JP2002367515A - Manufacturing method for cathode-ray tube - Google Patents

Manufacturing method for cathode-ray tube

Info

Publication number
JP2002367515A
JP2002367515A JP2001168171A JP2001168171A JP2002367515A JP 2002367515 A JP2002367515 A JP 2002367515A JP 2001168171 A JP2001168171 A JP 2001168171A JP 2001168171 A JP2001168171 A JP 2001168171A JP 2002367515 A JP2002367515 A JP 2002367515A
Authority
JP
Japan
Prior art keywords
electrode
cathode
voltage
electron
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001168171A
Other languages
Japanese (ja)
Inventor
Takashi Shinjo
孝 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001168171A priority Critical patent/JP2002367515A/en
Publication of JP2002367515A publication Critical patent/JP2002367515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a drop of electron emission form a cathode in the initial period of the operation of a cathode-ray tube. SOLUTION: The manufacture of the cathode-ray tube comprises a current activation process for the cathode-ray tube using an electron gun in which a cathode 2, a control electrode 3, an accelerating electrode 4, a modulation electrode 5 and a convergence electrode 6 are installed in this order from the cathode 2 side, wherein the current activation process includes a first process in which the accelerating electrode 4 is irradiated with an electron beam y impressing a higher voltage than the cathode voltage to the accelerating electrode 4 and a second process in which the modulation electrode 5 is irradiated with electron beam by impressing a higher voltage than the cathode voltage to the modulation electrode 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変調電極を具備す
る陰極線管の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cathode ray tube having a modulation electrode.

【0002】[0002]

【従来の技術】図1は、例えば特開平11−22461
8号公報に示されているような高解像度陰極線管に用い
られ、低電圧で安価な集積回路を利用して電子流を制御
しうる電子銃の概断面図である。ここで1はヒータ、2
はカソード、3は制御電極(以下、G1電極という)、
4は加速電極(以下、G2電極という)、5は変調電極
(以下、Gm電極という)、6は収束電極(以下、G3
電極という)、7は高圧電極(以下、G4電極という)
を示している。このような電子銃ではG2電極4とG3
電極6の間に更にGm電極5を設けたことが特徴であ
り、例えばG4電極等の他の電極はGm電極5を持たな
い電子銃と同じ構造となっている。
2. Description of the Related Art FIG.
FIG. 1 is a schematic cross-sectional view of an electron gun used for a high-resolution cathode ray tube as disclosed in Japanese Patent Application Publication No. 8 and capable of controlling an electron flow using a low-voltage and inexpensive integrated circuit. Where 1 is a heater, 2
Is a cathode, 3 is a control electrode (hereinafter referred to as G1 electrode),
4 is an accelerating electrode (hereinafter, referred to as G2 electrode), 5 is a modulation electrode (hereinafter, referred to as Gm electrode), 6 is a focusing electrode (hereinafter, G3 electrode).
7) High-voltage electrode (hereinafter referred to as G4 electrode)
Is shown. In such an electron gun, the G2 electrode 4 and G3
A feature is that a Gm electrode 5 is further provided between the electrodes 6, and other electrodes such as a G4 electrode have the same structure as an electron gun without the Gm electrode 5.

