JP2002360715A - Dose distribution measuring instrument and dose distribution measuring system - Google Patents

Dose distribution measuring instrument and dose distribution measuring system

Info

Publication number
JP2002360715A
JP2002360715A JP2001174336A JP2001174336A JP2002360715A JP 2002360715 A JP2002360715 A JP 2002360715A JP 2001174336 A JP2001174336 A JP 2001174336A JP 2001174336 A JP2001174336 A JP 2001174336A JP 2002360715 A JP2002360715 A JP 2002360715A
Authority
JP
Japan
Prior art keywords
dose distribution
water tank
measurement
particle beam
distribution measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001174336A
Other languages
Japanese (ja)
Inventor
Takeshi Hamano
毅 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001174336A priority Critical patent/JP2002360715A/en
Publication of JP2002360715A publication Critical patent/JP2002360715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dose distribution measuring instrument constituted so as to measure the dose distribution of corpuscular beam treatment equipment having a rotary gantry, miniaturizing a water tank while ensuring a necessary measuring range to reduce a strength condition imposed on a drive device and the water tank and capable of measuring OCR, TPR and PDD even in a corpuscular beam radiation apparatus having the rotary gantry. SOLUTION: The dose distribution measuring instrument is constituted so that a cylindrical hermetically closed water tank having a radius set to a minimum range necessary for measurement is attached to a drive bed having three drive shafts and the sensor in the hermetically closed water tank is attached to a drive shaft movable only in an up and down direction to miniaturize the water tank and can measure OCR, TPR and PDD even in the corpuscular beam apparatus having the rotary gantry.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉水槽を用いて全
方位からの測定が可能でTPR測定が可能な線量分布測
定装置および線量分布測定システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dose distribution measuring device and a dose distribution measuring system capable of measuring from all directions using a closed water tank and capable of performing TPR measurement.

【0002】[0002]

【従来の技術】従来の技術について説明する。放射線に
よる癌治療前に、体内で実際に放射線線量分布がどのよ
うになっているかをシミュレートするために放射線治療
装置の線量分布測定が行われている。特に、加速器を用
いる電子線、X線照射装置では、拡大されたビームを癌
病巣に向けて照射すること、また、電子線、X線は体表
面での影響が大きいため、癌組織だけでなく正常組織で
の被爆線量も測定する必要があり、また、陽子線や多価
イオンを照射する粒子線治療においても体内での深度エ
ネルギー分布を正確に調整することで正常組織の被爆量
を抑えるため、この線量分布測定は重要である。
2. Description of the Related Art A conventional technique will be described. Prior to cancer treatment with radiation, a dose distribution measurement of a radiation therapy apparatus is performed to simulate the actual radiation dose distribution in the body. In particular, in the case of an electron beam and an X-ray irradiator using an accelerator, the expanded beam is irradiated toward a cancer lesion, and since the electron beam and the X-ray have a large effect on the body surface, not only cancer tissue but also It is also necessary to measure the exposure dose to normal tissues, and to control the exposure of normal tissues by precisely adjusting the depth energy distribution in the body even in particle beam therapy that irradiates protons and multivalent ions. This dose distribution measurement is important.

【0003】これらの測定には、人体に模した上面が開
放された箱型水槽に水を入れ、この水に対して放射線を
照射し、水中に設けたセンサーによってその線量を測定
する方法が使用されている。図4に従来の線量分布測定
装置の水槽の概要を示す。7は受けた放射線または粒子
線(ここでは放射線)を電荷に換えるセンサ、8はセン
サ6を搭載する駆動台、20は水の入った箱型水槽、2
1は駆動台8に搭載されたセンサ7をX軸方向に移動さ
せるセンサX駆動軸、22はセンサX駆動軸21をY軸
方向に平行移動する2本のセンサY駆動軸、23はZ軸
方向にセンサY駆動軸22を平行移動させる4本のセン
サZ駆動軸、24は放射線または粒子線ビーム(ここで
は放射線ビーム)である。
[0003] For these measurements, a method is used in which water is poured into a box-shaped water tank having an open top surface imitating a human body, the water is irradiated, and the dose is measured by a sensor provided in the water. Have been. FIG. 4 shows an outline of a water tank of a conventional dose distribution measuring device. 7 is a sensor for converting received radiation or particle beam (radiation in this case) into electric charge, 8 is a driving base on which the sensor 6 is mounted, 20 is a box-shaped water tank containing water, 2
1 is a sensor X drive axis for moving the sensor 7 mounted on the drive base 8 in the X axis direction, 22 is two sensor Y drive axes for moving the sensor X drive axis 21 in parallel in the Y axis direction, and 23 is a Z axis. The four sensor Z drive axes, 24, which translate the sensor Y drive axis 22 in the direction, are radiation or particle beam (here, radiation beam).

【0004】図に示したように、センサ7は、X軸方向
には駆動台8とともにモータ(図示せず)によってセン
サX駆動軸21上を移動し、また、Y軸方向にはセンサ
X駆動軸21がセンサY駆動軸22上を平行移動すると
ともに移動し、また、Z軸方向にはセンサY駆動軸22
がセンサZ駆動軸23上を平行移動することで、放射線
ビーム24に対してセンサ7を垂直および平行方向に移
動して線量分布測定を行う。
As shown in the figure, a sensor 7 is moved on a sensor X drive shaft 21 by a motor (not shown) together with a drive stand 8 in the X-axis direction, and is moved in a Y-axis direction. The shaft 21 translates and moves on the sensor Y drive shaft 22, and moves in the Z-axis direction.
Makes a parallel movement on the sensor Z drive shaft 23, thereby moving the sensor 7 in a direction perpendicular and parallel to the radiation beam 24 to measure the dose distribution.

