JP2002363083A - Aerosol preparation for covering wounded surface - Google Patents

Aerosol preparation for covering wounded surface

Info

Publication number
JP2002363083A
JP2002363083A JP2001163617A JP2001163617A JP2002363083A JP 2002363083 A JP2002363083 A JP 2002363083A JP 2001163617 A JP2001163617 A JP 2001163617A JP 2001163617 A JP2001163617 A JP 2001163617A JP 2002363083 A JP2002363083 A JP 2002363083A
Authority
JP
Japan
Prior art keywords
molecular weight
chitosan
low molecular
aerosol
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163617A
Other languages
Japanese (ja)
Inventor
Toshihisa Katsumata
寿久 勝間田
Yoshihide Kawamura
佳秀 川村
Shigehide Kusakai
茂秀 草皆
Hiroaki Yabe
博昭 谷邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Spinning Co Ltd
Original Assignee
Fuji Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Spinning Co Ltd filed Critical Fuji Spinning Co Ltd
Priority to JP2001163617A priority Critical patent/JP2002363083A/en
Publication of JP2002363083A publication Critical patent/JP2002363083A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aerosol preparation for covering a wounded surface in a small attaching amount, and further capable of making clear whether the wounded surface is appropriately covered or not by eyesight. SOLUTION: This aerosol preparation is obtained by filling a very fine particle state material of a low molecular weighted and regenerated chitosan having 10,000-200,000 average molecular weight, 1.0-11.0 μm mean particle diameter in its dry state and 0.50-1.35 coefficient for variation of the particle diameter, into a container together with a dispersing solution and a propellant, and also the aerosol preparation for covering the wounded surface is obtained by coloring the very fine particle state material of the low molecular weighted and regenerated chitosan with a coloring agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエアゾール剤に関す
るものであり、さらに詳しくは、低分子化再生キトサン
の微小粒状体を用いたエアゾール剤であり、少量の付着
量で創傷面を被覆し優れた被覆効果があり、また、被覆
範囲を目視で明確に確認でき、任意の付着量を付着させ
るために好適である創傷面被覆用エアゾール剤に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aerosol, and more particularly, to an aerosol using microparticles of regenerated low molecular weight chitosan, which is capable of covering a wound surface with a small amount of adhesion. The present invention relates to an aerosol agent for covering a wound surface, which has a coating effect, allows the coating range to be clearly confirmed by visual observation, and is suitable for adhering an arbitrary amount of adhesion.

【0002】[0002]

【従来の技術】止血効果、抗炎症作用、創傷治癒効果を
兼ね備えたスプレー剤として特開平9−328432号
公報には、キチンと噴射剤をエアゾール容器に収納した
スプレー剤が開示されている。スプレー剤に使用するキ
チンは、粉末,顆粒,ビーズ,繊維を微細にしたもので
あり、粒子の大きさが1〜500メッシュ通過、好まし
くは30〜300メッシュ通過、更に好ましくは100
〜250メッシュ通過のものを、噴射剤と共に、噴射用
ノズルを有する耐圧容器に充填し使用する。しかし、該
公報に記載のスプレー剤は、スプレー剤に含まれるキチ
ンの粒子が大きく種々の欠点があった。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 9-328432 discloses a spray containing chitin and a propellant in an aerosol container as a spray having a hemostatic effect, an anti-inflammatory effect and a wound healing effect. Chitin used in the spray is fine powder, granules, beads and fibers, and the particle size is 1 to 500 mesh, preferably 30 to 300 mesh, more preferably 100 mesh.
The powder passing through a mesh of ~ 250 mesh is used together with the propellant in a pressure-resistant container having a nozzle for injection. However, the spray described in this publication has various disadvantages due to the large particles of chitin contained in the spray.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来のキチ
ン粒子を用いたスプレー剤の欠点を克服するため、低分
子化再生キトサンを用いて、キトサンの微粒子化を行
い、更に、キトサン微小粒状体の平均粒子直径、粒子直
径の分布の変動係数、平均分子量を規定することによっ
て、切創,擦過創,剥削創,削皮創等の外創や手術等の
創傷部にエアゾール剤を噴霧、付着させた場合に、少量
の付着量で創傷面を被覆することが可能である創傷面被
覆用エアゾール剤を提供することを目的とし、更に、創
傷部を適切に被覆しているか否か目視で明確に確認する
ことの可能な、低分子化再生キトサン微小粒状体を用い
た創傷面被覆剤のエアゾール剤を提供するものである。
SUMMARY OF THE INVENTION In order to overcome the drawbacks of the conventional spraying agent using chitin particles, the present invention uses a low-molecular-weight regenerated chitosan to make chitosan into fine particles, By defining the average particle diameter of the body, the coefficient of variation of the particle diameter distribution, and the average molecular weight, the aerosol is sprayed on wounds such as cuts, abrasions, exfoliated wounds, cut wounds, and wounds such as surgery. The purpose of the present invention is to provide a wound surface covering aerosol agent capable of covering a wound surface with a small amount of adherence when adhered, and further visually inspect whether the wound portion is appropriately covered. It is intended to provide an aerosol agent for a wound surface coating agent using low molecular weight regenerated chitosan microparticles which can be clearly confirmed.

【0004】[0004]

【課題を解決するための手段】本発明は、平均分子量が
10,000〜200,000である低分子化再生キト
サンの、乾燥時の平均粒子直径が1.0〜11.0μ
m、粒子直径の分布の変動係数が0.50〜1.35で
ある微小粒状体を分散溶液と噴射剤と共に容器に充填し
た創傷面被覆用エアゾール剤であり、また、低分子化再
生キトサン微小粒状体が着色剤で着色されている創傷面
被覆用エアゾール剤である。
SUMMARY OF THE INVENTION The present invention relates to a low molecular weight regenerated chitosan having an average molecular weight of 10,000 to 200,000 and an average particle diameter of 1.0 to 11.0 μm when dried.
m, an aerosol for covering a wound surface, in which a microparticle having a variation coefficient of particle diameter distribution of 0.50 to 1.35 is filled in a container together with a dispersion solution and a propellant. It is an aerosol for covering a wound surface, in which a granular material is colored with a coloring agent.

【0005】[0005]

【発明の実施の形態】本発明に用いるキトサンは、甲殻
類や昆虫から得られたキチンを、アルカリ水溶液等で脱
アセチル化してキトサンとした後、このキトサンを単に
機械的手段のみで破砕し微小粒状体としたものではな
く、このキトサンを酸性水溶液中に溶解し、キトサン酸
性水溶液とし、塩基性水溶液中で凝固再生した再生キト
サンであり、天然に存在している状態の平均分子量を持
つキトサンを分解して得られる低分子化再生キトサンで
ある。キトサンは、低分子化して凝固再生することによ
り、微小粒状体として本発明のスプレー剤として使用す
る際に、水分吸湿度と水分放湿度を大きくすることが出
来る。
BEST MODE FOR CARRYING OUT THE INVENTION Chitosan used in the present invention is obtained by deacetylating chitin obtained from crustaceans and insects with an aqueous alkali solution or the like to obtain chitosan. Instead of granules, this chitosan is dissolved in an acidic aqueous solution to form a chitosan acidic aqueous solution, which is a regenerated chitosan that has been coagulated and regenerated in a basic aqueous solution. It is a low molecular weight regenerated chitosan obtained by decomposition. By reducing the molecular weight of chitosan and coagulating and regenerating, chitosan can increase moisture absorption and release when used as a spray agent of the present invention as fine particles.

【0006】低分子化キトサンは、キトサンを過硼酸ソ
ーダ水溶液中で加熱処理することで得られるが、この時
使用されるキトサンの脱アセチル化度は酸性溶液に溶解
できる範囲であれば、特に問題はないが、脱アセチル化
度が60〜100%の範囲のものが好ましい。
[0006] Low molecular weight chitosan can be obtained by heat-treating chitosan in an aqueous solution of sodium perborate, and the degree of deacetylation of chitosan used at this time is particularly problematic as long as it can be dissolved in an acidic solution. However, those having a degree of deacetylation in the range of 60 to 100% are preferred.

【0007】低分子化キトサンを溶解させるために用い
る酸は、例えば酢酸,ジクロル酢酸,蟻酸等の単独、ま
たは混合物を使用することができ、その時の酸性水溶液
の濃度は特に制限はなく、低分子キトサンが溶解する範
囲であればよい。
As the acid used for dissolving the low molecular weight chitosan, for example, acetic acid, dichloroacetic acid, formic acid or the like can be used alone or in a mixture, and the concentration of the acidic aqueous solution is not particularly limited. What is necessary is just to be the range which chitosan melt | dissolves.