【0003】ここでGm電極5について説明する。通常
の陰極線管の動作において、G1電極3に対してGm電
極5には+100V程度の電圧が印加され、G2電極4
については数百Vが印加される。また映像信号はカソー
ド電圧として印加され、G1電極3の電圧に対して正の
電圧であり、最大約100Vが印加される。なお、G2
電極4に比べGm電極5の電圧は低く設定されているた
め、カソード2から放出された電子流は全てがスクリー
ンに向かうのではなく、一部がG2電極4またはGm電
極5に流れ込む。図2は上記電子銃の陰極線管動作状態
でのカソード2から放出された電子流の経路を示した模
式図であり、電子は、G2電極4のGm電極5側とG1
電極3側との両面、並びにGm電極5のG2電極4対向
面に流れ込んでいることを示している。
Here, the Gm electrode 5 will be described. In the operation of a normal cathode ray tube, a voltage of about +100 V is applied to the Gm electrode 5 with respect to the G1 electrode 3 and the G2 electrode 4
, Several hundred volts are applied. The video signal is applied as a cathode voltage, which is a positive voltage with respect to the voltage of the G1 electrode 3, and a maximum of about 100 V is applied. G2
Since the voltage of the Gm electrode 5 is set lower than that of the electrode 4, not all of the electron current emitted from the cathode 2 flows to the screen, but part of the electron current flows into the G2 electrode 4 or the Gm electrode 5. FIG. 2 is a schematic diagram showing a path of an electron flow emitted from the cathode 2 in a cathode ray tube operation state of the electron gun, and electrons are transmitted from the Gm electrode 5 side of the G2 electrode 4 to the Gm electrode 5 side.
This shows that the gas flows into both surfaces of the electrode 3 and the surface of the Gm electrode 5 facing the G2 electrode 4.

【0004】次に、カソード2、G1電極3、G2電極
4、Gm電極5の構造について説明する。通常G1電極
3とG2電極4の電子通過孔の孔直径は約φ0.4m
m、Gm電極5の孔直径はφ0.1mmに設定されてい
る。また、それぞれの電極は0.1〜0.3mmの間隔
で配置されている。
Next, the structure of the cathode 2, the G1 electrode 3, the G2 electrode 4, and the Gm electrode 5 will be described. Usually, the diameter of the electron passage holes of the G1 electrode 3 and the G2 electrode 4 is about φ0.4 m.
The hole diameter of the m and Gm electrodes 5 is set to φ0.1 mm. Further, the respective electrodes are arranged at intervals of 0.1 to 0.3 mm.

【0005】このような構造の電子銃においてGm電極
5の孔直径をG1電極3及びG2電極4の孔直径よりも
小さく、かつ、Gm電極5の電圧をG2電極4のそれよ
りも低く設定する理由はカソード2から照射された電子
の一部をGm電極5およびG2電極4に取り込み、スク
リーンに向かう電子流を低電圧駆動のカソード電圧電源
で効率良く制御しようとするためである。
In the electron gun having such a structure, the hole diameter of the Gm electrode 5 is set smaller than the hole diameters of the G1 electrode 3 and the G2 electrode 4, and the voltage of the Gm electrode 5 is set lower than that of the G2 electrode 4. The reason is that a part of the electrons emitted from the cathode 2 is taken into the Gm electrode 5 and the G2 electrode 4 so that the electron flow toward the screen is efficiently controlled by a low-voltage driven cathode voltage power supply.

【0006】次に特開平11−224618号公報に示
されている陰極線管の従来の製造工程について図4を用
いて説明する。まず、画像を表示するスクリーンと一体
的に形成されたガラス管体内部に電子銃を装着し、ガラ
ス管体内を真空にするための排気工程を経て封着され
る。さらにカソード自身の電子放射能力を得るため、活
性化工程を経た後に初めて充分な電子流をカソードから
取り出すことが可能となる。
Next, a conventional manufacturing process of a cathode ray tube disclosed in Japanese Patent Application Laid-Open No. 11-224618 will be described with reference to FIG. First, an electron gun is mounted inside a glass tube integrally formed with a screen for displaying an image, and the glass tube is sealed through an evacuation process for evacuating the inside of the glass tube. Further, in order to obtain the electron emission capability of the cathode itself, it is possible to extract a sufficient electron flow from the cathode only after the activation step.

