JP2002365561A - Auto-focusing device of endoscope - Google Patents

Auto-focusing device of endoscope

Info

Publication number
JP2002365561A
JP2002365561A JP2001175989A JP2001175989A JP2002365561A JP 2002365561 A JP2002365561 A JP 2002365561A JP 2001175989 A JP2001175989 A JP 2001175989A JP 2001175989 A JP2001175989 A JP 2001175989A JP 2002365561 A JP2002365561 A JP 2002365561A
Authority
JP
Japan
Prior art keywords
light
distance measuring
distance
endoscope
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001175989A
Other languages
Japanese (ja)
Inventor
Moriyasu Kanai
守康 金井
Kazushige Tanaka
千成 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2001175989A priority Critical patent/JP2002365561A/en
Publication of JP2002365561A publication Critical patent/JP2002365561A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Automatic Focus Adjustment (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an auto-focusing device of endoscope which enables enlarging observation of the auto-focusing area as a whole, at proximity enlargement. SOLUTION: A light-sending system which sends light to a light emitting source of the tip part of the endoscope body is composed of a light-sending lens 3, a light-emitting body and a plurality of light-sending fibers used exclusively for distance-measuring lights 6a, 6b, 6c, which are inserted into a part to be inserted inside a body and send the light of the light-emitting source to the light-sending lens 3. Therein, a plurality of distance-measuring areas (a), (b), (c) of one observed object 11 are irradiated with the AF reference beams among a plurality of the light sending fibers used exclusively for distance- measuring light 6a, 6b, 6c and distance measurement is conducted, on the basis of the plural beams of distance measuring light from the respective distance- measuring areas (a), (b), (c).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は、医療及び工業等の分野に用いら
れる内視鏡の測距装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device for an endoscope used in medical and industrial fields.

【0002】[0002]

【従来技術及びその問題点】消化管の診断に用いる内視
鏡装置は、消化管内壁の観察対象の領域全体を観察した
撮像画像を出力する構成のものであり、消化管内壁の広
い領域を撮像し、この撮像信号を映像信号に信号処理し
てモニターに映し出している。
2. Description of the Related Art An endoscope apparatus used for diagnosis of a gastrointestinal tract is configured to output a picked-up image obtained by observing an entire region to be observed on a gastrointestinal tract inner wall. An image is taken, the image signal is processed into a video signal, and displayed on a monitor.

【0003】この種の内視鏡装置では、微細な病変を部
分的に拡大して詳細に観察するため、拡大内視鏡装置が
開発されている。拡大内視鏡装置は近接拡大時の焦点深
度が狭いためにオートフォーカス機構を備えることが好
ましい。オートフォーカス機構を備えた拡大内視鏡装置
は特開平10−165358号公報に記載されている。
In this type of endoscope apparatus, a magnified endoscope apparatus has been developed in order to partially magnify a fine lesion and observe it in detail. The magnifying endoscope device preferably has an autofocus mechanism because the depth of focus at the time of close-up magnification is narrow. A magnifying endoscope device having an autofocus mechanism is described in Japanese Patent Application Laid-Open No. H10-165358.

【0004】しかしながら、先行例のオートフォーカス
内視鏡装置は、観察物体までの観察観察物体距離を測距
する測距装置が具体的に開示されておらず、オートフォ
ーカス機構を備えた拡大内視鏡装置は実機として存在し
ないのが現状である。
However, the prior art autofocus endoscope apparatus does not specifically disclose a distance measuring apparatus for measuring an observation observation object distance to an observation object, and an enlarged endoscope provided with an autofocus mechanism. At present, the mirror device does not exist as an actual device.

【0005】オートフォーカス機構はムービーを含むカ
メラの分野で既に採用されており、特にCCDを撮像素
子に用いたカメラのオートフォーカス機構は、撮像素子
に結像する像のコントラストを検知してオートフォーカ
スを行うことが一般的であり、デフォーカス方向を検知
するための複雑なシステムが必要である。
The auto-focus mechanism has already been adopted in the field of cameras including movies. In particular, the auto-focus mechanism of a camera using a CCD as an image sensor detects the contrast of an image formed on the image sensor and performs auto-focus. And a complicated system for detecting the defocus direction is required.

【0006】内視鏡の先端部に設けられる体内挿入部は
患者の体腔内に挿入するものであるから、その直径が高
々10mm程度に制限されるものであり、前記複雑なシ
ステムをもつカメラ等の測距手段を内視鏡にそのまま適
用することは事実上不可能である。
[0006] Since the body insertion portion provided at the distal end of the endoscope is to be inserted into the body cavity of a patient, its diameter is limited to at most about 10 mm. It is practically impossible to directly apply the distance measuring means to the endoscope.

【0007】さらに、コントラストによるオートフォー
カスは、デフォーカス方向を検知するための複雑なシス
テムが必要であり、また低コントラストな物体には焦点
が合せ難いという問題があった。
[0007] Further, autofocusing by contrast requires a complicated system for detecting a defocus direction, and has a problem that it is difficult to focus on an object having low contrast.

【0008】[0008]

【発明の目的】本発明は、拡大内視鏡の特性に合致した
内視鏡の測距装置を得ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an endoscope distance measuring apparatus that matches the characteristics of a magnifying endoscope.

【0009】[0009]

【発明の概要】前記目的を達成するため、本発明に係る
内視鏡の測距装置は、内視鏡の体内挿入部の先端部に、
基線長だけ離隔させた発光源と測距受光系とを設け、発
光源から出射され観察物体で反射して測距受光系に入射
する測距光の位置から複数の測距エリアの観察物体距離
を検出する三角測量方式の内視鏡の測距装置であって、
前記体内挿入部の先端部の発光源に送光する送光系は、
該体内挿入部の先端に設けた送光レンズと、内視鏡の操
作部側に設けた発光体と、該発光体の光を送光レンズに
送光する、体内挿入部内に挿通した複数の測距光専用送
光ファイバーとから構成され、前記複数の測距光専用送
光ファイバーは、前記体内挿入部内に並列に挿通され、
前記発光体からの光を、前記送光レンズを介して観察物
体の複数の測距エリアの異なる照射位置に出射すること
を特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, a distance measuring device for an endoscope according to the present invention comprises:
A light-emitting source and distance-measuring light-receiving system separated by the base line length are provided. A triangulation endoscope distance measuring device for detecting
A light transmitting system for transmitting light to a light emitting source at a distal end portion of the body insertion portion,
A light-sending lens provided at the tip of the body-inserting portion, a light-emitting member provided on the operation unit side of the endoscope, and a plurality of light-emitting members for transmitting the light of the light-emitting body to the light-sending lens; And a plurality of distance-measuring light-dedicated light-transmitting fibers, wherein the plurality of distance-measuring light-only light-transmitting fibers are inserted in parallel into the body insertion portion,
Light from the light emitter is emitted to different irradiation positions of a plurality of distance measurement areas of the observation object via the light transmitting lens.

【0010】前記測距受光系は、具体的には、観察物体
で反射された光を受光する、体内挿入部先端に配置した
受光レンズと、該受光レンズで結像される測距光の位置
を検出する位置検出センサとから構成したことが望まし
い。
Specifically, the distance measuring light receiving system includes a light receiving lens disposed at the distal end of the body insertion portion for receiving light reflected by the observation object, and a position of the distance measuring light formed by the light receiving lens. And a position detection sensor for detecting the position.

【0011】また前記複数の測距光専用送光ファイバー
の発光を時分割で行い、前記発光の時分割に同期して前
記測距受光系は、入光する測距光で時分割順に測距を行
うことにより、複数の測距エリアからの測距光の入替り
等を回避して、誤った測距を防止する。
The plurality of distance-measuring light transmission fibers emit light in a time-division manner, and in synchronization with the time-division of the light emission, the distance-measuring light-receiving system measures the distance in the time-division order with the incoming measuring light. By doing so, switching of ranging light from a plurality of ranging areas is avoided, and erroneous ranging is prevented.

【0012】前記送光レンズは、ファイバーの出射端面
から出射する光を略平行光とすることが望ましい。
It is preferable that the light transmitting lens converts light emitted from the emission end face of the fiber into substantially parallel light.

【0013】本発明に係る内視鏡の測距装置は、例え
ば、撮像光学系の撮像レンズによる像を撮像素子に結像
させる電子内視鏡に適用することができる。電子内視鏡
では、前記送光レンズと前記測距受光系の受光レンズと
のいずれか一方が、撮像光学系の撮像レンズで兼用する
ことができる。前記測距受光系の受光レンズを内視鏡の
撮像レンズで兼用する態様では、この兼用した撮像レン
ズで集光した測距光を撮像光学系から分岐することが望
ましい。勿論、前記送光レンズと前記測距受光系の受光
レンズの双方を、撮像光学系の撮像レンズとは独立させ
て設けてもよい。
The distance measuring apparatus for an endoscope according to the present invention can be applied to, for example, an electronic endoscope for forming an image by an imaging lens of an imaging optical system on an imaging device. In the electronic endoscope, one of the light transmitting lens and the light receiving lens of the distance measuring light receiving system can be also used as an imaging lens of an imaging optical system. In a mode in which the light receiving lens of the distance measuring light receiving system is also used as the imaging lens of the endoscope, it is preferable that the distance measuring light collected by the dual purpose imaging lens is branched from the imaging optical system. Of course, both the light transmitting lens and the light receiving lens of the distance measuring light receiving system may be provided independently of the imaging lens of the imaging optical system.

