JP2002367555A - Vacuum device made of aluminum alloy - Google Patents

Vacuum device made of aluminum alloy

Info

Publication number
JP2002367555A
JP2002367555A JP2002034223A JP2002034223A JP2002367555A JP 2002367555 A JP2002367555 A JP 2002367555A JP 2002034223 A JP2002034223 A JP 2002034223A JP 2002034223 A JP2002034223 A JP 2002034223A JP 2002367555 A JP2002367555 A JP 2002367555A
Authority
JP
Japan
Prior art keywords
aluminum alloy
vacuum
negative electrode
extraction electrode
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002034223A
Other languages
Japanese (ja)
Inventor
Koji Kamimura
浩司 上村
Mitsuaki Ikeda
満昭 池田
Yoshifusa Tsubone
嘉房 坪根
Nobuhiko Ota
暢彦 大田
Shinji Shinabe
慎治 品部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002034223A priority Critical patent/JP2002367555A/en
Publication of JP2002367555A publication Critical patent/JP2002367555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum device made of an aluminum alloy having a high ionization efficiency and achieving high exhaust rate. SOLUTION: The vacuum device made of an aluminum alloy includes a vacuum container made of the aluminum alloy formed with cathodes 36 packed in pores 35 in an anodic oxide film 33 formed on the vacuum side surface of the vacuum container, and also with extraction electrodes 37 provided on the surface of the anodic oxide film, the cathodes emitting electrons upon field emission; cathode terminals for applying voltages to the cathodes; extraction electrode terminals for applying voltages to the extraction electrodes; and a driving power source for applying voltages to both poles of the cathodes and the extraction electrodes. The cathode is made of a magnetic material magnetized in the longitudinal direction of the pores. In place of the magnetized cathodes, the extraction electrode 37 may be in the form of a circumferentially formed coil to produce a magnetic field in the direction of the axis of the vacuum container.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空熱処理炉、各
種分析装置、加速器、半導体製造装置等に使用される真
空装置に関し、特に真空容器全体が真空ポンプとしての
機能を有するアルミニウム合金製の真空装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum apparatus used in a vacuum heat treatment furnace, various analyzers, accelerators, semiconductor manufacturing apparatuses, and the like. Related to the device.

【0002】[0002]

