a direction at 45 degrees to the rolling direction (D direction). It is expressed by the difference between the maximum and minimum values of

【0010】Cは、フェライト系では析出炭化物が最終
焼鈍時の均一再結晶核形成に有効に寄与し、オーステナ
イト系では固溶Cが最終焼鈍時の再結晶核形成に有効に
寄与するが、0.10質量%を超える過剰量のC含有は
ステンレス鋼板の耐力を上昇させ形状凍結性が損なわれ
る。Nは、Cと同様に均一再結晶核発生サイトとなる
が、0.05質量%を超える過剰量のNが含まれると延
性が低下し、精度良好な封止缶形状への成形が困難にな
る。Crは、ステンレス鋼板としての耐食性を確保する
上で8.0質量%以上を必要とするが、22.0質量%
を超える過剰量のCr含有は耐力上昇に起因してスプリ
ングバックが増加し形状凍結性を維持できなくなる。
In the case of C, precipitated carbides effectively contribute to the formation of uniform recrystallization nuclei at the time of final annealing in the case of ferrite, and solid solution C effectively contributes to the formation of recrystallization nuclei during the time of final annealing in the case of austenite. An excessive C content exceeding .10% by mass increases the yield strength of the stainless steel sheet and impairs the shape freezing property. N becomes a uniform recrystallization nucleus generation site similarly to C. However, if an excessive amount of N exceeding 0.05% by mass is included, ductility is reduced, and it is difficult to form a highly accurate sealing can shape. Become. Cr requires 8.0% by mass or more to secure corrosion resistance as a stainless steel sheet, but 22.0% by mass.
If the Cr content is excessive, the springback increases due to the increase in the yield strength, and the shape freezing property cannot be maintained.

【0011】熱膨張係数の面内異方性は、圧延集合組織
が過度に発達しない条件下で圧延することにより0.5
0×10-6/℃以下に抑えられる。具体的には、熱延時
に十分なバッチ焼鈍を施してフェライトの再結晶化を促
進させ、或いはオーステナイト+フェライト二相域で焼
鈍してフェライト凝固組織をオーステナイトで分断した
状態で冷間圧延することにより凝固組織の集合組織を破
壊した後、仕上げ焼鈍する方法が採用される。
[0011] The in-plane anisotropy of the coefficient of thermal expansion can be reduced to 0.5 by rolling under conditions where the rolling texture does not excessively develop.
It can be suppressed to 0 × 10 −6 / ° C. or less. Specifically, sufficient batch annealing is performed during hot rolling to promote recrystallization of ferrite, or cold rolling is performed in a state where the ferrite solidification structure is separated by austenite by annealing in the austenite + ferrite two-phase region. Then, after the texture of the solidification structure is destroyed, a method of finish annealing is adopted.

【0012】更に、L方向,T方向,D方向に対して4
5度方向の何れの方向に沿った0.2%耐力も350N
/mm2以下となるように、0.2%耐力の面内異方性
を調整するとき、スプリングバックが抑えられ、熱硬化
処理後も接着界面6が一定した間隙で、気密性に優れた
封止接着部が得られる。0.2%耐力の面内異方性を抑
える手段には、たとえばバッチ焼鈍時に炭化物を十分析
出させ、冷間圧延後の仕上げ焼鈍時に炭化物を核生成サ
イトに利用してフェライトの生成を促進させる方法が採
用される。
[0012] Further, 4 directions for the L direction, the T direction and the D direction.
350N 0.2% proof stress along any of the 5 degree directions
When the in-plane anisotropy of 0.2% proof stress is adjusted so as to be equal to or less than / mm 2 , springback is suppressed, and the adhesive interface 6 is a uniform gap even after the thermosetting treatment, and has excellent airtightness. A sealing bond is obtained. Means for suppressing in-plane anisotropy of 0.2% proof stress include, for example, sufficient precipitation of carbides during batch annealing, and use of the carbides as nucleation sites during finish annealing after cold rolling to promote ferrite formation. A method is adopted.

【0013】[0013]

【実施例】表1に示した組成をもつ各種ステンレス鋼を
真空溶解炉で溶製し、鍛造,熱延工程を経て板厚3.0
mmの熱延板を製造した。表中、Aグループが本発明で
規定した条件を満足するステンレス鋼、Bグループが本
発明で規定した条件を外れるステンレス鋼である。
EXAMPLES Various stainless steels having the compositions shown in Table 1 were melted in a vacuum melting furnace and subjected to forging and hot rolling processes to obtain a sheet thickness of 3.0.
mm hot rolled sheet was manufactured. In the table, Group A is a stainless steel satisfying the conditions specified in the present invention, and Group B is a stainless steel out of the conditions specified in the present invention.

