JP2002359439A - Method for manufacturing nitride system semiconductor light-emitting element - Google Patents

Method for manufacturing nitride system semiconductor light-emitting element

Info

Publication number
JP2002359439A
JP2002359439A JP2001162462A JP2001162462A JP2002359439A JP 2002359439 A JP2002359439 A JP 2002359439A JP 2001162462 A JP2001162462 A JP 2001162462A JP 2001162462 A JP2001162462 A JP 2001162462A JP 2002359439 A JP2002359439 A JP 2002359439A
Authority
JP
Japan
Prior art keywords
layer
gan
optical waveguide
nitride
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001162462A
Other languages
Japanese (ja)
Inventor
Koji Tamamura
好司 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001162462A priority Critical patent/JP2002359439A/en
Publication of JP2002359439A publication Critical patent/JP2002359439A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nitride system semiconductor light-emitting element, having an In-containing layer whose In-composition is high, and whose in-composition fluctuation is small, and whose crystallinity is satisfactory as an active layer. SOLUTION: A GaN buffer layer 14, an n-type GaN contact layer 16, an n-type AlGaN clad layer 18, and an n-type GaN optical waveguide layer 20 are grown on a sapphire substrate 12, in the same way as in the conventional manner. Then, a Ga1-x Inx N well layer (x=0.22)/Ga1-y Iny N barrier layer (y=0.02), constituting an active layer 22 are grown in a nitride atmosphere at a growth temperature of 800 deg.C using MOCVD method. At the time of growth, the pressure division of raw gas, such as In is adjusted, so that the growth rate of the GaInN layer can be made higher than that of the optical waveguide layer, and that the agglomerate energy of the GaInN layer is made large. Then, a p-type GaN optical waveguide layer 24, a p-type AlGaN clad layer 26, and a p-type GaN contact layer 28 are grown, in the same way as in the conventional manner. At the growing of the optical waveguide layer 24, the growth rate of the optical waveguide layer is made the same or lower than that of the n-type optical waveguide layer 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物系半導体発
光素子の作製方法に関し、更に詳細には、In組成が高
く、In組成のゆらぎが小さく、かつ結晶性の良好なI
n含有層を活性層として有する窒化物系半導体発光素子
の作製方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nitride-based semiconductor light-emitting device, and more particularly, to a method for manufacturing an I-type semiconductor light-emitting device having a high In composition, a small fluctuation of the In composition, and good crystallinity.
The present invention relates to a method for manufacturing a nitride-based semiconductor light emitting device having an n-containing layer as an active layer.

【0002】[0002]

【従来の技術】光記録の分野では、光ディスクなどの光
記録媒体の記録密度を向上させるために、短波長域の光
を発光する半導体レーザ素子の実用化が求められてい
る。そこで、窒化物系III −V族化合物半導体、特にG
aN、AlGaN混晶あるいはGaInN混晶などの窒
化ガリウム(GaN)系III −V族化合物半導体を利用
したGaN系半導体レーザ素子の研究が盛んに行われて
いる。GaN系化合物半導体は、その禁制帯幅が1.9
eVから6.2eVにわたる直接遷移半導体であって、
可視光領域から紫外光領域の波長で発光する半導体発光
素子を実現できる材料として、特に緑色から青色、更に
は紫外線の領域にわたる短波長域で発光する半導体レー
ザ素子や発光ダイオード(LED)などを実現できる材
料として注目されている化合物半導体である。
2. Description of the Related Art In the field of optical recording, there is a demand for practical use of a semiconductor laser device that emits light in a short wavelength range in order to improve the recording density of an optical recording medium such as an optical disk. Thus, nitride III-V compound semiconductors, particularly G
GaN-based semiconductor laser devices using gallium nitride (GaN) -based III-V compound semiconductors such as aN, AlGaN mixed crystals, and GaInN mixed crystals have been actively studied. GaN-based compound semiconductors have a forbidden band width of 1.9.
a direct transition semiconductor ranging from eV to 6.2 eV,
As a material that can realize a semiconductor light emitting device that emits light in a wavelength range from the visible light region to the ultraviolet light region, a semiconductor laser device and a light emitting diode (LED) that emit light in a short wavelength range from green to blue, and even ultraviolet light are realized. It is a compound semiconductor that has attracted attention as a material that can be used.

【0003】また、窒化物系III −V族化合物半導体
は、飽和電子速度および破壊電界が大きいことから、電
界効果トランジスタ(FET)などの電子素子を構成す
る材料としても注目されている。特に、GaN系化合物
半導体は、FETなどの電子走行素子の材料としても望
ましく、例えば、GaNの飽和電子速度は約2.5×1
7 cm/sであって、Si、GaAs及びSiCに比
べて大きく、しかも破壊電界は約5×106 V/cmと
ダイアモンドに次ぐ大きさを持っている。GaN系化合
物半導体は、このような優れた特性を有するので、高周
波、高温、大電力用の電子走行素子の材料として有望視
されている。
In addition, nitride III-V compound semiconductors have attracted attention as materials for electronic devices such as field effect transistors (FETs) because of their high saturation electron velocity and high breakdown electric field. In particular, a GaN-based compound semiconductor is also desirable as a material for an electron transit element such as an FET. For example, the saturated electron velocity of GaN is about 2.5 × 1
It is 0 7 cm / s, larger than Si, GaAs and SiC, and has a breakdown electric field of about 5 × 10 6 V / cm, which is second only to diamond. Since GaN-based compound semiconductors have such excellent characteristics, they are considered promising as materials for high-frequency, high-temperature, high-power electron transit devices.

