JP2002359230A - Plasma-resistant member and manufacturing method therefor - Google Patents

Plasma-resistant member and manufacturing method therefor

Info

Publication number
JP2002359230A
JP2002359230A JP2001271206A JP2001271206A JP2002359230A JP 2002359230 A JP2002359230 A JP 2002359230A JP 2001271206 A JP2001271206 A JP 2001271206A JP 2001271206 A JP2001271206 A JP 2001271206A JP 2002359230 A JP2002359230 A JP 2002359230A
Authority
JP
Japan
Prior art keywords
plasma
resistant member
metal
alloy
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001271206A
Other languages
Japanese (ja)
Inventor
Tomonori Uchimaru
知紀 内丸
Haruo Murayama
晴男 村山
Takashi Morita
敬司 森田
Masahiko Ichijima
雅彦 市島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001271206A priority Critical patent/JP2002359230A/en
Publication of JP2002359230A publication Critical patent/JP2002359230A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Si-based plasma-resistant member having superior durability, and to provide a method for manufacturing the plasma-resistant member. SOLUTION: In the plasma-resistant member, the surface which is exposed to corrosive plasma is formed at least of an alloy of at least one kind of metal element selected from among the group of Y, Ce, La, Ba, and Zr and Si metal element as composition elements. In this case, the alloy composition base of the plasma-resistant member is, for example, CeSi2 , Y5 Si3 , Y5 Si4 , YSi2 , YSi2 , Y3 Si5 , BaSi, BaSi2 , Zr4 Si, Zr2 Si, or Zr5 Si3 .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐プラズマ性部材
及びその製造方法に係り、さらに詳しくはハロゲン系の
腐食性ガス雰囲気下で、優れた耐プラズマ性を呈するS
i系部材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma-resistant member and a method of manufacturing the same, and more particularly, to an S-based member exhibiting excellent plasma resistance under a halogen-based corrosive gas atmosphere.
The present invention relates to an i-type member and a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体装置の製造工程においては、半導
体ウエハーに微細な加工を施すエッチング装置として、
プラズマ発生機構を備えた構成の装置が使用されてい
る。たとえば、図1に構成の概略を断面的に示すような
ドライエッチング装置が知られている。
2. Description of the Related Art In a semiconductor device manufacturing process, an etching apparatus for performing fine processing on a semiconductor wafer is used as an etching apparatus.
An apparatus having a configuration including a plasma generation mechanism is used. For example, a dry etching apparatus whose configuration is schematically shown in cross section in FIG. 1 is known.

【0003】図1において、1はエッチングガス供給口
2及び真空排気口3を有するエッチング処理室である。
そして、このエッチング処理室1内には、被加工体であ
る半導体ウエハー4を載置する下部電極5、及び前記下
部電極5に対峙し、かつ下部電極5面に載置された半導
体ウエハー4を挟むように進退可能に配置された上部電
極6が設置されている。
In FIG. 1, reference numeral 1 denotes an etching processing chamber having an etching gas supply port 2 and a vacuum exhaust port 3.
In the etching chamber 1, a lower electrode 5 on which a semiconductor wafer 4 to be processed is placed and a semiconductor wafer 4 facing the lower electrode 5 and placed on the surface of the lower electrode 5 are placed. An upper electrode 6 is provided so as to be able to advance and retreat so as to sandwich it.

【0004】このエッチング装置によるエッチングは、
次のように行われる。すなわち、下部電極5面上に、た
とえばSiO膜付きの半導体ウエハー4を載置して、
エッチング処理室1内を真空・排気化する。その後、エ
ッチングガス供給口2から、たとえばCHF−Ar混
合系のエッチングガスを供給する。次いで、下部電極5
及び上部電極6間に所要の高周波電流を流し、両電極
5,6間で発生するプラズマエネルギーによって、Si
膜の選択的なエッチングを行う。その後、エッチン
グガスをCl及びOの混合系に切り換え、前記選択
的にエッチングしたSiO膜をマスクとし、同様に、
プラズマエネルギーによって、半導体ウエハー4の選択
的なエッチングを行う。
[0004] Etching by this etching apparatus is
It is performed as follows. That is, for example, a semiconductor wafer 4 with a SiO 2 film is placed on the lower electrode 5 surface,
The inside of the etching chamber 1 is evacuated and evacuated. After that, an etching gas of, for example, a CHF 3 -Ar mixed system is supplied from the etching gas supply port 2. Next, the lower electrode 5
A required high-frequency current is caused to flow between the upper electrode 6 and the upper electrode 6, and the plasma energy generated between the electrodes 5
The O 2 film is selectively etched. Thereafter, the etching gas is switched to a mixed system of Cl 2 and O 2 , and the selectively etched SiO 2 film is used as a mask.
The semiconductor wafer 4 is selectively etched by the plasma energy.

【0005】ところで、上記エッチング装置において、
図2に概略構成を断面的に示すような、平行平板形Si
製電極盤を上部電極6として使用することが注目されて
いる。すなわち、Si単結晶もしくはSi多結晶は、電
気抵抗が1〜50Ω・cm程度で、かつ耐プラズマ性も
良好なことから、平行平板形Si製上部電極6′、ある
いは下部電極5面上に載置された半導体ウエハー4の端
縁部を押圧するための押圧リングなどに使用されてい
る。
In the above etching apparatus,
FIG. 2 shows a parallel-plate Si
Attention has been paid to using an electrode board made as the upper electrode 6. That is, since the Si single crystal or Si polycrystal has an electric resistance of about 1 to 50 Ω · cm and good plasma resistance, it is mounted on the upper electrode 6 ′ made of a parallel plate Si or the lower electrode 5. It is used as a pressing ring for pressing the edge of the placed semiconductor wafer 4.