【0008】低分子化キトサン酸性水溶液を、塩基性水
溶液中で凝固再生し低分子化再生キトサンを得るが、そ
の時の塩基性水溶液の組成は、再生凝固した低分子化再
生キトサンを粉砕する際に懸濁し乳状液となりやすい状
態、すなわち、脆い状態の低分子化再生キトサン凝固物
が得られるようなものが好ましく、例えば、アンモニ
ア,エチレンジアミン,水酸化ナトリウム等の水溶液、
または、この塩基性水溶液にメタノール,エタノール等
の極性を有するアルコールを添加したものであっても、
酢酸ナトリウム,酢酸カリウム等の塩類を適宜加えたも
のでもよい。
[0008] The low molecular weight chitosan acidic aqueous solution is coagulated and regenerated in a basic aqueous solution to obtain a low molecular weight regenerated chitosan. At this time, the composition of the basic aqueous solution is determined when pulverizing the regenerated and coagulated low molecular weight regenerated chitosan. A state in which a suspension is easily converted into a milky liquid, that is, a brittle low molecular weight regenerated chitosan coagulate is preferably obtained. For example, an aqueous solution of ammonia, ethylenediamine, sodium hydroxide, or the like,
Alternatively, even when a polar alcohol such as methanol or ethanol is added to this basic aqueous solution,
Salts such as sodium acetate and potassium acetate may be appropriately added.

【0009】塩基性水溶液中で凝固再生した低分子化再
生キトサンは水で中性になるまで十分洗浄した後、水中
でホモジナイサー等で粉砕,分散,微細化し、乳状の懸
濁液とする。この懸濁液を高温雰囲気中に加圧空気と共
に吐出・乾燥して、低分子化再生キトサン微小粒状体を
得ることができる。得られた低分子化再生キトサン微小
粒状体は、そのまま用いてもよいし、更に、気流式衝突
粉砕機等を用いて粉砕し、微細化したものを用いてもよ
い。また、得られた低分子化再生キトサン微小粒状体を
分級したものを用いてもよいし、この時、分級使用する
機械類には特に制限はなく、例えば、風力分級機、篩分
級機等を用いることができる。
The low-molecular-weight regenerated chitosan solidified and regenerated in a basic aqueous solution is sufficiently washed with water until neutral, and then pulverized, dispersed, and refined in water with a homogenizer or the like to form a milky suspension. The suspension is discharged and dried in a high-temperature atmosphere together with pressurized air to obtain regenerated chitosan fine particles having a reduced molecular weight. The resulting regenerated chitosan microparticles having a reduced molecular weight may be used as they are, or may be further pulverized using an air-flow type collision pulverizer or the like to make them finer. In addition, the obtained low molecular weight regenerated chitosan fine particles may be used for classification, and at this time, there is no particular limitation on machinery used for classification, for example, an air classifier, a sieve classifier, and the like. Can be used.

【0010】本発明に用いる低分子化再生キトサンの平
均分子量は、10,000〜200,000の範囲のも
のが好ましい。平均分子量が200,000より大きい
ものは湿潤時の直径膨張率が小さく、少量の付着量で創
傷面を被覆できないので好ましくない。平均分子量が1
0,000より小さいものは水に可溶性となるため、創
傷面に付着させても体内浸出液に溶解し、創傷面を十分
に被覆できないので好ましくない。
The average molecular weight of the low molecular weight regenerated chitosan used in the present invention is preferably in the range of 10,000 to 200,000. Those having an average molecular weight of more than 200,000 are not preferred because they have a small diameter expansion coefficient when wet and cannot cover the wound surface with a small amount of adhesion. Average molecular weight is 1
Those having a molecular weight of less than 000 are not preferable because they are soluble in water, so that even if they are attached to the wound surface, they dissolve in the exudate in the body and cannot sufficiently cover the wound surface.

【0011】エアゾール剤に用いる低分子化再生キトサ
ン微小粒状体の乾燥時の平均粒子直径は1.0〜11.
0μmの範囲であり、好ましくは3.0〜7.0μmの
範囲の平均粒子直径が好適である。なお、本発明でいう
平均粒子直径とは、体積換算した場合の直径の幾何平均
である。乾燥時の平均粒子直径が11.0μmより大き
い場合には体内浸出液を吸収し、湿潤した際の直径膨張
率が小さく、少量の付着量で創傷面を被覆することが難
しいので好ましくない。また、1.0μmより小さい場
合には、エアゾール剤として噴射し創傷面に被覆させる
時に、内容物が大気中に浮遊し、飛散してしまい、対象
とする創傷面を被覆できないので好ましくない。また、
浮遊し飛散した内容物が環境を汚染するので好ましくな
い。
The average particle diameter of the dried low molecular weight regenerated chitosan fine granules used in the aerosol preparation is 1.0 to 11.
An average particle diameter in the range of 0 μm, preferably in the range of 3.0 to 7.0 μm is suitable. In addition, the average particle diameter referred to in the present invention is a geometric mean of diameters in terms of volume. If the average particle diameter when dried is larger than 11.0 μm, it is not preferable because it absorbs exudate from the body, has a small diameter expansion coefficient when wet, and it is difficult to coat the wound surface with a small amount of adhesion. On the other hand, when the diameter is smaller than 1.0 μm, the content floats in the air and scatters when sprayed as an aerosol agent to cover the wound surface, and it is not preferable because the target wound surface cannot be covered. Also,
Floating and scattered contents are not preferable because they pollute the environment.

【0012】エアゾール剤に用いる低分子化再生キトサ
ン微小粒状体は乾燥時の粒子直径の分布の変動係数が
0.50〜1.35の範囲、好ましくは0.6〜1.0
の範囲のものが好適である。なお、本発明でいう変動係
数とは粒子直径の分布の標準偏差を、平均粒子直径で除
した値である。変動係数が1.35より大きい場合に
は、粒子直径の大きいものが混入することにより、粒子
一個一個の水分吸湿・放湿速度に差がでるため、素早く
体内浸出液を吸湿・放湿できないため、創傷面はジクジ
クした状態となり、治癒が遅れ、また、不快であり好ま
しくない。変動係数が0.50より小さい場合には、創
傷面を被覆した低分子化再生キトサン微小粒状体が密に
積層・付着し、この粒状体間の空隙が小さくなり、体内
浸出液を吸収・湿潤した時の膨張を妨げるため、多量の
低分子化再生キトサン微小粒状体が必要となり好ましく
ない。
The low molecular weight regenerated chitosan microparticles used in the aerosol agent have a coefficient of variation in the particle diameter distribution when dried in the range of 0.50 to 1.35, preferably 0.6 to 1.0.
Are preferred. The coefficient of variation referred to in the present invention is a value obtained by dividing the standard deviation of the particle diameter distribution by the average particle diameter. When the coefficient of variation is greater than 1.35, the mixture of particles having a large particle diameter results in a difference in the rate of moisture absorption / desorption of each individual particle. The wound surface becomes jerky, delays healing, and is unpleasant and undesirable. When the coefficient of variation is less than 0.50, the low molecular weight regenerated chitosan microparticles covering the wound surface are densely laminated and adhered, the voids between the particles are reduced, and the exudate in the body is absorbed and wetted. In order to prevent swelling at the time, a large amount of regenerated chitosan microparticles having a low molecular weight are required, which is not preferable.

【0013】本発明で用いる低分子化再生キトサン微小
着色粒状体は、上述の方法で得られた低分子化再生キト
サンを着色剤と共に、水中で攪拌し、ホモジナイザー等
で粉砕,分散,微細化し、懸濁液とした後、この懸濁液
を高温雰囲気中に加圧空気と共に吐出・乾燥することで
得られる。
[0013] The low molecular weight regenerated chitosan micro-colored granular material used in the present invention is obtained by stirring the low molecular weight regenerated chitosan obtained by the above method together with a coloring agent in water, and pulverizing, dispersing, and pulverizing with a homogenizer or the like. After the suspension is formed, the suspension is discharged and dried together with pressurized air in a high-temperature atmosphere.

【0014】着色剤としては、酸化チタン,チタン酸コ
バルト等の無機緑色系顔料、群青,紺青等の無機青色系
顔料、酸化チタンコーティッド雲母,酸化チタンコーテ
ィッドオキシ塩化ビスマス,オキシ塩化ビスマス,酸化
チタンコーティッドタルク,アルミニウムパウダー,カ
ッパーパウダー等の金属粉末顔料、赤色201号,赤色
202号,赤色204号,赤色205号,赤色220
号,赤色226号,赤色228号,赤色405号,橙色
204号,黄色205号,黄色401号及び青色404
号等の有機顔料、赤色3号,赤色104号,赤色106
号,赤色106号,赤色227号,赤色230号,赤色
401号,赤色505号,橙色205号,黄色4号,黄
色5号,黄色202号,黄色203号,緑色3号及び青
色1号のジルコニウム,バリウム又はアルミニウムレー
キ等の有機顔料、クロロフィル,βカロチン,カテキ
ン,シコニン,リグニン等の天然色素等が挙げられ、こ
れらの中から創傷面に悪い影響を与えずに、そして被覆
されたことが目視で十分に確認可能なものから適宜選択
される。また、低分子化再生キトサンと着色剤との混合
比については特に制限はなく、着色が確認できる程度で
あればよい。
Examples of the coloring agent include inorganic green pigments such as titanium oxide and cobalt titanate, inorganic blue pigments such as ultramarine and navy blue, titanium oxide coated mica, titanium oxide coated bismuth oxychloride, bismuth oxychloride, Metal powder pigments such as titanium coated talc, aluminum powder, and copper powder, Red No. 201, Red No. 202, Red No. 204, Red No. 205, Red No. 220
No. Red 226, Red 228, Red 405, Orange 204, Yellow 205, Yellow 401 and Blue 404
No. 3, organic pigment No. 3, red No. 104, red No. 106
No. 106, Red No. 227, Red No. 230, Red No. 401, Red No. 505, Orange No. 205, Yellow No. 4, Yellow No. 5, Yellow No. 202, Yellow No. 203, Green No. 3, and Blue No. 1 Organic pigments such as zirconium, barium or aluminum lakes, and natural pigments such as chlorophyll, β-carotene, catechin, shikonin, lignin, etc., among these, without adversely affecting the wound surface and being coated It is appropriately selected from those which can be sufficiently confirmed visually. The mixing ratio of the low molecular weight regenerated chitosan and the colorant is not particularly limited as long as the coloration can be confirmed.