【0014】測距光の結像位置を検出する位置検出セン
サは、電子内視鏡の場合、撮像素子で兼用することがで
きる。この態様では、前記撮像素子の出力を測距用と撮
像用に時分割して出力することが望ましい。
In the case of an electronic endoscope, the position detecting sensor for detecting the image forming position of the distance measuring light can be shared by the image pickup device. In this aspect, it is desirable that the output of the image sensor be time-divisionally output for distance measurement and for imaging.

【0015】また前記位置検出センサは、PSD又はC
CDから構成し、或いは光ファイバーの受光端を直線状
に並べたファイバーアレイから構成してもよい。
The position detection sensor may be a PSD or C
It may be composed of a CD or a fiber array in which the light receiving ends of optical fibers are arranged in a straight line.

【0016】観察物体の複数の測距エリアにおいては、
前記複数の測距エリアの中から指定された測距エリアに
対して測距処理を行う、前記複数の測距エリアの測距情
報を平均化して測距処理を行う、前記複数の測距エリア
の中から最近点又は最遠点を選択して測距処理を行う、
観察物体距離に応じて各測距エリアを担当する送光ビー
ムを変更して測距処理を行うことができる。
In a plurality of distance measurement areas of the observation object,
Performing a ranging process on a designated ranging area from among the plurality of ranging areas; averaging ranging information of the plurality of ranging areas to perform a ranging process; Select the closest point or the farthest point from among and perform ranging processing.
The ranging process can be performed by changing the light transmission beam that is in charge of each ranging area according to the observation object distance.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1(a)は本発明を適用した電子内視鏡
システムの全体を示す図、図1(b)は図1(a)のA
部のうち撮像光学系を拡大して示す構成図である。図2
は、図1(a)のA部のうち、内視鏡の特性に合致した
小型で簡易な、本発明を電子内視鏡システムに適用した
第1の実施形態に係る内視鏡の測距装置を拡大して示す
構成図である。図3は観察物体で反射した測距光を用い
て測距するアクティブ方式の三角測量式測距装置の原理
図である。
FIG. 1A is a view showing the whole of an electronic endoscope system to which the present invention is applied, and FIG. 1B is a view showing A in FIG. 1A.
FIG. 2 is a configuration diagram showing an enlarged image pickup optical system in a section. FIG.
1A is a small and simple endoscope according to a first embodiment in which the present invention is applied to an electronic endoscope system, which is adapted to the characteristics of the endoscope, from part A of FIG. It is a block diagram which expands and shows an apparatus. FIG. 3 is a principle diagram of an active triangulation type distance measuring apparatus for measuring a distance by using distance measuring light reflected by an observation object.

【0019】一般的に、三角測量方式は無限遠物体の検
知を正確に行うことが困難であるが、拡大内視鏡装置は
近接拡大時の焦点深度の狭い領域のみ測距が必要であ
り、無限遠の検知は必要がない。また近接拡大時は観察
物体距離に対し長い基線長がとれるため、精度の高い測
距が可能である。さらに送光系の光源として測距光専用
送光ファイバーを利用して内視鏡先端部まで送光するこ
とにより、大きなスペースを必要とする発光素子を内視
鏡装置の外部装置に設置することが可能となり、測距手
段を小型化して、内視鏡先端部の寸法拡大を抑制するこ
とが可能である。
In general, it is difficult for the triangulation method to accurately detect an object at infinity, but a magnifying endoscope device needs to measure a distance only in an area having a small depth of focus at the time of close-up magnification. There is no need to detect infinity. In addition, at the time of close proximity enlargement, a long base line length can be taken with respect to the observation object distance, so that highly accurate distance measurement is possible. In addition, by transmitting light to the distal end of the endoscope using a distance-measuring light transmission fiber as a light source of the light transmission system, a light-emitting element requiring a large space can be installed in an external device of the endoscope apparatus. This makes it possible to reduce the size of the distance measuring means and suppress an increase in the size of the distal end portion of the endoscope.

【0020】上述した基本的思想に基いて、図1(a)
に示すように、本発明を適用した電子内視鏡システムは
内視鏡本体1と外部装置13とから構成しており、内視
鏡本体1は、外部装置13とのコネクタ10を有する。
内視鏡本体1は、先端側の体内挿入部1aと基部の操作
部1dを備えている。
Based on the basic idea described above, FIG.
As shown in FIG. 1, the electronic endoscope system to which the present invention is applied includes an endoscope main body 1 and an external device 13, and the endoscope main body 1 has a connector 10 with the external device 13.
The endoscope main body 1 includes a body insertion section 1a on the distal end side and an operation section 1d on the base.

【0021】図1(a)に示す内視鏡本体1における体
内挿入部1aの先端硬性部1eには、図1(b)に示す
ように観察物体を結像する撮像レンズ1bと撮像レンズ
1bが結像した観察物体像を電気信号としての撮像信号
に変換する撮像素子1c等を含む撮像光学系が組み込ま
れている。そして、電子内視鏡システムの撮像光学系の
撮像レンズ1bによる像が撮像素子1cに結像され、そ
の撮像した撮像信号が図1(a)に示す外部装置13に
伝送され、その撮像信号を図1(a)に示す外部装置1
3内のプロセッサ14で画像処理して図示しないモニタ
ーに表示し観察物体の観察を行う。また図1(a)に示
すように、外部装置13には照明用光源15が設けら
れ、該照明用光源15からの光が図1(b)に示すよう
に照明用ライトガイド15aを通して内視鏡本体1の先
端硬性部1eまで伝送され、集光レンズ16を通して観
察物体を照明する。また撮像素子1cは固体撮像素子、
特にCCD(電荷結合素子)が用いられるが、これに限
定されるものではない。以下、撮像素子1cとしてCC
Dを用いる例を説明するため、撮像素子をCCD1cと
して表記する。
As shown in FIG. 1B, an imaging lens 1b and an imaging lens 1b which form an image of an observation object are provided on a rigid distal end portion 1e of the body insertion portion 1a of the endoscope body 1 shown in FIG. An imaging optical system including an imaging element 1c for converting the observation object image formed by the imaging device 1 into an imaging signal as an electric signal is incorporated. Then, an image formed by the image pickup lens 1b of the image pickup optical system of the electronic endoscope system is formed on the image pickup device 1c, and the picked-up image pickup signal is transmitted to the external device 13 shown in FIG. External device 1 shown in FIG.
The image is processed by the processor 14 in 3 and displayed on a monitor (not shown) to observe the observation object. Further, as shown in FIG. 1A, the external device 13 is provided with an illumination light source 15, and light from the illumination light source 15 is viewed through an illumination light guide 15a as shown in FIG. 1B. The light is transmitted to the distal end rigid portion 1e of the mirror body 1 and illuminates the observation object through the condenser lens 16. The imaging device 1c is a solid-state imaging device,
In particular, a CCD (Charge Coupled Device) is used, but is not limited to this. Hereinafter, CC is used as the image sensor 1c.
In order to explain an example in which D is used, the image sensor is described as a CCD 1c.

【0022】さらに内視鏡本体1の撮像光学系には図示
しない焦点調節機構が連動している。この焦点調整機構
は、測距手段による距離情報等に基いて、図1(b)に
示す撮像レンズ1bとCCD1cとの相対距離を変化さ
せて焦点合せ(オートフォーカス)を行う。
Further, a focusing mechanism (not shown) is linked to the imaging optical system of the endoscope body 1. This focus adjustment mechanism performs focusing (autofocus) by changing the relative distance between the imaging lens 1b and the CCD 1c shown in FIG. 1B based on distance information and the like by the distance measuring means.

【0023】図2に示す実施形態に係る、内視鏡の特性
に合致した小型で簡易な本発明による三角測量方式内視
鏡の測距装置は、内視鏡本体1の体内挿入部1aの先端
部に、基線長だけ離隔させた発光源と測距受光系とを設
け、発光源から出射され観察物体で反射して測距受光系
に入射する測距光の位置から複数の測距エリアの観察物
体距離を検出する構成としたものである。
A distance measuring device for a triangulation type endoscope according to the present invention, which is small and simple and conforms to the characteristics of the endoscope, according to the embodiment shown in FIG. A light-emitting source and a distance-measuring light-receiving system separated from each other by the base line length are provided at the tip, and a plurality of distance-measuring areas are provided from the position of the distance-measuring light emitted from the light-emitting source, reflected by an observation object and incident on the distance-measuring light-receiving system Is configured to detect the observation object distance.