【従来の技術】従来、排気機能の高効率化を目的とした
真空装置として、図6に示すようなものが提案されてい
る(特開平10-228880 )。図6は、従来のアルミニウム
合金製真空装置を示す断面の斜視図である。図におい
て、1は架台、2は絶縁体、3はアルミニウム合金製真
空容器である。アルミニウム合金製真空容器3は、アル
ミ合金製の基体31からなり、内外周面は陽極酸化処理
を施し、陽極酸化皮膜33、34を形成している。真空
側に施した陽極酸化皮膜33(図6中A部)を拡大した
ものを図7に示す。陽極酸化皮膜33は、基体31真空
側のバリア層32のさらに真空側に形成されている。陽
極酸化皮膜33に存在する微細孔35中には、電界放射
を行う電極材料として金属鉄を析出させ陰電極36とし
て用いている。さらに、陽極酸化皮膜33の真空側に、
導電性の引出し電極37が全面に配設されている。引出
し電極37は、陰電極36から放出された電子を引き出
す。そして、陰電極36に電圧を印加する陰電極用端子
41および引出し電極用端子42を設けている。なお、
引出し電極用端子42は、基体31などから絶縁して設
けている。陰電極用端子41および引出し電極用端子4
2は、駆動電源61に接続し電位を加えられるようにして
いる。さらに、アルミニウム合金製真空容器3内の排気
口の近くに、イオン回収用のイオン電極5を配置し、同
イオン電極を駆動するイオン電極用電源62を配置して
いる。なお、陰電極36に駆動電圧を印加する陰電極用
端子41および引出し電極用端子42は、駆動電源61
に接続されている。陰電極36および引出し電極37
に、駆動電源61から電圧を印加して駆動すると、真空
側に形成された陽極酸化皮膜33の微細孔中に形成され
た陰電極36から放出した電子によって,真空装置中の
残存ガスをイオン化し,このイオンを排気口近傍に設け
たイオン電極5へ電界の力で導き、排気を加速する作用
を有している。
2. Description of the Related Art Conventionally, a vacuum apparatus as shown in FIG. 6 has been proposed as a vacuum apparatus for improving the efficiency of an exhaust function (Japanese Patent Laid-Open No. 10-228880). FIG. 6 is a perspective view of a cross section showing a conventional aluminum alloy vacuum device. In the figure, 1 is a base, 2 is an insulator, and 3 is a vacuum vessel made of an aluminum alloy. The vacuum vessel 3 made of an aluminum alloy is composed of a base 31 made of an aluminum alloy, and the inner and outer peripheral surfaces are subjected to anodizing treatment to form anodized films 33 and 34. FIG. 7 shows an enlarged view of the anodic oxide film 33 (part A in FIG. 6) applied on the vacuum side. The anodic oxide film 33 is formed on the vacuum side of the barrier layer 32 on the vacuum side of the substrate 31. In the fine holes 35 present in the anodic oxide film 33, metallic iron is deposited as an electrode material for emitting electric field and used as a negative electrode 36. Further, on the vacuum side of the anodic oxide film 33,
A conductive extraction electrode 37 is provided on the entire surface. The extraction electrode 37 extracts electrons emitted from the negative electrode 36. A negative electrode terminal 41 for applying a voltage to the negative electrode 36 and a lead electrode terminal 42 are provided. In addition,
The lead electrode terminal 42 is provided insulated from the base 31 and the like. Negative electrode terminal 41 and lead electrode terminal 4
2 is connected to a drive power supply 61 so that a potential can be applied. Further, an ion electrode 5 for collecting ions is arranged near the exhaust port in the vacuum vessel 3 made of aluminum alloy, and a power supply 62 for the ion electrode for driving the ion electrode is arranged. The negative electrode terminal 41 for applying a drive voltage to the negative electrode 36 and the extraction electrode terminal 42 are connected to a drive power supply 61.
It is connected to the. Negative electrode 36 and extraction electrode 37
When a voltage is applied from the drive power supply 61 to the electrode, the residual gas in the vacuum device is ionized by electrons emitted from the negative electrode 36 formed in the fine holes of the anodic oxide film 33 formed on the vacuum side. The ions are guided to the ion electrode 5 provided near the exhaust port by the force of the electric field to accelerate the exhaust.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の真空
装置においては、陰電極から放出された電子は排気口近
くに配置された電極に向かって直進する。従って,飛行
距離が小さいためにガスとの衝突確率が低い。そのため
にイオン化に寄与する電子が少なかった。イオン化の効
率を向上させるには、放出電子と磁界の組み合わせるこ
とが考えられる。これは、放出電子が磁界を横切る時に
回転運動を起こし飛行距離が長くなり、ガスとの衝突確
立が増加しイオン化を促進する。磁界をかける方法とし
て,真空容器の周囲に磁界発生用コイルを設けた方法が
考えられる。しかし,装置が大きくなるうえ,取り扱い
も不便となる。例えば真空チャンバとして使用する場
合,真空内に物を出し入れする。その際,コイルが真空
装置の周りに有ると邪魔になり操作が不便となる。さら
に、バリア層が十分厚い場合には、MIM(Metal-Insu
lator-Metal)構造となるため、極めて微量の電流しか
得られず、また十分な電流を得ようとすれば引き出し電
圧を極めて高くする必要があり実用性を極めて狭くして
いた。そこで、本発明は磁界の印加方法及び、陰電極周
辺の層構造を工夫することにより、イオン化効率が高
く、排気速度の速いアルミニウム合金製真空装置を提供
することを目的とする。