【0015】エアゾール容器は特に制限されず、その材
質はプラスチック,ガラス,アルミニウム,鉄等から適
宜選べばよい。また、使用されるバルブとしては、流路
中やステムガスケットのシール部に粉体の堆積が起こり
にくいパウダーバルブが好適である。
The aerosol container is not particularly limited, and its material may be appropriately selected from plastic, glass, aluminum, iron and the like. As a valve to be used, a powder valve in which powder is unlikely to accumulate in a flow path or a seal portion of a stem gasket is preferable.

【0016】創傷被覆用エアゾール剤は、分散溶液に低
分子化再生キトサン微小粒状体または低分子化再生キト
サン微小着色粒状体を分散させた溶液と、加圧下で液化
した噴射剤を、常法により一般にエアゾール容器として
用いる容器に充填することで得られる。
An aerosol for wound covering is prepared by a conventional method by dispersing a low molecular weight regenerated chitosan microparticle or a low molecular weight regenerated chitosan microcolored particle in a dispersion solution and a propellant liquefied under pressure by a conventional method. It is generally obtained by filling a container used as an aerosol container.

【0017】分散溶液としては、エタノール,メタノー
ル,イソプロピルアルコール等のアルコール類等が好ま
しく、用いる低分子化再生キトサン微小粒状体または低
分子化再生キトサン微小着色粒状体が乾燥状態の粒子を
保つことが重要である。低分子化再生キトサン微小粒状
体または低分子化再生キトサン微小着色粒状体と分散溶
液との重量比は、良好な分散状態が得られる1:1.0
〜2.0の範囲が好ましい。
As the dispersion solution, alcohols such as ethanol, methanol and isopropyl alcohol are preferable, and the low molecular weight regenerated chitosan microparticles or the low molecular weight regenerated chitosan microcolored particles to be used can keep the particles in a dry state. is important. The weight ratio of the low molecular weight regenerated chitosan microparticles or the low molecular weight regenerated chitosan microcolored particulates to the dispersion solution is 1: 1.0, whereby a good dispersion state can be obtained.
The range of -2.0 is preferable.

【0018】また、この溶液中に長期保存に耐える様に
保存剤または防腐剤を添加させてもよい。保存剤または
防腐剤の種類としては、塩化ベンザルコニウム,パラオ
キシ安息香酸メチル,パラオキシ安息香酸エチル,パラ
オキシ安息香酸プロピル,パラオキシ安息香酸ブチル等
のパラベン類等が挙げられ、これらから適宜選択して用
いられる。
A preservative or preservative may be added to the solution so as to withstand long-term storage. Examples of the type of preservative or preservative include parabens such as benzalkonium chloride, methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, and butyl paraoxybenzoate, which are appropriately selected and used. Can be

【0019】用いる噴射剤は特に制限はないが、ブタ
ン,プロパン,液化石油ガス等の炭化水素類、ジメチル
エーテル等のエーテル類、フロロカーボン,クロロフロ
ロカーボン,ブロモクロロフロロカーボン等のフロロカ
ーボン類、また、これ等の混合物,窒素,炭酸ガス,圧
縮空気,亜酸化窒素等の圧縮ガス類が挙げられ、これら
から適宜選択して用いられる。
The propellant to be used is not particularly limited, but hydrocarbons such as butane, propane and liquefied petroleum gas, ethers such as dimethyl ether, fluorocarbons such as fluorocarbon, chlorofluorocarbon and bromochlorofluorocarbon, and the like. Compressed gases such as a mixture, nitrogen, carbon dioxide, compressed air, nitrous oxide and the like can be mentioned, and these are appropriately selected and used.

【0020】噴射剤と低分子化再生キトサン微小粒状体
または低分子化再生キトサン微小着色粒状体の混合比は
特に制限はなく、重量比で2:1〜1000:1の範囲
が好ましい。エアゾール剤の内部圧力は内容物が粉末製
剤を対象として一般的に使用される圧力であればよく、
25℃で0.1〜1.0MPaの範囲から適宜選択すれ
ばよい。
The mixing ratio of the propellant and the low molecular weight regenerated chitosan microparticles or the low molecular weight regenerated chitosan microcolored particles is not particularly limited, and is preferably in the range of 2: 1 to 1000: 1 by weight. The internal pressure of the aerosol may be any pressure as long as the contents are generally used for powder formulations,
What is necessary is just to select suitably from the range of 0.1-1.0 MPa at 25 degreeC.

【0021】[0021]

【実施例】以下、本発明を実施例をあげて具体的に説明
するが、本発明はこの範囲に限定されるものではない。
尚、実施例で測定した直径膨張率,水分吸湿度,水分放
湿度,スプレーパターンによる付着面積の測定法は以下
に示した方法で測定した。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these ranges.
The methods of measuring the diameter expansion coefficient, the moisture absorption and absorption, the moisture release and the adhesion area by the spray pattern measured in the examples were measured by the following methods.

【0022】・直径膨張率の測定方法 (1)低分子化再生キトサン微小粒状体をエタノール中
で超音波分散し、これをレーザー回析散乱法測定装置
(ベックマンコールター株式会社製、LS130)を用
い、平均粒子直径をμm単位で測定し、これを未膨張直
径とした。 (2)低分子化再生キトサン微小粒状体を水中で超音波
分散し、前記レーザー回析散乱法測定装置を用い平均粒
子直径をμm単位で測定し、これを膨張直径とした。 (3)直径膨張率は以下の式で求めた。
Measurement method of diameter expansion coefficient (1) Ultra-low molecular weight regenerated chitosan fine particles are ultrasonically dispersed in ethanol, and the dispersion is measured using a laser diffraction / scattering measurement apparatus (LS130, manufactured by Beckman Coulter, Inc.). The average particle diameter was measured in μm units, and this was taken as the unexpanded diameter. (2) The regenerated chitosan fine particles having a reduced molecular weight were ultrasonically dispersed in water, and the average particle diameter was measured in μm using the above-mentioned laser diffraction / scattering method measuring apparatus. (3) The diameter expansion coefficient was obtained by the following equation.

【数1】 (Equation 1)

【0023】・水分吸湿度の測定方法 (1)乾燥状態の低分子化再生キトサン微小粒状体約
0.5gを重量既知の秤量瓶に入れ、蓋を開いた状態で
105℃で1時間放置した後、シリカゲル入りのデシケ
ーターに入れ、25℃中で1時間放置して冷却し、重量
を秤量した。秤量瓶重量の差からこの低分子化再生キト
サン微小粒状体の重量を求め、乾燥重量とした。 (2)次いで、37℃、相対湿度90%に調整した恒温
恒湿器内に秤量瓶の蓋を開けて入れ1時間静置した後、
蓋を閉めて秤量瓶を取出し重量を秤量した。秤量瓶重量
の差からこの低分子化再生キトサン微小粒状体の重量を
求め、吸湿後重量とした。 (3)水分吸湿度は以下の式により求めた。
Method for Measuring Moisture Absorption and Moisture (1) About 0.5 g of regenerated chitosan microparticles in a dry state was placed in a weighing bottle of known weight, and left at 105 ° C. for 1 hour with the lid open. Thereafter, the mixture was placed in a desiccator containing silica gel, left standing at 25 ° C. for 1 hour, cooled, and weighed. From the difference in the weight of the weighing bottles, the weight of the low molecular weight regenerated chitosan fine granules was determined and defined as the dry weight. (2) Then, after opening the lid of the weighing bottle in a thermo-hygrostat adjusted to 37 ° C. and a relative humidity of 90%, and allowed to stand for 1 hour,
The lid was closed, the weighing bottle was taken out, and the weight was weighed. The weight of the low molecular weight regenerated chitosan microparticles was determined from the difference in the weight of the weighing bottles, and defined as the weight after moisture absorption. (3) The moisture absorption was determined by the following equation.