【0007】ここで従来の活性化工程について詳しく説
明する。活性化工程は熱活性化工程と電流活性化工程と
に大別され、主に熱活性化工程ではカソード自身の電子
放射能力を得ることを目的とし、電流活性化工程では上
記のカソード自身の電子放射能力向上と共にG1電極
3、G2電極4、及びGm電極5からのガス出しを目的
として行われている。
Here, the conventional activation step will be described in detail. The activation process is broadly divided into a heat activation process and a current activation process. The main purpose of the thermal activation process is to obtain the electron emission capability of the cathode itself. This is performed for the purpose of improving the radiation ability and discharging gas from the G1 electrode 3, the G2 electrode 4, and the Gm electrode 5.

【0008】カソードの電子放射は、その性質上ガス被
毒による電子放射劣化を起こしやすく、陰極線管の動作
中にG1電極3、G2電極4、及びGm電極5から放出
したガスにより影響を受けやすい。特にGm電極5を具
備した特開平11−224618号公報に開示されたよ
うな電子銃では動作中にG2電極4及びGm電極5に電
子流の一部を取り込むため、各電極への電子流の衝突の
エネルギーによりガス放出を起こし易い。
The electron emission from the cathode is liable to be deteriorated due to gas poisoning due to its nature, and is easily affected by gas emitted from the G1, G2, and Gm electrodes 5 during operation of the cathode ray tube. . In particular, in the electron gun disclosed in Japanese Patent Application Laid-Open No. H11-224618 having the Gm electrode 5, a part of the electron current is taken into the G2 electrode 4 and the Gm electrode 5 during operation. Outgassing is likely to occur due to the energy of the collision.

【0009】それ故、陰極線管動作中のG2電極4、G
m電極5からのガス放出を抑制するために、予め陰極線
管製造工程の電流活性化時にカソード電圧に対して正電
圧をG2電極4、Gm電極5に印加して電子ビームを照
射し、強制的にガス放出を完了させようとするものであ
った。この場合、従来の電流活性化工程では一貫してG
2電極4とGm電極5を短絡し、例えばカソード電圧に
対して+300Vの電圧を印加する方法で電子流を上記
G2電極4、Gm電極5に照射して吸着ガスを追い出す
方法を採用していた。
Therefore, the G2 electrode 4, G during operation of the cathode ray tube
In order to suppress outgassing from the m-electrode 5, a positive voltage with respect to the cathode voltage is applied to the G2 electrode 4 and the Gm electrode 5 in advance when the current is activated in the cathode ray tube manufacturing process, and the electron beam is irradiated, thereby forcibly. To complete the gas release. In this case, in the conventional current activation process, G
A method of short-circuiting the two electrodes 4 and the Gm electrode 5 and irradiating the G2 electrode 4 and the Gm electrode 5 with an electron flow by, for example, applying a voltage of +300 V to the cathode voltage to expel the adsorbed gas has been adopted. .

【0010】[0010]

【発明が解決しようとする課題】以上のように、G2電
極4とG3電極6の間にGm電極5が設けられた陰極線
管の製造方法において、従来は活性化工程中の電流活性
化時に一貫してG2電極4とGm電極5を短絡し、電子
流を照射していたが、この方法ではG2電極4及びGm
電極5の両者に均等に電子流が流れず、特に電子通過孔
径の大きいG2電極4の電子流照射が不十分となり、充
分なガス出しができないため陰極線管動作中のカソード
のガス被毒による一時的な電子放射能力の低下が大きい
傾向にあった。
As described above, in the method of manufacturing a cathode ray tube in which the Gm electrode 5 is provided between the G2 electrode 4 and the G3 electrode 6, the conventional method is consistent with the current activation during the activation step. In this method, the G2 electrode 4 and the Gm electrode 5 were short-circuited and the electron current was irradiated.
Electron current does not flow evenly to both of the electrodes 5, and in particular, the irradiation of the electron current to the G2 electrode 4 having a large electron passage hole diameter becomes insufficient and gas cannot be sufficiently released. There was a tendency for significant reduction in electron emission capability.