【0004】ここで、図2を参照して、GaN系半導体
レーザ素子の構成を説明する。図2はGaN系半導体レ
ーザ素子の構成を示す断面図である。GaN系半導体レ
ーザ素子とは、GaN系化合物半導体層の積層構造から
なる共振器を備えた半導体レーザ素子であり、GaN系
化合物半導体層とは、III 族元素として少なくともGa
を有し、V族元素として少なくとも窒素(N)を有する
化合物半導体層である。GaN系半導体レーザ素子10
は、図2に示すように、c面のサファイア基板上12上
に、GaNバッファ層14、n型GaNコンタクト層1
6、n型AlGaNクラッド層18、n型GaN光導波
層20、活性層22、p型GaN光導波層24、p型A
lGaNクラッド層26、及びp型GaNコンタクト層
28の積層構造を備えている。活性層22は、Ga1-x
InxN井戸層(例えば、x=0.22)/Ga1-yIn
yN障壁層(例えば、y=0.02)からなる量子井戸
構造の活性層である。
Here, a configuration of a GaN-based semiconductor laser device will be described with reference to FIG. FIG. 2 is a sectional view showing the configuration of the GaN-based semiconductor laser device. A GaN-based semiconductor laser device is a semiconductor laser device provided with a resonator having a stacked structure of a GaN-based compound semiconductor layer.
And a compound semiconductor layer containing at least nitrogen (N) as a group V element. GaN-based semiconductor laser device 10
As shown in FIG. 2, a GaN buffer layer 14 and an n-type GaN contact layer 1 are formed on a c-plane sapphire substrate 12.
6, n-type AlGaN cladding layer 18, n-type GaN optical waveguide layer 20, active layer 22, p-type GaN optical waveguide layer 24, p-type A
It has a stacked structure of an lGaN cladding layer 26 and a p-type GaN contact layer 28. The active layer 22 is made of Ga 1-x
In x N well layer (for example, x = 0.22) / Ga 1-y In
This is an active layer having a quantum well structure composed of a yN barrier layer (for example, y = 0.02).

【0005】p型GaNコンタクト層28及びp型Al
GaNクラッド層26の上層部は、エッチングされ、ス
トライプ幅が例えば2.5μm程度のストライプリッジ
として形成されている。また、n型GaNコンタクト層
16の上層部、n型AlGaNクラッド層18、n型G
aN光導波層20、活性層22、p型GaN光導波層2
4、及びp型AlGaNクラッド層26の残り層は、エ
ッチングされ、ストライプリッジの延在方向と平行な方
向でストライプ幅より広い幅で延在するメサ構造として
形成されている。
A p-type GaN contact layer 28 and a p-type Al
The upper layer portion of the GaN clad layer 26 is etched to form a stripe ridge having a stripe width of, for example, about 2.5 μm. Further, the upper layer of the n-type GaN contact layer 16, the n-type AlGaN cladding layer 18, the n-type G
aN optical waveguide layer 20, active layer 22, p-type GaN optical waveguide layer 2
4 and the remaining layer of the p-type AlGaN cladding layer 26 are etched to form a mesa structure extending in a direction parallel to the stripe ridge extending direction with a width wider than the stripe width.

【0006】各GaN系III −V族化合物半導体層の厚
さの例を挙げると、GaNバッファ層14の膜厚は50
nm、n型GaNコンタクト層16の膜厚は3μm、n
型AlGaNクラッド層18の膜厚は0.5μm、n型
GaN光導波層20の膜厚は0.1μm、p型GaN光
導波層24の膜厚は0.1μm、p型AlGaNクラッ
ド層26の膜厚は0.5μm、及び、p型GaNコンタ
クト層28の膜厚は0.5μmである。
As an example of the thickness of each GaN-based III-V compound semiconductor layer, the GaN buffer layer 14 has a thickness of 50
nm, the thickness of the n-type GaN contact layer 16 is 3 μm,
The thickness of the n-type GaN optical waveguide layer 20 is 0.1 μm, the thickness of the p-type GaN optical waveguide layer 24 is 0.1 μm, and the thickness of the p-type AlGaN cladding layer 26 is 0.5 μm. The thickness is 0.5 μm, and the thickness of the p-type GaN contact layer 28 is 0.5 μm.

【0007】p型GaNコンタクト層28上には、例え
ばNi/Au膜からなるp側電極30がオーミックコン
タクト電極として形成されている。また、メサ構造脇の
n型GaNコンタクト層16上には、例えばTi/Al
膜からなるn側電極32がオーミックコンタクト電極と
して形成されている。
On the p-type GaN contact layer 28, a p-side electrode 30 made of, for example, a Ni / Au film is formed as an ohmic contact electrode. On the n-type GaN contact layer 16 beside the mesa structure, for example, Ti / Al
An n-side electrode 32 made of a film is formed as an ohmic contact electrode.

【0008】上述のGaN系化合物半導体等の窒化物系
III −V族化合物半導体を用いた、半導体レーザ素子或
いは発光ダイオード等の窒化物系半導体発光素子は、一
般に、MOCVD(Metal-organic Chemical Vapor Dep
osition;有機金属化学気相成長)法等の気相成長法を
用いて窒化物系III −V族化合物半導体層を基板の上に
成長させることにより作製される。
[0008] Nitride-based materials such as the above-mentioned GaN-based compound semiconductors
In general, a nitride-based semiconductor light-emitting device such as a semiconductor laser device or a light-emitting diode using a III-V compound semiconductor is generally known as MOCVD (Metal-organic Chemical Vapor Depth).
The nitride-based III-V compound semiconductor layer is grown on a substrate using a vapor phase growth method such as an osition (organic metal chemical vapor deposition) method.