【0024】この実施形態では、前記体内挿入部1aの
先端部の発光源に送光する送光系は図2に示すように、
該体内挿入部1aの先端に設けた送光レンズ3と、内視
鏡の操作部側に設けた図1(a)の発光体2と、該発光
体2の光を送光レンズ3に送光する、体内挿入部1a内
に挿通した測距光専用送光ファイバー6a、6b、6c
とから構成している。前記測距光専用送光ファイバー6
a、6b、6cは、図1(b)に示す外部装置13の照
明用光源15からの観察物体の照明用光を内視鏡本体1
の先端硬性部1eまでが伝送する照明用ライトガイド1
5aとは独立させて設けられている。また、発光体2が
設けられる内視鏡の「操作部側」には、図1(a)に示
す内視鏡本体1の操作部1d及び内視鏡本体1の操作部
1dから内視鏡装置の外部装置13に至る部分が含まれ
るものであり、要は、発光体2が設けられる内視鏡の操
作部側とは、内視鏡本体1の先端部に設けられる体内挿
入部1aを除く個所を意味する。また発光体2にはLE
Dが用いられるが、LEDに限定されるものではなく、
赤外光を出射する発光素子も用いてもよく、要は測距光
を発光できるものであれば、いずれのものでもよい。
In this embodiment, as shown in FIG. 2, the light transmitting system for transmitting light to the light emitting source at the distal end of the body insertion portion 1a is as follows.
A light transmitting lens 3 provided at the tip of the body insertion portion 1a, the light emitting body 2 of FIG. 1A provided on the operation section side of the endoscope, and light from the light emitting body 2 is transmitted to the light transmitting lens 3. Light-transmitting optical fibers 6a, 6b, 6c dedicated to distance measuring light inserted into the insertion portion 1a inside the body
It is composed of The transmission fiber 6 dedicated to the ranging light
a, 6b, and 6c show the illumination light of the observation object from the illumination light source 15 of the external device 13 shown in FIG.
Light guide 1 for transmission up to the tip rigid portion 1e
It is provided independently of 5a. In addition, on the “operation unit side” of the endoscope provided with the light-emitting body 2, the operation unit 1 d of the endoscope main body 1 and the operation unit 1 d of the endoscope main body 1 shown in FIG. It includes a part reaching the external device 13 of the device. In short, the operation unit side of the endoscope provided with the luminous body 2 corresponds to the in-body insertion unit 1a provided at the distal end of the endoscope main body 1. Excludes the part. The luminous body 2 has LE
D is used, but is not limited to LEDs,
A light-emitting element that emits infrared light may be used. In short, any light-emitting element that can emit distance-measuring light may be used.

【0025】この実施形態では複数の測距エリアの観察
物体距離を検出するために、図2に示すように前記発光
体2の光を送光レンズ3に送光する、体内挿入部1a内
に挿通した測距光専用送光ファイバーとして複数の測距
光専用送光ファイバー6a、6b、6cを備えており、
前記複数の測距光専用送光ファイバー6a、6b、6c
に通した前記発光体2からの光(スポット状ビーム)
を、前記送光レンズ3を介して観察物体11の複数の測
距エリアの異なる照射位置a、b、cに出射する。以
下、この発光体2からの光(スポット状ビーム)をAF
参照ビームとして表記する。なお、図2では3本の測距
光専用送光ファイバー6a、6b、6cのみを図示して
いるが、この本数に限定されるものではない。
In this embodiment, in order to detect the observation object distances in a plurality of distance measurement areas, the light from the light emitter 2 is transmitted to the light transmission lens 3 as shown in FIG. A plurality of distance-measuring light-dedicated light-transmitting fibers 6a, 6b, and 6c are provided as the inserted distance-measuring light-only light-transmitting fibers,
The plurality of light transmission fibers 6a, 6b, 6c dedicated to distance measuring light
(Spot-like beam) from the luminous body 2 passed through
Through the light transmitting lens 3 to different irradiation positions a, b, and c of a plurality of distance measurement areas of the observation object 11. Hereinafter, the light (spot-like beam) from the light emitting body 2 is
Described as a reference beam. Although FIG. 2 shows only three distance-measuring light transmission optical fibers 6a, 6b, and 6c, the number is not limited to three.

【0026】図2に示す測距受光系は、観察物体で反射
された光(測距光)を受光する、体内挿入部1aの先端
に配置した受光レンズ4と、受光レンズ4で結像される
測距光の位置を検出する位置検出センサ5とから構成し
ている。この実施形態では、図1(b)に示す内視鏡本
体1の撮像光学系(撮像レンズ1b、CCD1c等を含
む)から独立した、測距専用の光学系によって測距装置
が構成されている。すなわち、測距受光系は図2に示す
ように、図1(b)に示す撮像光学系の撮像レンズ1b
から独立した受光レンズ4を含んでおり、観察物体11
で反射した反射光(測距光)を受光レンズ4で撮像光学
系の撮像素子1c(図1(b)参照)から独立した位置
検出センサ5の受光面上にスポット状に結像する。
The distance measuring light receiving system shown in FIG. 2 receives light reflected by the object to be observed (ranging light), and is formed of an image by the light receiving lens 4 disposed at the tip of the body insertion portion 1a and the light receiving lens 4. And a position detecting sensor 5 for detecting the position of the distance measuring light. In this embodiment, a distance measuring device is configured by an optical system dedicated to distance measurement that is independent of the image pickup optical system (including the image pickup lens 1b, the CCD 1c, and the like) of the endoscope main body 1 shown in FIG. . That is, as shown in FIG. 2, the distance measuring light receiving system is an imaging lens 1b of the imaging optical system shown in FIG.
Light receiving lens 4 independent of the observation object 11
The reflected light (ranging light) reflected by the light-receiving lens 4 forms a spot-like image on the light-receiving surface of the position detection sensor 5 independent of the image pickup device 1c (see FIG. 1B) of the image pickup optical system.

【0027】図2に示す位置検出センサ5は、複数の光
ファイバー8a、8b、8c・・・の受光端を直線状に
並べたファイバーアレイ8を用いている。ファイバーア
レイ8の複数の光ファイバー8a、8b、8c・・・は
受光レンズ4の光軸Xと平行に配置され、複数の光ファ
イバー8a、8b、8c・・・の受光端が受光レンズ4
の光軸Xと直交する方向に規則的に配列される。また、
この実施形態では、測距光専用送光ファイバー6a、6
b、6cで送光されるAF参照ビームに赤外光を用い
る。このため、ファイバーアレイ8の前方に、内視鏡本
体1の撮像光がファイバーアレイ8に混入するのを防止
する赤外透過フィルタ9を配置し、赤外透過フィルタ9
で可視光である撮像光をカットして赤外光である観察物
体11からの反射光(測距光)のみをファイバーアレイ
8に入光させる。
The position detecting sensor 5 shown in FIG. 2 uses a fiber array 8 in which light receiving ends of a plurality of optical fibers 8a, 8b, 8c. The plurality of optical fibers 8a, 8b, 8c... Of the fiber array 8 are arranged in parallel with the optical axis X of the light receiving lens 4, and the light receiving ends of the plurality of optical fibers 8a, 8b, 8c.
Are arranged regularly in a direction orthogonal to the optical axis X of Also,
In this embodiment, the transmission light fibers 6a, 6
Infrared light is used for the AF reference beam transmitted in b and 6c. For this reason, an infrared transmission filter 9 for preventing the imaging light of the endoscope main body 1 from being mixed into the fiber array 8 is disposed in front of the fiber array 8.
Then, only the reflected light (ranging light) from the observation object 11, which is infrared light, enters the fiber array 8 by cutting the visible imaging light.

【0028】以上の図2に示す測距光学系において、発
光体2、送光レンズ3及び測距光専用送光ファイバー6
a、6b、6cを介して1つの観察物体11の複数の測
距エリアの異なる照射位置a、b、cに向けてAF参照
ビームを発すると、測距光専用送光ファイバー6a、6
b、6cの先端から出射される光は送光レンズ3により
略平行光のビームに整形され、スポット状ビームとして
観察物体11の複数の測距エリアの異なる照射位置a、
b、cに照射される。図2においては、前記AF参照ビ
ームが観察物体11の複数の測距エリアの異なる照射位
置a、b、cで反射し、その反射光(測距光)が位置検
出センサ5に結像するときの結像位置をA、B又はCと
し、その結像位置A、B又はCと前記受光レンズ4の光
軸との間の距離をdとして表記している。
In the distance measuring optical system shown in FIG. 2, the light emitting body 2, the light transmitting lens 3, and the light transmitting fiber 6 for the distance measuring light are used.
When the AF reference beams are emitted toward different irradiation positions a, b, and c of a plurality of distance measurement areas of one observation object 11 via a, 6b, and 6c, the transmission fibers 6a, 6 dedicated to distance measurement light are emitted.
The light emitted from the tips of b and 6c is shaped into a substantially parallel light beam by the light transmitting lens 3, and is applied as a spot-like beam to different irradiation positions a,
b and c are irradiated. In FIG. 2, when the AF reference beam is reflected at different irradiation positions a, b, and c of a plurality of ranging areas of the observation object 11, and the reflected light (ranging light) forms an image on the position detection sensor 5. Is defined as A, B or C, and the distance between the image forming position A, B or C and the optical axis of the light receiving lens 4 is represented as d.