【0011】[0011]

【課題を解決するための手段】本発明に係る陰極線管の
製造方法は、カソード、G1電極、G2電極、Gm電極
およびG3電極が上記カソード側からこの順番で配設さ
れた電子銃を用いた陰極線管の電流活性化工程におい
て、上記G2電極に上記カソード電圧より高い電圧を印
加して上記G2電極に電子ビームを照射する第1の工程
と、上記Gm電極に上記カソード電圧より高い電圧を印
加して上記Gm電極に電子ビームを照射する第2の工程
とを設けたことを特徴とする。
A method of manufacturing a cathode ray tube according to the present invention uses an electron gun in which a cathode, a G1, G2, Gm, and G3 electrode are arranged in this order from the cathode side. In the current activation step of the cathode ray tube, a first step of applying a voltage higher than the cathode voltage to the G2 electrode to irradiate the G2 electrode with an electron beam, and applying a voltage higher than the cathode voltage to the Gm electrode And a second step of irradiating the Gm electrode with an electron beam.

【0012】[0012]

【発明の実施の形態】実施の形態1.以下に実施の形態
1を説明する。図1において電子銃構造は従来例と同じ
構造である。1はヒータ、2はカソード、3はG1電
極、4はG2電極、5はGm電極、6はG3電極、7は
G4電極を示しており、G2電極4とG3電極6の間に
Gm電極5を具備していること特徴としている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1 will be described below. In FIG. 1, the structure of the electron gun is the same as that of the conventional example. 1 is a heater, 2 is a cathode, 3 is a G1 electrode, 4 is a G2 electrode, 5 is a Gm electrode, 6 is a G3 electrode, 7 is a G4 electrode, and a Gm electrode 5 is provided between the G2 electrode 4 and the G3 electrode 6. It is characterized by having.

【0013】次に、カソード近傍の電極位置関係につい
て説明する。G1電極3とG2電極4は電子通過孔の直
径が0.4mmでありG1電極3〜G4電極の電子通過
孔を結ぶ軸方向(電子放射軸方向)の厚さはそれぞれ約
0.1mmである。Gm電極5については電子通過孔の
直径が0.1mmであり電子放射軸方向の厚さは0.0
5mmである。それぞれの電極の間隔についてはカソー
ドとG1電極3の間隔が約0.05mm、G1電極3と
G2電極4及びG2電極4とGm電極5の間隔は0.1
mmとなっている。
Next, the positional relationship between the electrodes near the cathode will be described. The G1 electrode 3 and the G2 electrode 4 have a diameter of the electron passing hole of 0.4 mm, and the thickness in the axial direction (electron emission axis direction) connecting the electron passing holes of the G1 electrode 3 to the G4 electrode is about 0.1 mm, respectively. . For the Gm electrode 5, the diameter of the electron passage hole is 0.1 mm and the thickness in the electron emission axis direction is 0.0 mm.
5 mm. The distance between the electrodes is about 0.05 mm between the cathode and the G1 electrode 3, and the distance between the G1 electrode 3 and the G2 electrode 4 and between the G2 electrode 4 and the Gm electrode 5 is 0.1 mm.
mm.

【0014】以下、実施の形態1に係る陰極線管の製造
工程を図3、図5に基づいて説明する。図5に示すよう
に、画像を表示するスクリーン11と一体的に形成され
た陰極線管のガラス管体12の端部に電子銃13を挿入
し、固着する。これが図3に示す電子銃封着工程であ
る。続いて排気工程において、ガラス管体12内のガス
を排気し真空状態にした後、封着する。なお、この排気
工程中の後半には通常カソード中の電子放射材料の分解
工程を設けると共に、高周波による電極加熱によりG2
電極4及びGm電極5のガス出しを行う工程を設ける。
Hereinafter, a manufacturing process of the cathode ray tube according to the first embodiment will be described with reference to FIGS. As shown in FIG. 5, an electron gun 13 is inserted into and fixed to an end of a glass tube 12 of a cathode ray tube formed integrally with a screen 11 for displaying an image. This is the electron gun sealing step shown in FIG. Subsequently, in the evacuation step, the gas in the glass tube body 12 is evacuated to a vacuum state and then sealed. In the latter half of the evacuation step, a step of decomposing the electron-emitting material in the cathode is usually provided.
A step of degassing the electrode 4 and the Gm electrode 5 is provided.