【0006】ここで、平行平板形Si製電極盤6′は、
たとえば外径200〜300mm、厚さ5〜10mm、
中央部に直径0.5mm程度のシャワー孔と呼称される
貫通孔6aが数百〜数千個穿設された構成を採ってい
る。そして、この平行平板形Si製電極盤6′では、前
記シャワー孔(貫通孔)6aが反応性(エッチング性)
ガスの流路となり、また、高周波電源を印加することに
よって、プラズマエネルギーが発生し、対峙する下部電
極5上の半導体ウエハー4のエッチングを行うように作
用する。なお、平行平板形Si製電極盤6′の電気抵抗
は、1〜50Ω・cmである。
Here, the parallel plate type Si electrode board 6 'is
For example, an outer diameter of 200 to 300 mm, a thickness of 5 to 10 mm,
A configuration in which hundreds to thousands of through holes 6a called shower holes having a diameter of about 0.5 mm are formed in the center portion is adopted. In the parallel plate type Si electrode board 6 ', the shower holes (through holes) 6a are reactive (etching).
It serves as a gas flow path, and when a high-frequency power source is applied, plasma energy is generated and acts to etch the semiconductor wafer 4 on the lower electrode 5 facing the same. The electric resistance of the parallel-plate Si electrode board 6 'is 1 to 50 Ω · cm.

【0007】[0007]

【発明が解決しようとする課題】上記平行平板形Si製
電極盤6′は、対峙する半導体ウエハー4面に対し、エ
ッチング作用するプラズマエネルギーをほぼ一様な密度
で当てることができるので、全体的に、一様なエッチン
グ加工などを容易に行えるという特長がある。しかし、
耐プラズマ性が良好であるとはいえ、これらSi製部材
の平均寿命は、100時間程度であり、なお耐久性の点
で問題がある。
The parallel plate type Si electrode plate 6 'can apply plasma energy for etching to the opposing surface of the semiconductor wafer 4 at a substantially uniform density. Another advantage is that uniform etching can be easily performed. But,
Although the plasma resistance is good, the average life of these Si members is about 100 hours, and there is still a problem in terms of durability.

【0008】特に、近時の高プラズマ密度化、低圧力
化、エッチング系ガス種の多様化など、エッチング処理
環境も厳しくなっており、平行平板形Si製電極盤6′
の消耗も激しさを増し、必然的に、交換頻度も高くなっ
ている。そして、エッチング加工の対象が、低誘電率の
絶縁性皮膜などの場合は、より消耗が激しいので、平行
平板形Si製電極盤6′などの交換頻度も高まる。
In particular, the etching environment has become more severe, such as the recent increase in plasma density, lower pressure, and diversification of etching gas types.
Consumption has increased and the frequency of replacement has inevitably increased. When the object to be etched is an insulating film having a low dielectric constant or the like, the frequency of replacement of the parallel plate type Si electrode board 6 ′ and the like increases because the consumption is more severe.

【0009】上記平行平板形Si製電極盤6′などの平
均寿命の短さは、必然的に、その交換頻度が高くなり、
この交換頻度の高さに対応して、エッチング装置の稼働
率が低下する。また、平行平板形Si製電極盤6′など
の交換頻度は、エッチング装置のメンテナンスを煩雑化
させるだけでなく、着脱・交換のタイミングによって
は、加工精度や品質のバラツキを生じる恐れもある。い
ずれにしても、生産性、加工品の歩留まり、加工品の品
質などの点で、さらなる改善・改良が望まれる。
The short life expectancy of the parallel plate type Si electrode board 6 'and the like inevitably increases the frequency of replacement.
The operating rate of the etching apparatus decreases in accordance with the frequency of replacement. Further, the frequency of replacement of the parallel-plate Si electrode board 6 'and the like not only complicates the maintenance of the etching apparatus but also may cause variations in processing accuracy and quality depending on the timing of attachment / detachment / replacement. In any case, further improvement is desired in terms of productivity, yield of processed products, quality of processed products, and the like.

【0010】本発明は、上記事情に鑑みてなされたもの
で、耐久性の優れたSi系の耐プラズマ性部材、及びそ
の製造方法の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a Si-based plasma-resistant member having excellent durability and a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、少な
くとも腐食性のプラズマに曝される表面層が、Y,C
e,La,Ba及びZrの群から選んだ1種以上の金属
元素とSi金属元素とを組成分とする合金で構成されて
いることを特徴とする耐プラズマ性部材である。
According to the first aspect of the present invention, at least a surface layer exposed to a corrosive plasma has a Y, C
A plasma-resistant member characterized by being composed of an alloy containing at least one metal element selected from the group consisting of e, La, Ba and Zr and a Si metal element.

