JP2002363640A - Method for producing martensitic heat resistant steel - Google Patents

Method for producing martensitic heat resistant steel

Info

Publication number
JP2002363640A
JP2002363640A JP2001167603A JP2001167603A JP2002363640A JP 2002363640 A JP2002363640 A JP 2002363640A JP 2001167603 A JP2001167603 A JP 2001167603A JP 2001167603 A JP2001167603 A JP 2001167603A JP 2002363640 A JP2002363640 A JP 2002363640A
Authority
JP
Japan
Prior art keywords
resistant steel
less
martensitic heat
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001167603A
Other languages
Japanese (ja)
Other versions
JP4774633B2 (en
Inventor
Taisuke Furuse
泰輔 古瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001167603A priority Critical patent/JP4774633B2/en
Publication of JP2002363640A publication Critical patent/JP2002363640A/en
Application granted granted Critical
Publication of JP4774633B2 publication Critical patent/JP4774633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method for more excelling the toughness of the following martensitic heat resistant steel. SOLUTION: Steel having a composition containing, by weight, 0.05 to 0.20% C, <=0.15% Si, <=0.20% Mn, <=0.020% P, <=0.010% S, <=0.20% Cu, <=0.25% Ni, 9.80 to 10.70% Cr, 0.50 to 0.90% Mo, 1.60 to 2.00% W, 2.90 to 3.60% Co, 0.10 to 0.30% V, 0.03 to 0.07% Nb, 0.03 to 0.07% Ta, 0.003 to 0.008% B and 0.010 to 0.035% N, and the balance Fe with inevitable impurities is subjected to soaking at 1,180 to 1,250 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マルテンサイト系
耐熱鋼の製造方法、詳細には靱性の優れたマルテンサイ
ト系耐熱鋼の製造方法に関する。
The present invention relates to a method for producing a martensitic heat-resistant steel, and more particularly to a method for producing a martensitic heat-resistant steel having excellent toughness.

【0002】[0002]

【従来の技術】火力発電用蒸気タービン軸及び羽根、プ
ラント等には、マルテンサイト系耐熱鋼が使用されてい
る。従来、これらの用途に使用されているマルテンサイ
ト系耐熱鋼としては、C:0.17%、Ni:0.5
%、Cr:11%、Mo:1%、V:0.2%、Ta:
0.05%、N:0.05、残部がFe及び不可避の不
純物からなもの、C:0.2%、Cr:10.5%、M
o:1.3%、W:1.0%、V:0.2%、Nb:
0.2%、B:0.04%、N:0.02、残部がFe
及び不可避の不純物からなるもの等が知られている。そ
して、これらのマルテンサイト系耐熱鋼は、溶製し、鋳
造してインゴットにした後、1150℃前後でソーキン
グをし、その後熱間加工、焼入れ及び焼戻しをして使用
されている。
2. Description of the Related Art Martensitic heat-resistant steel is used for steam turbine shafts and blades for thermal power generation, plants, and the like. Conventionally, martensitic heat-resistant steels used in these applications include C: 0.17%, Ni: 0.5
%, Cr: 11%, Mo: 1%, V: 0.2%, Ta:
0.05%, N: 0.05, balance being Fe and unavoidable impurities, C: 0.2%, Cr: 10.5%, M
o: 1.3%, W: 1.0%, V: 0.2%, Nb:
0.2%, B: 0.04%, N: 0.02, balance Fe
And those composed of unavoidable impurities are known. These martensitic heat-resistant steels are used after being melted, cast and formed into ingots, soaked at about 1150 ° C., and then subjected to hot working, quenching and tempering.