【0005】ここで線量分布測定には、OCR(Off
Center Ratio)測定、また、PDD(深
部量百分率)測定およびTPR(組織ピーク線量比)測
定がある。図5、6、7にそれぞれOCR、PDD、T
PR測定の方法を示す。図5において、25はOCR測
定の際のセンサ7の移動部分である。図に示したよう
に、OCR測定とは、放射線ビーム24に対して垂直方
向の線量分布を測定する方法のことである。
Here, in the dose distribution measurement, OCR (Off)
There are Center Ratio) measurements, PDD (Depth Percentage) measurements and TPR (Tissue Peak Dose Ratio) measurements. FIGS. 5, 6, and 7 show OCR, PDD, and T, respectively.
The method of PR measurement is shown. In FIG. 5, reference numeral 25 denotes a moving portion of the sensor 7 during the OCR measurement. As shown in the figure, the OCR measurement is a method of measuring a dose distribution in a direction perpendicular to the radiation beam 24.

【0006】一方、図6はPDD測定の際の水槽の動き
を表す側面図である。20aは移動した水槽の位置であ
る。図6に示したように、センサ7の位置を固定したま
ま、水槽20を上下に駆動して水深を変化させることで
線量分布を測定する方法である。
FIG. 6 is a side view showing the movement of the water tank at the time of PDD measurement. 20a is the position of the moved water tank. As shown in FIG. 6, this method measures the dose distribution by driving the water tank 20 up and down to change the water depth while the position of the sensor 7 is fixed.

【0007】また、図7はTPR測定の際のセンサの移
動を表す側面図である。7aおよび7bは移動したセン
サ7の位置である。図7に示したように、TPR測定で
は、水槽20は動かさずに水槽20中でセンサ7を上下
に動かして水深を変化させることで線量分布を測定する
方法である。
FIG. 7 is a side view showing the movement of the sensor at the time of TPR measurement. 7a and 7b are the positions of the moved sensor 7. As shown in FIG. 7, the TPR measurement is a method of measuring the dose distribution by moving the sensor 7 up and down in the water tank 20 without moving the water tank 20 to change the water depth.

【0008】これら方法により線量分布測定を行う際
に、従来では上面が開放された水槽だったため、粒子線
照射装置が回転ガントリーを有するものであっても、水
槽を回転ガントリーとともに回転させることはできなか
った。そのため、ガントリーが回転して斜め方向の放射
線の線量分布測定を行う場合には、粒子線が水槽の水に
入射してからセンサに達するまでの距離を測り、それに
よってデータを補正して回転ガントリーの線量分布測定
を行うため、水面に対して垂直に放射線ビームを入射す
る場合と比べて精度が低いという問題点があった。
When measuring the dose distribution according to these methods, the water tank can be rotated together with the rotating gantry even if the particle beam irradiation apparatus has a rotating gantry, because the water tank was conventionally an open top. Did not. Therefore, when measuring the dose distribution of oblique radiation by rotating the gantry, measure the distance from the time when the particle beam enters the water in the aquarium until it reaches the sensor, and correct the data accordingly to correct the data. Therefore, there is a problem that the accuracy is lower than that in a case where a radiation beam is incident perpendicularly to the water surface.

【0009】また、回転ガントリー装置に密閉水槽を用
いた場合は、測定範囲、即ち水槽中のセンサの移動範囲
を確保するためには、センサ自体の大きさや駆動軸の幅
などから水槽の容積を一定以上保つ必要があるが、水槽
自体を上下に駆動する必要があるPDD測定を行う場合
には、駆動装置や水槽に一定の強度が必要であった。
When a closed water tank is used for the rotating gantry, the volume of the water tank is determined by the size of the sensor itself and the width of the drive shaft in order to secure the measurement range, that is, the movement range of the sensor in the water tank. When performing PDD measurement in which the water tank itself needs to be driven up and down, although it is necessary to keep the water tank above a certain level, the driving device and the water tank need to have a certain strength.

【0010】[0010]

【発明が解決しようとする課題】本発明は以上のような
問題点を解決するためになされたもので、回転ガントリ
ーを有する粒子線治療装置の線量分布測定を行う線量分
布測定装置において、必要な測定範囲を確保しつつ水槽
を小型化することで、駆動装置および水槽に課せられる
強度条件を低減し、回転ガントリーを有する粒子線放射
装置においてもOCR測定、TPR測定、およびPDD
測定が可能な線量分布測定装置を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is required for a dose distribution measuring apparatus for measuring a dose distribution of a particle beam therapy system having a rotating gantry. By reducing the size of the water tank while ensuring the measurement range, the strength conditions imposed on the driving device and the water tank are reduced, and the OCR measurement, the TPR measurement, and the PDD can be performed even in a particle beam emission device having a rotating gantry.
An object of the present invention is to provide a dose distribution measurement device capable of measurement.

【0011】また、線量分布測定装置が複数ある場合
に、制御計算機による制御をシーケンサを介して行うこ
とで、制御の共通化および自動化を可能とすることを目
的とする。
It is another object of the present invention to make the control common and automatic by controlling the control computer via a sequencer when there are a plurality of dose distribution measuring devices.