【0009】MOCVD法によって、GaN層あるいは
AlGaN混晶層などインジウムを含まない層(以下、
In非含有層と言う)を成長させるときには、成長温度
を1000℃程度以上とするのが、窒素原材料の分解の
理由から最適である。
By MOCVD, a layer containing no indium such as a GaN layer or an AlGaN mixed crystal layer (hereinafter referred to as a “GaN layer” or “AlGaN mixed crystal layer”)
When growing an In-free layer), the growth temperature is optimally about 1000 ° C. or higher because of the decomposition of the nitrogen raw material.

【0010】例えば、上述のGaN系半導体レーザ素子
10で、Gaに対するInの組成比が9%の窒化物系II
I −V族化合物半導体を使用することにより、発光波長
が約405nmの半導体発光素子を作製することができ
る。ところで、約405nmの波長のレーザ光の色は青
紫色であって、光の3原色の一つである青色又は緑色を
発光する発光装置を作製するためには、例えば20%以
上のIn組成のIn非含有層を発光領域に有する半導体
発光素子が必要になる。
For example, in the GaN-based semiconductor laser device 10 described above, a nitride-based II having a composition ratio of In to Ga of 9% is used.
By using an IV group compound semiconductor, a semiconductor light emitting device having an emission wavelength of about 405 nm can be manufactured. By the way, the color of the laser light having a wavelength of about 405 nm is blue-violet, and in order to manufacture a light-emitting device that emits blue or green which is one of the three primary colors of light, for example, an In composition of 20% or more is required. A semiconductor light emitting device having an In-free layer in a light emitting region is required.

【0011】青紫色より波長の長い青色や緑色の光を出
射する半導体発光素子の活性層に多用されているGaI
nN井戸層は、Inは成長温度が高くなるにつれて脱離
速度が大きくなる。例えば、1000℃程度の成長温度
では、Inが成長中に脱離して、つまり事実上、GaI
nN井戸層を成長させることはできない。そこで、結晶
性の良好なAlGaN層の成長に適した成長温度、例え
ば1000℃でAlGaN層を成長させ、次にInを含
む例えばGaInN層をInの脱離が少ない、例えば7
00〜800℃にて成長する。この上に、結晶性の良好
なIn非含有層の成長に適した成長温度、例えば100
0℃でIn非含有層を成長するのが適当である。
[0011] GaI, which is frequently used in an active layer of a semiconductor light emitting device that emits blue or green light having a wavelength longer than blue-violet light,
In the nN well layer, the desorption speed of In increases as the growth temperature increases. For example, at a growth temperature on the order of 1000 ° C., In desorbs during growth, which means that GaI
An nN well layer cannot be grown. Therefore, an AlGaN layer is grown at a growth temperature suitable for growing an AlGaN layer having good crystallinity, for example, 1000 ° C., and then, for example, a GaInN layer containing In is removed with a small amount of In.
It grows at 00-800 ° C. A growth temperature suitable for growing an In-free layer having good crystallinity, for example, 100
Suitably, the In-free layer is grown at 0 ° C.

【0012】[0012]

【発明が解決しようとする課題】しかし、700〜80
0℃程度の成長速度でGaInN層を成長させたときで
も、GaInN層のIn組成比が大きくなるにつれて、
層内の組成ゆらぎが大きくなる。例えばGa0.8In0.2
Nの成長に際し、Ga0.8In0.2N層のIn組成比は、
層内で不安定であって、層内均一性が悪い。そのため
に、現実には、In組成比の大きなGaInN混晶層を
活性層として有する窒化物系半導体発光素子の作製は困
難であった。
However, 700-80
Even when the GaInN layer is grown at a growth rate of about 0 ° C., as the In composition ratio of the GaInN layer increases,
The composition fluctuation in the layer increases. For example, Ga 0.8 In 0.2
When growing N, the In composition ratio of the Ga 0.8 In 0.2 N layer is as follows:
Instability in the layer and poor uniformity in the layer. Therefore, in practice, it has been difficult to manufacture a nitride-based semiconductor light emitting device having a GaInN mixed crystal layer having a large In composition ratio as an active layer.

【0013】そこで、In以外の3B族元素に対して
0.2を越えるIn組成比でインジウム(In)を含有
し、かつ均一な組成のGaInN混晶層を活性層として
有する窒化物系半導体発光素子の作製方法の開発が求め
られている。よって、本発明の目的は、In組成が高
く、In組成のゆらぎが小さく、かつ結晶性の良好なI
n含有層を活性層として有する窒化物系半導体発光素子
の作製方法を提供することである。
Therefore, a nitride-based semiconductor light emitting device containing indium (In) at an In composition ratio exceeding 0.2 with respect to a group 3B element other than In and having a GaInN mixed crystal layer having a uniform composition as an active layer. Development of a method for manufacturing a device is required. Therefore, it is an object of the present invention to provide an In composition having a high In composition, a small fluctuation of the In composition, and good crystallinity.
An object of the present invention is to provide a method for manufacturing a nitride-based semiconductor light emitting device having an n-containing layer as an active layer.

【0014】[0014]

【課題を解決するための手段】本発明者は、上記課題を
解決するために、GaInN層の結晶性を高品質に維持
しつつ、InのGaに対する組成比が0.2以上であっ
て、組成比のゆらぎがない均一なGaInN層を作製す
る方法を鋭意検討を行った結果、Inの凝集エネルギー
がIn組成のゆらぎの極めて重要な要因であることに気
がついた。
Means for Solving the Problems In order to solve the above problems, the present inventor has proposed that the composition ratio of In to Ga is 0.2 or more while maintaining high quality of the crystallinity of the GaInN layer. As a result of intensive studies on a method for producing a uniform GaInN layer without fluctuation of the composition ratio, it was found that the cohesion energy of In is a very important factor of fluctuation of the In composition.