【0014】 [0014]

【0015】各熱延板を1段又は多段で冷間圧延し、最
終的に板厚0.5mmの冷延焼鈍板を製造した。多段で
冷間圧延する場合、中間焼鈍を介在させた。表2は、こ
のときの冷延・焼鈍条件を示す。
Each hot-rolled sheet was cold-rolled in one step or in multiple steps to finally produce a cold-rolled annealed sheet having a thickness of 0.5 mm. When performing cold rolling in multiple stages, intermediate annealing was interposed. Table 2 shows the cold rolling and annealing conditions at this time.

【0016】 [0016]

【0017】得られた冷延焼鈍板から試験片を切り出
し、以下の方法で熱膨張係数,0.2%耐力を測定する
と共に、ガラス密着試験に供した。 〔熱膨張係数の測定〕L方向,T方向,D方向に沿って
冷延焼鈍板から切り出した板幅20mm,長さ100m
mの短冊状試験片を加熱速度1℃/分で150℃まで加
熱し、昇温時30℃→130℃の100℃間温度域にお
ける熱膨張係数を求めた。L方向,T方向,D方向の三
方向で求めた測定された熱膨張係数の最大値と最小値の
差分を熱膨張係数の面内異方性Δαとして算出した。
A test piece was cut out from the obtained cold-rolled annealed sheet, and the coefficient of thermal expansion and 0.2% proof stress were measured by the following methods, and the specimen was subjected to a glass adhesion test. [Measurement of coefficient of thermal expansion] A sheet cut from a cold-rolled annealed sheet along the L direction, T direction, and D direction, width 20 mm, length 100 m
m was heated to 150 ° C. at a heating rate of 1 ° C./min, and the coefficient of thermal expansion in a temperature range of 30 ° C. → 130 ° C. and 100 ° C. was determined. The difference between the maximum value and the minimum value of the measured thermal expansion coefficients obtained in the three directions L, T, and D was calculated as the in-plane anisotropy Δα of the thermal expansion coefficient.

【0018】〔0.2%耐力の測定〕L方向,T方向,
D方向に沿って冷延焼鈍板から切り出したJIS 13
B号試験片に歪速度3.3×10-4で引張歪を与えた
後、各方向ごとに0.2%耐力を測定した。三方向の
0.2%耐力のうち、最大値を0.2%耐力とした。 〔ガラス密着試験〕ステンレス鋼板をプレス成形し、有
効幅w:50mmの正方形空間を区画する封止缶5を作
製した。メタクリル酸エステル系接着剤を用いて封止缶
5をガラス基板(透明基板1)に固着した後、一定圧力
で封止缶5をガラス基板に1時間押し付け、150℃×
1時間で熱硬化処理した。接着剤の熱硬化後に、ガラス
基板/接着剤層/封止間の界面を光学顕微鏡で観察し、
界面剥離の有無によって気密接着性を評価した。
[Measurement of 0.2% proof stress]
JIS 13 cut out from a cold-rolled annealed plate along the direction D
After tensile strain was applied to the No. B test piece at a strain rate of 3.3 × 10 −4 , the 0.2% proof stress was measured in each direction. Of the 0.2% proof stresses in three directions, the maximum value was defined as 0.2% proof stress. [Glass Adhesion Test] A stainless steel plate was press-molded to produce a sealing can 5 that defines a square space having an effective width w of 50 mm. After the sealing can 5 is fixed to the glass substrate (transparent substrate 1) using a methacrylic acid ester-based adhesive, the sealing can 5 is pressed against the glass substrate at a constant pressure for 1 hour, and is heated at 150 ° C. ×
Heat curing was performed for 1 hour. After thermosetting the adhesive, observe the interface between the glass substrate / adhesive layer / sealing with an optical microscope,
Hermetic adhesion was evaluated by the presence or absence of interfacial peeling.