【0029】次に図3を用いて、測距光が位置検出セン
サ5に結合するときの結合位置(A、B、C)と受光レ
ンズ4の光軸Xとの間の距離(d)等のデータに基いて
三角測距を行なう場合について説明する。図3は、説明
を簡単にするために図2に示す複数の測距光専用送光フ
ァイバーa、6b、6cから2本の測距光専用送光ファ
イバーa、6bを選択し、これらの測距光専用送光ファ
イバーa、6bからAF参照ビームを2つの測距エリア
の異なる照射位置a、bに照射した場合における三角測
距について説明する。
Next, referring to FIG. 3, the distance (d) between the coupling position (A, B, C) when the distance measuring light is coupled to the position detection sensor 5 and the optical axis X of the light receiving lens 4, etc. A case in which triangulation is performed based on the above data will be described. FIG. 3 shows two distance-measuring light transmission fibers a, 6b selected from the plurality of distance-measuring light transmission fibers a, 6b, 6c shown in FIG. 2 for the sake of simplicity. A description will be given of triangulation in a case where the AF reference beams are irradiated from the dedicated light transmitting fibers a and 6b to different irradiation positions a and b of the two distance measurement areas.

【0030】図3において、発光体2、送光レンズ3及
び測距光専用送光ファイバー6a、6bを介して2つの
測距エリアの異なる照射位置a、bに向けて測距光(A
F参照光)を発すると、測距光専用送光ファイバー6
a、6bの先端から出射される光は送光レンズ3により
略平行光のビームに整形され、異なる照射位置a、bに
照射される。このAF参照ビームが照射位置a点又はb
点で反射し、その反射光が位置検出センサ5に結像する
ときの結像位置をA又はBとし、その結像位置A又はB
と前記受光レンズ4の光軸Xとの間の距離をd1、d
2、前記受光レンズ4の焦点距離をf、前記受光レンズ
4と前記送光レンズ3の光軸間距離をL、観察物体距離
をD1、D2とする。
In FIG. 3, distance measuring light (A) is directed toward different irradiation positions a and b of the two distance measuring areas via the light emitting body 2, the light transmitting lens 3 and the distance measuring light transmitting light fibers 6a and 6b.
F reference light), the distance measuring light transmission fiber 6
Light emitted from the tips of a and 6b is shaped into a substantially parallel light beam by the light transmitting lens 3, and is applied to different irradiation positions a and b. This AF reference beam is irradiated at the point a or b
An image forming position when the light is reflected at a point and the reflected light forms an image on the position detection sensor 5 is A or B, and the image forming position A or B
Distance between the optical axis X of the light receiving lens 4 and d1, d
2. The focal length of the light receiving lens 4 is f, the distance between the optical axes of the light receiving lens 4 and the light transmitting lens 3 is L, and the observation object distances are D1 and D2.

【0031】位置検出センサ5が測定した距離d1、d
2を式 D=L/(L/D0−d/f)・・・・・・・・・・・(1) に代入して、観察物体距離D(D1、D2)を求める。
ただし、D0はAF参照ビームが受光レンズ4の光軸X
と交わる点までの図示しない予め設定された観察物体距
離である。また、d(d1、d2)の符号については受
光レンズ4の光軸Xを原点とし、送光レンズ3の設置方
向を正とする。したがって図3の場合d1の符号は正、
d2の符号は負となる。これらの距離d1、d2及び観
察物体距離Dの距離データがフォーカシングを行う距離
データとして用いられる。なお、2本の測距光専用送光
ファイバーa、6b以外の残りの測距光専用送光ファイ
バーc・・・についても同様に図3に示す原理に基いて
三角測距を行ない、距離d及び観察物体距離Dの距離デ
ータがフォーカシング用の距離データとして用いられ
る。
The distances d1, d measured by the position detection sensor 5
2 is substituted into the equation D = L / (L / D 0 −d / f) (1) to obtain the observation object distance D (D1, D2).
However, D 0 is the optical axis X of the light receiving lens 4 when the AF reference beam is
Is a preset observation object distance (not shown) up to the point where the intersection with. For the sign of d (d1, d2), the optical axis X of the light receiving lens 4 is set as the origin, and the installation direction of the light transmitting lens 3 is set as positive. Therefore, in the case of FIG. 3, the sign of d1 is positive,
The sign of d2 is negative. These distance data of the distances d1 and d2 and the observation object distance D are used as distance data for performing focusing. In addition, triangular distance measurement is similarly performed on the remaining distance-measuring light transmission fibers c... Other than the two distance-measurement light transmission fibers a and 6b based on the principle shown in FIG. The distance data of the object distance D is used as distance data for focusing.

【0032】そして内視鏡本体1の撮像光学系に連動し
た、図示しない焦点調節機構は、測距手段による前記距
離情報等に基いて、図1(b)に示す撮像光学系の撮像
レンズ1bとCCD1cとの相対距離を変化させて焦点
合せ(オートフォーカス)を行うこととなる。
A focus adjustment mechanism (not shown) interlocked with the imaging optical system of the endoscope main body 1 is provided with an imaging lens 1b of the imaging optical system shown in FIG. Focusing (autofocus) is performed by changing the relative distance between the camera and the CCD 1c.

【0033】図2において、比較的近接した複数の測距
光専用送光ファイバー6a、6b、6cからのAF参照
ビームを同時に観察物体11に照射して観察物体11の
異なる照射位置a、b、cで反射した反射光を1つの位
置検出センサ5上に同時に結像させると、異なる複数の
測距光専用送光ファイバー6a、6b、6cからのAF
参照ビームによる反射光(測距光)の結像点が重なった
り、或いは並び順の入れ替わりが起こる場合があり、誤
った測距をしてしまう可能性がある。そこで、図1
(a)に示すプロセッサ14は、前記発光体2から前記
複数の測距光専用送光ファイバー6a、6b、6cへの
測距光の送光を時分割で制御し、前記発光体2から前記
複数の測距光専用送光ファイバー6a、6b、6cへの
光(AF参照ビーム)の送光の時分割に同期して前記測
距受光系は、複数の測距光の位置検出A、B、Cを時分
割順に行い、観察物体11の複数の測距エリアの照射位
置までの観察物体距離の測距を行う。
In FIG. 2, the observation object 11 is simultaneously irradiated with AF reference beams from a plurality of transmission light fibers 6a, 6b, 6c dedicated to distance measurement light which are relatively close to each other, and different irradiation positions a, b, c of the observation object 11 are shown. When the light reflected by the light source is imaged on one position detection sensor 5 at the same time, AF from a plurality of different distance-measuring light-dedicated light transmitting fibers 6a, 6b, and 6c is performed.
There is a case where the imaging points of the reflected light (ranging light) by the reference beam overlap or the arrangement order is changed, and there is a possibility that an erroneous ranging is performed. Therefore, FIG.
The processor 14 shown in (a) controls the transmission of distance measurement light from the light emitter 2 to the plurality of distance measurement light dedicated transmission fibers 6a, 6b, 6c in a time-division manner. In synchronization with the time division of the transmission of the light (AF reference beam) to the light transmitting fibers 6a, 6b, and 6c dedicated to the distance measuring light, the distance measuring light receiving system detects the positions A, B, and C of a plurality of distance measuring lights. Are performed in time division order, and the distance of the observation object distance to the irradiation positions of the plurality of distance measurement areas of the observation object 11 is measured.

【0034】この実施形態では、送光系の光源として測
距光専用送光ファイバー6a、6b、6cを利用して内
視鏡本体1の先端部までAF参照ビームを送光すること
により、大きなスペースを必要とする発光素子を図1
(a)に示す内視鏡装置の外部装置13に設置すること
が可能となり、測距手段を小型化することができ、内視
鏡先端部の寸法拡大を抑制することができる。
In this embodiment, the AF reference beam is transmitted to the distal end portion of the endoscope main body 1 using the distance-measuring light transmission fibers 6a, 6b, and 6c as light sources of the light transmission system, thereby providing a large space. Figure 1 shows a light-emitting element that requires
(A) can be installed in the external device 13 of the endoscope apparatus, the distance measuring means can be reduced in size, and an increase in the size of the endoscope tip can be suppressed.

【0035】さらに図2に示すファイバーアレイ8によ
ると、スポット像がファイバーアレイ8の光ファイバー
8aを介して内視鏡本体1から内視鏡装置の外部装置1
3に送光され、その光強度分布を維持したまま外部装置
13内に設けた受光素子を使って電気信号に変換され、
距離データを算出して測距を行う。
Further, according to the fiber array 8 shown in FIG. 2, the spot image is transmitted from the endoscope main body 1 to the external device 1 of the endoscope apparatus via the optical fiber 8a of the fiber array 8.
3, and is converted into an electric signal using a light receiving element provided in the external device 13 while maintaining the light intensity distribution,
Distance data is calculated and distance measurement is performed.

【0036】次に図2に示す測距装置でフォーカシング
に必要な距離データの測距を行い、焦点合せを行った後
に取り込んだ画像に各種の処理を施す場合について図7
に基いて説明する。
Next, FIG. 7 shows a case in which the distance measurement device shown in FIG. 2 measures the distance of the distance data necessary for focusing, and performs various processes on the captured image after focusing.
It will be described based on FIG.