【0012】請求項2の発明は、請求項1記載の耐プラ
ズマ性部材において、少なくとも表面層がCeSi
Si,YSi,YSi,YSi,YSi
,BaSi,BaSi,LaSi,ZrSi,
ZrSi,もしくはZrSiの組成系で示される
合金であることを特徴とする。
According to a second aspect of the present invention, in the plasma resistant member according to the first aspect, at least the surface layer is made of CeSi 2 ,
Y 5 Si 3 , Y 5 Si 4 , YSi, YSi 2 , Y 3 Si
5 , BaSi, BaSi 2 , LaSi 2 , Zr 4 Si,
It is an alloy represented by a composition system of Zr 2 Si or Zr 5 Si 3 .

【0013】請求項3の発明は、高温用溶融容器内に金
属Siを収容して、Y,Ce,La,BaもしくはZr
との目的とする合金の融点以上の温度に加熱する工程
と、前記加熱溶融させたSiにY,Ce,La,Ba及
びZrの群から選んだ少なくとも1種の金属を添加する
工程と、前記溶融温度を保持してほぼ均一な溶融系を形
成した後に徐冷にする工程と、を有することを特徴とす
る耐プラズマ性部材の製造方法である。
According to a third aspect of the present invention, there is provided a high-temperature melting vessel in which metallic Si is accommodated and Y, Ce, La, Ba or Zr is contained.
Heating to a temperature equal to or higher than the melting point of the target alloy; and adding at least one metal selected from the group consisting of Y, Ce, La, Ba and Zr to the heat-melted Si; And forming a substantially uniform molten system while maintaining the melting temperature, followed by slow cooling.

【0014】請求項4の発明は、請求項3記載の耐プラ
ズマ性部材の製造方法において、Si系基材面に溶融温
度を保持したほぼ均一な溶融系をコーティングし、Y,
Ce,La,Ba及びZrの群から選んだ1種以上の元
素とSi元素とを組成分とする合金層を形成することを
特徴とする。
According to a fourth aspect of the present invention, in the method for manufacturing a plasma-resistant member according to the third aspect, the surface of the Si-based substrate is coated with a substantially uniform molten system while maintaining the melting temperature.
It is characterized in that an alloy layer is formed in which at least one element selected from the group consisting of Ce, La, Ba and Zr and a Si element are contained.

【0015】請求項5の発明は、Si系基材面にY,C
e,La,Ba及びZrの群から選んだ少なくとも1種
の元素からなる金属層を密着配置する工程と、前記金属
層を密着配置したSi系基材を真空溶融炉で加熱処理
し、Si系基材面を密着配置した金属と合金化する工程
と、を有することを特徴とする耐プラズマ性部材の製造
方法である。
According to a fifth aspect of the present invention, the surface of the Si-based substrate is Y, C
e, a step of closely adhering a metal layer made of at least one element selected from the group consisting of La, Ba and Zr; and heat-treating the Si-based substrate having the metal layer adhered thereto in a vacuum melting furnace, And a step of alloying with a metal having a base material surface closely contacted therewith.

【0016】請求項1ないし5の発明は、次のような知
見に基づくものである。すなわち、実質的に、Y,C
e,La,Ba及びZrの群から選んだ少なくとも1種
の金属と、金属Siとを組成分として成る合金は、低圧
・高密度のプラズマ曝露に対しても十分に耐える耐プラ
ズマ性を呈することを見出し、上記発明に至ったもので
ある。
The inventions of claims 1 to 5 are based on the following findings. That is, Y, C
An alloy composed of at least one metal selected from the group consisting of e, La, Ba and Zr and metal Si exhibits plasma resistance enough to withstand low pressure and high density plasma exposure. And have led to the invention described above.

【0017】より具体的には、たとえばF(フッ素)系
プラズマに金属Si(単結晶、多結晶)を曝すと、反応
生成物としてSiFが生成する。このSiFは、沸
点(もしくは融点)が低くて揮散し易いため、SiF
の反応が順次進み、結果的に、寿命が低下することを確
認した。因みに、SiFの沸点は−86℃である。
More specifically, for example, when metallic Si (single crystal or polycrystal) is exposed to F (fluorine) based plasma, SiF 4 is generated as a reaction product. The SiF 4 is liable to volatilize and low boiling point (or melting point) is, SiF 4
It was confirmed that the reaction proceeded sequentially, and as a result, the life was shortened. Incidentally, the boiling point of SiF 4 is −86 ° C.

【0018】一方、CeSi,YSiなど、Si
とY,Ce,La,Ba,Zrなどとの合金は、たとえ
ばF系プラズマに曝されると、反応生成物としてSiF
の他に、CeF,YF,LaFなども生成す
る。ここで、CeF,YF,LaFなどの沸点
(もしくは融点)は、SiFに較べて著しく高く揮散
し難いため、金属Si(単結晶、多結晶)に比較して、
エッチングが大幅に抑制・防止され、長寿命化すること
を確認した。因みに、CeFの沸点は、2300℃、
YFの沸点は、2230℃、BaFの沸点は、22
60℃である。
On the other hand, Si, such as CeSi 2 , Y 5 Si 3
When alloys of Y, Ce, La, Ba, Zr, etc. are exposed to, for example, F-based plasma, SiF
4 as well as CeF 3 , YF 3 , and LaF 3 . Here, the boiling points (or melting points) of CeF 3 , YF 3 , LaF 3, and the like are significantly higher than SiF 4 and are difficult to volatilize, and therefore, compared to metal Si (single crystal, polycrystal),
It was confirmed that etching was significantly suppressed and prevented, and the life was extended. Incidentally, the boiling point of CeF 3 is 2300 ° C.
YF 3 has a boiling point of 2230 ° C., and BaF 2 has a boiling point of 22
60 ° C.