【0019】表3の試験結果にみられるように、熱膨張
係数の面内異方性Δαが0.50×10-6/℃以下で
0.2%耐力が350N/mm2以下のステンレス鋼板
を封止缶素材とした本発明例では、有機EL素子の発光
特性劣化の原因である隙間が接着界面6に検出されず、
ガラス基板に対する気密接着性に優れ、有機EL素子用
封止缶としての要求特性を十分に満足していた。他方、
熱膨張係数の面内異方性Δαが0.50×10-6/℃を
超える比較例では、接着界面6に剥離が検出された。剥
離の発生は、熱膨張係数の面内異方性Δαが大きいため
生じた局部的な不均一歪が接着剤の剪断強度を超えたこ
とに原因があるものと推察される。
As can be seen from the test results in Table 3, a stainless steel sheet having an in-plane anisotropy Δα of thermal expansion coefficient of 0.50 × 10 −6 / ° C. or less and a 0.2% proof stress of 350 N / mm 2 or less. In the example of the present invention in which is used as a sealing can material, a gap which is a cause of deterioration of the light emitting characteristics of the organic EL element is not detected at the bonding interface 6, and
It was excellent in hermetic adhesion to a glass substrate and sufficiently satisfied the required characteristics as a sealing can for an organic EL device. On the other hand,
In Comparative Examples in which the in-plane anisotropy Δα of the coefficient of thermal expansion exceeded 0.50 × 10 −6 / ° C., peeling was detected at the bonding interface 6. It is presumed that the occurrence of peeling was caused by local uneven strain caused by the large in-plane anisotropy Δα of the thermal expansion coefficient exceeding the shear strength of the adhesive.

【0020】 [0020]

【0021】[0021]

【発明の効果】以上に説明したように、本発明のステン
レス鋼製有機EL素子用封止缶は、高い気密性で透明基
板に接着され、透明基板/封止缶の接着界面を介して内
部に侵入する酸素,水分等による有機EL素子の発光特
性劣化が防止される。また、封止缶材料が形状凍結性に
優れたステンレス鋼であるため、薄型化に伴って過酷な
寸法精度が要求される有機EL素子用の封止缶として好
適に使用される。
As described above, the sealing can for a stainless steel organic EL device of the present invention is adhered to a transparent substrate with high airtightness, and the interior is sealed via the bonding interface between the transparent substrate and the sealing can. Of the organic EL element is prevented from deteriorating due to oxygen, moisture and the like penetrating into the substrate. Further, since the sealing can material is stainless steel having excellent shape freezing properties, it is suitably used as a sealing can for an organic EL element which requires severe dimensional accuracy as the thickness is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 封止缶で封止した有機EL素子の層構造を示
す断面図
FIG. 1 is a cross-sectional view showing a layer structure of an organic EL device sealed with a sealing can.

【符号の説明】[Explanation of symbols]

1:透明基板 2:透明電極 3:有機発光層
4:背面電極 5:封止缶 5a:封止面 6:
接着界面
1: transparent substrate 2: transparent electrode 3: organic light emitting layer
4: Back electrode 5: Sealing can 5a: Sealing surface 6:
Adhesive interface

フロントページの続き (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社ステンレス事業本部内 Fターム(参考) 3K007 AB11 AB13 AB18 BB01 CA01 CB01 DA01 DB03 EB00 FA02Continued on the front page (72) Inventor Naoto Hiramatsu 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Prefecture F-term (reference) 3N007 AB11 AB13 AB18 BB01 CA01 CB01 DA01 DB03 EB00 FA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.10質量%以下,N:0.05
質量%以下に規制されたCr:8.0〜22.0質量%
を含むステンレス鋼板からなり、熱膨張係数の面内異方
性が0.50×10-6/℃以下である封止缶素材で作製
されていることを特徴とするステンレス鋼製有機EL素
子用封止缶。
1. C: 0.10% by mass or less, N: 0.05
Cr controlled to not more than mass%: 8.0 to 22.0 mass%
For a stainless steel organic EL element, which is made of a sealing can material having a coefficient of thermal expansion of in-plane anisotropy of 0.50 × 10 −6 / ° C. or less. Sealed cans.
【請求項2】 鋼板面内何れの方向に沿った0.2%耐
力も350N/mm 2以下であるステンレス鋼板を封止
缶素材とした請求項1記載のステンレス鋼製有機EL素
子用封止缶。
2. A 0.2% resistance along any direction in the plane of the steel sheet.
Force is 350N / mm TwoSealed stainless steel plate which is below
2. The organic EL element made of stainless steel according to claim 1, which is a can material.
Sealing can for child.
JP2001176777A 2001-06-12 2001-06-12 Sealing can for stainless-steel organic el element Pending JP2002367772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176777A JP2002367772A (en) 2001-06-12 2001-06-12 Sealing can for stainless-steel organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176777A JP2002367772A (en) 2001-06-12 2001-06-12 Sealing can for stainless-steel organic el element