【0012】[0012]

【課題を解決するための手段】本発明に係わる線量分布
測定装置およびシステムは、粒子線治療装置から粒子線
を照射し、水槽の水中に設けられたセンサーによって粒
子線線量分布測定を行う線量分布測定装置であって、前
記粒子線の照射口が設けられると共に、粒子線治療装置
の治療台に対して垂直な面内を回転移動する回転ガント
リーと、前記粒子線のビーム軸上に設けられると共に、
前記回転ガントリーとともに回転移動する密閉水槽と、
前記センサーを前記粒子線のビーム軸方向に移動させる
センサー移動手段と、前記密閉水槽を前記粒子線のビー
ム軸方向およびビーム軸に対して垂直方向にそれぞれ移
動させる水槽移動手段を備えたものである。
A dose distribution measuring device and system according to the present invention irradiate a particle beam from a particle beam therapy device and measure a dose distribution of the particle beam by a sensor provided in water in an aquarium. A measurement device, wherein the irradiation port of the particle beam is provided, and a rotating gantry that rotationally moves in a plane perpendicular to the treatment table of the particle beam therapy device, and provided on a beam axis of the particle beam. ,
A sealed water tank that rotates with the rotating gantry,
A sensor moving means for moving the sensor in the beam axis direction of the particle beam; and a water tank moving means for moving the closed water tank in a beam axis direction of the particle beam and in a direction perpendicular to the beam axis. .

【0013】また、前記密閉水槽は、円筒形であるもの
である。
Further, the closed water tank has a cylindrical shape.

【0014】また、前記密閉水槽は、回転ガントリーの
床面にボルトで止めたものである。
The closed water tank is bolted to the floor of the rotating gantry.

【0015】また、複数の線量分布測定装置、当該複数
の線量分布測定装置に電圧供給するための複数の電源、
当該複数の線量分布測定装置とシーケンサを介して制御
命令および測定データの授受行う制御計算機、当該複数
の線量分布測定装置の測定データをI/F変換して前記
シーケンサに出力する複数のI/F変換器を有する線量
分布測定システムであって、前記シーケンサはデータ測
定および前記線量分布測定装置を駆動するタイミングを
決定するカウンタ制御シーケンサと、当該カウンタ制御
シーケンサが決定した駆動タイミングに合わせ前記線量
分布測定装置を駆動制御する駆動制御シーケンサを備
え、複数の線量分布測定装置を一括制御するものであ
る。
A plurality of dose distribution measuring devices; a plurality of power supplies for supplying a voltage to the plurality of dose distribution measuring devices;
A control computer for transmitting and receiving control commands and measurement data via the plurality of dose distribution measurement devices and the sequencer; and a plurality of I / Fs for converting the measurement data of the plurality of dose distribution measurement devices into I / F and outputting to the sequencer A dose distribution measurement system having a converter, wherein the sequencer is a data control and a counter control sequencer that determines timing for driving the dose distribution measurement device, and the dose distribution measurement is performed in accordance with the drive timing determined by the counter control sequencer. A drive control sequencer for driving and controlling the device is provided, and a plurality of dose distribution measuring devices are collectively controlled.

【0016】また、前記I/F変換器は前記カウンタ制
御シーケンサによって、出力信号の出力レンジ切り替え
を行うものである。
The I / F converter switches the output range of the output signal by the counter control sequencer.

【0017】[0017]

【発明の実施の形態】実施の形態1.図1(a)および
図1(b)は本発明の実施の形態1に係わる粒子線治療
装置における線量分布測定装置の構成を表すブロック図
である。図において、1は粒子線照射口、2は放射線照
射口1が設けられ、当該放射線照射口1と共に360度
の回転を行う回転ガントリー、3は回転ガントリーの強
度を保つフレーム、4は粒子線照射の際の基準点となる
アイソセンタ、5は人体に模した円筒型の密閉水槽、6
は密閉水槽5を設置する3つの駆動軸を有する駆動架
台、7は水槽中に設けられた照射される粒子線を感知す
るセンサ、8はセンサ7を水槽中でモータ(図示せず)
により上下に移動させるための駆動台、9は密閉水槽5
をモータ(図示せず)により駆動架台6と共にX方向に
移動させるためのX駆動軸、10はX駆動軸9を平行移
動することで当該X駆動軸9上の密閉水槽5および駆動
架台6をY方向に移動させるためのY駆動軸、11はY
駆動軸10をZ方向に平行移動することで当該Y駆動軸
10上の密閉水槽5および駆動架台6をZ方向に移動さ
せるためのZ駆動軸である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIGS. 1A and 1B are block diagrams illustrating a configuration of a dose distribution measuring device in a particle beam therapy system according to Embodiment 1 of the present invention. In the figure, 1 is a particle beam irradiation port, 2 is a radiation irradiation port 1, and a rotating gantry that rotates 360 degrees together with the radiation irradiation port 1, 3 is a frame that maintains the strength of the rotating gantry, 4 is particle beam irradiation Isocenter, which is a reference point in the case of, 5 is a cylindrical closed water tank imitating a human body, 6
Is a drive base having three drive shafts for installing the closed water tank 5, 7 is a sensor provided in the water tank for sensing the irradiated particle beam, and 8 is a motor (not shown) in which the sensor 7 is mounted in the water tank.
A drive stand for moving up and down, 9 is a closed water tank 5
Drive shaft 10 for moving the X-axis together with the drive base 6 by a motor (not shown) in the X direction. The X-drive shaft 9 is moved in parallel to move the closed water tank 5 and the drive base 6 on the X drive shaft 9. Y drive shaft for moving in the Y direction, 11 is Y
The drive shaft 10 is a Z drive shaft for moving the closed water tank 5 and the drive gantry 6 on the Y drive shaft 10 in the Z direction by moving the drive shaft 10 in parallel in the Z direction.