【0019】請求項1ないし5の発明において、耐プラ
ズマ性部材の本体ないし基材は、金属の場合、一般的
に、金属Si(多結晶)である。また、合金の場合は、
金属Si(多結晶)成分20〜70原子%程度、より好
ましくは30〜50原子%程度の合金である。ここで、
合金系におけるY,Ce,La,Ba,Zrの他の金属
元素成分は、80〜30原子%程度、より好ましくは7
0〜50原子%程度である。なお、Y,Ce,La,B
a,Zr成分は、それぞれ単独でもよいが、2種以上の
混合系であってもよい。
In the first to fifth aspects of the present invention, when the main body or the base material of the plasma resistant member is a metal, it is generally metal Si (polycrystal). In the case of alloy,
An alloy having a metal Si (polycrystalline) component of about 20 to 70 at%, more preferably about 30 to 50 at%. here,
The other metal element components of Y, Ce, La, Ba and Zr in the alloy system are about 80 to 30 atomic%, more preferably about 7 to 30 atomic%.
It is about 0 to 50 atomic%. Note that Y, Ce, La, B
The a and Zr components may be used alone or in a mixture of two or more.

【0020】請求項1及び2の発明に係る耐プラズマ性
部材は、請求項3ないし5の発明に係る製造方法で、容
易に製造することができる。
The plasma resistant member according to the first and second aspects of the present invention can be easily manufactured by the manufacturing method according to the third to fifth aspects of the present invention.

【0021】第1の手段は、金属Si(多結晶)、及び
Y,Ce,La,Ba,Zrの群から選ばれる少なくと
も1種の金属成分を所要の組成比に選び、たとえば石英
ガラス製ルツボなどの高温用溶融容器内に、先ず、金属
Siを収容する。次に、この金属Siを、金属間化合物
化ないし合金化するために添加する添加金属との目的と
する合金の融点以上の温度で加熱溶融する。
The first means is to select a metal Si (polycrystal) and at least one metal component selected from the group consisting of Y, Ce, La, Ba and Zr to a required composition ratio, for example, a quartz glass crucible. First, metal Si is accommodated in a high-temperature melting container such as the one described above. Next, the metal Si is heated and melted at a temperature equal to or higher than the melting point of the target alloy with the added metal added for intermetallic compounding or alloying.

【0022】その後、加熱溶融した金属Siに、添加金
属成分を添加し、合金化したときの溶融温度を保持して
合金化を進める。次いで、溶融金属系を徐冷することに
よって、所要のSi系合金を容易に得ることができる。
なお、上記高温用溶融容器は、石英ガラス製ルツボの代
わりに、たとえばタングステン製ルツボ、あるいはモリ
ブデン製ルツボなども使用できる。また、第1の手段の
変形としては、キャスティング法、結晶引き上げ法、あ
るいはSi系基材面に上記溶融金属系をコーティングす
る方法などが挙げられる。
Thereafter, an additional metal component is added to the heat-melted metal Si, and the alloying proceeds while maintaining the melting temperature at the time of alloying. Subsequently, the required Si-based alloy can be easily obtained by gradually cooling the molten metal-based.
The melting container for high temperature may be, for example, a crucible made of tungsten or a crucible made of molybdenum instead of a crucible made of quartz glass. Further, as a modification of the first means, a casting method, a crystal pulling method, a method of coating the surface of the Si-based substrate with the above-mentioned molten metal, and the like can be mentioned.

【0023】第2の手段は、金属Si(多結晶)製もし
くはSi系合金製の基材面に、Y,Ce,La,Ba及
びZrの群から選んだ少なくとも1種の元素からなる金
属の薄板ないし箔を重ね合わせ、たとえば一軸プレスに
よって密着・配置する。その後、たとえばアルミナ製容
器内に、前記密着・配置した積層体を収納し、真空溶融
炉内で、たとえば1000〜1200℃の温度で加熱処
理する。そして、Si系基材面を密着配置した金属と合
金化し、少なくとも表面をCeSi,YSi,Y
Si,YSi,YSi,YSi,BaSi,
BaSi,LaSi,ZrSi,ZrSi,も
しくはZrSiなどの組成系で示される合金層で構
成する。
The second means is to deposit a metal comprising at least one element selected from the group consisting of Y, Ce, La, Ba and Zr on the surface of a metal Si (polycrystalline) or Si-based alloy. The thin plates or foils are superimposed and closely attached and arranged by, for example, a uniaxial press. Then, the laminated body closely contacted and arranged is accommodated in, for example, an alumina container, and heated in a vacuum melting furnace at a temperature of, for example, 1000 to 1200 ° C. Then, the surface of the Si-based substrate is alloyed with a metal closely arranged, and at least the surface is made of CeSi 2 , Y 5 Si 3 , Y
5 Si 4, YSi, YSi 2 , Y 3 Si 5, BaSi,
It is composed of an alloy layer represented by a composition system such as BaSi 2 , LaSi 2 , Zr 4 Si, Zr 2 Si, or Zr 5 Si 3 .