Publications (1)

Publication Number Publication Date
JP2002367772A true JP2002367772A (en) 2002-12-20

Family

ID=19017714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176777A Pending JP2002367772A (en) 2001-06-12 2001-06-12 Sealing can for stainless-steel organic el element

Country Status (1)

Country Link
JP (1) JP2002367772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454606C (en) * 2004-09-30 2009-01-21 清华大学 Organic electroluminescent element
WO2020207100A1 (en) * 2019-04-12 2020-10-15 南京福仕保新材料有限公司 Structure having effects of improving packaging efficiency and detecting packaging effect in organic electronic device packaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
JPH1094968A (en) * 1996-09-24 1998-04-14 Nisshin Steel Co Ltd Grinding wheel for polishing high chromium ferrite stainess steel
JP2000040585A (en) * 1998-07-21 2000-02-08 Tdk Corp Organic el element module
JP2000169952A (en) * 1998-12-04 2000-06-20 Sumitomo Metal Ind Ltd Production of austenitic stainless steel sheet excellent in pitting corrosion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008216A1 (en) * 1996-08-19 1998-02-26 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension and its manufacture
JPH1094968A (en) * 1996-09-24 1998-04-14 Nisshin Steel Co Ltd Grinding wheel for polishing high chromium ferrite stainess steel
JP2000040585A (en) * 1998-07-21 2000-02-08 Tdk Corp Organic el element module
JP2000169952A (en) * 1998-12-04 2000-06-20 Sumitomo Metal Ind Ltd Production of austenitic stainless steel sheet excellent in pitting corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454606C (en) * 2004-09-30 2009-01-21 清华大学 Organic electroluminescent element
WO2020207100A1 (en) * 2019-04-12 2020-10-15 南京福仕保新材料有限公司 Structure having effects of improving packaging efficiency and detecting packaging effect in organic electronic device packaging

Similar Documents

Publication Publication Date Title
US10864596B2 (en) Metal laminate material and production method therefor
JP6713932B2 (en) Aluminum foil, electronic device, roll-to-roll aluminum foil, and method for manufacturing aluminum foil
JP6681019B2 (en) Sputtering target material for forming laminated wiring film and coating layer for electronic parts
TWI568576B (en) Stainless steel foil and manufacturing method thereof
CN103348036B (en) Al base alloy sputtering target and Cu base alloy sputtering target
EP3219818A1 (en) Magnesium alloy and preparation method and use thereof
US20060186798A1 (en) Organic electroluminescent element and process for its manufacture
JP4022891B2 (en) Al alloy film for wiring film and sputtering target material for forming wiring film
US20160345425A1 (en) Wiring film for flat panel display
TW201510247A (en) Sputtering target for forming protective film, and laminated wiring film
KR20150084670A (en) Sputtering target meterial, method of manufacturing sputtering target material and wiring laminated body
JP2002367772A (en) Sealing can for stainless-steel organic el element
JP6706418B2 (en) Sputtering target material for forming laminated wiring film and coating layer for electronic parts
EP3219819B1 (en) Magnesium alloy and preparation method and use thereof
TWI601281B (en) A wiring structure for an organic electroluminescence display that includes a
JP2015061933A (en) Sputtering target material for forming coating layer, and manufacturing method thereof
WO2021117302A1 (en) Aluminum alloy target, aluminum alloy wiring film, and method for producing aluminum alloy wiring film
JP5207120B2 (en) Wiring and electrodes for liquid crystal display devices with no thermal defects and excellent adhesion
CN103500804B (en) A kind of film and preparation method thereof, light-emitting display device
WO2006132166A1 (en) Cladding material for discharge electrode, process for producing the same and discharge electrode
JP2006003775A (en) Display substrate
WO2003063194A1 (en) Glass bulb for cathode ray tube and method for manufacturing the same
TW583316B (en) High strength galvannealed steel sheet having an excellent formability and method for producing the same
US20070026647A1 (en) Method for forming polycrystalline silicon thin film
JP6582159B1 (en) Insulating substrate and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928