【0003】また、最近、C:0.12%、Cr:1
0.3%、Mo:0.7%、W:1.8%、Co:3.
3%、V:0.20%、Nb:0.05%、Ta:0.
05%、B:0.005%及びN:0.023を含有
し、残部がFe及び不可避不純物からなるマルテンサイ
ト系耐熱鋼が開発された。このマルテンサイト系耐熱鋼
は、上記従来の耐熱鋼と同様に溶製した後、鋳造してイ
ンゴットにし、その後1150℃前後でソーキングを
し、熱間加工、焼入れ及び焼戻しをして使用されてい
た。しかし、このマルテンサイト系耐熱鋼は、クリープ
破断強度等の耐熱性が優れているが、靱性がまだ十分で
なかった。
Recently, C: 0.12%, Cr: 1
0.3%, Mo: 0.7%, W: 1.8%, Co: 3.%
3%, V: 0.20%, Nb: 0.05%, Ta: 0.
A martensitic heat-resistant steel containing 0.05%, B: 0.005% and N: 0.023, with the balance being Fe and unavoidable impurities, has been developed. This martensitic heat-resistant steel is used after being melted and cast into an ingot in the same manner as the above-mentioned conventional heat-resistant steel, and then subjected to soaking at about 1150 ° C., followed by hot working, quenching and tempering. . However, this martensitic heat-resistant steel has excellent heat resistance such as creep rupture strength, but has not yet had sufficient toughness.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記最近開
発されたマルテンサイト系耐熱鋼の靱性をより優れたも
のにする製造方法を提供することを課題としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method for improving the toughness of the recently developed martensitic heat-resistant steel.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明者らは、上記マルテンサイト系耐熱鋼につい
て鋭意研究をしていたところ、上記マルテンサイト系耐
熱鋼は、この種のマルテンサイト系耐熱鋼の通常のソー
キング温度より高い温度でソーキングをすると、靱性が
より優れたものになること等の知見を得た。本発明は、
これらの知見に基づいて発明をされたものである。
Means for Solving the Problems In order to solve the above problems, the present inventors have conducted intensive research on the above martensitic heat resistant steels. It has been found that when soaking is performed at a temperature higher than the normal soaking temperature of the heat-resistant steel, the toughness becomes more excellent. The present invention
The present invention has been made based on these findings.

【0006】すなわち、本発明のマルテンサイト系耐熱
鋼の製造方法においては、C:0.05〜0.20%、
Si:0.15%以下、Mn:0.20%以下、P:
0.020%以下、S:0.010%以下、Cu:0.
20%以下、Ni:0.25%以下、Cr:9.80〜
10.70%、Mo:0.50〜0.90%、W:1.
60〜2.00%、Co:2.90〜3.60%、V:
0.10〜0.30%、Nb:0.03〜0.07%、
Ta:0.03〜0.07%、B:0.003〜0.0
08%及びN:0.010〜0.035%を含有し、残
部がFe及び不可避不純物からなる鋼を1180〜12
50℃でソーキングをし、その後熱間加工、焼入れ及び
焼戻等をすることである。
That is, in the method for producing a martensitic heat-resistant steel of the present invention, C: 0.05 to 0.20%;
Si: 0.15% or less, Mn: 0.20% or less, P:
0.020% or less, S: 0.010% or less, Cu: 0.
20% or less, Ni: 0.25% or less, Cr: 9.80-
10.70%, Mo: 0.50 to 0.90%, W: 1.
60-2.00%, Co: 2.90-3.60%, V:
0.10 to 0.30%, Nb: 0.03 to 0.07%,
Ta: 0.03 to 0.07%, B: 0.003 to 0.0
10.8-12% and N: 0.010-0.035%, the balance being Fe and unavoidable impurities.
Soaking at 50 ° C., followed by hot working, quenching and tempering.

【0007】[0007]

【発明の実施の形態】次に、本発明のマルテンサイト系
耐熱鋼の製造方法について詳細に説明する。まず、本発
明のマルテンサイト系耐熱鋼の成分組成を上記ように特
定した理由を説明する。 C:0.05〜0.20% Cは、強度を高くするので、そのために含有させる元素
である。必要な強度を得るためには0.05%以上含有
させる必要があるが、その量が多くなると溶接が困難に
なるので、その上限を0.20%にする。
Next, a method for producing a martensitic heat-resistant steel of the present invention will be described in detail. First, the reason why the component composition of the martensitic heat-resistant steel of the present invention is specified as described above will be described. C: 0.05 to 0.20% C is an element contained for increasing the strength. To obtain the necessary strength, it is necessary to contain 0.05% or more, but if the amount is too large, welding becomes difficult, so the upper limit is made 0.20%.