【0024】請求項1及び2の発明では、従来のSi単
結晶やSi多結晶製の耐プラズマ性部材に較べて、より
耐プラズマ性の優れたSi系の耐プラズマ性部材が提供
される。すなわち、請求項1及び2の発明に係る耐プラ
ズマ性部材は、低圧・高密度の腐食性プラズマに曝され
る領域での使用において、表面に揮散し難いハロゲン化
物を反応生成する。この揮散し難いハロゲン化物の生成
に伴って、腐食性プラズマによる表面の腐食が防止・抑
制され、長寿命化が図られるだけでなく、パーティクル
汚染を生じる恐れもなくなり、高精度で、信頼性の高い
加工などに適した機能を呈する。
According to the first and second aspects of the present invention, an Si-based plasma-resistant member having more excellent plasma resistance than conventional plasma-resistant members made of Si single crystal or Si polycrystal is provided. That is, the plasma-resistant member according to the first and second aspects of the present invention reacts and generates a halide which is hardly volatilized on the surface when used in a region exposed to corrosive plasma of low pressure and high density. With the generation of these hard-to-evaporate halides, corrosion of the surface by corrosive plasma is prevented and suppressed, not only prolonging the life but also eliminating the possibility of particle contamination, and achieving high accuracy and reliability. It has a function suitable for high processing.

【0025】つまり、Si系部材の良好な電気的な特性
を生かし、かつ半導体製造装置ないし半導体の製造コス
トアップを抑制・防止しながら、精度などに悪影響を与
えることなく、性能や信頼性の高い半導体の製造・加工
に、効果的に寄与する。
That is, by utilizing the good electrical characteristics of the Si-based member, and suppressing or preventing an increase in the cost of manufacturing a semiconductor manufacturing device or a semiconductor, high performance and high reliability are obtained without adversely affecting accuracy and the like. Effectively contributes to the manufacture and processing of semiconductors.

【0026】請求項3ないし5の発明では、より耐プラ
ズマ性が向上・改善されたSi系の耐プラズマ性部材を
歩留まりよく、かつ量産的に提供することが可能とな
る。
According to the third to fifth aspects of the present invention, it is possible to provide a Si-based plasma-resistant member having improved and improved plasma resistance with good yield and mass production.

【0027】[0027]

【発明の実施形態】DETAILED DESCRIPTION OF THE INVENTION

【0028】以下、実施例を説明する。Hereinafter, embodiments will be described.

【0029】実施例1Embodiment 1

【0030】先ず、石英ガラス製ルツボを溶融槽とした
Si用溶融装置を用意し、この石英ガラス製溶融槽内
に、純度99.99%のSi粉末もしくはSiの塊と、
純度99.99%のCeの塊とを添加し、撹拌・溶融を
進める。ここで、Si成分及びCe成分の組成比は、原
子比でSi/Ce=2/1である。
First, a melting apparatus for Si using a quartz glass crucible as a melting tank is prepared. In this quartz glass melting tank, a Si powder or a lump of Si having a purity of 99.99% is prepared.
A lump of Ce having a purity of 99.99% is added, and stirring and melting are advanced. Here, the composition ratio of the Si component and the Ce component is Si / Ce = 2/1 in atomic ratio.

【0031】上記Si−Ce溶融系の温度(1580〜
1620℃)を約3時間維持した後、50〜100℃/
h程度の速度で徐冷して、Si−Ce系(CeSi
の合金を作製(製造)した。その後、CeSiを外径
200mm、厚さ5mm、中央部に直径0.5mm貫通
孔(シャワー孔)を有する平行平板形の電極盤に加工し
た。
The temperature of the above Si-Ce molten system (1580 to
1620 ° C.) for about 3 hours and then 50-100 ° C. /
h, slowly cooled to a Si-Ce (CeSi 2 )
Was produced (manufactured). Thereafter, CeSi 2 was processed into a parallel plate type electrode board having an outer diameter of 200 mm, a thickness of 5 mm, and a through hole (shower hole) of 0.5 mm in the center at the center.

【0032】上記CeSi系の作製・製造において、
Ce成分の代りに、Y,La,BaもしくはZrを使用
し、Si成分に対する組成比(原子比)を変えて、以下
のような11種の合金をそれぞれ作製(製造)した。そ
の後、これらYSi,Y Si,YSi,YSi
,YSi,LaSi,BaSi,BaSi
ZrSi,ZrSi,ZrSiを、それぞれ外
径200mm、厚さ5mm、中央部に直径0.5mm貫
通孔(シャワー孔)を有する平行平板形の電極盤に加工
した。
The above CeSi2In the production and manufacture of the system,
Use Y, La, Ba or Zr instead of Ce component
And changing the composition ratio (atomic ratio) to the Si component,
The following 11 kinds of alloys were prepared (manufactured). So
After these Y5Si3, Y 5Si4, YSi, YSi
2, Y3Si5, LaSi2, BaSi, BaSi2,
Zr4Si, Zr2Si, Zr5Si3Outside each
200mm diameter, 5mm thickness, 0.5mm diameter through center
Processed into a parallel plate type electrode board with through holes (shower holes)
did.