However, in the conventional vacuum device, the electrons emitted from the negative electrode travel straight toward the electrode arranged near the exhaust port. Accordingly, the probability of collision with gas is low because the flight distance is short. Therefore, the number of electrons contributing to ionization was small. In order to improve the efficiency of ionization, a combination of emitted electrons and a magnetic field can be considered. This causes rotational movement of the emitted electrons as they traverse the magnetic field, increasing the flight distance, increasing the probability of collision with the gas and promoting ionization. As a method of applying a magnetic field, a method in which a magnetic field generating coil is provided around a vacuum vessel is considered. However, the device becomes large and handling becomes inconvenient. For example, when used as a vacuum chamber, objects are put in and out of vacuum. At that time, if the coil is around the vacuum device, it becomes an obstacle and the operation becomes inconvenient. Further, when the barrier layer is sufficiently thick, the MIM (Metal-Insu
Because it has a lator-metal structure, only a very small amount of current can be obtained, and in order to obtain a sufficient current, the extraction voltage must be extremely high, and the practicality is extremely narrow. Accordingly, an object of the present invention is to provide an aluminum alloy vacuum device having a high ionization efficiency and a high pumping speed by devising a method of applying a magnetic field and a layer structure around a negative electrode.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、 本発明は真空容器の真空側表面に形成された陽極酸
化皮膜の微細孔中に充填され電界放射によって電子を放
出する陰電極と前記陽極酸化皮膜の表面に設けた引出し
電極とが形成されているアルミニウム合金製真空容器
と、前記陰電極に電圧を印加する陰電極用端子と、前記
引出し電極に電圧を印加する引出し電極用端子と、前記
陰電極および引出し電極の両極に電圧を印加する駆動電
源とを有するアルミニウム合金製真空装置において、前
記陰電極を前記微細孔の長さ方向に磁化した磁性体で構
成している。本構成により、陰電極の先端から放出され
る電子が磁界を横切る時にサイクロトロン運動によって
電子が回転するので,直進する電子に比べ残留ガスと衝
突確率が増加し、したがって、排気速度が向上する。ま
た、前記引出し電極を、前記アルミニウム合金製真空容
器の中心軸長方向に磁界を発生するように周方向に形成
したコイル形状の構成にしてもよい。本構成により、引
出し電極に電流が流れると放出された電子は、ローレン
ツ力を受け、ほぼ磁界に対して垂直方向に飛行するた
め、磁界が発生していないときよりも長い軌道を有する
ようになる。すなわち、真空容器内に存在する排気すべ
き気体分子等に衝突しイオン化する確率が上昇する。さ
らに、イオン化した気体分子が増加することにより、真
空容器内分子等が排気口に移動し速やかに排気されるよ
うになる。さらに、前記陰電極用端子と接するバリア層
を極めて薄くすることにより、放出電子の量が増えるの
で排気すべきイオン化ガス分子量が増え、前述の効果を
より良くし、排気がより早くなる。
In order to solve the above-mentioned problems, the present invention relates to a negative electrode which fills fine holes of an anodic oxide film formed on the vacuum side surface of a vacuum vessel and emits electrons by electric field radiation. An aluminum alloy vacuum vessel in which an extraction electrode provided on the surface of the anodic oxide film is formed, a negative electrode terminal for applying a voltage to the negative electrode, and an extraction electrode terminal for applying a voltage to the extraction electrode. In a vacuum apparatus made of an aluminum alloy having a driving power supply for applying a voltage to both of the cathode and the extraction electrode, the cathode is made of a magnetic material magnetized in the length direction of the fine holes. With this configuration, when electrons emitted from the tip of the negative electrode cross the magnetic field, the electrons rotate by cyclotron motion, so that the probability of collision with the residual gas increases as compared with straight-ahead electrons, and therefore, the pumping speed improves. Further, the extraction electrode may have a coil-shaped configuration formed in a circumferential direction so as to generate a magnetic field in a central axis length direction of the aluminum alloy vacuum vessel. With this configuration, when a current flows through the extraction electrode, the emitted electrons receive the Lorentz force and fly in a direction substantially perpendicular to the magnetic field, and thus have a longer trajectory than when no magnetic field is generated. . That is, the probability of collision with gas molecules to be evacuated and the like existing in the vacuum vessel and ionization increases. Further, as the number of ionized gas molecules increases, molecules in the vacuum vessel move to the exhaust port and are quickly exhausted. Further, by making the barrier layer in contact with the negative electrode terminal extremely thin, the amount of emitted electrons increases, so that the molecular weight of the ionized gas to be exhausted increases, and the above-described effect is further improved, and the exhaust becomes faster.