【0018】また、図1(b)は回転ガントリーを回転
した際の線量分布測定装置の斜視図である。図1(a)
と同じ構成要素には同じ符号を付す。
FIG. 1B is a perspective view of the dose distribution measuring device when the rotating gantry is rotated. FIG. 1 (a)
The same components as those described above are denoted by the same reference numerals.

【0019】また、図2は密閉水槽5と駆動架台6と各
駆動軸の構成を表す図である。図1(a)と同じ構成要
素には同じ符号を付す。
FIG. 2 is a view showing the structure of the closed water tank 5, the drive frame 6, and each drive shaft. The same components as those in FIG. 1A are denoted by the same reference numerals.

【0020】図2に示すように密閉水槽5を搭載した駆
動架台6をX駆動軸9、Y駆動軸10、Z駆動軸11を
組み合わせて3次元的に移動できるようにする。そして
図1(a)に示すように、回転ガントリー2の床面にこ
れらを固定する。ここで、密閉水槽5中のセンサ7は水
槽の上下方向にしか動かないようにし、回転ガントリー
2が回転した際には、図1(b)に示したようにアイソ
センタ4を中心に粒子線ビームが密閉水槽5に当たるよ
うに回転ガントリー2の床面における密閉水槽5の位置
を定める。
As shown in FIG. 2, the drive base 6 on which the closed water tank 5 is mounted can be moved three-dimensionally by combining the X drive shaft 9, the Y drive shaft 10, and the Z drive shaft 11. Then, as shown in FIG. 1A, these are fixed to the floor of the rotating gantry 2. Here, the sensor 7 in the closed water tank 5 is made to move only in the vertical direction of the water tank, and when the rotating gantry 2 rotates, as shown in FIG. The position of the closed water tank 5 on the floor surface of the rotating gantry 2 is determined so that

【0021】そして、従来OCR測定では水槽中をセン
サ自体を移動して行っていたところ、回転ガントリーの
各回転角において、センサ7の位置は固定したまま円筒
型の密閉水槽5をX駆動軸9およびY駆動軸10に沿っ
て移動させることで測定を行う。その際、密閉水槽5の
円筒の半径を測定に必要な最低限の長さとすることで従
来の水槽とくらべ駆動軸の幅やセンサの大きさを考慮す
る必要がないため、容積を減らすことができる。
In the conventional OCR measurement, the sensor itself is moved in the water tank. At each rotation angle of the rotating gantry, the cylindrical closed water tank 5 is moved to the X drive shaft 9 while the position of the sensor 7 is fixed. And moving along the Y drive shaft 10 to perform the measurement. At that time, by making the radius of the cylinder of the closed water tank 5 the minimum length necessary for the measurement, it is not necessary to consider the width of the drive shaft and the size of the sensor as compared with the conventional water tank, so that the volume can be reduced. it can.

【0022】また、PDD測定については、Z駆動軸に
よって密閉水槽5を上下方向に移動し、密閉水槽5が移
動した分だけセンサ7を逆方向に移動することでアイソ
センタ4に対するセンサ7の位置は固定し、水深だけ変
化させて測定を行う。これを回転ガントリーの回転角を
変化させながら測定する。
In the PDD measurement, the position of the sensor 7 with respect to the isocenter 4 is changed by moving the sealed water tank 5 in the vertical direction by the Z drive shaft and moving the sensor 7 in the opposite direction by the movement of the sealed water tank 5. Fix and measure only by changing the water depth. This is measured while changing the rotation angle of the rotating gantry.

【0023】また、TPR測定については、密閉水槽5
は固定したままセンサ7をセンサZ駆動軸11に沿って
移動させ、各位置で測定を行う。これについても回転ガ
ントリーの回転角を変化させながら測定する。
For TPR measurement, a closed water tank 5 was used.
The sensor 7 is moved along the sensor Z drive shaft 11 while the sensor is fixed, and measurement is performed at each position. This is also measured while changing the rotation angle of the rotating gantry.

【0024】以上のように、従来では水槽中にセンサ7
に対してX,Y,Z方向の駆動軸を有していたため、水
槽は箱型にする必要があり、かつセンサ自体の大きさや
センサの駆動軸の幅などの関係から本来必要な測定範囲
以上の容積を必要としていたが、本実施の形態1では、
センサ7の駆動軸をセンサZ駆動軸12のみにして、密
閉水槽5はX駆動軸、Y駆動軸、Z駆動軸の3つの駆動
軸を有する駆動架台6に設置し、OCR測定時に、セン
サ7は固定したまま円筒型の密閉水槽5を動かすことと
したため、水槽の小型化が図れ、OCR、PDD、TP
Rの各測定を行うことができる線量分布測定装置を得
る。
As described above, conventionally, the sensor 7 is provided in the water tank.
Has a drive shaft in the X, Y, and Z directions, so that the water tank needs to be box-shaped, and because of the size of the sensor itself and the width of the drive shaft of the sensor, it is more than the originally required measurement range. However, in the first embodiment,
The drive shaft of the sensor 7 is only the sensor Z drive shaft 12, and the closed water tank 5 is installed on a drive base 6 having three drive shafts of an X drive shaft, a Y drive shaft, and a Z drive shaft. Since the cylindrical closed water tank 5 was moved while the water tank was fixed, the size of the water tank could be reduced, and OCR, PDD, TP
A dose distribution measuring device capable of performing each measurement of R is obtained.