【0033】上記、CeSi,YSi,YSi
,YSi,YSi,YSi,LaSi,Ba
Si,BaSi,ZrSi,ZrSi,Zr
製の各平行平板形の電極盤を、前記図1に図示した
構成のプラズマエッチング装置の上部電極として装着
し、周波数13.56MHz、高周波ソース500W、
高周波バイアス40W、ガス流量CF=100cc/
min、ガス圧0.5Pa(4mTorr)、プラズマ
密度1.7×1011atoms/cm、イオン衝撃
エネルギー88eVという過酷な条件で、プラズマ曝露
試験を行った結果を表1に示す。なお、比較のため、材
質がSi単結晶(もしくはSi多結晶)である他は、同
様の形状・構造に構成した従来の平行平板形の電極盤に
ついて、同様の条件で試験・評価した結果を併せて表1
に示す。
The above CeSi 2 , Y 5 Si 3 , Y 5 Si
4, YSi, YSi 2, Y 3 Si 5, LaSi 2, Ba
Si, BaSi 2 , Zr 4 Si, Zr 2 Si, Zr 5 S
i 3 made of the electrode plate of the parallel flat type, mounted as an upper electrode in the plasma etching apparatus configured as shown in FIG. 1, the frequency 13.56 MHz, high-frequency source 500 W,
High frequency bias 40 W, gas flow rate CF 4 = 100 cc /
Table 1 shows the results of a plasma exposure test performed under severe conditions of min, gas pressure of 0.5 Pa (4 mTorr), plasma density of 1.7 × 10 11 atoms / cm 3 , and ion impact energy of 88 eV. For comparison, the results of tests and evaluations of a conventional parallel plate type electrode plate having the same shape and structure except that the material is Si single crystal (or Si polycrystal) under the same conditions are described below. Table 1
Shown in

【0034】[0034]

【表1】 [Table 1]

【0035】上記表1から分かるように、実施例に係る
耐プラズマ性部材は、比較例に係る耐プラズマ性部材に
較べて数100倍程度のプラズマ耐食性を有しており、
腐食性ガス下におけるプラズマによる損傷、SiF
パーティクルなども大幅に抑制される。つまり、半導体
の製造工程などにおいて、精度の高い加工などを行える
だけでなく、被加工体に悪影響を及ぼす恐れの解消も図
られる。
As can be seen from Table 1, the plasma resistant member according to the example has a plasma corrosion resistance several hundred times that of the plasma resistant member according to the comparative example.
Damage due to plasma under corrosive gas, particles of SiF 4 and the like are also significantly suppressed. That is, not only high-precision processing and the like can be performed in a semiconductor manufacturing process or the like, but also the possibility of adversely affecting a workpiece can be eliminated.

【0036】上記においては、全体がSi−Ce系(C
eSi)合金製の構成を示したが、たとえば厚さ5m
m程度の金属Si(結晶板)面に、上記溶融Si−Ce
系などをコーティングし、表面層を厚さ0.1mmのC
eSi系などで構成した複合型材料の場合も、同様
に、優れたプラズマ耐食性を有していた。
In the above description, the whole is made of Si—Ce (C
eSi 2 ) alloy is shown, for example, a thickness of 5 m
m of the molten Si-Ce
System, etc., and the surface layer is 0.1mm thick C
Similarly, the composite material composed of eSi 2 or the like also had excellent plasma corrosion resistance.

【0037】実施例2Embodiment 2

【0038】純度99.99%、厚さ5mmの金属Si
板、及び純度99.99%、厚さ0.5mmの金属Ce
薄板を用意した。次いで、金属Si板の一主面に、金属
Ce薄板を載置し、100kgf/cm(9.807
×10MPa)の一軸プレスによって金属Si板と金属
Ce薄板とを密着させた。その後、この密着・積層体を
アルミナ製の容器内に収納し、このアルミナ製容器を真
空溶融炉に入れ、1000〜1100℃の温度下で、1
時間加熱処理を行った。加熱処理後、アルミナ製容器か
ら被加熱試料を取り出し、厚さ方向に切断してEPMA
にて断面を観察したところ、金属Si板の一主面がCe
Si合金層で形成されている複合型部材が得られた。
Metallic Si having a purity of 99.99% and a thickness of 5 mm
Plate and metal Ce of 99.99% purity and 0.5 mm thickness
A thin plate was prepared. Next, a metal Ce thin plate was placed on one main surface of the metal Si plate, and 100 kgf / cm 2 (9.807).
The metal Si plate and the metal Ce thin plate were brought into close contact with each other by uniaxial pressing (× 10 MPa). Thereafter, the adhered and laminated body is housed in a container made of alumina, and the container made of alumina is put in a vacuum melting furnace, and is heated at 1000 to 1100 ° C. for 1 hour.
Heat treatment was performed for a time. After the heat treatment, the sample to be heated is taken out of the container made of alumina, cut in the thickness direction, and subjected to EPMA.
When the cross section was observed at, one main surface of the metal Si plate was Ce
A composite member formed of the Si 2 alloy layer was obtained.

【0039】上記複合型部材の製造において、Ce薄板
の代りに、Y,La,BaもしくはZrの薄板を使用
し、Siに対する組成比(原子比)を変えて、金属Si
板の一主面に組成系の異なった合金層を設けた11種の
複合型部材を製造した。すなわち、金属Si板の一主面
がYSi,YSi,YSi,YSi,Y
,LaSi,BaSi,BaSi,Zr
i,ZrSiもしくはZrSiの組成系で示され
るように合金層化した複合型部材を得た。なお、この複
合型部材の製造過程における表面合金化の加熱処理は、
たとえばレーザーを照射する方式で行ってもよい。
In the production of the composite member, a thin plate of Y, La, Ba or Zr is used in place of the Ce thin plate, and the composition ratio (atomic ratio) to Si is changed to change the metal Si.
Eleven types of composite members were prepared in which alloy layers having different composition systems were provided on one main surface of the plate. That is, one main surface of the metal Si plate is formed of Y 5 Si 3 , Y 5 Si 4 , YSi, YSi 2 , and Y 3 S.
i 5 , LaSi 2 , BaSi, BaSi 2 , Zr 4 S
i, a composite member having an alloy layer as shown by the composition system of Zr 2 Si or Zr 5 Si 3 was obtained. The heat treatment for surface alloying in the production process of the composite member is as follows.
For example, laser irradiation may be performed.