【数2】 (Equation 2)

【0024】・水分放湿度の測定方法 (1)乾燥状態の低分子化再生キトサン微小粒状体約
0.5gを重量既知の秤量瓶に入れ、蓋を開いた状態で
105℃で1時間放置した後、シリカゲル入りのデシケ
ーターに入れ、25℃中で1時間放置して冷却し、重量
を秤量した。秤量瓶重量の差からこの低分子化再生キト
サン微小粒状体の重量を求め、乾燥重量とした。 (2)次いで、37℃、相対湿度90%に調整した恒温
恒湿器内に秤量瓶の蓋を開けて入れ1時間静置した後、
蓋を閉めて秤量瓶を取出し重量を秤量した。秤量瓶重量
の差からこの低分子化再生キトサン微小粒状体の重量を
求め、吸湿後重量とした。 (3)次いで、37℃、相対湿度40%に調整した恒温
恒湿器内に秤量瓶の蓋を開けて入れ1時間静置した後、
蓋を閉めて秤量瓶を取出し重量を秤量した。秤量瓶重量
の差からこの低分子化再生キトサン微小粒状体の重量を
求め、放湿後重量とした。 (4)水分放湿度は以下の式により求めた。
Measuring method of moisture release humidity (1) About 0.5 g of regenerated chitosan microparticles in a dry state were placed in a weighing bottle of known weight, and left at 105 ° C. for 1 hour with the lid open. Thereafter, the mixture was placed in a desiccator containing silica gel, left standing at 25 ° C. for 1 hour, cooled, and weighed. From the difference in the weight of the weighing bottles, the weight of the low molecular weight regenerated chitosan fine granules was determined and defined as the dry weight. (2) Then, after opening the lid of the weighing bottle in a thermo-hygrostat adjusted to 37 ° C. and a relative humidity of 90%, and allowed to stand for 1 hour,
The lid was closed, the weighing bottle was taken out, and the weight was weighed. The weight of the low molecular weight regenerated chitosan microparticles was determined from the difference in the weight of the weighing bottles, and defined as the weight after moisture absorption. (3) Then, the lid of the weighing bottle was opened and placed in a thermo-hygrostat adjusted to 37 ° C. and a relative humidity of 40%, and allowed to stand for 1 hour.
The lid was closed, the weighing bottle was taken out, and the weight was weighed. The weight of the low molecular weight regenerated chitosan microparticles was determined from the difference in the weight of the weighing bottles, and was defined as the weight after moisture release. (4) The moisture release humidity was determined by the following equation.

【数3】 (Equation 3)

【0025】・スプレーパターンによる付着面積の測定
方法 (1)3%の寒天水溶液を調製し、縦8cm,横8c
m,深さ2mmの容器に流延し、室温下に静置し凝固さ
せた。 (2)凝固した寒天板を垂直にセットし、寒天板から1
0cm離れた位置にエアゾール剤の噴射口が来るように
エアゾール剤を固定した。 (3)エアゾール剤を寒天板に1秒間噴射した。 (4)寒天板を元に戻し、付着物上に1目盛り1mmか
らなる透明な方眼紙をかぶせ、付着面積を目視にて確認
し、この面積を計測した。
Method for Measuring Adhered Area by Spray Pattern (1) A 3% aqueous agar solution is prepared, and is 8 cm long and 8 cm wide.
m, and cast into a container having a depth of 2 mm, and allowed to stand at room temperature to solidify. (2) Set the coagulated agar plate vertically, and remove 1 plate from the agar plate.
The aerosol was fixed so that the injection port of the aerosol came at a position separated by 0 cm. (3) The aerosol was sprayed on the agar plate for 1 second. (4) The agar plate was returned to the original position, and a transparent graph paper having a scale of 1 mm was covered on the adhered substance, the adhered area was visually checked, and the area was measured.

【0026】〔実施例1〕50℃の温湯10l中に15
g/lとなるように過硼酸ソーダを添加・溶解させた
後、脱アセチル化度82%、平均分子量230,000
のキトサン700gを加え、攪拌しながら1時間反応さ
せた。反応後、このキトサンを取り出し、水で十分水洗
し、脱アセチル化度82%、平均分子量35,000の
低分子化キトサン650gを得た。酢酸325gを含む
水9,350gに得られた低分子化キトサン650gを
溶解して、25℃で粘度4,000cPの低分子化キト
サン酸性水溶液を得た。次いで、この低分子化キトサン
酸性水溶液を6%苛性ソーダ、20%メタノール、74
%水からなる塩基性水溶液中に孔径0.25mmφのノ
ズルより一定量ずつ落下させ低分子化キトサン酸性水溶
液を粒状多孔質に凝固再生し、中性になるまで十分水洗
し、粒状多孔質低分子化再生キトサン101を得た。
Example 1 15 liters of hot water at 50 ° C.
g / l of sodium perborate was added and dissolved, the degree of deacetylation was 82%, and the average molecular weight was 230,000.
Of chitosan was added and reacted with stirring for 1 hour. After the reaction, this chitosan was taken out and sufficiently washed with water to obtain 650 g of low molecular weight chitosan having a degree of deacetylation of 82% and an average molecular weight of 35,000. 650 g of the obtained low molecular weight chitosan was dissolved in 9,350 g of water containing 325 g of acetic acid to obtain a low molecular weight chitosan acidic aqueous solution having a viscosity of 4,000 cP at 25 ° C. Then, the acidic aqueous solution of low molecular weight chitosan was added with 6% caustic soda, 20% methanol, 74%
% Aqueous solution of chitosan is dropped from a nozzle having a pore size of 0.25 mmφ by a predetermined amount into a basic aqueous solution composed of 0.2% water to coagulate and regenerate the low-molecular-weight acidic aqueous solution of chitosan into granular porous material. A chemically regenerated chitosan 101 was obtained.

【0027】その後、これに水5lをを加え、ホモジナ
イザーを用いて11,900rpmで1分攪拌しキトサ
ン濃度4.3%の乳状の懸濁液を得た。次いで、この懸
濁液を25ml/分の流速で3.0kg/cm2の加圧
空気と共に175℃の恒温雰囲気中に吐出・乾燥させた
後、サイクロンコレクターで捕集し、低分子化再生キト
サン微小粒状体600gを得た。その後、この低分子化
再生キトサン微小粒状体を風力分級機(株式会社セイシ
ン企業製、スペディック250)を用いて分級した。次
いで、この低分子化再生キトサン微小粒状体を用いて供
給量を1.5kg/時間とし、分級盤回転数を表1に示
す値に調節し、試料1〜11の分級された乾燥状態の低
分子再生キトサン微小粒状体11種を得た。
Thereafter, 5 l of water was added thereto, and the mixture was stirred at 11,900 rpm for 1 minute using a homogenizer to obtain a milky suspension having a chitosan concentration of 4.3%. Next, the suspension was discharged and dried at a flow rate of 25 ml / min with a pressurized air of 3.0 kg / cm 2 in a constant temperature atmosphere of 175 ° C., and then collected by a cyclone collector to obtain a low molecular weight regenerated chitosan. 600 g of fine granular material was obtained. Then, the low molecular weight regenerated chitosan microparticles were classified using an air classifier (Spedick 250, manufactured by Seishin Enterprise Co., Ltd.). Then, using the low molecular weight regenerated chitosan fine granules, the supply rate was 1.5 kg / hour, the number of rotations of the classifier was adjusted to the value shown in Table 1, and the classified dry state of Samples 1 to 11 was reduced. As a result, 11 kinds of molecular regenerated chitosan fine particles were obtained.

【0028】得られた試料1〜11を用いて球相当直径
の幾何平均である平均粒子直径,粒子直径の分布の変動
係数,直径膨張率の測定を行い、その結果を表1に示し
た。
Using the obtained samples 1 to 11, the average particle diameter, which is the geometric mean of the equivalent sphere diameter, the variation coefficient of the particle diameter distribution, and the diameter expansion coefficient were measured. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、直径膨張率は平
均粒子径が大きくなる程増え、試料4の平均粒子直径
5.2μmの近傍をピークにバラツキながら徐々に減じ
た。得られた試料1〜11を夫々0.5g採取し、夫々
塩化ベンザルコニウム1,000ppmを含有するエタ
ノール溶液0.8gに分散させた後、金属製で耐圧のエ
アゾール容器に入れ、次いで、LPG49.5gを加え
25℃で0.28MPaとなるよう常法により充填し、
エアゾール剤1´〜11´を得た。
As is apparent from Table 1, the diameter expansion coefficient increased as the average particle diameter increased, and gradually decreased while the peak of the average particle diameter of Sample 4 varied around 5.2 μm. 0.5 g of each of the obtained Samples 1 to 11 was collected and dispersed in 0.8 g of an ethanol solution containing 1,000 ppm of benzalkonium chloride, and then placed in a metal and pressure-resistant aerosol container. .5 g was added and charged by a conventional method so as to become 0.28 MPa at 25 ° C.,
Aerosols 1 'to 11' were obtained.

【0031】夫々のエアゾール剤を用いて、秤量瓶内に
内容物を噴射し、内容物を秤量瓶内に付着させた。その
後、内容物中のLPGが蒸発され、低分子化再生キトサ
ン微小粒状体のみが付着した秤量瓶を用いて、水分吸湿
度及び水分放湿度を測定し、その結果を表2に示した。
The contents were sprayed into the weighing bottles using the respective aerosols, and the contents were adhered to the weighing bottles. After that, LPG in the contents was evaporated, and the moisture absorption and release of moisture was measured using a weighing bottle to which only the low molecular weight regenerated chitosan microparticles had adhered. The results are shown in Table 2.