【0015】次に図3における活性化工程について説明
する。図3に示したように活性化工程には2つの工程が
含まれており、第1は熱活性化工程、第2は電流活性化
工程であり、この順番で行われる。熱活性化工程はカソ
ード2の電子放射能力を高めるために行われ、ヒータ電
圧のみ印加する従来の方法と同一である。また、電流活
性化工程はカソード2の電子放射能力の向上と共に、G
1電極3、G2電極4、Gm電極5からのガス出しを行
うことを目的としている。
Next, the activation step in FIG. 3 will be described. As shown in FIG. 3, the activation step includes two steps, the first is a thermal activation step, and the second is a current activation step, which is performed in this order. The thermal activation step is performed to increase the electron emission capability of the cathode 2, and is the same as the conventional method in which only the heater voltage is applied. In addition, the current activating step improves the electron emission capability of the cathode 2 and increases
The purpose is to discharge gas from the one electrode 3, the G2 electrode 4, and the Gm electrode 5.

【0016】この電流活性化工程においてはさらに2つ
の工程に分けられる。第1の工程は、G2電極4にカソ
ード電圧より数百V高い電圧を印加してG2電極4に電
子ビームを照射するものである。例えばカソード電圧、
G1電極電圧及びGm電極電圧を0Vとし、G2電極4
には300Vを10分間印加する第1の工程を設ける。
第2の工程は、Gm電極5にカソード電圧より数百V高
い電圧を印加してGm電極に電子ビームを照射するもの
である。たとえば、第1の工程の後、カソード電圧、G
1電極電圧及びG2電極電圧を0Vとし、Gm電極5に
は300Vを10分間印加する第2の工程を行う。この
ように電流活性化工程は第1と第2の工程に分けて、そ
れぞれの電極のガス出しを重点的に実施する。
The current activation step is further divided into two steps. In the first step, a voltage several hundred V higher than the cathode voltage is applied to the G2 electrode 4 to irradiate the G2 electrode 4 with an electron beam. For example, cathode voltage,
The G1 electrode voltage and the Gm electrode voltage are set to 0 V, and the G2 electrode 4
Is provided with a first step of applying 300 V for 10 minutes.
In the second step, a voltage several hundred V higher than the cathode voltage is applied to the Gm electrode 5 to irradiate the Gm electrode with an electron beam. For example, after the first step, the cathode voltage, G
The second step of setting the one-electrode voltage and the G2 electrode voltage to 0 V and applying 300 V to the Gm electrode 5 for 10 minutes is performed. As described above, the current activation process is divided into the first and second processes, and the outgassing of each electrode is performed with emphasis.

【0017】図6は実施の形態1における陰極線管の動
作初期段階でのカソード2から放射される電子流の変化
を示したものであり、横軸は時間、縦軸はカソード2か
らの電流を示している。なお、従来例としては、G2電
極4とGm電極5を短絡して同電圧とし、他の電極電圧
は実施の形態1と同じ値として20分間電流活性化工程
を行った場合のカソード電流の経時変化を合わせて示し
た。
FIG. 6 shows a change in the electron current emitted from the cathode 2 at the initial stage of the operation of the cathode ray tube according to the first embodiment. The horizontal axis represents time, and the vertical axis represents the current from the cathode 2. Is shown. As a conventional example, the G2 electrode 4 and the Gm electrode 5 are short-circuited to the same voltage, and the other electrode voltages are set to the same values as in the first embodiment, and the time of the cathode current in the case where the current activation process is performed for 20 minutes is performed. The changes are shown together.