【0037】図2において、近接拡大時の内視鏡による
観察可能な全体測距エリアはa、b、c点を含む観察物
体面とする。この場合、近接拡大時の内視鏡による観察
可能な測距エリア(a、b又はc)までの観察物体距離
がそれぞれ異なるため、1つの測距エリアの観察物体距
離データを用いてフォーカシングを行うと、残りの測距
エリアではピンボケが生じてしまい、複数の測距エリア
での合焦を行うことが不可能となる。そこで、図6に示
すような処理を行う。
In FIG. 2, the entire distance measurement area observable by the endoscope at the time of close-up enlargement is an observation object plane including points a, b, and c. In this case, since the observation object distances to the distance measurement areas (a, b, or c) observable by the endoscope at the time of the close-up are different, focusing is performed using the observation object distance data of one distance measurement area. Then, out-of-focus occurs in the remaining ranging areas, making it impossible to perform focusing in a plurality of ranging areas. Therefore, processing as shown in FIG. 6 is performed.

【0038】図6のステップS1において、内視鏡本体
1の先端硬性部1eが、観察物体11の複数の測距エリ
アa、b、cが観察可能な位置にある。一方、発光体2
から複数の測距光専用送光ファイバー6a、6b、6c
への送光順に時分割制御を予め設定しておく。ここで、
前記送光順を、測距光専用送光ファイバー6a、測距光
専用送光ファイバー6b、測距光専用送光ファイバー6
cの順に設定した場合を例にとって説明する。
In step S1 of FIG. 6, the rigid distal end portion 1e of the endoscope main body 1 is located at a position where a plurality of distance measurement areas a, b, and c of the observation object 11 can be observed. On the other hand, the luminous body 2
From a plurality of transmission fibers 6a, 6b, 6c dedicated to ranging light
Time-division control is set in advance in the order of light transmission to the light source. here,
The light transmission order is determined by the distance-measuring light transmission fiber 6a, the distance-measuring light transmission fiber 6b, and the distance-measuring light transmission fiber 6.
The case where the setting is performed in the order of c will be described as an example.

【0039】ステップS2において、前記送光順が一番
目の測距光専用送光ファイバー6aに発光体2からAF
参照ビームを入射させると、そのAF参照ビームが測距
光専用送光ファイバー6aを通して送光レンズ3まで送
光される。前記AF参照ビームは送光レンズ3により略
平行光のビームに整形され、観察物体11の第1の測距
エリアである照射位置aにスポット状に照射される。
In step S2, the light transmission order from the light-emitting body 2 to the first transmission light fiber 6a for distance measurement light is the AF transmission order.
When the reference beam is incident, the AF reference beam is transmitted to the light transmitting lens 3 through the distance measuring light-specific transmitting fiber 6a. The AF reference beam is shaped into a substantially parallel light beam by the light transmitting lens 3, and is irradiated in a spot shape on the irradiation position a of the observation object 11, which is the first distance measurement area.

【0040】次にステップS3に示すように、測距光専
用送光ファイバー6aからのAF参照ビームは観察物体
11の第1の測距エリアである照射位置aで反射し、そ
の反射光(測距光)は測距受光系の受光レンズ4で位置
検出センサ5上に結像する。測距受光系(特に図1
(a)のプロセッサ14)は、前記位置検出センサ5上
での測距光の結像位置データから図2の距離dを求め
る。
Next, as shown in step S3, the AF reference beam from the distance-measuring light transmission fiber 6a is reflected at the irradiation position a, which is the first distance-measuring area of the observation object 11, and the reflected light (the distance-measuring light) is obtained. (Light) is imaged on the position detection sensor 5 by the light receiving lens 4 of the distance measuring light receiving system. Distance measuring light receiving system (particularly FIG. 1
The processor (a) (a) obtains the distance d in FIG. 2 from the image forming position data of the distance measuring light on the position detection sensor 5.

【0041】引続いて測距受光系(特に図1(a)のプ
ロセッサ14)は、前記距離dを前記(1)式に代入し
て観察物体距離を算出し(ステップS4)、その測距デ
ータを図示しないメモリに記憶する。
Subsequently, the distance measuring light receiving system (particularly, the processor 14 in FIG. 1A) calculates the observation object distance by substituting the distance d into the equation (1) (step S4), and measures the distance. The data is stored in a memory (not shown).

【0042】次にステップS5において、同様に前記送
光順が二番目の測距光専用送光ファイバー6bに発光体
2からAF参照ビームを入射させると、そのAF参照ビ
ームが測距光専用送光ファイバー6bを通して送光レン
ズ3まで送光される。前記AF参照ビームは送光レンズ
3により略平行光のビームに整形され、観察物体11の
第2の測距エリアである照射位置bにスポット状に照射
される。
Next, in step S5, similarly, when the AF reference beam is incident from the light emitter 2 on the distance-measuring light transmission fiber 6b having the second light transmission order, the AF reference beam is transmitted to the distance-measuring light transmission fiber. The light is transmitted to the light transmitting lens 3 through 6b. The AF reference beam is shaped into a substantially parallel light beam by the light-sending lens 3, and is irradiated in a spot shape on the irradiation position “b” of the observation object 11 which is the second distance measurement area.

【0043】次にステップS6に示すように、測距光専
用送光ファイバー6bからのAF参照ビームは観察物体
11の第2の測距エリアである照射位置bで反射し、そ
の反射光(測距光)は測距受光系の受光レンズ4で位置
検出センサ5上に結像する。測距受光系(特に図1
(a)のプロセッサ14)は、上述したと同様に前記位
置検出センサ5上での測距光の結像位置データから図2
の距離dを求める。
Next, as shown in step S6, the AF reference beam from the distance measuring light transmission fiber 6b is reflected at the irradiation position b, which is the second distance measuring area of the observation object 11, and the reflected light (the distance measuring light) (Light) is imaged on the position detection sensor 5 by the light receiving lens 4 of the distance measuring light receiving system. Distance measuring light receiving system (particularly FIG. 1
2A, the processor 14) of FIG. 2A uses the image forming position data of the distance measurement light on the position detection sensor 5 as shown in FIG.
Is determined.

【0044】引続いて測距受光系(特に図1(a)のプ
ロセッサ14)は、前記距離dを前記(1)式に代入し
て観察物体距離を算出し(ステップS7)、その測距デ
ータを図示しないメモリに記憶する。
Subsequently, the distance measuring light receiving system (particularly, the processor 14 of FIG. 1A) calculates the observation object distance by substituting the distance d into the equation (1) (step S7), and measures the distance. The data is stored in a memory (not shown).

【0045】次にステップS8において、同様に前記送
光順が三番目の測距光専用送光ファイバー6cに発光体
2からAF参照ビームを入射させると、そのAF参照ビ
ームが測距光専用送光ファイバー6cを通して送光レン
ズ3まで送光される。前記AF参照ビームは送光レンズ
3により略平行光のビームに整形され、観察物体11の
第3の測距エリアである照射位置cにスポット状に照射
される。なお、図6のステップS10、S11では、符
号「n」を用いて表記しているが、「n」は前記送光順
が最後のものを意味するものであり、図2の例では、
「n」の送光順には第三番目が該当する。
Next, in step S8, similarly, when the AF reference beam from the light emitter 2 is made to enter the third distance-measuring light dedicated transmission fiber 6c, the AF reference beam is transmitted to the third distance-measuring light dedicated transmission fiber. The light is transmitted to the light transmitting lens 3 through 6c. The AF reference beam is shaped into a substantially parallel light beam by the light-sending lens 3, and is irradiated in a spot shape on the irradiation position c, which is the third distance measurement area of the observation object 11. In addition, in steps S10 and S11 in FIG. 6, the symbols are represented using the symbol “n”, but “n” means the last one in the light transmission order, and in the example of FIG.
The third corresponds to the light transmission order of “n”.

【0046】次にステップS9に示すように、測距光専
用送光ファイバー6cからのAF参照ビームは観察物体
11の第3の測距エリアである照射位置cで反射し、そ
の反射光(測距光)は測距受光系の受光レンズ4で位置
検出センサ5上に結像する。測距受光系(特に図1
(a)のプロセッサ14)は、上述と同様に前記位置検
出センサ5上での測距光の結像位置データから図2の距
離dを求める。
Next, as shown in step S9, the AF reference beam from the distance-measuring light transmission fiber 6c is reflected at the irradiation position c, which is the third distance-measuring area of the observation object 11, and the reflected light (the distance-measuring light) is obtained. (Light) is imaged on the position detection sensor 5 by the light receiving lens 4 of the distance measuring light receiving system. Distance measuring light receiving system (particularly FIG. 1
The processor 14) in (a) obtains the distance d in FIG. 2 from the imaging position data of the distance measuring light on the position detection sensor 5 in the same manner as described above.

【0047】引続いて測距受光系(特に図1(a)のプ
ロセッサ14)は、前記距離dを前記(1)式に代入し
て観察物体距離を算出し(ステップS10)、その測距
データを図示しないメモリに記憶する。
Subsequently, the distance measuring light receiving system (particularly, the processor 14 in FIG. 1A) calculates the observation object distance by substituting the distance d into the equation (1) (step S10), and measures the distance. The data is stored in a memory (not shown).

