JP2002357548A - Non-dispersive infrared absorption detecting device - Google Patents

Non-dispersive infrared absorption detecting device

Info

Publication number
JP2002357548A
JP2002357548A JP2001166062A JP2001166062A JP2002357548A JP 2002357548 A JP2002357548 A JP 2002357548A JP 2001166062 A JP2001166062 A JP 2001166062A JP 2001166062 A JP2001166062 A JP 2001166062A JP 2002357548 A JP2002357548 A JP 2002357548A
Authority
JP
Japan
Prior art keywords
cell
gas
sample
infrared absorption
detecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001166062A
Other languages
Japanese (ja)
Inventor
Masahiro Takebe
雅博 竹部
Katsuhiko Araya
克彦 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001166062A priority Critical patent/JP2002357548A/en
Publication of JP2002357548A publication Critical patent/JP2002357548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-dispersive infrared absorption detecting device capable of substantially heightening the effects of removing noise components of a conventional infrared absorption detecting device, shortening warm-up time, and improving detection sensitivity. SOLUTION: The non-dispersive infrared absorption detecting device with two cells, a sample cell 3 and a reference cell 4, is provided with a gas channel interchanger 1 for simultaneously interchanging a sample gas and a zero gas at every predetermined times and supplying them for the sample cell 3 and the reference cell 4. Therefor with differences in structure, size, fixing and wiring methods, and temperature between the sample cell and the reference cell, it is possible to substantially heighten the effects of removing the noise components of the conventional absorption detecting device and improve detection sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気ガス成分分析
などのガス成分の定量測定に用いられる、非分散型赤外
吸収検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-dispersive infrared absorption detector used for quantitative measurement of gas components such as in atmospheric gas component analysis.

【0002】[0002]

【従来の技術】従来より非分散型赤外吸収検出装置で
は、比較セルと試料セルの2個のセルを備え、比較セル
にはゼロガス(赤外線を吸収しないガス)のみを、試料
セルには試料ガスを供給し、2個のセルの出力の差分を
検出することによって試料以外の不要な信号を消去させ
る、2ビーム型の非分散型赤外吸収検出装置が用いられ
ている。試料セルと比較セルはその構造・寸法ならび
に、セル温度などのセル周囲環境が同一になるように製
作・管理されているが、製作誤差による試料セルと比較
セルの構造・寸法の差およびセル周囲環境の差などが生
ずると、出力にノイズ成分が混入し出力が不安定にな
り、検出器の感度を低下させている。なお非分散型赤外
吸収検出装置には一個のセルに試料ガス及びゼロガスを
時間的に交互に供給しそれぞれの期間の信号を分離検出
し、それらの差分を試料出力として検出する1ビーム型
装置もあるが、1ビーム型装置では試料ガスおよび比較
ガスの信号は異なる時間の信号であり、時間的な周囲環
境の変動や電子回路の特性の変動の影響が生じ、2ビー
ム型の赤外吸収検出装置より一層感度が低下する。
2. Description of the Related Art Conventionally, a non-dispersive infrared absorption detecting apparatus has two cells, a comparison cell and a sample cell. The comparison cell contains only zero gas (a gas that does not absorb infrared light) and the sample cell contains a sample. 2. Description of the Related Art A two-beam non-dispersive infrared absorption detector that supplies a gas and detects unnecessary signals other than a sample by detecting a difference between outputs from two cells is used. The sample cell and comparison cell are manufactured and controlled so that their structure and dimensions and the cell surrounding environment such as cell temperature are the same. When an environment difference occurs, a noise component is mixed in the output, the output becomes unstable, and the sensitivity of the detector is reduced. A non-dispersive infrared absorption detector is a one-beam type device that supplies a sample gas and a zero gas alternately to one cell in time, separates and detects signals in each period, and detects a difference between them as a sample output. However, in the one-beam type apparatus, the signals of the sample gas and the comparison gas are signals at different times, and are affected by temporal fluctuations in the surrounding environment and fluctuations in the characteristics of the electronic circuit. The sensitivity is lower than that of the detection device.