【0008】Si:0.15%以下 Siは、溶製時の脱酸剤であるが、その量が多くなると
靱性と高温強度を低下させるので、その上限を0.15
%にする。 Mn:0.20%以下
[0008] Si: 0.15% or less Si is a deoxidizing agent at the time of smelting, but if the amount is large, the toughness and high-temperature strength are reduced.
%. Mn: 0.20% or less

【0009】Mnは、Siと同様に溶製時の脱酸剤であ
るが、その量が多くなるとクリープ破断強度を劣化させ
るので、その上限を0.20%にする。 P:0.020%以下 Pは、不純物であり、溶接性を低下させると共に、靱性
及び強度を低下させるので、0.020%以下にする。 S:0.010%以下 Sは、不純物であり、熱間加工性を低下させると共に、
靱性及び強度を低下させるので、0.010%以下にす
る。
Mn, like Si, is a deoxidizing agent at the time of melting, but if its amount increases, the creep rupture strength deteriorates, so the upper limit is made 0.20%. P: 0.020% or less P is an impurity and reduces the weldability and the toughness and strength. S: 0.010% or less S is an impurity and reduces hot workability,
Since the toughness and strength are reduced, the content is made 0.010% or less.

【0010】Cu:0.20%以下、Ni:0.25%
以下 Cu及びNiは、高温強度を低下するが、溶解原料から
混入する通常の不純物程度の0.20%以下又は0.2
5%以下であれば、その影響が少ないので、その含有量
を0.20%以下又は0.25%以下にする。
[0010] Cu: 0.20% or less, Ni: 0.25%
Although Cu and Ni lower the high-temperature strength, they are 0.20% or less or 0.2% or less of the usual impurities mixed from the melting raw material.
If the content is 5% or less, the effect is small, so the content is set to 0.20% or less or 0.25% or less.

【0011】Cr:9.80〜10.70% Crは、耐酸化性を向上さると共に、炭化物としてマト
リックス中に微細に析出してクリープ強度を向上させる
ので、それらのために含有させる元素である。それらの
作用効果を得るためには9.80以上含有させる必要が
あるが、その量が多くなるとδフェライトを生成し易く
なって高温強度を低下させると共に、靱性を劣化させる
ので、その上限を10.70%にする。
Cr: 9.80-10.70% Cr is an element to be contained for improving oxidation resistance and finely as a carbide in a matrix to improve creep strength. . In order to obtain these effects, it is necessary to contain the element in an amount of 9.80 or more. However, if the amount is too large, δ ferrite is likely to be formed, lowering the high-temperature strength and deteriorating the toughness. .70%.

【0012】Mo:0.50〜0.90% Moは、マトリックス中に固溶してクリープ破断強度を
向上させるので、そのために含有させる元素である。そ
の作用効果を得るためには0.50%以上含有させる必
要があるが、その量が多くなるとδフェライトを生成
し、逆にクリープ破断強度を劣化させるので、その上限
を0.90%にする。 W:1.60〜2.00% Wは、Moと同様にマトリックス中に固溶してクリープ
破断強度を向上させるので、そのために含有させる元素
である。その作用効果を得るためには1.60%以上含
有させる必要があるが、その量が多くなるとδフェライ
トや多量のラーベス相を生成し、逆にクリープ破断強度
を劣化させるので、その上限を2.00%にする。
Mo: 0.50 to 0.90% Mo is an element to be contained for improving the creep rupture strength by forming a solid solution in the matrix. In order to obtain the effect, it is necessary to contain 0.50% or more. However, when the amount is increased, δ ferrite is generated, and on the contrary, the creep rupture strength is deteriorated. Therefore, the upper limit is made 0.90%. . W: 1.60 to 2.00% W is an element to be contained for improving the creep rupture strength by forming a solid solution in the matrix similarly to Mo. In order to obtain the effect, it is necessary to contain 1.60% or more. However, when the content is increased, δ ferrite and a large amount of Laves phase are generated, and conversely, the creep rupture strength is deteriorated. 0.000%.

【0013】Co:2.90〜3.60% Coは、マトリックス中に固溶してδフェライトの生成
を抑制するので、δフェライトを生成するCr、W、M
o等の強化元素を多く添加することができるようにな
り、その結果クリープ破断強度を向上させることがで
き、また焼戻し軟化抵抗を大きくするので、それらのた
めに含有させる元素である。それらの作用効果を得るに
ためは2.90%以上含有させる必要があるが、多くな
るとσ相等の金属間化合物が生成しやすくなり、このよ
うな金属間化合物が生成するとクリープ破断強度が劣化
するので、その上限を3.60%にする。
Co: 2.90% to 3.60% Co forms a solid solution in the matrix to suppress the formation of δ ferrite, so that Cr, W, M which forms δ ferrite
A large amount of strengthening elements such as o can be added, and as a result, the creep rupture strength can be improved and the tempering softening resistance can be increased. In order to obtain these functions and effects, it is necessary to contain 2.90% or more. However, when the content is increased, an intermetallic compound such as a σ phase is easily generated, and when such an intermetallic compound is generated, the creep rupture strength is deteriorated. Therefore, the upper limit is set to 3.60%.