【0015】In組成の組成ゆらぎは、In含有層の成
長に際して、層状成長、即ち2次元成長より3次元成長
の進行が優勢になって島状成長することに起因する。そ
して、3次元成長の進行はInの凝集エネルギーが小さ
いからであり、逆に凝集エネルギーが大きいと、層状成
長(2次元成長)し易い。Inの凝集エネルギーは、図
3に示すように、成長温度が高くなるに従って、大きく
なる。換言すれば、成長温度が高くなるほど、Inの凝
集エネルギーは大きくなり、島状成長し難くなる。
The composition fluctuation of the In composition is caused by the fact that the growth of the In-containing layer is in the form of an island with the progress of three-dimensional growth predominant over two-dimensional growth. The three-dimensional growth proceeds because the cohesive energy of In is small. Conversely, when the cohesive energy is large, layer growth (two-dimensional growth) is easy. As shown in FIG. 3, the cohesive energy of In increases as the growth temperature increases. In other words, the higher the growth temperature, the greater the cohesive energy of In, and the more difficult it is to grow into islands.

【0016】また、凝集エネルギーは、図4に示すよう
に、GaInN層中のIn量が多くなると、小さくな
る。換言すれば、GaInN層中のIn量が多くなるほ
ど、Inの凝集エネルギーは小さくなり、島状成長し易
くなる。
As shown in FIG. 4, the cohesive energy decreases as the amount of In in the GaInN layer increases. In other words, the larger the amount of In in the GaInN layer, the smaller the cohesive energy of In and the easier it is to grow like islands.

【0017】ところで、In含有層を活性層として、例
えば青色である約460nmの波長の光を発光する半導
体発光素子を得るためには、Gaに対するInの組成比
は約22%であって、In組成比は発光波長から一意的
に定まっている。また、結晶品質の観点とインジウムの
脱離の観点から、成長温度は約700℃以上800℃以
下の温度範囲に制約されている。つまり、成長温度を高
くして、凝集エネルギーを大きくし、層状成長の進行を
優勢にすることには、制約がある。
By the way, in order to obtain a semiconductor light emitting device that emits light of a wavelength of about 460 nm, which is blue, for example, using an In-containing layer as an active layer, the composition ratio of In to Ga is about 22%, The composition ratio is uniquely determined from the emission wavelength. Further, from the viewpoint of crystal quality and the viewpoint of desorption of indium, the growth temperature is restricted to a temperature range of about 700 ° C. or more and 800 ° C. or less. In other words, there are restrictions on increasing the growth temperature, increasing the cohesive energy, and making the progress of layered growth dominant.

【0018】そこで、成長温度を高くする代わりに、S
iによるアンチサーファクタント効果によりIn非含有
下地層とIn含有層との結合エネルギーを制御する方
法、In非含有下地層にかかる歪量により結合エネルギ
ーを制御する方法等によって、Inの凝集エネルギーを
調節することが提案されている。
Therefore, instead of increasing the growth temperature, S
The cohesion energy of In is adjusted by a method of controlling the binding energy between the In-free base layer and the In-containing layer by the anti-surfactant effect of i, a method of controlling the binding energy by the amount of strain applied to the In-free base layer, and the like. It has been proposed.

【0019】本発明者は、従来の方法で、In含有層か
らなる活性層を成長させる際、活性層を正確に所望の厚
さだけ成長させるべく定められた成長速度は、活性層の
上下に設けられている例えば上部クラッド層や下部クラ
ッド層の成長速度よりかなり小さいことに着目した。一
方、Inの凝集エネルギーは、定性的には、図5に示す
ように、成長速度が速くなるに従って大きくなり、3次
元成長の島状成長の進行が劣勢になり、2次元成長の層
状成長の進行が優勢になる。
The inventor of the present invention has proposed that, when growing an active layer composed of an In-containing layer by a conventional method, the growth rate determined to grow the active layer exactly to a desired thickness is above and below the active layer. It was noted that the growth rate of the provided upper cladding layer and lower cladding layer was considerably lower than that of the provided cladding layer. On the other hand, as shown in FIG. 5, the cohesive energy of In qualitatively increases as the growth rate increases, the progress of island growth of three-dimensional growth becomes inferior, and the growth energy of layer growth of two-dimensional growth increases. Progress becomes dominant.

【0020】そこで、本発明者は、Inなどの原料ガス
の分圧を大きくして、In含有層である活性層の成長速
度を活性層の上下のクラッド層より大きくすることによ
り、所望のIn組成を有し、しかも結晶性の良好なIn
含有層を成長させることを着想し、実験を重ねて、本発
明を発明するに到った。
Therefore, the present inventor has increased the partial pressure of a source gas such as In so as to increase the growth rate of the active layer, which is an In-containing layer, from the cladding layers above and below the active layer. In which has a composition and good crystallinity
With the idea of growing the containing layer invented, the present inventors invented the present invention through repeated experiments.