【0032】次いで、体重20.5kgの雑種成犬1頭
の後背部体毛を剃毛した後、手術用メスにより縦1c
m,横1cm,深さ1mmの十字の切創を1カ所作成
し、出血させた部位に対し、10cmの距離から2秒間
エアゾール剤2´を噴射し、止血するまでの時間を計測
し、その結果を表2に示した。同様の方法でエアゾール
剤1´,3´〜11´を用いて止血するまでの時間を計
測して、その結果を表2に示した。
Then, after shaving the back hair of one adult hybrid dog weighing 20.5 kg, a vertical scalpel was used with a surgical scalpel.
A single cross cut of m, width 1 cm, depth 1 mm was made, and aerosol 2 ′ was sprayed onto the bleeding site from a distance of 10 cm for 2 seconds, and the time until hemostasis was measured. The results are shown in Table 2. In the same manner, the time until hemostasis was measured using the aerosol agents 1 ', 3' to 11 ', and the results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】表2から明らかなように、水分吸湿度及び
水分放湿度は平均粒子径が大きくなる程漸増し、試料4
の平均粒子直径5.2μmのエアゾール剤4´の近傍を
ピークに漸減した。また、試料2〜9の平均粒子直径が
1.0〜10.9の範囲のエアゾール剤2´〜9´では
止血時間が8分以下であり好ましかった。特に、エアゾ
ール剤10´及び11´はエアゾール剤3´〜8´と比
べて水分吸湿度及び水分放湿度が著しく減少し、これに
伴い、止血時間も長くなった。尚、エアゾール剤1´は
噴射した際に内容物の低分子化再生キトサン微小粒状体
の平均粒子直径が小さいため大気中に飛散し、創傷面を
被覆できなかったため、止血時間の計測はできなかっ
た。
As is clear from Table 2, the moisture absorption and release characteristics gradually increase as the average particle size increases.
Of the aerosol 4 ′ having an average particle diameter of 5.2 μm gradually decreased to a peak. The aerosol preparations 2 'to 9' in which the average particle diameter of Samples 2 to 9 was in the range of 1.0 to 10.9 were preferable because the hemostatic time was 8 minutes or less. In particular, the aerosols 10 'and 11' significantly reduced the moisture absorption and release of moisture as compared with the aerosols 3 'to 8', and the hemostasis time was prolonged accordingly. The aerosol 1 'scattered in the air due to the small average particle diameter of the regenerated chitosan microparticles having a reduced molecular weight when injected, and could not cover the wound surface, so that the hemostatic time could not be measured. Was.

【0035】〔実施例2〕実施例1と同様の操作を行っ
て、低分子化再生キトサン微小粒状体600gを得た。
その後、この低分子化再生キトサン微小粒状体を風力分
級機(株式会社セイシン企業製、スペディック250)
を用い分級した。次いで、この低分子化再生キトサン微
小粒状体の供給量を1.5kg/時間とし、分級盤回転
数を2,400rpmに調節し、試料12〜17の乾燥
状態の低分子化再生キトサン微小粒状体6種を得た。
Example 2 The same operation as in Example 1 was performed to obtain 600 g of regenerated chitosan fine particles having a reduced molecular weight.
Thereafter, the low molecular weight regenerated chitosan fine granules are subjected to an air classifier (Sedic Corporation, Spedick 250).
And classified. Next, the supply amount of the low molecular weight regenerated chitosan microparticles was adjusted to 1.5 kg / hour, the classifier rotation speed was adjusted to 2,400 rpm, and the dried low molecular weight regenerated chitosan microparticles of Samples 12 to 17 were dried. Six types were obtained.

【0036】得られた試料12〜17を用いて低分子化
再生キトサン微小粒状体夫々について同様に球相当直径
の幾何平均である平均粒子直径、 粒子直径の分布の変
動係数、直径膨張率の測定を行い、その結果を表3に示
した。
Using each of the obtained samples 12 to 17, similarly, for each of the low-molecular-weight regenerated fine chitosan microparticles, measurement of the average particle diameter, which is the geometric average of the equivalent sphere diameter, the variation coefficient of the particle diameter distribution, and the diameter expansion coefficient And the results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】表3から明らかなように、低分子化再生キ
トサン微小粒状体の平均粒子直径が10.2〜10.8
の範囲では、粒子直径の分布の変動係数が大きくなる程
直径膨張率は漸増し、変動係数が1.00の近傍をピー
クに漸減した。
As is clear from Table 3, the average molecular diameter of the regenerated chitosan fine particles having a low molecular weight is 10.2 to 10.8.
In the range, the diameter expansion coefficient gradually increased as the variation coefficient of the particle diameter distribution increased, and gradually decreased to a peak near the variation coefficient of 1.00.

【0039】得られた試料12〜17を夫々0.5g採
取し、夫々塩化ベンザルコニウム1,00ppmを含有
するエタノール溶液0.8gに分散させた後、金属製の
耐圧エアゾール容器に入れ、次いで、LPG49.5g
を加え25℃で0.28MPaとなるよう常法により充
填し、エアゾール剤12´〜17´を得た。
0.5 g of each of the obtained samples 12 to 17 was collected and dispersed in 0.8 g of an ethanol solution containing 1,00 ppm of benzalkonium chloride, and then placed in a metal pressure-resistant aerosol container. , LPG49.5g
Was added thereto at 25 ° C., and the mixture was filled by a conventional method so that the pressure became 0.28 MPa, thereby obtaining aerosols 12 ′ to 17 ′.

【0040】夫々のエアゾール剤を用い、秤量瓶内に内
容物を噴射し、内容物を秤量瓶内に付着させた。その
後、内容物中のLPGが蒸発され、低分子化再生キトサ
ン微小粒状体のみが付着した秤量瓶を用いて、水分吸湿
度及び水分放湿度を測定し、その結果を表4に示した。
Using each aerosol, the contents were sprayed into a weighing bottle, and the contents were adhered to the weighing bottle. After that, LPG in the contents was evaporated, and the moisture absorption and desorption were measured using a weighing bottle to which only the low molecular weight regenerated chitosan microparticles had adhered. The results are shown in Table 4.

【0041】次いで、上記エアゾール剤の性能を以下の
方法により評価した。体重15.3kgの雑種成犬1頭
の後背部体毛を剃毛した後、手術用メスにより縦1c
m,横1cm,深さ1mmの十字の切創を1カ所作成
し、出血させた部位に対し、10cmの距離から2秒間
エアゾール剤12´を噴射し、止血するまでの時間を計
測し、その結果を表4に示した。同様の方法でエアゾー
ル剤13´〜17´を用いて止血するまでの時間を計測
して、その結果を表4に示した。
Next, the performance of the above aerosol was evaluated by the following method. After shaving the back hair of one adult mongrel dog weighing 15.3 kg, length 1c with a surgical scalpel
One cross cut of m, 1 cm in width, and 1 mm in depth was made, and an aerosol 12 'was sprayed onto the bleeding site from a distance of 10 cm for 2 seconds, and the time until hemostasis was measured. The results are shown in Table 4. In the same manner, the time until hemostasis was measured using the aerosol agents 13 'to 17', and the results are shown in Table 4.

【0042】[0042]

【表4】 [Table 4]

【0043】表3と表4から明らかなように、粒子直径
の分布の変動係数を0.50〜1.35とした試料13
〜16を用いたエアゾール剤13´〜16´は、粒子一
個一個の水分吸湿度及び水分放湿度が高くなり、すなわ
ち、水分を素早く吸放湿できるため、これに伴い、止血
時間も短縮できた。変動係数が0.3の試料12を用い
たエアゾール剤12´は、粒子一個一個の水分吸湿度及
び水分放湿度が小さいので、止血時間も長くなった。ま
た、変動係数が1.40の試料17を用いたエアゾール
剤17´は、粒子一個一個の大きさの違いが大きいこと
から水分吸湿度及び水分放湿度が小さくなり、止血時間
も長かった。
As is clear from Tables 3 and 4, Sample 13 in which the coefficient of variation of the particle diameter distribution was 0.50 to 1.35.
The aerosol agents 13 'to 16' using Nos. To 16 have high moisture absorption and release of moisture for each particle, that is, they can quickly absorb and release moisture, so that the hemostatic time can be shortened accordingly. . The aerosol agent 12 'using the sample 12 having a coefficient of variation of 0.3 had a small water absorption and release of moisture for each particle, so that the hemostatic time was also long. In addition, the aerosol 17 ′ using the sample 17 having a coefficient of variation of 1.40 showed a large difference in the size of each particle, so that the moisture absorption and release were small, and the hemostatic time was long.