【0018】図6からも分かるように、G2電極4とG
m電極5のガス出しを分けて行った実施の形態1では、
従来例のG2電極4とGm電極5を短絡させて行ったも
のよりもカソードからの電子流の変化は少ない結果とな
った。
As can be seen from FIG. 6, G2 electrode 4 and G2
In the first embodiment in which the gas discharge of the m electrode 5 is performed separately,
The result of the change in the electron flow from the cathode was smaller than that in the conventional example in which the G2 electrode 4 and the Gm electrode 5 were short-circuited.

【0019】ここで、実施の形態1において、従来例よ
りもカソード電流の変化が少なかった理由について説明
する。従来例においてはG2電極4とGm電極5を短絡
させて電圧を印加しており、また、電子通過孔の孔径は
G2電極4に比べGm電極5が小さいため、電子流通過
経路に近いGm電極5に主として電子が衝突し、G2電
極4には殆ど電子が照射されず、G2電極4のガス出し
が不十分なものであったと考えられる。それに対し、実
施の形態1においては、G2電極4のガス出しを行う第
1の工程とGm電極5のガス出しを行う第2の工程を分
けて設けたため、それぞれの電極の十分な電子照射及び
ガス出しが行われたことにより、陰極線管の動作中での
G2電極4及びGm電極5からのガス放出が抑えられて
カソードの被毒、つまり電子放射劣化が少なかったもの
と考えられる。
Here, the reason why the change in the cathode current is smaller in the first embodiment than in the conventional example will be described. In the conventional example, a voltage is applied by short-circuiting the G2 electrode 4 and the Gm electrode 5, and the diameter of the electron passage hole is smaller in the Gm electrode 5 than in the G2 electrode 4. It is probable that electrons mainly collided with No. 5 and the G2 electrode 4 was hardly irradiated with electrons, so that outgassing of the G2 electrode 4 was insufficient. On the other hand, in the first embodiment, the first step of degassing the G2 electrode 4 and the second step of degassing the Gm electrode 5 are provided separately. It is conceivable that the gas emission was suppressed by suppressing gas emission from the G2 electrode 4 and the Gm electrode 5 during the operation of the cathode ray tube, and poisoning of the cathode, that is, deterioration of electron emission was reduced.

【0020】[0020]

【発明の効果】この発明は、以上説明したように電流活
性化工程において、G2電極4からのガス出しを行う第
1の工程とGm電極5からのガス出しを行う第2の工程
を設けたため、従来例よりも被毒によるカソードからの
電子放射の変化を低減させることが可能となった。
According to the present invention, as described above, in the current activation step, the first step of discharging gas from the G2 electrode 4 and the second step of discharging gas from the Gm electrode 5 are provided. This makes it possible to reduce the change in electron emission from the cathode due to poisoning as compared with the conventional example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電子銃の構造を示す概断面図である。FIG. 1 is a schematic sectional view showing the structure of an electron gun.

【図2】 陰極線管動作時の電子流の経路を示す模式図
である。
FIG. 2 is a schematic diagram showing a path of an electron flow during operation of a cathode ray tube.

【図3】 実施の形態1に係る陰極線管の製造工程の説
明図である。
FIG. 3 is an explanatory diagram of a manufacturing process of the cathode ray tube according to the first embodiment.

【図4】 従来の製造工程の説明図である。FIG. 4 is an explanatory view of a conventional manufacturing process.

【図5】 陰極線管の構造を説明するための概断面図で
ある。
FIG. 5 is a schematic sectional view for explaining the structure of a cathode ray tube.

【図6】 実施の形態1の効果を示す説明図である。FIG. 6 is an explanatory diagram illustrating an effect of the first embodiment.