【0040】次に、平行平板型プラズマエッチング装置
を使用し、以下のような条件で、上記製造した複合型部
材のプラズマ曝露試験を行った。すなわち、複合型部材
の合金層面を対象にし、周波数13.56MHz、高周
波ソース500W、高周波バイアス40W、ガス流量C
=100cc/min、ガス圧0.5Pa(4mT
orr)、プラズマ密度1.7×1011atoms/
cm、イオン衝撃エネルギー88eVという過酷な条
件で、プラズマ曝露試験を行った。その結果、実施例1
の場合と同様に、腐食性ガス下におけるプラズマによる
損傷、SiFのパーティクル汚染などが防止・抑制さ
れ、優れたプラズマ耐食性を呈することが確認された。
Next, using a parallel plate type plasma etching apparatus, a plasma exposure test was performed on the composite member manufactured under the following conditions. That is, for the alloy layer surface of the composite member, the frequency is 13.56 MHz, the high frequency source is 500 W, the high frequency bias is 40 W, and the gas flow rate is C.
F 4 = 100 cc / min, gas pressure 0.5 Pa (4 mT
orr), plasma density 1.7 × 10 11 atoms /
A plasma exposure test was performed under severe conditions of cm 3 and ion impact energy of 88 eV. As a result, Example 1
As in the case of the above, damage by plasma under corrosive gas, particle contamination of SiF 4 and the like were prevented and suppressed, and it was confirmed that they exhibited excellent plasma corrosion resistance.

【0041】本発明は、上記実施例に限定されるもので
なく、発明の趣旨を逸脱しない範囲でいろいろの変形を
採ることができる。たとえばSiと合金を形成するC
e,Y,La,Ba,Zrなどは、2種以上を組み合わ
せた構成としてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, C which forms an alloy with Si
e, Y, La, Ba, Zr, and the like may be configured by combining two or more kinds.

【0042】[0042]

【発明の効果】請求項1及び2の発明によれば、従来の
Si単結晶製やSi多結晶製の耐プラズマ性部材に較べ
て、より耐プラズマ性の優れたSi系の耐プラズマ性部
材が提供される。すなわち、低圧・高密度の腐食性プラ
ズマに曝される領域での使用において、腐食性プラズマ
による表面の腐食が防止・抑制され、長寿命化が図られ
るだけでなく、パーティクル汚染を生じる恐れもなくな
り、高精度で、信頼性の高い加工などに適した耐プラズ
マ性部材を提供できる。
According to the first and second aspects of the present invention, a Si-based plasma-resistant member having more excellent plasma resistance than conventional plasma-resistant members made of Si single crystal or Si polycrystal. Is provided. In other words, when used in areas exposed to low-pressure, high-density corrosive plasma, corrosion of the surface due to corrosive plasma is prevented and suppressed, not only extending the life but also eliminating the possibility of particle contamination. In addition, it is possible to provide a plasma-resistant member that is suitable for high-accuracy, highly reliable processing and the like.

【0043】請求項3ないし5の発明によれば、より耐
プラズマ性が向上・改善されたSi系の耐プラズマ性部
材を歩留まりよく、かつ量産的に提供することが可能で
ある。
According to the third to fifth aspects of the present invention, it is possible to provide a Si-based plasma-resistant member having improved and improved plasma resistance with high yield and mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】プラズマエッチング装置の概略構成を示す断面
図。
FIG. 1 is a sectional view showing a schematic configuration of a plasma etching apparatus.

【図2】図1に図示したプラズマエッチング装置が具備
する平行平板形Si製電極盤の概略構成を示す断面図。
FIG. 2 is a cross-sectional view showing a schematic configuration of a parallel plate type Si electrode board provided in the plasma etching apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1……エッチング処理室 2……エッチングガス供給口 3……真空排気口 4……半導体ウエハー 5……下部電極 6,6′……上部電極 6a……貫通孔(シャワー孔) DESCRIPTION OF SYMBOLS 1 ... Etching chamber 2 ... Etching gas supply port 3 ... Vacuum exhaust port 4 ... Semiconductor wafer 5 ... Lower electrode 6,6 '... Upper electrode 6a ... Through hole (shower hole)