【0025】実施の形態2.上記実施の形態1に係わる
複数の線量分布測定装置と制御計算機とのインターフェ
イスをシーケンサで行うことにより、測定機器の制御信
号、入出力信号を単純化でき、測定機器制御に関するコ
ストを低減することができる。図3は本発明の実施の形
態2に係わる線量分布測定システムの構成を表すブロッ
ク図である。5a、5bはそれぞれA治療室およびB治
療室に設置された密閉水槽、6a、6bはそれぞれA治
療室およびB治療室の密閉水槽の駆動架台、7a、7b
はA治療室およびB治療室のセンサ、13a、13bは
それぞれセンサ7a、7bが受けた粒子線の量に応じて
放出した電荷量をデータに変換するI/F変換器、14
a、14bはセンサ7a、7bを稼動させる高圧電源、
15はカウンタロジック回路、16は駆動架台6a、6
bの駆動タイミングを決定するカウンタ制御シーケン
サ、17a、17bはカウンタ制御シーケンサの決定し
た駆動タイミングに合わせてドライバ18a、18bに
それぞれ駆動架台6a、6bの移動量を出力するA治療
室用、B治療室用の駆動制御シーケンサ、19はカウン
タロジック回路15から測定データおよび測定終了信号
を受け取り、また粒子線を放出する加速器(図示せず)
の放出タイミング信号をカウンタロジック回路15に出
力する制御計算機、24は粒子線ビームである。
Embodiment 2 By performing the interface between the plurality of dose distribution measuring devices according to the first embodiment and the control computer by a sequencer, the control signals and input / output signals of the measuring device can be simplified, and the cost for controlling the measuring device can be reduced. it can. FIG. 3 is a block diagram illustrating a configuration of a dose distribution measurement system according to Embodiment 2 of the present invention. Reference numerals 5a and 5b denote sealed water tanks installed in the A treatment room and the B treatment room, respectively, and reference numerals 6a and 6b denote drive stands for the sealed water tanks in the A treatment room and the B treatment room, respectively, 7a and 7b.
Are sensors in the A treatment room and the B treatment room; 13a, 13b are I / F converters for converting the amount of electric charge emitted into data according to the amount of the particle beam received by the sensors 7a, 7b;
a and 14b are high-voltage power supplies for operating the sensors 7a and 7b,
15 is a counter logic circuit, 16 is a drive stand 6a, 6
The counter control sequencer 17a, 17b for determining the drive timing of b is used for the A treatment room, which outputs the amount of movement of the drive bases 6a, 6b to the drivers 18a, 18b in accordance with the drive timing determined by the counter control sequencer. A drive control sequencer 19 for the room receives measurement data and a measurement end signal from the counter logic circuit 15 and also emits a particle beam (not shown).
Is a control computer for outputting the emission timing signal to the counter logic circuit 15, and 24 is a particle beam.

【0026】次に動作について説明する。本実施の形態
2では、A、B2つの治療室に設置された線量分布測定
装置を一つの制御系で制御することを特徴とする。ま
ず、A治療室において線量分布測定を行う場合は、加速
器の粒子線放出のタイミング信号が制御計算機19から
出力されるとカウンタ制御シーケンサ16が測定開始タ
イミングを駆動制御シーケンサ17aに出力する。駆動
制御シーケンサ17aでは測定開始位置にセンサ7およ
び密閉水槽5を位置するようドライバ19aに制御信号
を出力し、密閉水槽5、駆動架台6、およびセンサ7を
それぞれ初期位置に戻し、高圧電源14aから電力が供
給されてセンサ7の測定が開始される。加速器から放出
された粒子線ビーム24がセンサ7に到達すると、セン
サ7はその線量に応じた電荷をI/F変換器13aに出
力し、I/F変換器13aではその電荷量をデータに変
換してカウンタロジック回路15に出力する。カウンタ
ロジック回路15では、入力された測定データを制御計
算機に出力する。以上の行程を各測定法に応じて行い、
測定データおよび測定終了時には測定終了信号を制御計
算機19に出力する。A治療室において必要な測定が終
了すれば、次にB治療室において同様の測定を行うなど
する。
Next, the operation will be described. The second embodiment is characterized in that the dose distribution measuring devices installed in the two treatment rooms A and B are controlled by one control system. First, when the dose distribution measurement is performed in the treatment room A, when the timing signal of the particle beam emission of the accelerator is output from the control computer 19, the counter control sequencer 16 outputs the measurement start timing to the drive control sequencer 17a. The drive control sequencer 17a outputs a control signal to the driver 19a so that the sensor 7 and the sealed water tank 5 are located at the measurement start position, and returns the sealed water tank 5, the drive cradle 6, and the sensor 7 to the initial positions, respectively. Electric power is supplied, and measurement of the sensor 7 is started. When the particle beam 24 emitted from the accelerator reaches the sensor 7, the sensor 7 outputs a charge corresponding to the dose to the I / F converter 13a, and the I / F converter 13a converts the charge amount into data. And outputs it to the counter logic circuit 15. The counter logic circuit 15 outputs the input measurement data to the control computer. Perform the above steps according to each measurement method,
At the end of the measurement data and the measurement, a measurement end signal is output to the control computer 19. When the necessary measurement is completed in the A treatment room, the same measurement is performed in the B treatment room.