【0014】V:0.10〜0.30% Vは、炭窒化物となって析出しても、またマトリックス
中に固溶してもクリープ破断強度を著しく向上させるの
で、そのために含有させる元素である。その作用効果を
得るためには0.10%以上含有させる必要があるが、
その量が多くなると逆にクリープ破断強度を低下させて
しまうので、その上限を0.30%にする。
V: 0.10 to 0.30% V can significantly increase the creep rupture strength even if precipitated as a carbonitride or solid solution in a matrix. It is. To obtain the effect, it is necessary to contain 0.10% or more,
If the amount increases, the creep rupture strength decreases, so the upper limit is set to 0.30%.

【0015】Nb:0.03〜0.07%、Ta:0.
03〜0.07% NbとTaは、炭化物又は炭窒化物として析出すること
によって高温強度を向上させると共に、マトリックス中
に固溶してマトリックスの強度を向上させるので、それ
らのために含有させる元素である。それらの作用効果を
得るためには0.03%以上含有させる必要があるが、
その量が多くなると炭化物又は炭窒化物が粗大化して靱
性を低下させるので、その上限を0.07%にする。好
ましい含有量の上限は、NbとTaの合計が0.12%
である。
Nb: 0.03-0.07%, Ta: 0.
03-0.07% Nb and Ta enhance the high-temperature strength by precipitating as carbides or carbonitrides, and also form a solid solution in the matrix to improve the strength of the matrix. It is. In order to obtain those effects, it is necessary to contain 0.03% or more.
If the amount is large, carbides or carbonitrides are coarsened and the toughness is reduced, so the upper limit is made 0.07%. The preferable upper limit of the content is that the sum of Nb and Ta is 0.12%.
It is.

【0016】B:0.003〜0.008% Bは、粒界強度を高くし、その結果クリープ破断強度を
向上させるので、そのために含有させる元素である。そ
の作用効果を得るためには0.003%以上含有させる
必要があるが、その量が多くなると溶接性を劣化させる
と共に、靱性も低下させるので、その上限を0.008
%にする。
B: 0.003 to 0.008% B is an element to be included for increasing the grain boundary strength and consequently improving the creep rupture strength. In order to obtain the effect, it is necessary to contain the element in an amount of 0.003% or more. However, when the amount is increased, the weldability is deteriorated and the toughness is also reduced.
%.

【0017】N:0.010〜0.035% Nは、マトリックス中に固溶しても、また窒化物あるい
は炭窒化物として析出しても強度を向上させるので、そ
のために含有させる元素である。その作用効果を得るた
めには0.010%以上含有させる必要があるが、その
量が多くなるとBNの生成量が多くなって、Bを含有さ
せる効果を低下させるので、その上限を0.035%に
する。
N: 0.010-0.035% N is an element to be contained for improving the strength even when solid-dissolved in the matrix or precipitated as nitride or carbonitride. . In order to obtain the effect, it is necessary to contain the element in an amount of 0.010% or more. However, when the amount is increased, the amount of BN generated is increased, and the effect of containing B is reduced. %.

【0018】次に、上記本発明に係るマルテンサイト系
耐熱鋼を1180〜1250℃でソーキングする理由を
説明する。従来のマルテンサイト系耐熱鋼は、上記のよ
うに通常1150℃前後でソーキングをしているが、本
発明に係る上記マルテンサイト系耐熱鋼は、表3及び図
1に示すように1180℃以上の温度でソーキングをす
ると、引張強さ、伸び、硬さ等は1150℃でソーキン
グをしたものとほぼ同じであるが、靱性(衝撃値)が著
しく高くなるので、1180℃以上の温度でソーキング
をする必要がある。しかし、1250℃より高い温度で
ソーキングをするとフェライトの析出による靱性の低下
を招くので、その上限を1250℃にする。
Next, the reason why the martensitic heat-resistant steel according to the present invention is soaked at 1180 to 1250 ° C. will be described. Conventional martensitic heat-resistant steel is normally soaked at about 1150 ° C as described above, but the martensitic heat-resistant steel according to the present invention has a temperature of 1180 ° C or higher as shown in Table 3 and FIG. When soaking at a temperature, the tensile strength, elongation, hardness, etc. are almost the same as those soaked at 1150 ° C., but the toughness (impact value) becomes extremely high, so that the soaking is performed at a temperature of 1180 ° C. or more. There is a need. However, if soaking is performed at a temperature higher than 1250 ° C., the toughness is reduced due to the precipitation of ferrite, so the upper limit is set to 1250 ° C.