【0044】〔実施例3〕5つの50℃の温湯10l中
に表5に記載した量の過硼酸ソーダを添加・溶解させた
後、脱アセチル化度82%、平均分子量230,000
のキトサンを夫々700gを加え、攪拌しながら表5に
記載の条件に見合う時間反応させた。反応後、夫々のキ
トサンを取り出し、水で十分水洗し、測定した処、脱ア
セチル化度82%、平均分子量7,000〜226,0
00の5種類の低分子化キトサンを得た。得られた低分
子化キトサン夫々を実施例1と同様の操作で酢酸に溶解
させた後、塩基性水溶液中に凝固再生させ、十分に水洗
し、次いで、ホモジナイザーで乳状の懸濁液とし、高温
雰囲気中に吐出・乾燥させた後、風力分級機(株式会社
セイシン企業製、スペディック250)を用い分級し、
低分子化再生キトサン微小粒状体を得た。次いで、夫々
の低分子化再生キトサン微小粒状体の供給量を1.5k
g/時間とし、分級盤回転数を3,200rpmに調節
し、平均直径が5.0μmの分級された乾燥状態の低分
子化再生キトサン微小粒状体5種類の試料18〜22を
得た。
Example 3 After adding and dissolving sodium perborate in the amounts shown in Table 5 in 10 l of 50 ° C. hot water, the degree of deacetylation was 82% and the average molecular weight was 230,000.
Of chitosan was added, and the mixture was reacted with stirring for a time corresponding to the conditions described in Table 5. After the reaction, each chitosan was taken out, washed sufficiently with water, and measured. The degree of deacetylation was 82%, and the average molecular weight was 7,000 to 226,0.
Thus, five kinds of low molecular weight chitosan No. 00 were obtained. Each of the obtained low-molecular-weight chitosans was dissolved in acetic acid in the same manner as in Example 1, coagulated and regenerated in a basic aqueous solution, washed sufficiently with water, and then made into a milky suspension with a homogenizer. After being discharged and dried in the atmosphere, it is classified using a wind classifier (Sedic Corporation, Spedick 250).
A regenerated chitosan microparticle having a low molecular weight was obtained. Next, the supply amount of each of the low molecular weight regenerated chitosan microparticles was 1.5 k.
g / hour, the number of revolutions of the classifier was adjusted to 3,200 rpm, and samples 18 to 22 of five kinds of classified dry low molecular weight regenerated chitosan fine granules having an average diameter of 5.0 μm were obtained.

【0045】得られた試料18〜22を用いて球相当直
径の幾何平均である平均粒子直径,粒子直径の分布の変
動係数,直径膨張率の測定を行い、その結果を表5に示
した。
Using the obtained samples 18 to 22, the average particle diameter, which is the geometric mean of the sphere equivalent diameter, the variation coefficient of the particle diameter distribution, and the diameter expansion coefficient were measured, and the results are shown in Table 5.

【0046】[0046]

【表5】 [Table 5]

【0047】表5から明らかなように、低分子化再生キ
トサン微小粒状体の平均分子量が増えるにしたがって、
直径膨張率は漸増し試料20の平均分子量80,000
の近傍でピークとなり、その後漸減した。試料18は水
中で低分子化再生キトサン微小粒状体の粒子が極度に膨
張し、一部溶解したため直径膨張率の測定ができなかっ
た。
As is clear from Table 5, as the average molecular weight of the regenerated low molecular weight chitosan microparticles increases,
The diameter expansion coefficient gradually increased, and the average molecular weight of Sample 20 was 80,000.
, And gradually decreased thereafter. In sample 18, the diameter expansion coefficient could not be measured because the particles of the regenerated chitosan microparticles in water were extremely expanded and partially dissolved in water.

【0048】得られた試料18〜22を夫々0.5g採
取し、それぞれ塩化ベンザルコニウム1,000ppm
を含有するエタノール溶液0.8gに分散させた後、金
属製の耐圧エアゾール容器に入れ、次いで、LPG4
9.5gを加え25℃で0.28MPaとなるよう常法
により充填し、エアゾール剤18´〜22´を得た。
0.5 g of each of the obtained Samples 18 to 22 was collected, and 1,000 ppm of benzalkonium chloride was used.
Is dispersed in 0.8 g of an ethanol solution containing, and then placed in a metal pressure-resistant aerosol container.
9.5 g was added, and the mixture was charged by a conventional method so that the pressure became 0.28 MPa at 25 ° C., to obtain aerosols 18 ′ to 22 ′.

【0049】夫々のエアゾール剤を用いて、秤量瓶内に
内容物を噴射し、内容物を秤量瓶内に付着させた。その
後、内容物中のLPGが蒸発され、低分子化再生キトサ
ン微小粒状体のみが付着した秤量瓶を用いて、水分吸湿
度及び水分放湿度を測定し、その結果を表6に示した。
The contents were sprayed into the weighing bottles using the respective aerosols, and the contents were adhered to the weighing bottles. Then, LPG in the contents was evaporated, and the moisture absorption and desorption were measured using a weighing bottle to which only the low molecular weight regenerated chitosan microparticles had adhered. The results are shown in Table 6.

【0050】次いで、体重16.5kgの雑種成犬1頭
の後背部体毛を剃毛した後、手術用メスにより縦1c
m,横1cm,深さ1mmの十字の切創を1カ所作成
し、出血させた部位に対し、10cmの距離から2秒間
エアゾール剤19´を噴射し、止血するまでの時間を計
測し、その結果を表6に示した。同様の方法でエアゾー
ル剤18´、20´〜12´を用いて止血するまでの時
間を計測して、その結果を表6に示した。
Then, after shaving the back hair of one adult mongrel dog weighing 16.5 kg, a vertical scalpel was used with a surgical knife.
One cross cut of m, width 1 cm and depth 1 mm was made, and an aerosol 19 ′ was sprayed on the bleeding site from a distance of 10 cm for 2 seconds, and the time until hemostasis was measured. The results are shown in Table 6. The time until hemostasis was measured using the aerosols 18 ', 20' to 12 'in the same manner, and the results are shown in Table 6.

【0051】[0051]

【表6】 [Table 6]

【0052】表5及び表6から明らかなように、平均分
子量が10,000〜200,000の範囲での試料1
9〜21を用いたエアゾール剤19´〜22´の水分吸
湿度及び水分放湿度は、試料22の平均分子量226,
000の値よりも高く良好であり、これに伴い、止血時
間も短く好ましかった。一方、エアゾール剤18´は噴
射した時、内容物の低分子化再生キトサン微小粒状体が
創傷面に付着したが、体内滲出液により極度に膨潤し、
溶解したため、創傷面の被覆が不十分となった。
As apparent from Tables 5 and 6, Sample 1 having an average molecular weight in the range of 10,000 to 200,000 was used.
The average molecular weight of sample 22 was 226, and the moisture absorption and release of aerosol agents 19 'to 22' using 9 to 21 were as follows.
A value higher than a value of 000 was good, and a shorter hemostasis time was preferred accordingly. On the other hand, when the aerosol 18 'was sprayed, the low molecular weight regenerated chitosan microparticles of the content adhered to the wound surface, but were extremely swollen by the exudate in the body,
The dissolution resulted in insufficient wound surface coverage.

【0053】〔実施例4〕実施例1と同様の操作を行い
粒状多孔質低分子化再生キトサン10lを得た。これ
に、食用色素黄色4号(ダイワ化成(株)製)2gを含
む水5lを加えホモジナイザーを用い11,900rp
mで1分攪拌し、キトサン濃度4.3%の着色された懸
濁液を得た。
Example 4 The same operation as in Example 1 was performed to obtain 10 l of granular porous low molecular weight regenerated chitosan. To this, 5 l of water containing 2 g of Food Color Yellow No. 4 (manufactured by Daiwa Kasei Co., Ltd.) was added, and 11,900 rpm was added using a homogenizer.
After stirring for 1 minute at m, a colored suspension having a chitosan concentration of 4.3% was obtained.

【0054】この懸濁液を25m/分の流速で3.0k
g/cm2の加圧空気と共に175℃の高温雰囲気中に
吐出・乾燥させ、サイクロンコレクターで捕集し、低分
子化再生キトサン微小着色粒状体600gを得た。
The suspension was supplied at a flow rate of 25 m / min to 3.0 k
The mixture was discharged and dried in a high-temperature atmosphere at 175 ° C. together with g / cm 2 of pressurized air, and collected by a cyclone collector to obtain 600 g of regenerated chitosan micro-colored granules having a reduced molecular weight.

【0055】この低分子化再生キトサン微小着色粒状体
を風力分級機(株式会社セイシン企業製、スペディック
250)を用い分級した。この低分子化再生キトサン微
小着色粒状体の供給量を1.5kg/時間とし、分級盤
回転数を3,200rpmに調節して試料23の乾燥状
態の低分子化再生キトサン微小着色粒状体を得た。
The low molecular weight regenerated chitosan micro-colored granular material was classified using an air classifier (Spedick 250, manufactured by Seishin Enterprise Co., Ltd.). The supply amount of the low molecular weight regenerated chitosan micro-colored granules was 1.5 kg / hour, and the rotation speed of the classifier was adjusted to 3,200 rpm to obtain the dry low molecular weight regenerated chitosan micro-colored granules of Sample 23. Was.

【0056】得られた乾燥状態の低分子化再生キトサン
微小着色粒状体の球相当直径の幾何平均である平均粒子
直径、粒子直径の分布の変動係数、直径膨張率の測定を
行い、その結果を表7に示した。参考までに、実施例1
の試料4の結果も付記した。
The average particle diameter, which is the geometric mean of the equivalent spherical diameters, the variation coefficient of the particle diameter distribution, and the diameter expansion coefficient of the obtained dried low molecular weight regenerated chitosan micro-colored granular material were measured. The results are shown in Table 7. For reference, Example 1
The result of Sample 4 was also added.