【0027】ここで、加速器の粒子線放出がパルス状の
場合には、粒子線ビーム24と次のビームの合間に、駆
動軸を駆動させることで測定時間の短縮化を図ることが
できる。その際、駆動軸の移動が終了しないうちに粒子
線ビーム24が出力された場合には、これを検知し不必
要なデータを自動的に削除する。
Here, when the particle beam emission from the accelerator is pulse-shaped, the measurement time can be shortened by driving the drive shaft between the particle beam 24 and the next beam. At this time, if the particle beam 24 is output before the movement of the drive shaft is completed, this is detected and unnecessary data is automatically deleted.

【0028】また、測定行程を自動化するだけでなく、
I/F変換器13a、13bの出力レンジの切替えを制
御計算機からシーケンサを通して自動化することで、測
定の際に発生する、誤操作による測定ミスを軽減するこ
とが可能となる。
In addition to automating the measurement process,
By automatically switching the output ranges of the I / F converters 13a and 13b from the control computer through the sequencer, it is possible to reduce measurement errors due to erroneous operations that occur at the time of measurement.

【0029】また、高圧電源14a、14bが故障した
際、電圧異常信号をカウンタ制御シーケンサ16に出力
することで測定を中止し、アラーム信号を制御計算機1
9に出力する。
When the high-voltage power supplies 14a, 14b fail, the measurement is stopped by outputting a voltage abnormality signal to the counter control sequencer 16, and the alarm signal is sent to the control computer 1.
9 is output.

【0030】本実施の形態2では、説明の便宜上、治療
室は2つのみの場合を示したが、実際は2つ以上の治療
室に適用することができるのはいうまでもない。
In the second embodiment, for convenience of explanation, only two treatment rooms are shown. However, it goes without saying that the present invention can be applied to two or more treatment rooms.

【0031】以上のように、本実施の形態2では、複数
の治療室の線量分布測定装置と、制御計算機とのインタ
ーフェースを、カウンタ制御シーケンサおよび各線量分
布測定装置に対応した駆動制御シーケンサで行うことに
より、測定機器の制御信号、入出力信号を単純化でき、
また、制御の共通化が図れ測定機器制御に関するコスト
が低減できる。
As described above, in the second embodiment, the interface between the dose distribution measuring devices in a plurality of treatment rooms and the control computer is performed by the counter control sequencer and the drive control sequencer corresponding to each dose distribution measuring device. As a result, the control signals and input / output signals of the measuring device can be simplified,
In addition, the control can be shared, and the cost related to the measurement device control can be reduced.

【0032】[0032]

【発明の効果】以上のように、本発明に係わる線量分布
測定装置およびシステムでは、密閉水槽中に設けられた
センサの駆動軸を当該水槽の上下方向のみに減らし、前
記密閉水槽を3つの駆動軸を有する駆動架台に搭載し、
前記密閉水槽を移動させるため、OCR、PDD、TP
Rの各測定を行うことができる線量分布測定装置を得
る。
As described above, in the dose distribution measuring apparatus and system according to the present invention, the drive shaft of the sensor provided in the closed water tank is reduced only in the vertical direction of the water tank, and the closed water tank is driven by three drives. Mounted on a drive base with a shaft,
OCR, PDD, TP to move the closed water tank
A dose distribution measuring device capable of performing each measurement of R is obtained.

【0033】また、前記密閉水槽の形を円筒形し、当該
円筒の半径を測定に必要最低限の範囲と同じにすれば、
水槽の小型化が図れ、水槽駆動に課せられる条件が低減
できる。
Further, if the shape of the closed water tank is cylindrical and the radius of the cylinder is the same as the minimum range required for measurement,
The size of the water tank can be reduced, and the conditions imposed on the driving of the water tank can be reduced.

【0034】また、複数の治療室の線量分布測定装置
と、制御計算機とのインターフェースを、カウンタ制御
シーケンサおよび各線量分布測定装置に対応した駆動制
御シーケンサで行うことにより、測定機器の制御信号、
入出力信号を単純化でき、また、制御の共通化が図れ測
定機器制御に関するコストが低減できる。
Also, the interface between the dose distribution measuring devices in a plurality of treatment rooms and the control computer is performed by a counter control sequencer and a drive control sequencer corresponding to each dose distribution measuring device, so that the control signals of the measuring devices can be obtained.
Input / output signals can be simplified, control can be shared, and costs related to measurement device control can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)本発明の実施の形態1にかかわる線量
分布測定装置を粒子線治療装置の回転ガントリーに設置
したときの側面図である。(b)回転ガントリーを回転
したときの側面図である。
FIG. 1 (a) is a side view when a dose distribution measuring device according to Embodiment 1 of the present invention is installed in a rotating gantry of a particle beam therapy apparatus. (B) It is a side view when rotating a gantry.

【図2】 本発明の実施の形態1に係わる線量分布測定
装置の3つの駆動軸を有する駆動架台に設置された密閉
水槽の斜視図である。
FIG. 2 is a perspective view of a closed water tank installed on a drive base having three drive shafts of the dose distribution measurement device according to the first embodiment of the present invention.

【図3】 本発明の実施の形態2に係わる線量分布測定
システムの構成を表すブロック図である。
FIG. 3 is a block diagram illustrating a configuration of a dose distribution measurement system according to a second embodiment of the present invention.

【図4】 従来の線量分布測定装置の水槽の斜視図であ
る。
FIG. 4 is a perspective view of a water tank of the conventional dose distribution measuring device.