【0021】上記目的を達成するために、上述の知見に
基づいて、本発明に係る窒化物系半導体発光素子の作製
方法は、それぞれ、窒化物系III −V族化合物半導体で
あって、インジウム以外の3B族元素に対して0.2以
上のインジウム組成比でインジウム(In)を含有する
In含有層からなる活性層と、活性層の上下にそれぞれ
接して設けられ、インジウムを含まない上部In非含有
層及び下部In非含有層とを有する窒化物系半導体発光
素子の作製方法において、化学気相成長法によってIn
含有層を700℃以上800℃以下の温度でエピタキシ
ャル成長させる際、Inなどの原料ガスの分圧を調節す
ることにより、In含有層の成長速度を下部In非含有
層及び上部In非含有層の成長速度より大きくすること
を特徴としている。
In order to achieve the above object, based on the above-mentioned findings, the method for manufacturing a nitride-based semiconductor light-emitting device according to the present invention uses a nitride-based group III-V compound semiconductor and a method other than indium. An active layer composed of an In-containing layer containing indium (In) at an indium composition ratio of 0.2 or more with respect to the Group 3B element, and an upper In non-containing layer provided in contact with the upper and lower sides of the active layer. In the method for manufacturing a nitride-based semiconductor light-emitting device having a content layer and a lower In-free layer, the method comprises the steps of:
When the content-containing layer is epitaxially grown at a temperature of 700 ° C. or more and 800 ° C. or less, the growth rate of the In-containing layer and the growth rate of the upper In-free layer are controlled by adjusting the partial pressure of a source gas such as In. The feature is to make it larger than the speed.

【0022】本発明方法で、窒化物系半導体発光素子と
は、5B族元素として窒素(N)を含む窒化物系III −
V族化合物半導体、詳しくはAla b Gac Ind
(a+b+c+d=1、0≦a、b、c、d≦1)の積
層構造を有する半導体発光素子であって、例えば窒化物
系半導体レーザ素子、窒化物系発光ダイオード等を言
う。また、In含有層とは、3B族元素としてインジウ
ム(In)を含み、5B族元素として窒素(N)を含む
窒化物系III −V族化合物半導体層を言う。In非含有
層とは、5B族元素として窒素(N)を含み、3B族元
素としてインジウム(In)を含まない窒化物系III −
V族化合物半導体層を言う。
In the method of the present invention, a nitride-based semiconductor light-emitting device is a nitride-based semiconductor light emitting device containing nitrogen (N) as a Group 5B element.
V compound semiconductor, specifically Al a B b Ga c In d N
A semiconductor light emitting device having a laminated structure of (a + b + c + d = 1, 0 ≦ a, b, c, d ≦ 1), for example, a nitride-based semiconductor laser device, a nitride-based light-emitting diode, and the like. The In-containing layer refers to a nitride-based III-V compound semiconductor layer containing indium (In) as a Group 3B element and containing nitrogen (N) as a Group 5B element. An In-free layer is a nitride-based layer containing nitrogen (N) as a Group 5B element and not containing indium (In) as a Group 3B element.
A group V compound semiconductor layer.

【0023】本発明に係る窒化物系半導体発光素子の作
製方法は、窒化物系III −V族化合物半導体がGaN系
化合物半導体であり、In含有層がGaInN層であ
り、下部In非含有層及び上部In非含有層がそれぞれ
(Al)GaN層である窒化物系半導体発光素子の作製
に好適に適用できる。(Al)GaN層とは、GaN層
又はAlGaN層の意味である。
In the method for fabricating a nitride-based semiconductor light emitting device according to the present invention, the nitride-based III-V compound semiconductor is a GaN-based compound semiconductor, the In-containing layer is a GaInN layer, The present invention can be suitably applied to the production of a nitride-based semiconductor light-emitting device in which the upper In-free layers are (Al) GaN layers. (Al) GaN layer means a GaN layer or an AlGaN layer.

【0024】また、更に好適な実施態様では、窒化物系
半導体発光素子が、AlGaN下部クラッド層、GaN
下部光導波層、GaInNからなる活性層、GaN上部
光導波層、及びAlGaN上部クラッド層の積層構造を
有する、GaN系半導体レーザ素子であって、MOCV
D法によって活性層を700℃以上800℃以下の温度
でエピタキシャル成長させる際、Inなどの原料ガスの
分圧を調節することにより、AlGaN下部クラッド
層、GaN下部光導波層、GaN上部光導波層、及びA
lGaN上部クラッド層の成長速度のいずれよりも活性
層の成長速度を速くする。上述の実施態様に従って作製
することにより、460nmの発光波長に相当するバン
ドギャップ・エネルギーを有するGaInN混晶層を活
性層として有する窒化物系半導体レーザ素子を作製する
ことができる。
In a further preferred embodiment, the nitride-based semiconductor light emitting device comprises an AlGaN lower cladding layer, a GaN
A GaN-based semiconductor laser device having a laminated structure of a lower optical waveguide layer, an active layer made of GaInN, an upper GaN optical waveguide layer, and an upper AlGaN cladding layer, wherein the MOCV
When the active layer is epitaxially grown at a temperature of 700 ° C. or more and 800 ° C. or less by the method D, the AlGaN lower cladding layer, the GaN lower optical waveguide layer, the GaN upper optical waveguide layer, And A
The growth rate of the active layer is higher than any of the growth rates of the lGaN upper cladding layer. By manufacturing according to the above-described embodiment, a nitride-based semiconductor laser device having a GaInN mixed crystal layer having a band gap energy corresponding to an emission wavelength of 460 nm as an active layer can be manufactured.