【0057】次いで、得られた試料23を0.5g採取
し、塩化ベンザルコニウム1,000ppmを含有する
エタノール溶液0.8gに分散させた後、金属製の耐圧
エアゾール容器に入れ、次いで、LPG49.5gを加
え25℃で0.28MPaとなるよう常法により充填
し、エアゾール剤23´を得た。
Next, 0.5 g of the obtained sample 23 was sampled, dispersed in 0.8 g of an ethanol solution containing 1,000 ppm of benzalkonium chloride, and then placed in a metal pressure-resistant aerosol container. Then, 0.5 g was added, and the mixture was charged by a conventional method so that the pressure became 0.28 MPa at 25 ° C., to obtain an aerosol 23 ′.

【0058】エアゾール剤23´を用いて、秤量瓶内に
内容物を噴射し、内容物を秤量瓶内に付着させた。その
後、内容物中のLPGが蒸発され、低分子化再生キトサ
ン微小着色粒状体のみが付着した秤量瓶を用いて、水分
吸湿度及び放湿度を測定し、その結果を表8に示した。
参考までに、実施例1のエアゾール剤4´の結果も付記
した。
The contents were sprayed into the weighing bottle using the aerosol agent 23 ', and the contents were adhered to the weighing bottle. Thereafter, LPG in the contents was evaporated, and moisture absorption and release were measured using a weighing bottle to which only the low molecular weight regenerated chitosan micro-colored granules adhered. The results are shown in Table 8.
For reference, the results of the aerosol 4 'of Example 1 are also shown.

【0059】次いで、体重6.0kgの雑種成犬1頭の
後背部体毛を剃毛した後、手術用メスにより縦1cm,
横1cm,深さ1mmの十字の切創を1カ所作成し、出
血させた部位に対し、10cmの距離から2秒間エアゾ
ール剤23´を噴射し、止血するまでの時間を計測し、
その結果を表8に示した。参考までに、実施例1のエア
ゾール剤4´の結果も付記した。次いで、エアゾール剤
23´をスプレーパターンによる付着面積の測定方法に
より計測し、その結果を表8に示した。参考までに、実
施例1のエアゾール剤4´の結果も付記した。
Next, the back hair of one adult hybrid dog weighing 6.0 kg was shaved, and then 1 cm long, with a surgical scalpel.
One cross cut with a width of 1 cm and a depth of 1 mm was made, and an aerosol 23 'was sprayed onto the bleeding site from a distance of 10 cm for 2 seconds, and the time until hemostasis was measured.
Table 8 shows the results. For reference, the results of the aerosol 4 'of Example 1 are also shown. Next, the aerosol agent 23 'was measured by a method for measuring the adhered area by a spray pattern, and the results are shown in Table 8. For reference, the results of the aerosol 4 'of Example 1 are also shown.

【0060】[0060]

【表7】 [Table 7]

【0061】[0061]

【表8】 [Table 8]

【0062】表7及び表8から明らかなように、エアゾ
ール剤4´と23´は平均粒子直径、粒子直径の分布の
変動係数,直径膨張率,水分吸湿度,水分放湿度,止血
時間がほぼ等しいエアゾール剤であるが、低分子化再生
キトサン微小着色粒状体を充填したエアゾール剤23´
は着色された低分子化再生キトサン微小粒状体を用いて
いるため、スプレーされた部分が明確であり、付着部分
が無着色のエアゾール剤4´より明確に認識された。し
たがって、付着した範囲を目視にて確認するには好適で
ある。
As is clear from Tables 7 and 8, the aerosols 4 'and 23' have an average particle diameter, a coefficient of variation of the particle diameter distribution, a diameter expansion coefficient, a moisture absorption / humidity, a moisture release humidity, and a hemostatic time. Aerosol 23 'which is the same aerosol but is filled with regenerated low molecular weight chitosan micro-colored granules
Since colored low molecular weight regenerated chitosan microparticles were used, the sprayed portion was clear, and the attached portion was more clearly recognized than the uncolored aerosol agent 4 '. Therefore, it is suitable for visually confirming the attached range.

【0063】〔比較例1〕脱アセチル化度82%、平均
分子量35,000、粒子の平均直径が300μmのキ
トサン1,000gに水15lを加えホモジナイザーを
用い11,000rpmで10分攪拌し、キトサン微小
破砕体の懸濁液を得た。
Comparative Example 1 15 l of water was added to 1,000 g of chitosan having a degree of deacetylation of 82%, an average molecular weight of 35,000 and an average particle diameter of 300 μm, and the mixture was stirred at 11,000 rpm for 10 minutes using a homogenizer. A suspension of finely crushed material was obtained.

【0064】この懸濁液を25m/分の流速で3.0k
g/cm2の加圧空気と共に175℃の高温雰囲気中に
吐出乾燥させ、乾燥物をサイクロンコレクターで捕集
し、キトサン微小粒状体800gを得た。
This suspension was subjected to a flow of 3.0 k at a flow rate of 25 m / min.
The dried product was discharged into a high-temperature atmosphere of 175 ° C. together with pressurized air of g / cm 2 , and the dried product was collected by a cyclone collector to obtain 800 g of fine chitosan particles.

【0065】このキトサン微小粒状体を風力分級機(株
式会社セイシン企業製、スペディック250)を用い分
級した。その後、4分割したキトサン微小粒状体の供給
量を1.5kg/時間とし、分級盤回転数を表9記載の
値に調節して乾燥状態のキトサン微小粒状体の試料24
〜27を得た。得られた夫々のキトサン微小粒状体の球
相当直径の幾何平均である平均粒子直径、粒子直径の分
布の変動係数、直径膨張率の測定を行い、その結果を表
9に示した。
The fine chitosan particles were classified using an air classifier (Spedick 250, manufactured by Seishin Enterprise Co., Ltd.). Thereafter, the supply amount of the chitosan fine granules divided into four was set to 1.5 kg / hour, and the number of rotations of the classifier was adjusted to the value shown in Table 9 to adjust the sample 24 of the dry chitosan fine granules.
~ 27. The average particle diameter, which is the geometric mean of the equivalent sphere diameters of the obtained chitosan microparticles, the variation coefficient of the particle diameter distribution, and the coefficient of diameter expansion were measured. The results are shown in Table 9.

【0066】[0066]

【表9】 [Table 9]

【0067】表9から明らかなように、試料24〜27
の直径膨張率は113〜124%で実施例1の試料6〜
9の直径膨張率130〜138%と比較して値が低く好
ましくない。
As is clear from Table 9, Samples 24-27
Has a diameter expansion of 113 to 124%,
9, which is not preferable because the value is lower than the diameter expansion coefficient of 130 to 138%.

【0068】次いで、得られた試料24〜27の夫々
0.5gを採取し、夫々塩化ベンザルコニウム1,00
0ppmを含有するエタノール溶液0.8gに分散させ
た後、金属製の耐圧エアゾール容器に入れ、次いで、L
PG49.5gを加え25℃で0.28MPaとなるよ
う常法により充填し、エアゾール剤24´〜27´を得
た。
Next, 0.5 g of each of the obtained Samples 24 to 27 was collected, and each of Benzalkonium chloride 1,00
After dispersing in 0.8 g of an ethanol solution containing 0 ppm, the mixture is placed in a metal pressure-resistant aerosol container.
49.5 g of PG was added, and the mixture was charged by a conventional method so as to have a pressure of 0.28 MPa at 25 ° C., thereby obtaining aerosols 24 ′ to 27 ′.

【0069】エアゾール剤24´〜27´を用いて、秤
量瓶内に内容物を噴射し、内容物を秤量瓶内に付着させ
た。その後、内容物中のLPGが蒸発され、キトサン微
小粒状体のみが付着した秤量瓶を用いて、水分吸湿度及
び水分放湿度を測定し、その結果を表10に示した。
The contents were sprayed into the weighing bottles using the aerosols 24 'to 27', and the contents were adhered to the weighing bottles. After that, LPG in the contents was evaporated, and the moisture absorption and release were measured using a weighing bottle to which only the chitosan microparticles had adhered. The results are shown in Table 10.

【0070】次いで、体重16.1kgの雑種成犬1頭
の後背部体毛を剃毛した後、手術用メスにより縦1c
m,横1cm,深さ1mmの十字の切創を1カ所作成
し、出血させた部位に対し、10cmの距離から2秒間
エアゾール剤24´を噴射し、止血するまでの時間を計
測し、その結果を表10に示した。同様の方法でエアゾ
ール剤25´〜27´を用いて止血するまでの時間を計
測して、その結果を表10に示した。
Then, after shaving the back hair of one adult mongrel dog weighing 16.1 kg, a vertical scalpel was used with a surgical scalpel.
One cross cut of m, 1 cm in width and 1 mm in depth was made, and an aerosol 24 'was sprayed on the bleeding site from a distance of 10 cm for 2 seconds, and the time until hemostasis was measured. The results are shown in Table 10. In the same manner, the time until hemostasis was measured using the aerosols 25 'to 27', and the results are shown in Table 10.