【0003】以下、図3によって従来から一般に普及し
ている2ビーム型の非分散型赤外吸収検出装置の構造を
説明する。入射光Lは光チョッパ2の例えば10Hz程
度の回転によって、試料セル3または比較セル4を時間
的に交互に通過する。試料ガスSGおよびゼロガスRG
はそれぞれガス入口3Cおよびガス入口4Cから試料セ
ル3および比較セル4に導かれ、それぞれ試料セル3お
よび比較セル4を通過し、試料セル3のガス出口3Dお
よび比較セル4のガス出口4Dから装置外部へ排出され
る。試料セル3および比較セル4を透過した光は検出器
5で検出される。光チョッパ2の一回転毎に順次、試料
セル3および比較セル4の信号が繰り返し得られるの
で、これらの信号は信号処理回路6の電子回路によって
分離され、試料セル3のみの信号出力と比較セル4のみ
の信号出力として以後の信号処理に必要な期間蓄積され
る。
The structure of a conventional two-beam non-dispersion type infrared absorption detector which has been widely used will be described below with reference to FIG. The incident light L passes through the sample cell 3 or the comparison cell 4 alternately with time by the rotation of the optical chopper 2 at, for example, about 10 Hz. Sample gas SG and zero gas RG
Are guided from the gas inlet 3C and the gas inlet 4C to the sample cell 3 and the comparison cell 4, respectively, pass through the sample cell 3 and the comparison cell 4, respectively, and are passed through the gas outlet 3D of the sample cell 3 and the gas outlet 4D of the comparison cell 4 respectively. It is discharged outside. Light transmitted through the sample cell 3 and the comparison cell 4 is detected by the detector 5. Since the signals of the sample cell 3 and the comparison cell 4 are repeatedly obtained sequentially for each rotation of the optical chopper 2, these signals are separated by the electronic circuit of the signal processing circuit 6, and the signal output of only the sample cell 3 and the comparison cell Only four signal outputs are accumulated for a period necessary for subsequent signal processing.

【0004】試料セル3のみの信号出力には、たとえば
電源電圧・周囲温度・検出器5の特性の時間的な変動な
どに起因するノイズ成分が含まれているので、さらに信
号処理回路6内での演算によって試料セル3のみの信号
出力と比較セル4のみの信号出力の差を求め、これを真
の試料出力とすることにより、前記のノイズ成分の影響
を軽減することが行われている。
Since the signal output of only the sample cell 3 contains noise components due to, for example, power supply voltage, ambient temperature, and temporal variations in the characteristics of the detector 5, the signal output from the signal processing circuit 6 is further increased. By calculating the difference between the signal output of the sample cell 3 only and the signal output of the comparison cell 4 only, and using this as a true sample output, the influence of the noise component is reduced.

【0005】[0005]

【発明が解決しようとする課題】従来の非分散型赤外吸
収検出装置の構造は以上のとおりであるが、従来の技術
では、試料セル3と比較セル4の構造・寸法の差や試料
セル3と比較セル4の温度差などが存在すると、前記ノ
イズ成分の除去の効果を損なうため、製作精度の向上や
高安定度の恒温槽の使用などが必要であり、装置の重量
・寸法の増大、製作コストの増大を招いていた。また製
作精度の向上や恒温槽の使用などを行っても、試料セル
3と比較セル4は本質的に別個に製作され別位置におか
れ、別個に固定・配線されているため、暖気運転時を含
め、同一特性の確保には限界があった。
The structure of the conventional non-dispersion type infrared absorption detector is as described above. However, in the prior art, the difference in structure and dimensions between the sample cell 3 and the comparison cell 4 and the sample cell If there is a temperature difference between the reference cell 3 and the comparison cell 4, the effect of removing the noise component is impaired. Therefore, it is necessary to improve the manufacturing accuracy and use a high-stability thermostat, and increase the weight and size of the apparatus. , Leading to an increase in manufacturing costs. Even if the production accuracy is improved or a thermostatic chamber is used, the sample cell 3 and the comparison cell 4 are essentially manufactured separately, placed at different positions, and fixed and wired separately. However, there was a limit in securing the same characteristics.

【0006】本発明はこのような問題点を解決する非分
散型赤外吸収検出装置を提供せんとするものである。
An object of the present invention is to provide a non-dispersive infrared absorption detecting device which solves such a problem.

【0007】[0007]

【課題を解決するための手段】本発明が提供する非分散
型赤外吸収検出装置は、上記の課題を解決するために、
試料セルと比較セルのガス入口の前段に、定められた時
間毎に試料ガスおよびゼロガスを交互にかつ同時に交換
して試料セルと比較セルに供給するためのガス流路交換
器を設け、ガス流路を繰り返し交換するようにしたもの
である。この発明により、試料セルは一定の期間比較セ
ルとしても使用され、比較セルは一定の期間試料セルと
しても使用される。
The non-dispersive infrared absorption detecting device provided by the present invention is intended to solve the above-mentioned problems.
A gas flow exchanger is provided in front of the gas inlets of the sample cell and the comparison cell for alternately and simultaneously exchanging the sample gas and the zero gas at predetermined time intervals and supplying the gas to the sample cell and the comparison cell. The road is changed repeatedly. According to the present invention, the sample cell is also used as a comparison cell for a certain period, and the comparison cell is also used as a sample cell for a certain period.