【0025】[0025]

【発明の実施の形態】以下に、実施形態例を挙げ、添付
図面を参照して、本発明の実施の形態を具体的かつ詳細
に説明する。尚、以下の実施形態例で示す成膜方法、化
合物半導体層の組成及び膜厚、リッジ幅、プロセス条件
等は、本発明の理解を容易にするための一つの例示であ
って、本発明はこの例示に限定されるものではない。実施形態例 本実施形態例は、本発明に係る窒化物系半導体発光素子
の作製方法を前述のGaN系半導体レーザ素子10の作
製に適用した実施形態の一例であって、図1(a)から
(c)は、それぞれ、本実施形態例方法に従ってGaN
系半導体レーザ素子を作製する際の工程毎の断面図であ
る。先ず、従来の方法と同様にして、MOCVD法によ
り、成長温度1000℃、かつ水素雰囲気中で、図1
(a)に示すように、c面のサファイア基板上12上
に、GaNバッファ層14、n型GaNコンタクト層1
6、n型AlGaNクラッド層18、及びn型GaN光
導波層20を順次エピタキシャル成長させる。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The film forming method, the composition and thickness of the compound semiconductor layer, the ridge width, the process conditions, and the like described in the following embodiments are merely examples for facilitating understanding of the present invention. It is not limited to this example. Embodiment Example This embodiment is an example of an embodiment in which the method for manufacturing a nitride-based semiconductor light-emitting device according to the present invention is applied to the manufacture of the GaN-based semiconductor laser device 10 described above. (C) shows GaN according to the method of the present embodiment.
FIG. 4 is a cross-sectional view for each step when manufacturing a semiconductor laser element. First, in the same manner as in the conventional method, MOCVD is performed at a growth temperature of 1000 ° C. in a hydrogen atmosphere.
As shown in (a), a GaN buffer layer 14 and an n-type GaN contact layer 1 are formed on a c-plane sapphire substrate 12.
6. The n-type AlGaN cladding layer 18 and the n-type GaN optical waveguide layer 20 are sequentially epitaxially grown.

【0026】次いで、本実施形態例方法では、n型Ga
N光導波層20の成長に続いて、MOCVD法により成
長温度800℃、かつ窒素雰囲気中で、活性層22を構
成するGa1-xInxN井戸層(例えば、x=0.22)
/Ga1-yInyN障壁層(例えば、y=0.02)を成
長させる。活性層22の成長の際には、Inなどの原料
ガスの分圧を調節することにより、GaInN井戸層及
びGaInN障壁層の成長速度がn型GaN光導波層2
0の成長速度より高くして、GaInN層の凝集エネル
ギーが大きくなるようにする。
Next, in the method of this embodiment, n-type Ga
Subsequent to the growth of the N optical waveguide layer 20, a Ga 1-x In x N well layer (for example, x = 0.22) constituting the active layer 22 at a growth temperature of 800 ° C. and in a nitrogen atmosphere by MOCVD.
/ Ga 1-y In y N barrier layer (for example, y = 0.02) is grown. During the growth of the active layer 22, the growth rate of the GaInN well layer and the GaInN barrier layer is controlled by adjusting the partial pressure of the source gas such as In.
The growth rate is set higher than 0 so that the cohesive energy of the GaInN layer is increased.

【0027】続いて、従来の方法と同様にして、MOC
VD法により、成長温度1000℃で水素雰囲気中で、
図1(c)に示すように、活性層22上に、p型GaN
光導波層24、p型AlGaNクラッド層26、及びp
型GaNコンタクト層28を順次エピタキシャル成長さ
せる。尚、p型GaN光導波層24を成長させる際、p
型GaN光導波層24の成長速度をn型GaN光導波層
20の成長速度と同じか遅くする。また、本実施形態例
では,GaInN層からなる活性層22の成長速度を、
Gaに対するIn組成比が例えば0.22からなる井戸
層と、例えば0.02からなる障壁層の両方とも、隣接
するIn非含有層の成長速度より大なることを示した。
本発明者の課題を解決するための手段において記述した
ように、In組成の小さな段階では成長速度は従来のも
ので充分であるものの、本発明は、In組成の大きな井
戸層において必須な発明技術である。
Subsequently, in the same manner as in the conventional method, the MOC
According to the VD method, at a growth temperature of 1000 ° C. in a hydrogen atmosphere,
As shown in FIG. 1C, p-type GaN is formed on the active layer 22.
Optical waveguide layer 24, p-type AlGaN cladding layer 26, and p
Type GaN contact layers 28 are sequentially epitaxially grown. When growing the p-type GaN optical waveguide layer 24, p
The growth rate of the n-type GaN optical waveguide layer 24 is equal to or slower than the growth rate of the n-type GaN optical waveguide layer 20. In this embodiment, the growth rate of the active layer 22 made of a GaInN layer is set to
It was shown that both the well layer having an In composition ratio to Ga of, for example, 0.22 and the barrier layer having, for example, 0.02 have a growth rate higher than that of an adjacent In non-containing layer.
As described in the means for solving the problem of the present inventor, although the growth rate is sufficient in the conventional case at a small stage of the In composition, the present invention is an essential technique in a well layer having a large In composition. It is.

【0028】以下、従来と同様にして、ストライプリッ
ジ、メサ構造、及び電極を形成することにより、図2に
示す構成を備え、460nmの発光波長に相当するバン
ドギャップエネルギーを持ったGaInN混晶からなる
活性層22を備えたGaN系半導体レーザ素子10を作
製することができる。
Thereafter, a stripe ridge, a mesa structure, and an electrode are formed in the same manner as in the prior art to form a GaInN mixed crystal having the structure shown in FIG. 2 and having a band gap energy corresponding to an emission wavelength of 460 nm. The GaN-based semiconductor laser device 10 including the active layer 22 can be manufactured.