【0019】以下、本発明の実施例を説明する。Hereinafter, embodiments of the present invention will be described.

【実施例】下記表1に示す成分組成の供試鋼を溶製して
通常の方法で鋳造してインゴットにし、下記表2に示す
条件でソーキングをし、その後通常の方法で熱間加工を
して供試材とした。
EXAMPLE A test steel having the composition shown in Table 1 below was melted, cast into an ingot by a usual method, subjected to soaking under the conditions shown in the following Table 2, and then subjected to hot working by a usual method. And used as test materials.

【0020】[0020]

【表1】 [Table 1]

【0021】その後これらの供試材からJIS Z 2201に規
定する棒状引張試験片及びJIS Z 2202に規定する衝撃試
験片を作成し、下記表2に示す条件で焼入れ及び焼戻し
を行った。これらの熱処理をした試験片を用いて引張試
験及び衝撃試験を実施した。その結果を下記表3及び図
1に示す。なお、衝撃値(吸収エネルギー)は3本の試
験片の平均値とした。
Thereafter, a rod-shaped tensile test piece specified in JIS Z 2201 and an impact test piece specified in JIS Z 2202 were prepared from these test materials, and quenched and tempered under the conditions shown in Table 2 below. Using these heat-treated test pieces, a tensile test and an impact test were performed. The results are shown in Table 3 below and FIG. The impact value (absorbed energy) was an average value of three test pieces.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】これらの結果より、本発明例は、耐力が8
39〜860N/mm2 、引張強さが978〜998N/m
m2 、伸びが18〜20%、絞りが53〜65%、硬さ
がHRC 31〜34及び衝撃値が64〜94Jであった。
これに対して、比較例は、耐力、引張強さ、伸び及び絞
りが本発明例とほぼ同じであったが、衝撃値が38〜4
3Jであった。
From these results, it was found that the example of the present invention had a proof stress of 8
39-860 N / mm 2 , tensile strength 978-998 N / m
m 2, elongation of 18 to 20%, diaphragm 53 to 65%, the hardness was HRC 31 to 34 and impact value 64~94J.
On the other hand, in the comparative example, the proof stress, tensile strength, elongation, and drawing were almost the same as those of the present invention, but the impact value was 38 to 4
3J.

【0025】[0025]

【発明の効果】本発明のマルテンサイト系耐熱鋼の製造
方法は、上記構成にしたことにより、上記マルテンサイ
ト系耐熱鋼の靱性を、他の性質を低下することなく従来
の製造方法で製造したものより約50〜120%向上せ
ることができるという優れた効果を奏する。
According to the method for producing a martensitic heat-resistant steel of the present invention, by adopting the above constitution, the toughness of the martensitic heat-resistant steel is produced by a conventional production method without deteriorating other properties. It has an excellent effect that it can be improved by about 50 to 120% as compared with that of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例及び比較例の引張強さと衝撃値との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the tensile strength and the impact value of the inventive examples and comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下同じ)、C:0.05〜
0.20%、Si:0.15%以下、Mn:0.20%
以下、P:0.020%以下、S:0.010%以下、
Cu:0.20%以下、Ni:0.25%以下、Cr:
9.80〜10.70%、Mo:0.50〜0.90
%、W:1.60〜2.00%、Co:2.90〜3.
60%、V:0.10〜0.30%、Nb:0.03〜
0.07%、Ta:0.03〜0.07%、B:0.0
03〜0.008%及びN:0.010〜0.035%
を含有し、残部がFe及び不可避不純物からなる鋼を1
180〜1250℃でソーキングをすることを特徴とす
るマルテンサイト系耐熱鋼の製造方法。
1. C: 0.05-% by weight (the same applies hereinafter)
0.20%, Si: 0.15% or less, Mn: 0.20%
Hereinafter, P: 0.020% or less, S: 0.010% or less,
Cu: 0.20% or less, Ni: 0.25% or less, Cr:
9.80 to 10.70%, Mo: 0.50 to 0.90
%, W: 1.60-2.00%, Co: 2.90-3.
60%, V: 0.10 to 0.30%, Nb: 0.03 to
0.07%, Ta: 0.03 to 0.07%, B: 0.0
03-0.008% and N: 0.010-0.035%
Containing steel and the balance consisting of Fe and inevitable impurities
A method for producing a martensitic heat-resistant steel, comprising soaking at 180 to 1250 ° C.
JP2001167603A 2001-06-04 2001-06-04 Method for producing martensitic heat resistant steel Expired - Fee Related JP4774633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167603A JP4774633B2 (en) 2001-06-04 2001-06-04 Method for producing martensitic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167603A JP4774633B2 (en) 2001-06-04 2001-06-04 Method for producing martensitic heat resistant steel