【0008】[0008]

【発明の実施の形態】図1は本発明が提供する非分散型
赤外吸収検出装置の構成を示す図、図2はガス流路交換
器1の具体的な構造の一実施例を示す図である。なお、
図1および図2において、図3に示す符号と同一の符号
で示される部品は図3に示す部品と同一であり、これら
の機能についての詳細な説明は省略する。
FIG. 1 is a diagram showing a configuration of a non-dispersion type infrared absorption detector provided by the present invention, and FIG. 2 is a diagram showing an embodiment of a specific structure of a gas flow exchanger 1. It is. In addition,
1 and 2, components denoted by the same reference numerals as those shown in FIG. 3 are the same as the components shown in FIG. 3, and a detailed description of these functions will be omitted.

【0009】まず図2によってガス流路交換器1の構成
を説明する。ガス流路交換器1には試料ガス導入口11
とゼロガス導入口15があり、それぞれに試料ガスSG
とゼロガスRGが供給される。さらにこのガス流路交換
器1には試料セル接続口12と比較セル接続口16が設
置されており、それぞれ図1(a)に示すように試料セ
ル3のガス入口3Aと比較セル4のガス入口4Aに接続
されている。図2において交換器本体13にはガス通過
用の通路2個を有する回転バルブ14が滑合により回転
可能な状態で取り付けられている。この2個の通路の開
口端は回転バルブ14の外周に等間隔ごとに設けられて
いる。したがって図2は試料ガスSGが試料セル接続口
12に、ゼロガスRGが比較セル接続口16に接続され
ている状態を示しているが、回転バルブ14を90度回
転させた場合は、試料ガスSGが比較セル接続口16
に、ゼロガスRGが試料セル接続口12に接続される。
First, the configuration of the gas flow exchanger 1 will be described with reference to FIG. The gas flow exchanger 1 has a sample gas inlet 11.
And a zero gas inlet 15, each of which has a sample gas SG
And the zero gas RG are supplied. Further, the gas channel exchanger 1 is provided with a sample cell connection port 12 and a comparison cell connection port 16, and as shown in FIG. 1A, the gas inlet 3A of the sample cell 3 and the gas It is connected to the inlet 4A. In FIG. 2, a rotary valve 14 having two gas passages is attached to the exchanger body 13 so as to be rotatable by sliding. The open ends of the two passages are provided at equal intervals on the outer periphery of the rotary valve 14. Therefore, FIG. 2 shows a state in which the sample gas SG is connected to the sample cell connection port 12 and the zero gas RG is connected to the comparison cell connection port 16. However, when the rotary valve 14 is rotated by 90 degrees, the sample gas SG is turned off. Is the comparison cell connection port 16
Next, the zero gas RG is connected to the sample cell connection port 12.

【0010】以上の構成により回転バルブ14を定めら
れた時間毎に順次、90度づつ回転させ再び定められた
時間停止させることにより、試料ガスSGは順次試料セ
ル接続口12と比較セル接続口16に供給される。また
ゼロガスRGは順次試料ガスSGと逆の接続口、すなわ
ち比較セル接続口16と試料セル接続口12に供給され
る。この構成により、ガス入口3Aおよびガス入口4A
への供給ガスは図1(b)に示すように、定められた時
間毎に交換されて供給される。試料セル3および比較セ
ル4を通過したガスは図1(a)のガス出口3Bおよび
ガス出口4Bから装置外部へ排出される。
By rotating the rotary valve 14 by 90 degrees at predetermined intervals and stopping again for the predetermined interval, the sample gas SG is sequentially supplied to the sample cell connection port 12 and the comparison cell connection port 16. Supplied to Further, the zero gas RG is sequentially supplied to the connection port opposite to the sample gas SG, that is, the comparison cell connection port 16 and the sample cell connection port 12. With this configuration, the gas inlet 3A and the gas inlet 4A
As shown in FIG. 1 (b), the supply gas to is supplied after being exchanged every predetermined time. The gas that has passed through the sample cell 3 and the comparison cell 4 is discharged from the gas outlet 3B and the gas outlet 4B of FIG.