【0029】以上、実施形態例の一例を挙げて本発明方
法を具体的に説明したが、本発明は、上述の実施形態例
に限定されるものではなく、本発明の技術的思想に基づ
く各種の変形が可能である。例えば、上述の実施形態例
で挙げた数値、構造、材料、プロセスなどはあくまでも
単なる例示にすぎず、必要に応じて、これらと異なる数
値、構造、材料、プロセスなどを用いてもよい。また、
実施形態例では、基板12としてサファイア基板を用い
ているが、必要に応じて、サファイア基板の代わりに、
GaN基板、SiC基板、ZnO基板、スピネル基板な
どを用いてもよい。GaN基板やSiC基板などの導電
性の基板を用いる場合には、基板裏面に電極を形成する
ことができる。
As described above, the method of the present invention has been specifically described with reference to one example of the embodiment. However, the present invention is not limited to the above-described embodiment, and various methods based on the technical idea of the present invention are possible. Is possible. For example, the numerical values, structures, materials, processes, and the like described in the above-described embodiments are merely examples, and different numerical values, structures, materials, processes, and the like may be used as necessary. Also,
In the embodiment, a sapphire substrate is used as the substrate 12, but if necessary, instead of the sapphire substrate,
A GaN substrate, a SiC substrate, a ZnO substrate, a spinel substrate, or the like may be used. When a conductive substrate such as a GaN substrate or a SiC substrate is used, an electrode can be formed on the back surface of the substrate.

【0030】[0030]

【発明の効果】本発明方法によれば、それぞれ、窒化物
系III −V族化合物半導体であって、インジウム以外の
3B族元素に対して0.2以上のインジウム組成比でイ
ンジウム(In)を含有するIn含有層からなる活性
層、及び活性層の上下にそれぞれ接して設けられた、イ
ンジウムを含まない上部In非含有層及び下部In非含
有層を有する窒化物系半導体発光素子の作製に当たり、
化学気相成長法によってIn含有層を700℃以上80
0℃以下の温度でエピタキシャル成長させる際、Inな
どの原料ガスの分圧を調節することにより、In含有層
の成長速度を下部In非含有層及び上部In非含有層の
成長速度より大きくする。これにより、In組成比が高
く、組成ゆらぎが小さく、構造的かつ光学的にも高品質
なIn含有層を活性層として備えた窒化物系半導体発光
素子を容易に作製することができる。
According to the method of the present invention, indium (In) is a nitride-based III-V compound semiconductor with an indium composition ratio of 0.2 or more to a group 3B element other than indium. In producing a nitride-based semiconductor light-emitting device having an upper In non-containing layer and a lower In non-containing layer that do not contain indium, which are provided in contact with the active layer composed of the In-containing layer and the active layer, respectively.
The In-containing layer is heated to 700 ° C. or higher by chemical vapor deposition
When epitaxial growth is performed at a temperature of 0 ° C. or less, the growth rate of the In-containing layer is made higher than that of the lower In-free layer and the upper In-free layer by adjusting the partial pressure of a source gas such as In. Thus, a nitride-based semiconductor light-emitting device having a high In composition ratio, a small composition fluctuation, and a structurally and optically high quality In-containing layer as an active layer can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1(a)から(c)は、それぞれ、実施形態
例方法1に従ってGaN系半導体レーザ素子を作製する
際の工程毎の断面図である。
FIGS. 1 (a) to 1 (c) are cross-sectional views for respective steps when fabricating a GaN-based semiconductor laser device according to a method 1 of an embodiment.

【図2】GaN系半導体レーザ素子の構成を示す断面図
である。
FIG. 2 is a sectional view showing a configuration of a GaN-based semiconductor laser device.

【図3】凝集エネルギーと成長温度との関係を示す定性
的な図である。
FIG. 3 is a qualitative diagram showing the relationship between cohesive energy and growth temperature.

【図4】凝集エネルギーとインジウム量との関係を示す
定性的な図である。
FIG. 4 is a qualitative diagram showing the relationship between the cohesive energy and the amount of indium.

【図5】凝集エネルギーと成長速度との関係を示す定性
的な図である。
FIG. 5 is a qualitative diagram showing the relationship between cohesive energy and growth rate.

【符号の説明】[Explanation of symbols]