【0048】次に図1(a)に示す外部装置13のプロ
セッサ14は、使用者により予め設定された処理方法に
則って1つの観察物体11での測距エリア(照射位置
a、b、c)に対するのため演算処理を行う(ステップ
S13)。前記予め設定された処理には、前記複数の
測距エリアの中から指定された測距エリアの測距情報の
みを使用してAF処理データの演算(測距処理)を行
う、前記複数の測距エリアの測距情報を平均化してA
F処理データの演算(測距処理)を行う、前記複数の
測距エリアの中から最も近接側(図2のc点 最近点)
又は最も遠い側(図2のa点 最遠点)を選択してAF
処理データの演算(測距処理)を行う、観察物体距離
に応じて各測距エリアを担当する送光ビームを変更して
AF処理データの演算(測距処理)を行う等の処理が含
まれる。
Next, the processor 14 of the external device 13 shown in FIG. 1 (a) operates the distance measurement area (irradiation positions a, b, c) of one observation object 11 in accordance with a processing method preset by the user. ) Is performed (step S13). The preset processing includes calculating the AF processing data (distance measurement processing) using only the distance measurement information of the designated distance measurement area from the plurality of distance measurement areas. A is obtained by averaging the distance measurement information of the distance area.
F processing data calculation (ranging processing), the closest side from the plurality of ranging areas (point c in FIG. 2 nearest point)
Alternatively, select the farthest side (point a in FIG.
The processing includes calculation of processing data (distance measurement processing), processing of AF processing data (distance measurement processing) by changing the light transmission beam in charge of each distance measurement area according to the observation object distance, and the like. .

【0049】次にステップS14において、プロセッサ
14はステップS13で得られたデータを図示しない焦
点調節機構に出力して観察対象となる測距エリアに対し
てフォーカシング(AF)を行う。
Next, in step S14, the processor 14 outputs the data obtained in step S13 to a focus adjustment mechanism (not shown) and performs focusing (AF) on the distance measurement area to be observed.

【0050】なお、図2に示す実施形態では、観察物体
11の各測距エリアa、b、cに対しそれぞれピントを
合わせて撮像し、得られた複数の画像データの合成を行
うことにより、焦点深度が狭い場合にも測距エリアa、
b、cの全面内でピントが合った全体画像を得るように
してもよい。
In the embodiment shown in FIG. 2, each of the distance measurement areas a, b, and c of the observation object 11 is imaged in focus, and a plurality of obtained image data are synthesized. Even when the depth of focus is narrow, the ranging area a,
An in-focus image may be obtained within the entire area of b and c.

【0051】図4は本発明の第2の実施形態に係る内視
鏡の測距装置を示す構成図である。この実施形態では、
受光レンズ4を内視鏡1の撮像レンズ1bで兼用し、観
察物体からの測距光を撮像レンズ1bでスポット状に結
像させ、そのスポット像を内視鏡1の撮像光学系からビ
ームスプリッタ7で分岐する。その分岐したスポット像
の結像位置を位置検出センサ5で検出する。位置検出セ
ンサ5として図2に示すファイバーアレイ8を用いてい
る。
FIG. 4 is a configuration diagram showing a distance measuring device for an endoscope according to a second embodiment of the present invention. In this embodiment,
The light receiving lens 4 is also used as the image pickup lens 1b of the endoscope 1, and the distance measuring light from the observation object is formed into a spot by the image pickup lens 1b, and the spot image is transmitted from the image pickup optical system of the endoscope 1 to the beam splitter. Branch at 7. The position where the branched spot image is formed is detected by the position detection sensor 5. The fiber array 8 shown in FIG. 2 is used as the position detection sensor 5.

【0052】この場合、測距光専用送光ファイバーで送
光されるAF参照ビームに赤外光を用いることにより、
撮像レンズ1bを通過した光束はビームスプリッタ7で
撮像光と測距光とに分岐され、測距光のみが測距受光系
のファイバーアレイ8(位置検出センサ5)上にスポッ
ト状に結像される。測距光は赤外光であるから、ビーム
スプリッタ7は可視光を通過させ、赤外光を反射させる
ような特性をもつ。したがって、この実施形態では内視
鏡の撮像光学系による撮像と測距装置による測距とを同
時に行うことができる。
In this case, by using infrared light as the AF reference beam transmitted by the distance measuring light transmission fiber,
The light beam that has passed through the imaging lens 1b is split by the beam splitter 7 into imaging light and distance measuring light, and only the distance measuring light is formed into a spot-like image on the fiber array 8 (position detection sensor 5) of the distance measuring light receiving system. You. Since the distance measuring light is infrared light, the beam splitter 7 has a characteristic of transmitting visible light and reflecting infrared light. Therefore, in this embodiment, imaging by the imaging optical system of the endoscope and ranging by the ranging device can be performed simultaneously.

【0053】図5は本発明の第3の実施形態に係る内視
鏡の測距装置を示す構成図である。この実施形態では、
送光レンズ3を撮像光学系の撮像レンズ1bで兼用し、
測距受光系を撮像光学系から独立させたものである。
FIG. 5 is a block diagram showing a distance measuring device for an endoscope according to a third embodiment of the present invention. In this embodiment,
The light transmitting lens 3 is also used as the imaging lens 1b of the imaging optical system,
The distance measuring light receiving system is independent of the imaging optical system.

【0054】具体的に説明すると、この実施形態では、
測距光専用送光ファイバー6a、6b、6cは、発光体
2から出射されるAF参照ビームを内視鏡1の体内挿入
部1aまで送光し、測距光専用送光ファイバー6a、6
b、6cの先端から出射されるAF参照ビームはビーム
スプリッタ12で内視鏡の撮像レンズ1bに向けて反射
され、撮像レンズ1bを介し、観察物体面の複数の測距
エリアの異なる照射位置a、b、cにスポット状ビーム
としてそれぞれ照射される。なお、撮像レンズ1bが複
数の光学レンズを組合せて構成されている場合には、撮
像レンズ1bの一部又は全部を使って測距光専用送光フ
ァイバーからの光を撮像レンズ1bに入射することにな
る。撮像レンズ1bの一部を使う場合には、その個所に
ビームスプリッタ12を設置することになる。
More specifically, in this embodiment,
The distance-measuring light transmission fibers 6a, 6b, and 6c transmit the AF reference beam emitted from the light emitter 2 to the in-body insertion portion 1a of the endoscope 1, and transmit the distance-measuring light transmission fibers 6a, 6a.
b, 6c, the AF reference beam emitted from the tip of the beam splitter 12 is reflected by the beam splitter 12 toward the imaging lens 1b of the endoscope, and passes through the imaging lens 1b to different irradiation positions a of a plurality of distance measurement areas on the observation object plane. , B, and c are irradiated as spot beams. When the imaging lens 1b is configured by combining a plurality of optical lenses, light from the distance-measuring light-dedicated transmission fiber is incident on the imaging lens 1b using a part or all of the imaging lens 1b. Become. When a part of the imaging lens 1b is used, the beam splitter 12 is installed at that location.

【0055】また内視鏡本体1の撮像光学系(撮像レン
ズ1b、CCD1c等を含む)から独立した測距専用の
測距受光系を備えているため、観察物体面で反射した測
距光は、受光レンズ4で位置検出センサ5にスポット状
に結像する。また測距光専用送光ファイバー6a、6
b、6cで送光されるAF参照ビームに赤外光を用いる
場合には、内視鏡本体1の撮像光が測距センサ5に混入
するのを防止するために赤外透過フィルタ9を用い、赤
外透過フィルタ9で可視光である撮像光をカットして赤
外光である被写体からの反射光のみを位置検出センサ5
に入光させる。
Further, since the distance measuring light receiving system dedicated to distance measuring is provided independently of the image pickup optical system (including the image pickup lens 1b, the CCD 1c, etc.) of the endoscope main body 1, the distance measuring light reflected on the observation object surface is not reflected. Then, an image is formed in a spot shape on the position detection sensor 5 by the light receiving lens 4. In addition, transmission light fibers 6a, 6
When infrared light is used as the AF reference beam transmitted in b and 6c, an infrared transmission filter 9 is used to prevent the imaging light of the endoscope main body 1 from being mixed into the distance measuring sensor 5. The infrared light transmitting filter 9 cuts off the visible image light, and detects only the infrared light reflected from the object.
Light.

【0056】この実施形態では、送光レンズ3として内
視鏡1の撮像レンズ1bを兼用しているため、距離によ
る測距点の移動が無く、特に基線長に対して観察物体距
離が非常に短い近接拡大観察を行う場合には有効であ
る。
In this embodiment, since the imaging lens 1b of the endoscope 1 is also used as the light transmitting lens 3, there is no movement of the distance measuring point due to the distance, and particularly, the observation object distance is extremely large with respect to the base line length. This is effective when performing short close-up magnification observation.

【0057】この実施形態においても、位置検出センサ
5として、CCD1cに代えて図2に示すファイバーア
レイ8を用いてもよい。
Also in this embodiment, the fiber array 8 shown in FIG. 2 may be used as the position detection sensor 5 instead of the CCD 1c.

【0058】以上の実施形態では、消化管等の観察に用
いる内視鏡について説明したが、これに限定されるもの
ではなく、工業用に用いられる内視鏡についても同様に
適用することができるものである。
In the above embodiment, the endoscope used for observing the digestive tract and the like has been described. However, the present invention is not limited to this, and can be similarly applied to an endoscope used for industrial use. Things.