【図5】 OCR測定の際のセンサの測定範囲を表す水
槽の斜視図である。
FIG. 5 is a perspective view of a water tank showing a measurement range of a sensor at the time of OCR measurement.

【図6】 PDD測定の際の水槽の動きを表す水槽の側
面図である。
FIG. 6 is a side view of the water tank showing movement of the water tank at the time of PDD measurement.

【図7】 TPR測定の際のセンサの動きを表す側面図
である。
FIG. 7 is a side view illustrating the movement of a sensor during TPR measurement.

【符号の説明】[Explanation of symbols]

1 粒子線照射口、 2 回転ガントリー、 3
フレーム、4 アイソセンタ、 5、5a、5b 密
閉水槽、6、6a、6b 駆動架台、 7、7a、7
b センサ、 8 駆動台、9 X駆動軸、 10
Y駆動軸、 11 Z駆動軸、13a、13b I
/F変換器、 14a、14b 高圧電源、15 カ
ウンタロジック回路、 16 カウンタ制御シーケン
サ、17a、17b 駆動制御シーケンサ、 18
a、18b ドライバ、19 制御計算機、 20
従来の水槽、21 センサX駆動軸、22 センサY駆
動軸、 23 センサZ駆動軸、24 粒子線ビー
ム。
1 particle beam irradiation port, 2 rotating gantry, 3
Frame, 4 isocenter, 5, 5a, 5b Sealed water tank, 6, 6a, 6b Drive stand, 7, 7a, 7
b sensor, 8 drive stands, 9 X drive axes, 10
Y drive axis, 11 Z drive axis, 13a, 13b I
/ F converter, 14a, 14b high voltage power supply, 15 counter logic circuit, 16 counter control sequencer, 17a, 17b drive control sequencer, 18
a, 18b driver, 19 control computer, 20
Conventional aquarium, 21 sensor X drive axis, 22 sensor Y drive axis, 23 sensor Z drive axis, 24 particle beam.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒子線治療装置から粒子線を照射し、水
槽の水中に設けられたセンサによって粒子線線量分布測
定を行う線量分布測定装置であって、 前記粒子線の照射口が設けられると共に、粒子線治療装
置の治療台に対して垂直な面内を回転移動する回転ガン
トリーと、 前記粒子線のビーム軸上に設けられると共に、前記回転
ガントリーとともに回転移動する密閉水槽と、 前記センサーを前記粒子線のビーム軸方向に移動させる
センサー移動手段と、 前記密閉水槽を前記粒子線のビーム軸方向およびビーム
軸に対して垂直方向にそれぞれ移動させる水槽移動手段
を備えたことを特徴とする線量分布測定装置。
1. A dose distribution measuring device that irradiates a particle beam from a particle beam therapy device and performs a particle beam dose distribution measurement by a sensor provided in water in an aquarium, wherein the particle beam irradiation port is provided. A rotating gantry that rotates and moves in a plane perpendicular to the treatment table of the particle beam therapy device; a sealed water tank that is provided on the beam axis of the particle beam and rotates and moves together with the rotating gantry; A dose distribution, comprising: a sensor moving means for moving the particle beam in a beam axis direction; and a water tank moving means for moving the closed water tank in a beam axis direction of the particle beam and in a direction perpendicular to the beam axis. measuring device.
【請求項2】 前記密閉水槽は、円筒形であることを特
徴とする請求項1の線量分布測定装置。
2. The dose distribution measuring device according to claim 1, wherein said closed water tank is cylindrical.
【請求項3】 前記密閉水槽は、回転ガントリーの床面
にボルトで止めたことを特徴とする請求項1の線量分布
測定装置。
3. The dose distribution measuring apparatus according to claim 1, wherein said closed water tank is bolted to a floor of a rotating gantry.
【請求項4】 複数の線量分布測定装置、当該複数の線
量分布測定装置に電圧供給するための複数の電源、当該
複数の線量分布測定装置とシーケンサを介して制御命令
および測定データの授受を行う制御計算機、当該複数の
線量分布測定装置の測定データをI/F変換して前記シ
ーケンサに出力する複数のI/F変換器を有する線量分
布測定システムであって、 前記シーケンサはデータ測定および前記線量分布測定装
置を駆動するタイミングを決定するカウンタ制御シーケ
ンサと、 当該カウンタ制御シーケンサが決定した駆動タイミング
に合わせ前記線量分布測定装置を駆動制御する駆動制御
シーケンサを備え、複数の線量分布測定装置を一括制御
することを特徴とする線量分布測定システム。
4. A plurality of dose distribution measuring devices, a plurality of power supplies for supplying a voltage to the plurality of dose distribution measuring devices, and transmission / reception of control commands and measurement data via the plurality of dose distribution measuring devices and a sequencer. A dose distribution measurement system comprising: a control computer; a plurality of I / F converters for I / F converting measurement data of the plurality of dose distribution measurement devices and outputting the data to the sequencer; wherein the sequencer performs data measurement and the dose measurement; A counter control sequencer for determining a timing for driving the distribution measurement device; and a drive control sequencer for driving and controlling the dose distribution measurement device in accordance with the drive timing determined by the counter control sequencer, and collectively control a plurality of dose distribution measurement devices. Dose distribution measurement system characterized by performing.
【請求項5】 前記I/F変換器は前記カウンタ制御シ
ーケンサによって、出力信号の出力レンジ切り替えを行
うことを特徴とする請求項4記載の線量分布測定システ
ム。
5. The dose distribution measuring system according to claim 4, wherein said I / F converter switches an output range of an output signal by said counter control sequencer.
JP2001174336A 2001-06-08 2001-06-08 Dose distribution measuring instrument and dose distribution measuring system Pending JP2002360715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001174336A JP2002360715A (en) 2001-06-08 2001-06-08 Dose distribution measuring instrument and dose distribution measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001174336A JP2002360715A (en) 2001-06-08 2001-06-08 Dose distribution measuring instrument and dose distribution measuring system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006105254A Division JP4352060B2 (en) 2006-04-06 2006-04-06 Dose distribution measurement system