【0005】[0005]

【発明の実施の形態】本発明の実施の形態を実施例に示
す図に基づいて詳細に説明する。 (第1実施例)本発明の第1実施例を図1に示す。図1
は本発明の陰電極の部分を拡大した模式図である。図に
おいて、36は陰電極、37は引出し電極である。他の
符号については、従来のアルミニウム合金製真空装置と
同じである。アルミニウム合金製真空容器3の基体31
は、ジュラルミンからなり、内外周面にアルマイト処理
を施している。陽極酸化皮膜33中の陰電極36は、強
磁性体としてコバルトを析出させて、微細孔35の長さ
方向に磁界を発生する永久磁石となるようにしている。
陽極酸化皮膜33および陰電極36はつぎの方法で形成
した。 (1) アルマイト処理すべき部分を15重量%の硫酸液に
浸漬し、液温20℃、電流密度1.5A/dm2、15
分間陽極処理を行った。陽極酸化皮膜33の厚さは10
μm、微細孔35の直径は300オングストロームであ
った。 (2) つぎに、5%−CoSO4 ・H2 Oに2%−H3
BO3 の溶液をpH6.0となるようにして、攪拌し
ながら15V、50Hzの交流を10分程度印加し金属
コバルトを析出させた。 (3) 内周面の陽極酸化皮膜33の上に、Alを真空中で
線爆溶射により引出し電極37を形成した。 (4) 引出し電極作製後、希土類からなる永久磁石を近づ
けて陰電極36の着磁を行った。図の矢印は磁化の方向
を示すものである。 このようにして作製したアルミニウム合金製真空容器3
を架台1の上に設けた絶縁体2の上に配置して、真空排
気装置を組み立てた。排気用ポンプにはロータリポンプ
とターボ分子ポンプを使用した。つぎに、本発明の真空
装置の性能を排気速度により調べた。なお、比較のた
め、従来と同じ容積のアルマイト処理のみをしたアルミ
ニウム合金製真空容器3を加えた。駆動条件は引出し電
極37と陰電極36間の電位差を60Vとし、排気口近
くのイオン電極7に600Vを印加した状態とした。そ
の結果を図3に示す。目標の圧力に到達する排気時間
は、本実施例は従来例に比べて数倍速くなっており、優
れた効果のあることが分かる。これは、陰電極36の先
端から漏れ出る磁界により,同じく先端から出る電子が
サイクロトロン運動を起こし真空容器の壁から発生する
残留ガスと衝突してイオン化するため、排気速度が速く
なるものと考えられる。また、陰電極自体が磁界を発す
る構造の一部をになっているため、各々の陰電極近傍に
別途精密に磁石等を位置あわせなくとも良いという効果
も併せ持つ。コイルなどの磁界発生装置を使用すること
なく磁界を形成できるので装置の小型化ができる。な
お、本実施例においては陰電極の材料としてコバルトを
用いたが、これに限らずニッケル−コバルトなどのよう
に磁界を発する材料であれば、当然同様な効果が得られ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings shown in the embodiments. (First Embodiment) FIG. 1 shows a first embodiment of the present invention. FIG.
FIG. 2 is a schematic diagram in which the negative electrode portion of the present invention is enlarged. In the figure, 36 is a negative electrode, and 37 is an extraction electrode. Other symbols are the same as those of the conventional aluminum alloy vacuum device. Base 31 of aluminum alloy vacuum vessel 3
Is made of duralumin and has an alumite treatment on the inner and outer peripheral surfaces. The negative electrode 36 in the anodic oxide film 33 is formed by depositing cobalt as a ferromagnetic material so that it becomes a permanent magnet that generates a magnetic field in the length direction of the fine holes 35.
The anodic oxide film 33 and the negative electrode 36 were formed by the following method. (1) A portion to be alumite-treated is immersed in a 15% by weight sulfuric acid solution at a solution temperature of 20 ° C. and a current density of 1.5 A / dm 2, 15
Anodizing was performed for minutes. The thickness of the anodic oxide film 33 is 10
μm, and the diameter of the fine holes 35 was 300 Å. (2) Next, 2% -H3 was added to 5% -CoSO4.H2O.
The solution of BO3 was adjusted to pH 6.0, and an alternating current of 15 V and 50 Hz was applied for about 10 minutes while stirring to deposit metallic cobalt. (3) On the anodic oxide film 33 on the inner peripheral surface, an extraction electrode 37 was formed by wire explosion spraying of Al in vacuum. (4) After the extraction electrode was prepared, the negative electrode 36 was magnetized by approaching a permanent magnet made of rare earth. The arrow in the figure indicates the direction of magnetization. The vacuum vessel 3 made of the aluminum alloy thus produced
Was placed on the insulator 2 provided on the gantry 1 to assemble the evacuation apparatus. A rotary pump and a turbo molecular pump were used as the exhaust pump. Next, the performance of the vacuum apparatus of the present invention was examined based on the pumping speed. For comparison, a vacuum vessel 3 made of an aluminum alloy and having the same volume as that of the prior art and subjected to only alumite treatment was added. The driving conditions were such that the potential difference between the extraction electrode 37 and the negative electrode 36 was 60 V, and 600 V was applied to the ion electrode 7 near the exhaust port. The result is shown in FIG. The evacuation time to reach the target pressure is several times faster in the present embodiment than in the conventional example, and it can be seen that there is an excellent effect. This is presumably because the magnetic field leaking from the tip of the negative electrode 36 causes electrons also emitted from the tip to generate cyclotron motion and collide with the residual gas generated from the wall of the vacuum vessel to be ionized, thereby increasing the exhaust speed. . In addition, since the negative electrode itself forms a part of a structure for generating a magnetic field, there is also an effect that it is not necessary to separately and precisely position a magnet or the like near each negative electrode. Since the magnetic field can be formed without using a magnetic field generating device such as a coil, the size of the device can be reduced. In this embodiment, cobalt is used as the material of the negative electrode. However, the present invention is not limited to this, and any material that generates a magnetic field, such as nickel-cobalt, can provide the same effect.