【0059】[0059]

【発明の効果】以上説明したように本発明によれば、内
視鏡の先端部から複数のAF参照ビームを観察物体の複
数の測距エリアに向けて照射し、その測距光を利用して
測距を行うため、コントラストによるオートフォーカス
でのデフォーカス方向を検知するための複雑なシステム
が不要となり、しかも低コントラストな物体に対して合
焦を容易に行うことができる。
As described above, according to the present invention, a plurality of AF reference beams are emitted from the distal end of the endoscope toward a plurality of distance measurement areas of the observation object, and the distance measurement light is used. Since the distance measurement is performed, a complicated system for detecting the defocus direction in the autofocus based on the contrast is not required, and the focusing can be easily performed on a low-contrast object.

【0060】一般的に三角測量方式は無限遠物体の検知
を正確に行うことが困難であるが、拡大内視鏡は近接拡
大時の焦点深度の狭い領域のみ測距が必要であり、無限
遠の検知は必要がなく、高々数センチ程度が測距できれ
ばよいことに鑑みて三角測量方式を内視鏡に採用するこ
とができ、かつ焦点深度が浅い拡大観察に多点測距を行
うことができる。
In general, it is difficult for the triangulation method to accurately detect an object at infinity. However, a magnifying endoscope needs to measure a distance only in an area with a small depth of focus at the time of close-up magnification. No triangulation is required for endoscopes in view of the fact that it is only necessary to be able to measure distances of at most several centimeters, and multi-point ranging can be performed for magnified observations with a shallow depth of focus. it can.

【0061】さらに送光系の光源として並列配列の測距
光専用送光ファイバーを利用して内視鏡先端部まで送光
することにより、大きなスペースを必要とする発光素子
を内視鏡装置の外部装置側に設置することが可能とな
り、内視鏡本体を小型化することができる。
Further, by transmitting light to the distal end portion of the endoscope using a parallel-arranged light transmitting fiber for distance measuring light as a light source of the light transmitting system, a light emitting element requiring a large space can be provided outside the endoscope apparatus. The endoscope can be installed on the device side, and the size of the endoscope main body can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)は本発明を適用した電子内視鏡シス
テムの全体を示す図、図1(b)は図1(a)のA部の
うち撮像光学系を拡大して示す構成図である。
FIG. 1A is a diagram showing an entire electronic endoscope system to which the present invention is applied, and FIG. 1B is an enlarged view of an imaging optical system in a portion A of FIG. 1A. It is a block diagram.

【図2】図1(a)のA部のうち、内視鏡の特性に合致
した小型で簡易な、本発明を電子内視鏡システムに適用
した第1の実施形態に係る内視鏡の測距装置を拡大して
示す構成図である。
FIG. 2 is a view showing a small and simple endoscope according to a first embodiment, in which the present invention is applied to an electronic endoscope system, in a part A of FIG. It is a block diagram which expands and shows a ranging device.

【図3】観察物体で反射した測距光を用いて測距するア
クティブ式の三角測量式測距装置の原理図である。
FIG. 3 is a principle diagram of an active triangulation distance measuring device that measures a distance by using distance measuring light reflected by an observation object.

【図4】本発明の第2の実施形態に係る内視鏡の測距装
置を示す構成図である。
FIG. 4 is a configuration diagram showing a distance measuring device for an endoscope according to a second embodiment of the present invention.

【図5】本発明の第3の実施形態に係る内視鏡の測距装
置を示す構成図である。
FIG. 5 is a configuration diagram showing a distance measuring device for an endoscope according to a third embodiment of the present invention.

【図6】本発明の実施形態において多点測距によるデー
タを用いて処理を行う場合のフローチャートである。
FIG. 6 is a flowchart in the case where processing is performed using data obtained by multipoint ranging in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 内視鏡本体 1a 体内挿入部 1b 撮像レンズ 1c 撮像素子(CCD) 2 発光体 3 送光レンズ 4 受光レンズ 5 位置検出センサ 6a 6b 6c 測距光専用送光ファイバー 8 ファイバーアレイ DESCRIPTION OF SYMBOLS 1 Endoscope main body 1a Internal insertion part 1b Image pickup lens 1c Image pickup device (CCD) 2 Light emitting body 3 Light transmission lens 4 Light reception lens 5 Position detection sensor 6a 6b 6c Light transmission fiber exclusive for distance measuring light 8 Fiber array

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02B 7/28 G02B 7/11 H 7/32 B Fターム(参考) 2F065 AA06 AA60 BB08 DD02 FF09 GG07 HH04 JJ02 JJ03 JJ16 JJ24 JJ25 JJ26 LL01 LL03 LL21 LL46 PP22 QQ23 QQ26 QQ28 QQ29 QQ42 2F112 AA06 AA08 BA10 CA01 CA12 DA02 DA10 DA19 DA26 DA30 EA11 FA21 FA45 2H040 BA06 BA22 CA12 CA13 CA22 CA24 DA12 GA02 2H051 AA00 4C061 AA00 AA29 CC06 FF40 FF46 FF47 HH52 JJ20 LL02 NN01 PP13 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02B 7/28 G02B 7/11 H 7/32 B F term (Reference) 2F065 AA06 AA60 BB08 DD02 FF09 GG07 HH04 JJ02 JJ03 JJ16 JJ24 JJ25 JJ26 LL01 LL03 LL21 LL46 PP22 QQ23 QQ26 QQ28 QQ29 QQ42 2F112 AA06 AA08 BA10 CA01 CA12 DA02 DA10 DA19 DA26 DA30 EA11 FA21 FA45 2H040 BA06 BA22 CA12 CA13 CA22 CA05 DA1 AA02A062A062A052 NN01 PP13