フロントページの続き (72)発明者 森田 敬司 千葉県東金市小沼田1573−8番地 東芝セ ラミックス株式会社東金工場内 (72)発明者 市島 雅彦 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社開発研究所内 Fターム(参考) 5F004 AA16 BA04 BB29 DA16 DA23 DB03 Continued on the front page (72) Inventor Keiji Morita 1573-8 Onumada, Togane-shi, Chiba Toshiba Ceramics Co., Ltd. Togane Plant (72) Inventor Masahiko Ichijima 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. F term in the company development laboratory (reference) 5F004 AA16 BA04 BB29 DA16 DA23 DB03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも腐食性プラズマに曝される表
面層が、Y,Ce,La,Ba及びZrの群から選んだ
1種以上の元素とSi元素とを組成分とする合金で構成
されていることを特徴とする耐プラズマ性部材。
At least a surface layer exposed to corrosive plasma is made of an alloy containing at least one element selected from the group consisting of Y, Ce, La, Ba and Zr and a Si element. A plasma-resistant member.
【請求項2】 少なくとも表面層が、CeSi,Y
Si,YSi,YSi,YSi,YSi
BaSi,BaSi,LaSi,ZrSi,Zr
Si,もしくはZrSiの組成系で示される合金
であることを特徴とする請求項1記載の耐プラズマ性部
材。
2. At least the surface layer is made of CeSi 2 , Y 5
Si 3 , Y 5 Si 4 , YSi, YSi 2 , Y 3 Si 5 ,
BaSi, BaSi 2 , LaSi 2 , Zr 4 Si, Zr
2 Si, or plasma-resistant member according to claim 1, characterized in that an alloy represented by the composition system of the Zr 5 Si 3.
【請求項3】 高温用溶融容器内に金属Siを収容し、
Y,Ce,La,BaもしくはZrとの目的とする合金
の融点以上の温度に加熱する工程と、前記加熱溶融させ
たSiにY,Ce,La,Ba及びZrの群から選んだ
少なくとも1種の金属を添加する工程と、前記溶融温度
を保持してほぼ均一な溶融系を形成した後に徐冷する工
程と、を有することを特徴とする耐プラズマ性部材の製
造方法。
3. A high-temperature melting container containing metal Si,
A step of heating the alloy with Y, Ce, La, Ba or Zr to a temperature equal to or higher than the melting point of the target alloy; and forming the heat-melted Si with at least one selected from the group consisting of Y, Ce, La, Ba and Zr. A method of manufacturing a plasma-resistant member, comprising: a step of adding a metal of step (b); and a step of forming a substantially uniform molten system while maintaining the melting temperature, and then gradually cooling.
【請求項4】 Si系基材面に溶融温度を保持したほぼ
均一な溶融系をコーティングし、Y,Ce,La,Ba
及びZrの群から選んだ1種以上の元素とSi元素とを
組成分とする合金層を形成することを特徴とする請求項
3記載の耐プラズマ性部材の製造方法。
4. An Si-based substrate surface is coated with a substantially uniform molten system while maintaining the melting temperature, and Y, Ce, La, and Ba are coated.
4. The method for producing a plasma-resistant member according to claim 3, wherein an alloy layer containing at least one element selected from the group consisting of Zr and Zr and a Si element is formed.
【請求項5】 Si系基材面に、Y,Ce,La,Ba
及びZrの群から選んだ少なくとも1種の元素からなる
金属層を密着配置する工程と、 前記金属層を密着配置したSi系基材を真空溶融炉で加
熱処理し、Si系基材面を密着配置した金属と合金化す
る工程と、を有することを特徴とする耐プラズマ性部材
の製造方法。
5. The method according to claim 5, wherein Y, Ce, La, and Ba are formed on the surface of the Si-based substrate.
And a step of closely disposing a metal layer made of at least one element selected from the group consisting of Zr and Zr. And a step of alloying with the arranged metal.
JP2001271206A 2001-03-29 2001-09-07 Plasma-resistant member and manufacturing method therefor Pending JP2002359230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271206A JP2002359230A (en) 2001-03-29 2001-09-07 Plasma-resistant member and manufacturing method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001095854 2001-03-29
JP2001-95854 2001-03-29
JP2001271206A JP2002359230A (en) 2001-03-29 2001-09-07 Plasma-resistant member and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002359230A true JP2002359230A (en) 2002-12-13

Family

ID=26612547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271206A Pending JP2002359230A (en) 2001-03-29 2001-09-07 Plasma-resistant member and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002359230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10792645B2 (en) 2015-12-25 2020-10-06 Japan Science And Technology Agency Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method

Similar Documents

Publication Publication Date Title
US7446284B2 (en) Etch resistant wafer processing apparatus and method for producing the same
JP4608159B2 (en) Corrosion resistant member of semiconductor processing apparatus and method for manufacturing the same
US20060073349A1 (en) Ceramic member and manufacturing method for the same
JPH10251871A (en) Boron carbide parts for plasma reactor
JP2004517481A (en) Element coated with carbonitride in semiconductor processing apparatus and method of manufacturing the same
JP2005343733A (en) Method for manufacturing sintered compact with built-in electrode
CN113632217A (en) Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package
JPH04131374A (en) Formation of thin film
US3339267A (en) Metallizing non-metals
US7175714B2 (en) Electrode-built-in susceptor and a manufacturing method therefor
JP4733890B2 (en) Method for forming a film containing SiO2 as a main component
US5965278A (en) Method of making cathode targets comprising silicon
JP3176219B2 (en) Electrostatic chuck
JP2005317749A (en) Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith
EP0389228B1 (en) High temperature operating element
JP2002359230A (en) Plasma-resistant member and manufacturing method therefor
KR101121364B1 (en) High Withstand Voltage Member
JPS60181269A (en) Target for sputtering
JP3784180B2 (en) Corrosion resistant material
TWI814429B (en) wafer support
JP2001164361A (en) Sputtering target cooling structure
JPH0786379A (en) Semiconductor manufacturing suscepter
WO2023223646A1 (en) Wafer support
JP3965469B2 (en) Electrostatic chuck
JP2859993B2 (en) Manufacturing method of electrostatic chuck

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711