【0006】(第2実施例)本発明の第2実施例を図3
に示す。図3は本発明の第2実施例を示す真空装置の断
面の斜視図、図4は引出し電極の部分(A部)を拡大し
た模式図である。図において、37はコイル状に形成し
た引出し電極である。他の符号については従来のアルミ
ニウム合金製真空装置と同じである。アルミニウム合金
製真空容器3の基体31は、A5052のアルミニウム
合金からなっている。内外周面に施している陽極酸化皮
膜厚33、34の厚さは10μm、微細孔35の直径は
300オングストロームであった。陰電極36の材料
は、金属鉄である。コイル状の引出し電極37は、つぎ
のように形成した。 (1) 真空容器3の内径より大きい径をもつ鉄製コイル
を、真空容器3の内壁に、らせん状となるように固定し
た。鉄製コイルはバネ性があり外側への復元力があるの
で内壁に固定されマスクとして機能する。コイルターン
数は、500ターンとした。 (2) 真空中でアルミニウムを線爆溶射し、アルミニウム
皮膜を陽極酸化皮膜厚33の表面および鉄製コイルの表
面に形成した。 (3) 鉄製コイルを除去し、コイル状の引出し電極37を
形成した。 このようにして作製したアルミニウム合金製真空容器3
を架台1の上に設けた絶縁体2の上に配置して、真空排
気装置を組み立てた。排気用ポンプにはロータリポンプ
とターボ分子ポンプを使用した。つぎに、本発明の真空
装置の性能を排気速度により調べた。引出し電極37と
陰電極36間の電位差を60Vとした。これは磁界の方
向は排気口側をN 極とし、アルミニウム合金製真空容器
3中心部の磁界を100〜300Oeになるようにし
た。なお、排気口近くのイオン電極7に600Vを印加
した状態とした。比較のため、従来と同じ容積のアルマ
イト処理のみをしたA5052のアルミニウム合金製真
空容器3を加えた。その結果を図5に示す。目標の圧力
に到達する排気時間は、本実施例の方が従来例に比べて
数倍速くなっており、優れた効果のあることが分かっ
た。引出し電極をコイル状としているため、引出し電極
に電流を流すと真空装置の中心軸方向に磁界が発生す
る。その状態で電子が真空中に放出する。磁界の方向
は、電界放出した電子の移動方向とほぼ垂直であるた
め、ローレンツ力により電子は力を受け、磁界が発生し
ていないときよりも長い軌道を有するようになる。した
がって、真空容器内に存在する排気すべき気体分子等に
衝突しイオン化する確率が大きくなりイオン化した気体
分子が増加するので、真空容器内分子等が排気口に移動
し速やかに排気されるようになる。なお、引出し電極を
磁界発生用コイルと併用しているので、別コイルを準備
しなくて良いし,真空容器内側に密着してコイルが形成
されているために真空容器周りでの操作の邪魔にならな
い特徴も併せ持つ。 (第3実施例)本発明の第3実施例について説明する。
本実施例の真空装置の構造は、概観および断面構造とも
第1実施例と同じである。異なる点は、バリア層32の
厚さを10nmとしていることである。比較のため従来
の厚さ100nmのバリア層を形成したものを準備し
た。第1の実施例と同様に排気駆動させ、排気特性を比
較した。その結果、従来のものよりも本実施例のものは
10倍程度排気速度が向上し、良好な結果であることが
分かった。 (第4実施例)本発明の第4実施例について説明する。
本実施例の真空装置の構造は、概観および断面構造とも
第2実施例と同じである。異なる点は、バリア層32の
厚さを1nm以下としていることである。比較のため従
来の厚さ100nmのバリア層を形成したものを準備し
た。第2の実施例と同様に排気駆動させ、排気特性を比
較した。その結果、従来のものよりも本実施例のものは
70倍程度排気速度が向上し、良好な結果であることが
分かった。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention.
Shown in FIG. 3 is a perspective view of a cross section of a vacuum apparatus showing a second embodiment of the present invention, and FIG. 4 is an enlarged schematic view of a portion (A portion) of an extraction electrode. In the figure, reference numeral 37 denotes an extraction electrode formed in a coil shape. Other symbols are the same as those of the conventional aluminum alloy vacuum device. The base 31 of the aluminum alloy vacuum vessel 3 is made of an aluminum alloy of A5052. The thicknesses of the anodic oxide coatings 33 and 34 applied to the inner and outer peripheral surfaces were 10 μm, and the diameter of the fine holes 35 was 300 Å. The material of the cathode 36 is metallic iron. The coiled extraction electrode 37 was formed as follows. (1) An iron coil having a diameter larger than the inner diameter of the vacuum vessel 3 was fixed to the inner wall of the vacuum vessel 3 so as to form a spiral. Since the iron coil has a spring property and a restoring force to the outside, it is fixed to the inner wall and functions as a mask. The number of coil turns was 500 turns. (2) Aluminum was subjected to wire explosion spraying in a vacuum to form an aluminum film on the surface of the anodic oxide film thickness 33 and the surface of the iron coil. (3) The iron coil was removed to form a coiled extraction electrode 37. The aluminum alloy vacuum container 3 thus manufactured
Was placed on the insulator 2 provided on the gantry 1 to assemble the evacuation apparatus. A rotary pump and a turbo molecular pump were used as the exhaust pump. Next, the performance of the vacuum apparatus of the present invention was examined based on the pumping speed. The potential difference between the extraction electrode 37 and the negative electrode 36 was set to 60V. The direction of the magnetic field was such that the exhaust port side was the N pole, and the magnetic field at the center of the aluminum alloy vacuum vessel 3 was 100 to 300 Oe. Note that 600 V was applied to the ion electrode 7 near the exhaust port. For comparison, a vacuum vessel 3 made of an aluminum alloy of A5052 having the same volume as that of the prior art and subjected to only alumite treatment was added. The result is shown in FIG. The evacuation time to reach the target pressure was several times faster in the present example than in the conventional example, and it was found that there was an excellent effect. Since the extraction electrode has a coil shape, a magnetic field is generated in the direction of the central axis of the vacuum device when a current is applied to the extraction electrode. In that state, electrons are emitted into a vacuum. Since the direction of the magnetic field