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】内視鏡の体内挿入部の先端部に、基線長だ
け離隔させた発光源と測距受光系とを設け、発光源から
出射され観察物体で反射して測距受光系に入射する測距
光の位置から複数の測距エリアの観察物体距離を検出す
る三角測量方式の内視鏡の測距装置であって、 前記体内挿入部の先端部の発光源に送光する送光系は、
該体内挿入部の先端に設けた送光レンズと、内視鏡の操
作部側に設けた発光体と、該発光体の光を送光レンズに
送光する、体内挿入部内に挿通した複数の測距光専用送
光ファイバーとから構成され、 前記複数の測距光専用送光ファイバーは、前記体内挿入
部内に並列に挿通され、前記発光体からの光を、前記送
光レンズを介して観察物体の複数の測距エリアの異なる
照射位置に出射することを特徴とする内視鏡の測距装
置。
1. A light emitting source and a distance measuring light receiving system which are separated from each other by a base line length at a distal end portion of an insertion portion of a body of an endoscope. What is claimed is: 1. A triangulation endoscope distance measuring device for detecting an observation object distance in a plurality of distance measurement areas from a position of an incident distance measurement light, wherein the transmission device transmits light to a light emitting source at a distal end portion of the body insertion portion. The optical system is
A light-sending lens provided at the tip of the body-inserting portion, a light-emitting member provided on the operation unit side of the endoscope, and a plurality of light-emitting members for transmitting the light of the light-emitting body to the light-sending lens; A plurality of distance-measuring light-dedicated light-transmitting fibers, wherein the plurality of distance-measuring light-dedicated light-transmitting fibers are inserted in parallel into the body insertion portion, and light from the illuminant is transmitted to the observation object through the light-sending lens. A distance measuring device for an endoscope which emits light to different irradiation positions in a plurality of distance measuring areas.
【請求項2】請求項1記載の内視鏡の測距装置におい
て、 前記測距受光系を、観察物体で反射された光を受光す
る、体内挿入部先端に配置した受光レンズと、該受光レ
ンズで結像される測距光の位置を検出する位置検出セン
サとから構成したことを特徴とする内視鏡の測距装置。
2. A distance measuring device for an endoscope according to claim 1, wherein said distance measuring light receiving system receives light reflected by an observation object, and is disposed at a tip of an insertion portion in the body, and said light receiving lens. A distance measuring device for an endoscope, comprising: a position detecting sensor for detecting a position of distance measuring light formed by a lens.
【請求項3】請求項1記載の内視鏡の測距装置におい
て、 前記複数の測距光専用送光ファイバーの発光を時分割で
行い、前記発光の時分割に同期して前記測距受光系は、
入光する測距光で時分割順に測距を行うことを特徴とす
る内視鏡の測距装置。
3. The distance measuring device for an endoscope according to claim 1, wherein the plurality of distance-measuring light transmission fibers emit light in a time division manner, and the distance measuring light receiving system is synchronized with the time division of the light emission. Is
A distance measuring device for an endoscope, wherein a distance is measured in a time-division order with incoming distance measuring light.
【請求項4】請求項1記載の内視鏡の測距装置におい
て、 前記送光レンズは、ファイバーの出射端面から出射する
光を略平行光とすることを特徴とする内視鏡の測距装
置。
4. A distance measuring apparatus for an endoscope according to claim 1, wherein said light transmitting lens converts light emitted from an emission end face of said fiber into substantially parallel light. apparatus.
【請求項5】請求項1ないし4のいずれか1項記載の内
視鏡の測距装置において、 前記内視鏡は、撮像光学系の撮像レンズによる像を撮像
素子に結像させる電子内視鏡であることを特徴とする内
視鏡の測距装置。
5. The electronic endoscope according to claim 1, wherein the endoscope forms an image formed by an imaging lens of an imaging optical system on an imaging device. A distance measuring device for an endoscope, which is a mirror.
【請求項6】請求項2記載の内視鏡の測距装置におい
て、 前記送光レンズと前記測距受光系の受光レンズとのいず
れか一方が、撮像光学系の撮像レンズで兼用されている
ことを特徴とする内視鏡の測距装置。
6. The distance measuring device for an endoscope according to claim 2, wherein one of the light transmitting lens and the light receiving lens of the distance measuring light receiving system is also used as an imaging lens of an imaging optical system. A distance measuring device for an endoscope.
【請求項7】請求項2記載の内視鏡の測距装置におい
て、 前記測距受光系の受光レンズとして兼用した撮像レンズ
で集光した測距光を撮像光学系から分岐することを特徴
とする内視鏡の測距装置。
7. A distance measuring device for an endoscope according to claim 2, wherein distance measuring light condensed by an image pickup lens serving also as a light receiving lens of said distance measuring light receiving system is branched from said image pickup optical system. Endoscope distance measuring device.
【請求項8】請求項2記載の内視鏡の測距装置におい
て、 前記送光レンズと前記測距受光系の受光レンズの双方
が、撮像光学系の撮像レンズとは独立したものであるこ
とを特徴とする内視鏡の測距装置。
8. The distance measuring device for an endoscope according to claim 2, wherein both the light transmitting lens and the light receiving lens of the distance measuring light receiving system are independent of the imaging lens of the imaging optical system. A distance measuring device for an endoscope, comprising:
【請求項9】請求項5記載の内視鏡の測距装置におい
て、 前記位置検出センサが電子内視鏡の撮像素子で兼用さ
れ、前記撮像素子の出力を測距用と撮像用に時分割して
出力することを特徴とする内視鏡の測距装置。
9. A distance measuring device for an endoscope according to claim 5, wherein said position detecting sensor is also used as an image pickup device of an electronic endoscope, and an output of said image pickup device is time-divided for distance measurement and image pickup. A distance measuring device for an endoscope, wherein the distance is outputted.
【請求項10】請求項2記載の内視鏡の測距装置におい
て、 前記位置検出センサがPSD又はCCDから構成された
ことを特徴とする内視鏡の測距装置。
10. A distance measuring device for an endoscope according to claim 2, wherein said position detection sensor comprises a PSD or a CCD.
【請求項11】請求項2記載の内視鏡の測距装置におい
て、 前記位置検出センサが、光ファイバーの受光端を直線状
に並べたファイバーアレイから構成されたことを特徴と
する内視鏡の測距装置。
11. An endoscope distance measuring apparatus according to claim 2, wherein said position detecting sensor is constituted by a fiber array in which light receiving ends of optical fibers are arranged in a straight line. Distance measuring device.
【請求項12】請求項1記載の内視鏡の測距装置におい
て、 前記複数の測距エリアの中から指定された測距エリアに
対して測距処理を行うことを特徴とする内視鏡の測距装
置。
12. The endoscope distance measuring apparatus according to claim 1, wherein a distance measuring process is performed on a designated distance measuring area from among the plurality of distance measuring areas. Distance measuring device.
【請求項13】請求項1記載の内視鏡の測距装置におい
て、 前記複数の測距エリアの測距情報を平均化して測距処理
を行うことを特徴とする内視鏡の測距装置。
13. A distance measuring apparatus for an endoscope according to claim 1, wherein distance measuring processing is performed by averaging distance measuring information of said plurality of distance measuring areas. .
【請求項14】請求項1記載の内視鏡の測距装置におい
て、 前記複数の測距エリアの中から最近点又は最遠点を選択
して測距処理を行うことを特徴とする内視鏡の測距装
置。
14. The endoscope distance measuring apparatus according to claim 1, wherein a distance measuring process is performed by selecting a nearest point or a farthest point from the plurality of distance measuring areas. Mirror distance measuring device.
JP2001175989A 2001-06-11 2001-06-11 Auto-focusing device of endoscope Withdrawn JP2002365561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175989A JP2002365561A (en) 2001-06-11 2001-06-11 Auto-focusing device of endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175989A JP2002365561A (en) 2001-06-11 2001-06-11 Auto-focusing device of endoscope

Publications (1)

Publication Number Publication Date
JP2002365561A true JP2002365561A (en) 2002-12-18

Family

ID=19017042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175989A Withdrawn JP2002365561A (en) 2001-06-11 2001-06-11 Auto-focusing device of endoscope

Country Status (1)

Country Link
JP (1) JP2002365561A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274577A (en) * 2004-03-25 2005-10-06 Mitsutoyo Corp Position measuring system
JP2009225933A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Capsule endoscope system, and capsule endoscope motion control method
CN103462578A (en) * 2013-09-04 2013-12-25 深圳先进技术研究院 Medical endoscope, medical endoscope cold light source system, and temperature control system for medical endoscope cold light source system
JP2021535408A (en) * 2018-08-24 2021-12-16 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Detector for determining the position of at least one object
CN115143929A (en) * 2022-03-28 2022-10-04 南京大学 Endoscopic range finder based on optical fiber bundle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197806A (en) * 1989-12-26 1991-08-29 Olympus Optical Co Ltd Measurement light projector
JPH03200941A (en) * 1989-12-28 1991-09-02 Seikosha Co Ltd Range finder for camera
JPH10239023A (en) * 1997-02-28 1998-09-11 Olympus Optical Co Ltd Three-dimensional measuring device
JPH10239029A (en) * 1997-02-28 1998-09-11 Olympus Optical Co Ltd Three-dimensional shape measuring device
JPH11304470A (en) * 1998-04-16 1999-11-05 Hamamatsu Photonics Kk Range finder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197806A (en) * 1989-12-26 1991-08-29 Olympus Optical Co Ltd Measurement light projector
JPH03200941A (en) * 1989-12-28 1991-09-02 Seikosha Co Ltd Range finder for camera
JPH10239023A (en) * 1997-02-28 1998-09-11 Olympus Optical Co Ltd Three-dimensional measuring device
JPH10239029A (en) * 1997-02-28 1998-09-11 Olympus Optical Co Ltd Three-dimensional shape measuring device
JPH11304470A (en) * 1998-04-16 1999-11-05 Hamamatsu Photonics Kk Range finder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274577A (en) * 2004-03-25 2005-10-06 Mitsutoyo Corp Position measuring system
JP4686229B2 (en) * 2004-03-25 2011-05-25 株式会社ミツトヨ Position measuring device
JP2009225933A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Capsule endoscope system, and capsule endoscope motion control method
CN103462578A (en) * 2013-09-04 2013-12-25 深圳先进技术研究院 Medical endoscope, medical endoscope cold light source system, and temperature control system for medical endoscope cold light source system
JP2021535408A (en) * 2018-08-24 2021-12-16 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Detector for determining the position of at least one object
JP7374195B2 (en) 2018-08-24 2023-11-06 トリナミクス ゲゼルシャフト ミット ベシュレンクテル ハフツング Detector for determining the position of at least one object
US11940263B2 (en) 2018-08-24 2024-03-26 Trinamix Gmbh Detector for determining a position of at least one object
CN115143929A (en) * 2022-03-28 2022-10-04 南京大学 Endoscopic range finder based on optical fiber bundle

Similar Documents

Publication Publication Date Title
EP0096570B1 (en) An optical system focus-state detector
US8900126B2 (en) Optical scanning device
CN1946332B (en) Endoscope
US10788311B2 (en) Microscope system and method for automated alignment of a microscope
US20130023732A1 (en) Endoscope and endoscope system
CN102438504A (en) Ophthalmologic photographing apparatus
JP3283084B2 (en) Stereoscopic rigid endoscope
EP2466376B1 (en) Optical System having Integrated Illumination and Imaging Optical Systems, and 3D Image Acquisition Apparatus including the Optical System
JP3776561B2 (en) 3D measuring endoscope device
JP2002365561A (en) Auto-focusing device of endoscope
JP4668581B2 (en) Surgical microscope
JP2005161086A (en) Microscope for operation
JP3257641B2 (en) Stereoscopic endoscope device
US20230029750A1 (en) Rigid Scope Device
JP2003290133A (en) Optical imaging device
JP2008022890A (en) Endoscope system for enlarging observation
JP2002360502A (en) Distance measuring equipment for endoscope
JPWO2020170621A1 (en) Medical observation system, medical system and distance measurement method
US11418772B2 (en) Imaging device balancing depth of field and resolution
KR102571259B1 (en) Medical endoscope
JP2002077944A (en) Stereoscopic imaging device
JP2000075213A (en) Microscope for operation
US12034904B2 (en) Endoscopic imaging systems for generating three dimensional images, and associated systems and methods
CN117530645A (en) Fluorescent navigation stereoscopic endoscope system and focusing method thereof
WO2022064659A1 (en) Autofocus system, endoscope system, and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110423