【符号の説明】[Explanation of symbols]

1 ヒータ、2 カソード、3 制御電極(G1電
極)、4 加速電極(G2電極)、5 変調電極(Gm
電極)、6 収束電極(G3電極)、7 高圧電極(G
4電極)、11 スクリーン、12 ガラス管体、13
電子銃。
1 heater, 2 cathodes, 3 control electrodes (G1 electrode), 4 accelerating electrodes (G2 electrode), 5 modulation electrodes (Gm
Electrode), 6 focusing electrode (G3 electrode), 7 high voltage electrode (G
4 electrodes), 11 screen, 12 glass tube, 13
Electron gun.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カソード、制御電極、加速電極、変調電
極および収束電極が上記カソード側からこの順番で配設
された電子銃を用いた陰極線管の電流活性化工程におい
て、 上記加速電極に上記カソード電圧より高い電圧を印加し
て上記加速電極に電子ビームを照射する第1の工程と、 上記変調電極に上記カソード電圧より高い電圧を印加し
て上記変調電極に電子ビームを照射する第2の工程とを
設けたことを特徴とする陰極線管の製造方法。
In a current activation step of a cathode ray tube using an electron gun in which a cathode, a control electrode, an acceleration electrode, a modulation electrode, and a focusing electrode are arranged in this order from the cathode side, the cathode is connected to the acceleration electrode. A first step of applying a voltage higher than a voltage to irradiate the acceleration electrode with the electron beam; and a second step of applying a voltage higher than the cathode voltage to the modulation electrode and irradiating the modulation electrode with the electron beam. And a method for manufacturing a cathode ray tube.
JP2001168171A 2001-06-04 2001-06-04 Manufacturing method for cathode-ray tube Pending JP2002367515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168171A JP2002367515A (en) 2001-06-04 2001-06-04 Manufacturing method for cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168171A JP2002367515A (en) 2001-06-04 2001-06-04 Manufacturing method for cathode-ray tube

Publications (1)

Publication Number Publication Date
JP2002367515A true JP2002367515A (en) 2002-12-20

Family

ID=19010438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168171A Pending JP2002367515A (en) 2001-06-04 2001-06-04 Manufacturing method for cathode-ray tube

Country Status (1)

Country Link
JP (1) JP2002367515A (en)

Similar Documents

Publication Publication Date Title
JP3423511B2 (en) Image forming apparatus and getter material activation method
JP2004228084A (en) Field emission element
JP2917898B2 (en) Field emission cold cathode device and method of using the same
KR101737399B1 (en) Method for welding the stem onto the ceramic X-ray tube
US6042441A (en) Method of cleaning the cathode of a cathode ray tube and a method for producing a vacuum in a cathode ray tube
US6827621B1 (en) Method and apparatus for manufacturing flat image display device
JP2002367515A (en) Manufacturing method for cathode-ray tube
JP2000040469A (en) Manufacture of airtight container and manufacture of image forming device using it
JPH08203423A (en) Aging method for field emission cold cathode
JPS6322010B2 (en)
JP2003016916A (en) Electron emitting element, electron source and image forming device
JP2797775B2 (en) Image tube manufacturing method
JP3135460B2 (en) Aging method of cathode ray tube
JPH1064429A (en) Manufacture of image display device
JP2000251788A (en) Image display device and its manufacture
JP2002008537A (en) Manufacturing method of electron gun for crt
JP2006100116A (en) Cathode-ray tube device and its manufacturing method
JP2000133138A (en) Image forming device and its manufacture
JPH05314907A (en) Manufacture of image tube
JPH08148081A (en) Manufacture of cathode-ray tube
JP2009140655A (en) Electron-emitting element, electron source, image display device, and manufacturing method for electron-emitting element
JPH0757653A (en) Cathode-ray tube and manufacture thereof
JP2003109502A (en) Sealing method of display panel, display panel, and image display device having the same
JP2004241223A (en) Cathode-ray tube and method of manufacturing cathode-ray tube
JP2001155663A (en) Color cathode ray tube

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708