is substantially perpendicular to the moving direction of the field-emitted electrons, the electrons receive a force due to the Lorentz force, and have a longer trajectory than when no magnetic field is generated. Therefore, the probability of collision and ionization with gas molecules to be evacuated existing in the vacuum vessel increases, and ionized gas molecules increase. Become. In addition, since the extraction electrode is used in combination with the magnetic field generating coil, there is no need to prepare a separate coil, and since the coil is formed in close contact with the inside of the vacuum vessel, it hinders operation around the vacuum vessel. It also has features that do not have to be. (Third Embodiment) A third embodiment of the present invention will be described.
The structure of the vacuum device of the present embodiment is the same as that of the first embodiment in both the appearance and the sectional structure. The difference is that the thickness of the barrier layer 32 is 10 nm. For comparison, a substrate having a conventional barrier layer having a thickness of 100 nm was prepared. Exhaust driving was performed in the same manner as in the first embodiment, and the exhaust characteristics were compared. As a result, it was found that the pump of the present embodiment improved the pumping speed by about 10 times compared to the conventional pump, which was a good result. (Fourth Embodiment) A fourth embodiment of the present invention will be described.
The structure of the vacuum apparatus of the present embodiment is the same as that of the second embodiment in both appearance and cross-sectional structure. The difference is that the thickness of the barrier layer 32 is 1 nm or less. For comparison, a substrate having a conventional barrier layer having a thickness of 100 nm was prepared. Exhaust driving was performed in the same manner as in the second embodiment, and the exhaust characteristics were compared. As a result, it was found that the pump of the present embodiment improved the pumping speed by about 70 times as compared with the conventional pump, which was a good result.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、陰
電極を微細孔の長さ方向に磁化した磁性体を用い磁界を
作用させるようにしたので、ガスと電子の衝突確率が増
え、短時間で超高真空が得られる排気速度の速いアルミ
ニウム合金製真空装置を得る効果がある。また、引出し
電極を、アルミニウム合金製真空容器の中心軸長方向に
磁界を発生するように周方向に形成されたコイルの形状
としこれに電圧を印加して磁界を発生させるようにした
ので、上述と同様にガスと電子の衝突確率が増えイオン
化が促進され、排気口に設けた電極の電界により速やか
に排気が行われるため、短時間でクリーンな超高真空が
得られる真空容器を得る効果がある。さらに、陰電極と
陰電極に電圧を印加する陰電極用端子間にあるバリア層
を10nm以下とすることで陰電極から放出される電子
の量が増えるので、排気すべきイオン化ガス分子が増加
し、また陰電極に付着したガスを充分飛ばすことができ
るようになり、真空装置の排気速度をさらに著しく向上
できる効果がある。また、何れの手段においても、コイ
ルなど別体の磁界発生装置を使用することなく磁界を形
成できるので装置の小型化ができる。
As described above, according to the present invention, since the magnetic field is applied by using the magnetic material in which the cathode is magnetized in the longitudinal direction of the fine holes, the probability of collision between gas and electrons is increased. This has the effect of obtaining a vacuum device made of an aluminum alloy with a high evacuation speed that can obtain an ultra-high vacuum in a short time. In addition, the extraction electrode was formed in the shape of a coil formed in a circumferential direction so as to generate a magnetic field in the central axis length direction of the aluminum alloy vacuum vessel, and a voltage was applied to the coil to generate a magnetic field. In the same way as described above, the probability of collision between gas and electrons increases, ionization is promoted, and the gas is quickly exhausted by the electric field of the electrode provided at the exhaust port. is there. Further, by setting the barrier layer between the cathode and the cathode terminal for applying a voltage to the cathode to 10 nm or less, the amount of electrons emitted from the cathode increases, so that the ionized gas molecules to be exhausted increase. In addition, the gas attached to the negative electrode can be sufficiently blown, and the evacuation speed of the vacuum device can be further remarkably improved. Also, in any means, the magnetic field can be formed without using a separate magnetic field generator such as a coil, so that the size of the device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す陰電極の拡大した模
式図である。
FIG. 1 is an enlarged schematic diagram of a negative electrode according to a first embodiment of the present invention.