10……GaN系半導体レーザ素子、12……サファイ
ア基板、14……GaNバッファ層、16……n型Ga
Nコンタクト層、18……n型AlGaNクラッド層、
20……n型GaN光導波層、22……Ga1-xInx
井戸層(例えば、x=0.22)/Ga1-yInyN障壁
層(例えば、y=0.02)からなる活性層、24……
p型GaN光導波層、26……p型AlGaNクラッド
層、28……p型GaNコンタクト層、30……p側電
極、32……n側電極。
10 GaN-based semiconductor laser device, 12 sapphire substrate, 14 GaN buffer layer, 16 n-type Ga
N contact layer, 18 n-type AlGaN cladding layer,
20: n-type GaN optical waveguide layer, 22: Ga 1-x In x N
An active layer composed of a well layer (for example, x = 0.22) / Ga 1-y In y N barrier layer (for example, y = 0.02), 24...
p-type GaN optical waveguide layer, 26... p-type AlGaN cladding layer, 28... p-type GaN contact layer, 30... p-side electrode, 32.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ、窒化物系III −V族化合物半
導体であって、インジウム以外の3B族元素に対して
0.2以上のインジウム組成比でインジウム(In)を
含有するIn含有層からなる活性層と、活性層の上下に
それぞれ接して設けられ、インジウムを含まない上部I
n非含有層及び下部In非含有層とを有する窒化物系半
導体発光素子の作製方法において、 化学気相成長法によってIn含有層を700℃以上80
0℃以下の温度でエピタキシャル成長させる際、In原
料ガスの分圧を調節することにより、In含有層の成長
速度を下部In非含有層及び上部In非含有層の成長速
度より大きくすることを特徴とする窒化物系半導体発光
素子の作製方法。
Each of the nitride-based III-V compound semiconductors comprises an In-containing layer containing indium (In) at an indium composition ratio of at least 0.2 with respect to a group 3B element other than indium. An active layer and an upper layer I which is provided in contact with the upper and lower sides of the active layer and does not contain indium.
A method for manufacturing a nitride-based semiconductor light emitting device having an n-free layer and a lower In-free layer, wherein the In-containing layer is formed at a temperature of 700 ° C.
When epitaxial growth is performed at a temperature of 0 ° C. or less, by adjusting the partial pressure of the In source gas, the growth rate of the In-containing layer is made higher than that of the lower In-free layer and the upper In-free layer. Of manufacturing a nitride-based semiconductor light emitting device.
【請求項2】 窒化物系III −V族化合物半導体がGa
N系化合物半導体であり、In含有層がGaInN層で
あり、下部In非含有層及び上部In非含有層がそれぞ
れ(Al)GaN層であることを特徴とする請求項1に
記載の窒化物系半導体発光素子の作製方法。
2. The nitride III-V compound semiconductor is Ga
The nitride-based compound semiconductor according to claim 1, wherein the nitride-based compound semiconductor is an N-based compound semiconductor, the In-containing layer is a GaInN layer, and the lower In-free layer and the upper In-free layer are each an (Al) GaN layer. A method for manufacturing a semiconductor light emitting element.
【請求項3】 窒化物系半導体発光素子が、AlGaN
下部クラッド層、GaN下部光導波層、GaInNから
なる活性層、GaN上部光導波層、及びAlGaN上部
クラッド層の積層構造を有する、GaN系半導体レーザ
素子であって、 MOCVD法によって活性層を700℃以上800℃以
下の温度でエピタキシャル成長させる際、In原料ガス
の分圧を調節することにより、AlGaN下部クラッド
層、GaN下部光導波層、GaN上部光導波層、及びA
lGaN上部クラッド層の成長速度のいずれよりも活性
層の成長速度を速くすることを特徴とする請求項1に記
載の窒化物系半導体発光素子の作製方法。
3. The nitride-based semiconductor light emitting device is an AlGaN
A GaN-based semiconductor laser device having a laminated structure of a lower cladding layer, a GaN lower optical waveguide layer, an active layer made of GaInN, a GaN upper optical waveguide layer, and an AlGaN upper cladding layer, wherein the active layer is formed at 700 ° C. by MOCVD. At the time of epitaxial growth at a temperature of not less than 800 ° C. and less than 800 ° C., by adjusting the partial pressure of the In source gas, the AlGaN lower cladding layer, the GaN lower optical waveguide layer, the GaN upper optical waveguide layer, and the A
2. The method according to claim 1, wherein the growth rate of the active layer is higher than any of the growth rates of the upper cladding layer of lGaN.
JP2001162462A 2001-05-30 2001-05-30 Method for manufacturing nitride system semiconductor light-emitting element Pending JP2002359439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162462A JP2002359439A (en) 2001-05-30 2001-05-30 Method for manufacturing nitride system semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162462A JP2002359439A (en) 2001-05-30 2001-05-30 Method for manufacturing nitride system semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JP2002359439A true JP2002359439A (en) 2002-12-13

Family

ID=19005578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162462A Pending JP2002359439A (en) 2001-05-30 2001-05-30 Method for manufacturing nitride system semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JP2002359439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118647A (en) * 2008-10-17 2010-05-27 Sumitomo Electric Ind Ltd Nitride-based semiconductor light emitting element, method of manufacturing nitride-based semiconductor light emitting element, and light emitting device
CN104037286A (en) * 2013-03-07 2014-09-10 株式会社东芝 Semiconductor light emitting element and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118647A (en) * 2008-10-17 2010-05-27 Sumitomo Electric Ind Ltd Nitride-based semiconductor light emitting element, method of manufacturing nitride-based semiconductor light emitting element, and light emitting device
CN104037286A (en) * 2013-03-07 2014-09-10 株式会社东芝 Semiconductor light emitting element and method for manufacturing the same
JP2014175426A (en) * 2013-03-07 2014-09-22 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
EP2775537A3 (en) * 2013-03-07 2014-11-05 Kabushiki Kaisha Toshiba Semiconductor light emitting element and method for manufacturing the same
US9006709B2 (en) 2013-03-07 2015-04-14 Kabushiki Kaisha Toshiba Semiconductor light emitting element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2809691B2 (en) Semiconductor laser
JP2001210598A (en) Substrate for epitaxial growth and manufacturing method
JP2001352098A (en) Semiconductor light-emitting element and its manufacture
JPH11243253A (en) Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JPH08264833A (en) Light emitting diode
JPH08264894A (en) Semiconductor element and manufacture thereof
JP4037554B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
WO2007046465A1 (en) Nitride semiconductor device and method for manufacturing same
JPH11233827A (en) Semiconductor light emitting device
JPH10145006A (en) Compound semiconductor device
JP3361964B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH10247744A (en) Semiconductor light emitting element and manufacture thereof
JP2000164510A (en) Iii-v nitride compound semiconductor substrate and manufacture of the same, and semiconductor device and manufacture of the same
JP2004095724A (en) Semiconductor light-emitting device
JPH10242569A (en) Semiconductor laser
JP2003017741A (en) GaN-BASED LIGHT EMITTING ELEMENT
JP3615386B2 (en) Semiconductor device and manufacturing method thereof
JP2002359439A (en) Method for manufacturing nitride system semiconductor light-emitting element
JP2001057442A (en) Production of iii-v nitride semiconductor
JPH10242567A (en) Semiconductor laser
JP4770060B2 (en) Method for fabricating nitride-based semiconductor optical device
JPH0883956A (en) Semiconductor light-emitting device
JP2003218468A (en) Semiconductor laser element and manufacturing method therefor
JP2001320089A (en) GaN BASED LIGHT EMITTING ELEMENT AND METHOD OF OF ITS MANUFACTURE
JP2009088230A (en) Semiconductor light-emitting element and manufacturing method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050111