【0011】試料セル3および比較セル4からの信号は
信号処理回路6Nの電子回路によって分離され、以後の
信号処理に必要な期間蓄積される。信号処理回路6Nは
試料セル3に試料ガスSGが通過している期間は試料セ
ル3の信号を試料ガスSGの信号出力として蓄積し、比
較セル4に試料ガスSGが通過している期間は比較セル
4の信号を試料ガスSGの信号出力として蓄積するよう
に構成する。また試料セル3にゼロガスRGが通過して
いる期間は試料セル3の信号をゼロガスRGの信号出力
として蓄積し、比較セル4にゼロガスRGが通過してい
る期間は比較セル4の信号をゼロガスRGの信号出力と
して蓄積する。この試料ガスSGの信号出力とゼロガス
RGの信号出力の差を演算し、真の試料出力とする。
The signals from the sample cell 3 and the comparison cell 4 are separated by the electronic circuit of the signal processing circuit 6N and stored for a period required for the subsequent signal processing. The signal processing circuit 6N accumulates the signal of the sample cell 3 as a signal output of the sample gas SG during a period when the sample gas SG passes through the sample cell 3, and compares the signal during a period when the sample gas SG passes through the comparison cell 4. The signal of the cell 4 is stored as a signal output of the sample gas SG. During the period when the zero gas RG passes through the sample cell 3, the signal of the sample cell 3 is accumulated as the signal output of the zero gas RG, and during the period when the zero gas RG passes through the comparison cell 4, the signal of the comparison cell 4 is stored as the zero gas RG. And accumulate it as a signal output. The difference between the signal output of the sample gas SG and the signal output of the zero gas RG is calculated to obtain a true sample output.

【0012】前記の定められた時間は、光チョッパ2の
回転周期よりはるかに長い時間、例えば数秒以上に設定
すれば良い。したがって回転バルブ14の駆動回路の設
計・製作および、信号処理回路6Nの回転バルブ14と
の同期作動回路の設計・製作には特別な高速動作技術は
要求されない。
The predetermined time may be set to a time much longer than the rotation cycle of the optical chopper 2, for example, several seconds or more. Therefore, no special high-speed operation technology is required for the design and manufacture of the drive circuit of the rotary valve 14 and the design and manufacture of the synchronous operation circuit with the rotary valve 14 of the signal processing circuit 6N.

【0013】図2にはガス流路交換器1の具体的な構造
の一例が示されているが、ガス流路交換器1の構造は、
定められた時間毎に試料ガスおよびゼロガスを同時に交
換して試料セル3と比較セル4に供給するという目的に
沿うものであれば、図2の構造に限定されるものではな
い。また光チョッパ2および回転バルブ14の具体的な
回転周期の一例を挙げたが、本発明はこの値に限定され
るものではない。
FIG. 2 shows an example of a specific structure of the gas flow path exchanger 1. The structure of the gas flow path exchanger 1 is as follows.
The structure is not limited to the structure shown in FIG. 2 as long as it meets the purpose of simultaneously exchanging the sample gas and the zero gas every predetermined time and supplying them to the sample cell 3 and the comparison cell 4. Also, an example of a specific rotation cycle of the optical chopper 2 and the rotary valve 14 has been described, but the present invention is not limited to this value.

【0014】[0014]

【発明の効果】本発明は以上詳述したとおりであるか
ら、試料セルと比較セルの構造・寸法の差、固定・配線
方法の差、温度差などがあっても、従来の赤外吸収検出
装置のノイズ成分の除去の効果を一段と高めて検出感度
を向上させることができるので、セル、恒温槽などの設
計が簡単化され、暖気時間も短縮される。
The present invention has been described in detail above. Therefore, even if there is a difference in the structure and dimensions of the sample cell and the comparison cell, a difference in the fixing / wiring method, a temperature difference, etc., the conventional infrared absorption detection is performed. Since the effect of removing the noise component of the apparatus can be further enhanced and the detection sensitivity can be improved, the design of the cell, the constant temperature bath and the like can be simplified, and the warm-up time can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による非分散型赤外吸収検出装置を示
す図である。(a)は装置の構造を示す斜視図、(b)
は供給ガスの時間的交換状況を示す図である。
FIG. 1 is a diagram showing a non-dispersion type infrared absorption detection device according to the present invention. (A) is a perspective view showing the structure of the device, (b)
FIG. 4 is a diagram showing a state of temporal replacement of supply gas.

【図2】 本発明による非分散型赤外吸収検出装置のガ
ス流路交換器の一例を示す断面図である。
FIG. 2 is a cross-sectional view showing an example of a gas flow exchanger of the non-dispersive infrared absorption detection device according to the present invention.

【図3】 従来技術における非分散型赤外吸収検出装置
の構造を示す斜視図である。
FIG. 3 is a perspective view showing the structure of a non-dispersive infrared absorption detection device according to the related art.