【図2】第1実施例における真空装置の排気特性を示す
グラフである。
FIG. 2 is a graph showing the exhaust characteristics of the vacuum device in the first embodiment.

【図3】本発明の第2実施例を示す真空装置の断面の斜
視図である。
FIG. 3 is a perspective view of a cross section of a vacuum apparatus showing a second embodiment of the present invention.

【図4】第2実施例における引出し電極を部分拡大した
模式図である。
FIG. 4 is a partially enlarged schematic view of an extraction electrode in a second embodiment.

【図5】第2実施例における真空装置の排気特性を示す
グラフである。
FIG. 5 is a graph showing the exhaust characteristics of the vacuum device in the second embodiment.

【図6】従来の真空容器を示す断面の斜視図である。FIG. 6 is a perspective view of a cross section showing a conventional vacuum vessel.

【図7】従来の引出し電極の部分を拡大した模式図であ
る。
FIG. 7 is an enlarged schematic view of a portion of a conventional extraction electrode.

【符号の説明】[Explanation of symbols]

1:架台 36:陰電極 2:絶縁体 37:引出し電極 3:真空容器 41:陰電極用端
子 31:基体 42:引出し電極
用端子 32:バリア層 5:イオン電極 33:陽極酸化皮膜(真空側) 6:駆動電源 34:陽極酸化皮膜(大気側) 35:微細孔
1: Stand 36: Negative electrode 2: Insulator 37: Extraction electrode 3: Vacuum container 41: Terminal for negative electrode 31: Base 42: Terminal for extraction electrode 32: Barrier layer 5: Ion electrode 33: Anodized film (vacuum side) 6) Drive power supply 34: Anodized film (atmosphere side) 35: Micropore