【0071】[0071]

【表10】 [Table 10]

【0072】エアゾール剤24´〜27´の水分吸湿度
が17.1〜17.8%で実施例1のエアゾール剤6´
〜9´の水分吸湿度20.2〜20.9%に比較して値
が低く好ましくない。また、エアゾール剤24´〜27
´の水分放湿度も61.5〜62.8%で実施例1のエ
アゾール剤6´〜9´の水分吸湿度65.0〜66.8
%に比較して値が低く好ましくない。止血時間も実施例
1のエアゾール剤6´〜9´は7〜8分に対してエアゾ
ール剤24´〜27´は10分で大幅に長かった。
The moisture absorption of the aerosols 24 'to 27' is 17.1 to 17.8%, and the aerosols 6 'of Example 1 are used.
Unfavorably, the value is low as compared with the moisture absorption of 20.2 to 20.9%. Also, aerosol agents 24 'to 27
The moisture release of 6 ′ to 62.8% was 61.5 to 62.8%, and the moisture absorption of the aerosols 6 ′ to 9 ′ of Example 1 was 65.0 to 66.8.
%, Which is not preferable because the value is low. The hemostatic time was also much longer at 10 minutes for the aerosols 24 'to 27', compared to 7 to 8 minutes for the aerosols 6 'to 9' of Example 1.

【0073】エアゾール剤として用いられるキトサン微
小粒状体は、低分子化再生キトサン微小粒状体に比べ水
分吸湿度と水分放湿度が共に小さいため、止血時間が長
くなったり、エアゾール剤として使用することは好まし
くないことが明らかである。
The fine particulate chitosan used as an aerosol has a smaller moisture absorption and moisture release compared to the low molecular weight regenerated chitosan fine particulate, so that the hemostatic time is longer and it is difficult to use it as an aerosol. It is clear that this is not preferred.

【0074】[0074]

【発明の効果】本発明によるエアゾール剤は、水分吸湿
度と水分放湿度が大きい低分子化再生キトサン微小粒状
体または低分子化再生キトサン微小着色粒状体を用いた
エアゾール剤であるため、止血時間を短くし、止血効
果,抗炎症効果,創傷治癒効果があり、切創,擦過創,
剥削創,削皮創等の外創や手術等の創傷部にエアゾール
剤を噴霧,付着させた場合に、少量の付着量で創傷面を
被覆し優れた被覆効果があり、また、創傷面がジクジク
せず良好であり、着色した低分子化再生キトサン微小粒
状体を用いると、散布範囲を目視で明確に確認でき、任
意の付着量を付着させることができる等の効果がある。
The aerosol according to the present invention is an aerosol using low molecular weight regenerated chitosan microparticles or low molecular weight regenerated chitosan microcolored particles having high moisture absorption and release, and thus has a high hemostasis time. Has a hemostatic effect, anti-inflammatory effect, wound healing effect, cut wound, abrasion wound,
When an aerosol is sprayed and adhered to the external wound such as exfoliated wounds and cut wounds, or the wounds such as surgery, the wound surface is covered with a small amount of adhesion and has an excellent covering effect. The use of a fine, low molecular weight regenerated chitosan fine particle which is good without jigging and has a low molecular weight is advantageous in that the range of application can be clearly confirmed visually and an arbitrary amount of adhesion can be attached.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川村 佳秀 静岡県駿東郡小山町小山89−5 (72)発明者 草皆 茂秀 静岡県駿東郡小山町藤曲142−3 (72)発明者 谷邊 博昭 静岡県御殿場市東田中1959−37 Fターム(参考) 4C076 AA24 BB31 CC19 DD19 DD34 DD37 4C086 AA01 EA23 MA03 MA05 MA13 NA05 ZA89  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihide Kawamura 89-5 Oyama, Koyama-cho, Sunto-gun, Shizuoka Prefecture (72) Inventor Shigehide Kusaka 142-3, Fujimagari, Koyama-cho, Sunto-gun, Shizuoka Prefecture (72) Inventor Hiroaki Tanibe Shizuoka 1959-37 Higashi-Tanaka, Gotemba-shi, F F term (reference) 4C076 AA24 BB31 CC19 DD19 DD34 DD37 4C086 AA01 EA23 MA03 MA05 MA13 NA05 ZA89

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均分子量が10,000〜200,0
00である低分子化再生キトサンの、乾燥時の平均粒子
直径が1.0〜11.0μm、粒子直径の分布の変動係
数が0.50〜1.35である微小粒状体を分散溶液と
噴射剤と共に容器に充填することを特徴とする創傷面被
覆用エアゾール剤。
An average molecular weight of 10,000 to 200,0.
The regenerated chitosan having a molecular weight of 00 is sprayed with a dispersion solution of a fine granular material having an average particle diameter of 1.0 to 11.0 μm when dried and a coefficient of variation of the particle diameter distribution of 0.50 to 1.35. An aerosol for covering a wound surface, which is filled in a container together with the agent.
【請求項2】 低分子化再生キトサンの微小粒状体が着
色剤で着色されていることを特徴とする請求項1に記載
の創傷面被覆用エアゾール剤。
2. The aerosol composition for covering a wound surface according to claim 1, wherein the fine granular material of the regenerated low molecular weight chitosan is colored with a coloring agent.
JP2001163617A 2001-05-31 2001-05-31 Aerosol preparation for covering wounded surface Pending JP2002363083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163617A JP2002363083A (en) 2001-05-31 2001-05-31 Aerosol preparation for covering wounded surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163617A JP2002363083A (en) 2001-05-31 2001-05-31 Aerosol preparation for covering wounded surface

Publications (1)

Publication Number Publication Date
JP2002363083A true JP2002363083A (en) 2002-12-18

Family

ID=19006550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163617A Pending JP2002363083A (en) 2001-05-31 2001-05-31 Aerosol preparation for covering wounded surface

Country Status (1)

Country Link
JP (1) JP2002363083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062057A (en) * 2001-08-29 2003-03-04 Next:Kk Minute particles of biopolymer for homeostasis and adhesion prevention
WO2010109588A1 (en) * 2009-03-23 2010-09-30 財団法人函館地域産業振興財団 Polymeric material for medical use and for basic makeup (for skin care) and process for producing same
CN102824308A (en) * 2012-08-31 2012-12-19 广州润虹医药科技有限公司 Chitosan antibacterial filming sprayer and preparation method
JP2020534267A (en) * 2017-09-12 2020-11-26 シルパ メディケア リミテッドShilpa Medicare Limited Tranexamic acid spray for knee arthroplasty

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062057A (en) * 2001-08-29 2003-03-04 Next:Kk Minute particles of biopolymer for homeostasis and adhesion prevention
WO2010109588A1 (en) * 2009-03-23 2010-09-30 財団法人函館地域産業振興財団 Polymeric material for medical use and for basic makeup (for skin care) and process for producing same
JP5615804B2 (en) * 2009-03-23 2014-10-29 公益財団法人函館地域産業振興財団 Medical and basic cosmetic (skin care) polymer material and method for producing the same
CN102824308A (en) * 2012-08-31 2012-12-19 广州润虹医药科技有限公司 Chitosan antibacterial filming sprayer and preparation method
JP2020534267A (en) * 2017-09-12 2020-11-26 シルパ メディケア リミテッドShilpa Medicare Limited Tranexamic acid spray for knee arthroplasty

Similar Documents

Publication Publication Date Title
US4450151A (en) Powder aerosol composition
JP3805654B2 (en) Fine particles of biopolymers that prevent hemostasis and adhesion
EP0376104B1 (en) Aerosol composition
US4234432A (en) Powder dissemination composition
JP2627642B2 (en) Powder cosmetics
EP0842028A1 (en) Process for making gel microbeads
JP2002363083A (en) Aerosol preparation for covering wounded surface
CN106807027A (en) Microcapsule fire-extinguishing agent
WO2009006377A1 (en) Granular composites of inorganic particulates and redispersible latex powders and methods
JPH02242858A (en) Water-absorbing agent and production thereof
CN109966688A (en) A kind of macromolecule hydrogel extinguishing chemical and preparation method thereof
US4173538A (en) Extinguishing product comprising an uninflammable powder and liquid
Kong et al. Preparation of gelatin microparticles using water-in-water (w/w) emulsification technique
CN109221138A (en) A kind of flonicamid dry suspending agent and its preparation method and application
JPH02255889A (en) Aerosol composition
JP2000319012A (en) Spherical silica gel particles and their production
US5011693A (en) Haemostatic agents
US20170303479A1 (en) Warm Cloud Catalyst, Preparation Method Therefor and Application Thereof
JPH0331389A (en) After-foamable gel composition
CA3214671A1 (en) Fire retardant compositions and other compositions containing one or more biopolymers and colloidal silica
CA2600405C (en) In situ formed aerosol sustained release fragrance system
JPS6327501A (en) Chitin or chitosan minute particle containing ultrafine powder of inorganic substance
JPH026734B2 (en)
WO2020102897A1 (en) Fire suppressing pellets
US20220258129A1 (en) Porous cellulose medium and method for producing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080303