Publications (1)

Publication Number Publication Date
JP2002360715A true JP2002360715A (en) 2002-12-17

Family

ID=19015634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001174336A Pending JP2002360715A (en) 2001-06-08 2001-06-08 Dose distribution measuring instrument and dose distribution measuring system

Country Status (1)

Country Link
JP (1) JP2002360715A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432700C (en) * 2006-12-29 2008-11-12 成都川大奇林科技有限责任公司 Method for measuring energy spectrum of medical electronic accelerator
JP2010044057A (en) * 2008-07-16 2010-02-25 Mitsubishi Electric Corp Dose distribution measurement device and sensor calibration method
JP2010136934A (en) * 2008-12-12 2010-06-24 Toshiba Corp Radiotherapy management and control device
WO2014102929A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Dose distribution measurement device
CN105785417A (en) * 2014-12-22 2016-07-20 北京大基康明医疗设备有限公司 Detection device and detection system for medical accelerator
CN108020856A (en) * 2016-10-31 2018-05-11 伊利克塔股份有限公司 Dose Distribution in Radiotherapy Treatment measures
CN112088034A (en) * 2018-02-19 2020-12-15 伊利克塔有限公司 Water tank device
CN113075718A (en) * 2021-06-08 2021-07-06 昌乐县人民医院 Radiation detection device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432700C (en) * 2006-12-29 2008-11-12 成都川大奇林科技有限责任公司 Method for measuring energy spectrum of medical electronic accelerator
JP2010044057A (en) * 2008-07-16 2010-02-25 Mitsubishi Electric Corp Dose distribution measurement device and sensor calibration method
JP2010136934A (en) * 2008-12-12 2010-06-24 Toshiba Corp Radiotherapy management and control device
WO2014102929A1 (en) * 2012-12-26 2014-07-03 三菱電機株式会社 Dose distribution measurement device
CN105785417A (en) * 2014-12-22 2016-07-20 北京大基康明医疗设备有限公司 Detection device and detection system for medical accelerator
CN108020856A (en) * 2016-10-31 2018-05-11 伊利克塔股份有限公司 Dose Distribution in Radiotherapy Treatment measures
CN108020856B (en) * 2016-10-31 2023-06-09 伊利克塔股份有限公司 Radiation therapy dose distribution measurement
CN112088034A (en) * 2018-02-19 2020-12-15 伊利克塔有限公司 Water tank device
US11452885B2 (en) 2018-02-19 2022-09-27 Elekta Limited Water tank apparatus
CN112088034B (en) * 2018-02-19 2023-08-11 伊利克塔有限公司 Water tank device
CN113075718A (en) * 2021-06-08 2021-07-06 昌乐县人民医院 Radiation detection device
CN113075718B (en) * 2021-06-08 2021-08-31 昌乐县人民医院 Radiation detection device

Similar Documents

Publication Publication Date Title
CN100484592C (en) High-strength focus supersonic therapeutic system of hundred array-element composite material and controlling array by spherical-phase
KR100467111B1 (en) apparatus for automatically positioning a patient for treatment/diagnoses
CN1903390B (en) MRI guiding high intensity focusing ultrasonic therapeutic system
JP2004275243A (en) Multi-split diaphragm device
CN104302357A (en) Device for remotely cross-firing particle beams
CN107174753A (en) Many mechanical arm type introoperative radiotherapy devices
CN107510898B (en) Light field and radiation field verification device and verification method for medical equipment
JPH1164530A (en) Water phantom type dose distribution measuring device
CN106621078A (en) Laser positioning system and system used for radiation therapy
JP2002360715A (en) Dose distribution measuring instrument and dose distribution measuring system
CN106110520B (en) Radiotherapy simulator
US20090292200A1 (en) Apparatus and method for marking an irradiation field on the surface of a patient's body
JP4352060B2 (en) Dose distribution measurement system
US20220249874A1 (en) A compact dosimetric data collection platform for a breast cancer stereotactic radiotherapy system
CN102538675B (en) Optical detection system using additional light sources
CN104107510B (en) The moving sweep device of high-strength focus supersonic therapeutic system
CN207356376U (en) Laser orientation system for radiotherapy
CN109173100A (en) Have the focused ultrasound devices of two-dimensional imaging and HIFU Treatment one for toy
CN209316856U (en) Have the focused ultrasound devices of two-dimensional imaging and HIFU Treatment one for toy
CN110008615B (en) HIFU sound field detection system based on finite element model method
CN204050693U (en) The moving sweep device of high-strength focus supersonic therapeutic system
JPH07255719A (en) Ct system for radiation treatment plan, radiation treatment device and radiation treatment system
CN206995614U (en) A kind of rotation platform for volume rotation intensity modulated radiation therapy plan checking
JP3651695B2 (en) Radiation therapy planning device
CN111603691A (en) Multi-core MRI (magnetic resonance imaging) -guided HIFU (high intensity focused ultrasound) focusing probe positioning device and using method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Effective date: 20060406

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801