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大田 暢彦 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 品部 慎治 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 5C038 AA03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Nobuhiko Ota 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture Inside (72) Inventor Shinji Shinbe 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu City, Fukuoka Prefecture No. Yaskawa Electric Co., Ltd. F-term (reference) 5C038 AA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空容器の真空側表面に形成された陽極酸
化皮膜の微細孔中に充填され電界放射によって電子を放
出する陰電極と前記陽極酸化皮膜の表面に設けた引出し
電極とが形成されているアルミニウム合金製真空容器
と、前記陰電極に電圧を印加する陰電極用端子と、前記
引出し電極に電圧を印加する引出し電極用端子と、前記
陰電極および引出し電極の両極に電圧を印加する駆動電
源とを有するアルミニウム合金製真空装置において、 前記陰電極は、前記微細孔の長さ方向に磁化した磁性体
で構成することを特徴とするアルミニウム合金製真空装
置。
1. A negative electrode which is filled in micropores of an anodic oxide film formed on the vacuum side surface of a vacuum vessel and emits electrons by electric field radiation, and an extraction electrode provided on the surface of the anodic oxide film are formed. Aluminum alloy vacuum vessel, a negative electrode terminal for applying a voltage to the negative electrode, an extraction electrode terminal for applying a voltage to the extraction electrode, and applying a voltage to both the negative electrode and the extraction electrode. An aluminum alloy vacuum device having a driving power supply, wherein the negative electrode is made of a magnetic material magnetized in a length direction of the fine hole.
【請求項2】真空容器の真空側表面に形成された陽極酸
化皮膜の微細孔中に充填され電界放射によって電子を放
出する陰電極と前記陽極酸化皮膜の表面に設けた引出し
電極とが形成されているアルミニウム合金製真空容器
と、前記陰電極に電圧を印加する陰電極用端子と、前記
引出し電極に電圧を印加する引出し電極用端子と、前記
陰電極および引出し電極の両極に電圧を印加する駆動電
源とを有するアルミニウム合金製真空装置において、 前記引出し電極は、前記アルミニウム合金製真空容器の
中心軸長方向に磁界を発生するように周方向に形成され
たコイルの形状を成していることを特徴とするアルミニ
ウム合金製真空装置。
2. A negative electrode, which is filled in micropores of an anodic oxide film formed on the vacuum side surface of a vacuum vessel and emits electrons by electric field radiation, and an extraction electrode provided on the surface of the anodic oxide film, are formed. Aluminum alloy vacuum vessel, a negative electrode terminal for applying a voltage to the negative electrode, an extraction electrode terminal for applying a voltage to the extraction electrode, and applying a voltage to both the negative electrode and the extraction electrode. In the aluminum alloy vacuum device having a driving power supply, the extraction electrode has a shape of a coil formed in a circumferential direction so as to generate a magnetic field in a central axis length direction of the aluminum alloy vacuum container. A vacuum device made of an aluminum alloy, characterized by the following.
【請求項3】前記陰電極と陰電極用端子間のバリア層の
厚さを10nm以下としたことを特徴とする請求項1ま
たは2記載のアルミニウム合金製真空装置。
3. The aluminum alloy vacuum apparatus according to claim 1, wherein the thickness of the barrier layer between the cathode and the cathode terminal is set to 10 nm or less.
JP2002034223A 2001-04-05 2002-02-12 Vacuum device made of aluminum alloy Pending JP2002367555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034223A JP2002367555A (en) 2001-04-05 2002-02-12 Vacuum device made of aluminum alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001107413 2001-04-05
JP2001-107413 2001-04-05
JP2002034223A JP2002367555A (en) 2001-04-05 2002-02-12 Vacuum device made of aluminum alloy

Publications (1)

Publication Number Publication Date
JP2002367555A true JP2002367555A (en) 2002-12-20

Family

ID=26613150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034223A Pending JP2002367555A (en) 2001-04-05 2002-02-12 Vacuum device made of aluminum alloy

Country Status (1)

Country Link
JP (1) JP2002367555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537998A (en) * 2005-03-04 2008-10-02 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Vacuum gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008537998A (en) * 2005-03-04 2008-10-02 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Vacuum gauge

Similar Documents

Publication Publication Date Title
US2925214A (en) Ionic vacuum pump
JPS58151028A (en) Magnetically strengthened plasma treating method and device
US20210050181A1 (en) Method of low-temperature plasma generation, method of an electrically conductive or ferromagnetic tube coating using pulsed plasma and corresponding devices
JP5373903B2 (en) Deposition equipment
KR100307070B1 (en) High speed atomic beam supply source
JP2002367555A (en) Vacuum device made of aluminum alloy
US3998718A (en) Ion milling apparatus
US3384772A (en) Method and apparatus for controlling breadown voltage in vacuum
JPH01243349A (en) Plasma extreme ultraviolet light generator
JP3064214B2 (en) Fast atom beam source
JP2003321769A (en) Vapor deposition apparatus
JP3034076B2 (en) Metal ion source
JP2004018899A (en) Evaporation source and film-formation equipment
JP4677123B2 (en) Apparatus and method for forming dense hard thin film using high-density helicon plasma
JPH0129296B2 (en)
JP2011060430A (en) Ionization sputtering vacuum pump
JPH0692638B2 (en) Thin film device
Grzebyk et al. Improved ionization efficiency in MEMS-type ion-sorption micropump
CN109671602A (en) Compound electric component based on thermionic discharge
JP2002361070A (en) Vacuum equipment made of aluminum alloy and driving method
JP3213135B2 (en) Fast atom beam source
JPS6046368A (en) Sputtering target
JPH0220800Y2 (en)
RU2233505C2 (en) Gas-discharge ion source
JPS6339253Y2 (en)