【符号の説明】[Explanation of symbols]

1…ガス流路交換器 2…光チョッパ 3…試料セル 4…比較セル 13…交換器本体 14…回転バルブ SG…試料ガス RG…ゼロガス DESCRIPTION OF SYMBOLS 1 ... Gas flow exchanger 2 ... Optical chopper 3 ... Sample cell 4 ... Comparison cell 13 ... Exchanger body 14 ... Rotary valve SG ... Sample gas RG ... Zero gas

フロントページの続き Fターム(参考) 2G052 AA01 AD42 CA04 CA35 GA12 HC10 2G059 AA01 BB02 EE01 FF08 HH01 JJ24 Continued on the front page F-term (reference) 2G052 AA01 AD42 CA04 CA35 GA12 HC10 2G059 AA01 BB02 EE01 FF08 HH01 JJ24

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料セルと比較セルの2個のセルを有し、
試料セルに試料ガスを供給して検出するようにした非分
散型赤外吸収検出装置において、定められた時間毎に試
料ガスおよびゼロガスを同時に交換して試料セルと比較
セルに繰り返し供給することを特徴とする非分散型赤外
吸収検出装置。
1. A cell having two cells, a sample cell and a comparison cell,
In a non-dispersive infrared absorption detector that detects and supplies a sample gas to a sample cell, it is necessary to simultaneously exchange the sample gas and zero gas at predetermined time intervals and repeatedly supply the sample cell and the comparison cell. Characteristic non-dispersive infrared absorption detector.
JP2001166062A 2001-06-01 2001-06-01 Non-dispersive infrared absorption detecting device Pending JP2002357548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001166062A JP2002357548A (en) 2001-06-01 2001-06-01 Non-dispersive infrared absorption detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001166062A JP2002357548A (en) 2001-06-01 2001-06-01 Non-dispersive infrared absorption detecting device

Publications (1)

Publication Number Publication Date
JP2002357548A true JP2002357548A (en) 2002-12-13

Family

ID=19008648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001166062A Pending JP2002357548A (en) 2001-06-01 2001-06-01 Non-dispersive infrared absorption detecting device

Country Status (1)

Country Link
JP (1) JP2002357548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535372B2 (en) 2003-12-31 2009-05-19 Zhaolei Wang Method for measuring the operating state of a synchronous motor using composite power angle meter
CN102230886A (en) * 2011-04-12 2011-11-02 西安交通大学 Spectrometer air chamber switching apparatus used in on-line spectrometric analysis of gas
JP2017053718A (en) * 2015-09-09 2017-03-16 富士電機株式会社 Particle composition analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535372B2 (en) 2003-12-31 2009-05-19 Zhaolei Wang Method for measuring the operating state of a synchronous motor using composite power angle meter
CN102230886A (en) * 2011-04-12 2011-11-02 西安交通大学 Spectrometer air chamber switching apparatus used in on-line spectrometric analysis of gas
JP2017053718A (en) * 2015-09-09 2017-03-16 富士電機株式会社 Particle composition analyzer

Similar Documents

Publication Publication Date Title
US8765475B2 (en) Colorimetric absorbance measurement method, apparatus and system
US20180286643A1 (en) Advanced optical sensor, system, and methodologies for etch processing monitoring
SE468782B (en) gas analyzer
JPH08327545A (en) Infrared gas analyzer
JPH07151684A (en) Infrared ray type gas analyzer
JP2002286638A (en) Isotopic gas measuring device
JPH08233659A (en) Spectrophotometer
JP2002357548A (en) Non-dispersive infrared absorption detecting device
JP2007093492A (en) Differential refractive index detector and its adjusting method
JPH1082740A (en) Infrared gas analyzer
JP2007064632A (en) Spectrophotometer
JP2001324446A (en) Apparatus for measuring isotope gas
CN206959989U (en) A kind of visible spectrophotometer based on STM32
CA1080000A (en) Detector for use in infrared gas analyzer
JPH01189547A (en) Absorptiometric sensor
JP3266748B2 (en) Infrared gas analyzer
JPH08122246A (en) Spectral analyzer
JP4793413B2 (en) Differential refractive index detector
JPH1048135A (en) Infrared gas analyzer
KR102674160B1 (en) Normal incidence in situ process monitor sensor
JP3918740B2 (en) Infrared gas analyzer
JP3941661B2 (en) Infrared gas analyzer
KR820000284B1 (en) Light a detector for infrared gas analysis meter
JPH08159968A (en) Analyzer
JPH06308020A (en) Sample cell