Publications (2)

Publication Number Publication Date
JP2002363640A true JP2002363640A (en) 2002-12-18
JP4774633B2 JP4774633B2 (en) 2011-09-14

Family

ID=19009965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167603A Expired - Fee Related JP4774633B2 (en) 2001-06-04 2001-06-04 Method for producing martensitic heat resistant steel

Country Status (1)

Country Link
JP (1) JP4774633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805899A (en) * 2014-02-10 2014-05-21 浙江大隆合金钢有限公司 12Cr10Co3W2MoNiVNbNB super martensite heat-resistant steel and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113322A (en) * 1981-12-25 1983-07-06 Nisshin Steel Co Ltd Method for obtaining slab of martensitic stainless steel containing less eutectic carbide
JPS62250154A (en) * 1986-04-23 1987-10-31 Daido Steel Co Ltd Alloy tool steel
JPH02175816A (en) * 1988-07-28 1990-07-09 Thyssen Stahl Ag Manufacture of hot rolled steel or thick plate
JPH09310121A (en) * 1996-05-17 1997-12-02 Nippon Steel Corp Production of martensitic seamless heat resistant steel tube
JPH11350031A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Production of high cr heat resistant steel excellent in low temperature toughness and creep strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113322A (en) * 1981-12-25 1983-07-06 Nisshin Steel Co Ltd Method for obtaining slab of martensitic stainless steel containing less eutectic carbide
JPS62250154A (en) * 1986-04-23 1987-10-31 Daido Steel Co Ltd Alloy tool steel
JPH02175816A (en) * 1988-07-28 1990-07-09 Thyssen Stahl Ag Manufacture of hot rolled steel or thick plate
JPH09310121A (en) * 1996-05-17 1997-12-02 Nippon Steel Corp Production of martensitic seamless heat resistant steel tube
JPH11350031A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Production of high cr heat resistant steel excellent in low temperature toughness and creep strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103805899A (en) * 2014-02-10 2014-05-21 浙江大隆合金钢有限公司 12Cr10Co3W2MoNiVNbNB super martensite heat-resistant steel and production method thereof

Also Published As

Publication number Publication date
JP4774633B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP5574953B2 (en) Heat-resistant steel for forging, method for producing heat-resistant steel for forging, forged parts, and method for producing forged parts
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
WO2009154161A1 (en) Heat-resistant austenitic alloy, heat-resistant pressure-resistant member comprising the alloy, and process for producing the same
JP3358951B2 (en) High strength, high toughness heat-resistant cast steel
CN110997960B (en) Gas turbine disk material and heat treatment method therefor
JP6547599B2 (en) Austenitic heat resistant steel
US20030185700A1 (en) Heat-resisting steel and method of manufacturing the same
JP2000328198A (en) Austenitic stainless steel excellent in hot workability
JP3422658B2 (en) Heat resistant steel
JPH11209851A (en) Gas turbine disk material
JP2016065265A (en) Heat resistant steel for steam turbine rotor blade and steam turbine rotor blade
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP2001073092A (en) 9-12% Cr HEAT RESISTING STEEL EXCELLENT IN HIGH TEMPERATURE STRENGTH AND TOUGHNESS, AND ITS MANUFACTURE
JP5981357B2 (en) Heat resistant steel and steam turbine components
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JP4774633B2 (en) Method for producing martensitic heat resistant steel
JPH11106860A (en) Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone
JP5996403B2 (en) Heat resistant steel and method for producing the same
JPH1036944A (en) Martensitic heat resistant steel
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
JPH0931600A (en) Steam turbine rotor material for high temperature use
EP3255171A1 (en) Maraging steel
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4774633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees