JP2002356163A - Wheel load difference reducing method - Google Patents

Wheel load difference reducing method

Info

Publication number
JP2002356163A
JP2002356163A JP2001163484A JP2001163484A JP2002356163A JP 2002356163 A JP2002356163 A JP 2002356163A JP 2001163484 A JP2001163484 A JP 2001163484A JP 2001163484 A JP2001163484 A JP 2001163484A JP 2002356163 A JP2002356163 A JP 2002356163A
Authority
JP
Japan
Prior art keywords
air spring
air
height
difference
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001163484A
Other languages
Japanese (ja)
Other versions
JP3760797B2 (en
Inventor
Hisashi Negoro
尚志 根来
Osamu Goto
修 後藤
Toshiaki Matsui
敏明 松井
Machi Nakada
摩智 仲田
Yoshiyuki Shimokawa
嘉之 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001163484A priority Critical patent/JP3760797B2/en
Publication of JP2002356163A publication Critical patent/JP2002356163A/en
Application granted granted Critical
Publication of JP3760797B2 publication Critical patent/JP3760797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wheel load difference reducing method which can reduce the wheel load difference between right and left when torsion is generated in a car body rigid body and even when eccentricity is generated. SOLUTION: A first air spring 1A is made to communicate with a second air spring 2A, an air spring height concerning a second to a fourth air springs 2A to 4A is adjusted by automatic height adjusting mechanisms 2M to 4M to a reference height, and a difference between the air spring height concerning the first air spring 1A and the reference height is acquired. Similarly, a third air spring 3A is made to communicate with the fourth air spring 4A, the air spring height concerning the first to the third air springs 1A to 3A is adjusted to the reference height by the automatic height adjusting mechanisms 1M to 3M, and a difference between the air spring height concerning the fourth air spring 4A and the reference height is acquired. An average value of the acquired two differences is calculated to adjust the height of the air spring based on the calculated average value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、前台車及び後台車
上の左右それぞれに、第1乃至第4の空気ばねを介在さ
せて車体剛体を載置してある鉄道車両の輪重差を、前記
台車及び前記車体剛体間の空気ばね高さに応じて前記空
気ばねに給排気を行う自動高さ調整機構を使用して低減
する輪重差低減方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a railway vehicle having a rigid body mounted on a front bogie and a rear bogie with a first to fourth air springs interposed therebetween. The present invention relates to a method for reducing a difference in wheel load using an automatic height adjustment mechanism for supplying and exhausting air to and from the air spring according to the height of the air spring between the bogie and the rigid body.

【0002】[0002]

【従来の技術】近年、鉄道車両においては、より安定し
た走行が可能となるよう開発が進められている。空気ば
ねを有する鉄道車両においては、静止状態における鉄道
車両の左右の輪重差が大きくなるに従い、走行安定性が
悪化する。走行安定性に悪影響を与える原因となる輪重
差は、車両各部に要因があるがその中でも特に車体剛体
のねじれ及び偏心が大きな要因となっている。
2. Description of the Related Art In recent years, railway vehicles have been developed to enable more stable traveling. In a railway vehicle having an air spring, the running stability deteriorates as the difference between the right and left wheel loads of the railway vehicle in a stationary state increases. The difference in wheel weight, which has a bad influence on the running stability, depends on each part of the vehicle, but the torsion and eccentricity of the rigid body of the vehicle are the major factors.

【0003】車体剛体のねじれ及び偏心を除去するため
には、車体剛体のねじれ及び偏心を完全になくすか、台
車と車体剛体との間にライナー(シム)を挿入する、ま
たは空気ばねへ適量の圧縮空気を給排気することにより
擬似的にねじれをなくす方法が考えられる。しかし、鉄
道車両の様な大型構造物をねじれ又は偏心なしに製作す
ることは困難であることから、ライナーを挿入する方法
等が一般的に用いられている。
In order to remove the twist and eccentricity of the rigid body, the twist and eccentricity of the rigid body are completely eliminated, a liner (shim) is inserted between the bogie and the rigid body, or an appropriate amount of air is applied to the air spring. A method of pseudo-twisting by supplying and discharging compressed air is conceivable. However, since it is difficult to manufacture a large structure such as a railway vehicle without twisting or eccentricity, a method of inserting a liner or the like is generally used.

【0004】従来、空気ばねに設けられる自動高さ調整
機構を使用して、輪重差を低減する装置として特開20
00−344099公報が開示されている。図8は従来
の輪重差低減方法を示す模式図である。図8に示すよう
に前台車F及び後台車Rの左右それぞれには、図示しな
い車体剛体の間に空気ばね1A〜4A(以下場合により
Aで代表する)が設けられている。各空気ばねAには自
動高さ調整機構1M〜4M(2Mおよび4Mは図示せ
ず)がそれぞれ設けられており、前台車Fまたは後台車
Rと車体剛体との間の高さ(以下、空気ばね高さとい
う)に応じて各空気ばねAに圧縮空気を給排気する。
Conventionally, as an apparatus for reducing a difference in wheel load by using an automatic height adjusting mechanism provided in an air spring, Japanese Patent Laid-Open No. 20-210
No. 00-344099 is disclosed. Figure 8 is a schematic diagram showing a conventional wheel load difference reducing method. As shown in FIG. 8, air springs 1 </ b> A to 4 </ b> A (hereinafter sometimes represented by A) are provided between the rigid bodies (not shown) on the left and right sides of the front bogie F and the rear bogie R, respectively. Each of the air springs A is provided with an automatic height adjustment mechanism 1M to 4M (2M and 4M are not shown), and the height between the front bogie F or the rear bogie R and the rigid body (hereinafter referred to as air). The compressed air is supplied to and exhausted from each air spring A according to the spring height.

【0005】以下に自動高さ調整機構1Mの動作につい
て説明する。自動高さ調整機構1Mは、前台車F上にそ
の一端が立設される支持柱1MVと、支持柱1MVの他
端と回転可能に連結される水平レバー1MHとにより構
成され、空気ばね1Aが上昇した場合、すなわち水平レ
バー1MHが支持柱1MVとの接合部を中心に上昇した
場合は、空気ばね1Aの図示しない排気口から圧縮空気
を排気して、高さを機械的に低下させるよう構成されて
いる。一方、空気ばね1Aが下降した場合、すなわち水
平レバー1MHが支持柱1MVとの接合部を中心に下降
した場合は、図示しない空気だめから圧縮空気を給気し
て空気ばね1Aの高さを機械的に上昇させるよう構成さ
れている。なお、自動高さ調整機構は上述した構成の
他、空気ばねの高さを検出する高さセンサ(図示せず)
からの出力が、予め定めた基準高さとなるようフィード
バック制御、つまり各空気ばねに圧縮空気を適宜給排気
することにより、自動的に高さを調整する構成も存在す
る。
[0005] The operation of the automatic height adjusting mechanism 1M explained below. The automatic height adjustment mechanism 1M includes a support column 1MV, one end of which is erected on the front bogie F, and a horizontal lever 1MH rotatably connected to the other end of the support column 1MV. When it rises, that is, when the horizontal lever 1MH rises around the joint with the support column 1MV, compressed air is exhausted from an exhaust port (not shown) of the air spring 1A to lower the height mechanically. It is. On the other hand, when the air spring 1A is lowered, that is, when the horizontal lever 1MH is lowered around the joint with the support column 1MV, compressed air is supplied from an air reservoir (not shown) to adjust the height of the air spring 1A to mechanical. It is configured to be ascended. The automatic height adjustment mechanism has a height sensor (not shown) for detecting the height of the air spring in addition to the above-described configuration.
There is also a configuration in which the height is automatically adjusted by feedback control, that is, by appropriately supplying / exhausting compressed air to / from each air spring, so that the output from the controller becomes a predetermined reference height.

【0006】従来の輪重差低減方法では、以上の構成に
加え前台車Fの空気ばね1A及び2Aを連通する配管P
が設けられており、配管Pにより各空気ばね1A及び2
A内の圧縮空気が自由に行き来できるよう構成されてい
る。また配管Pの適宜の位置に、圧縮空気の自由な移動
を制限するための開閉弁Vが設けられている。なお、同
様に後台車Rにも配管P及び開閉弁Vが設けられてい
る。
In the conventional wheel load difference reducing method, in addition to the above-described structure, a pipe P communicating the air springs 1A and 2A of the front bogie F is provided.
They are provided, each of the air springs 1A by a pipe P and 2
Compressed air in A is configured for traversing freely. An opening / closing valve V for restricting free movement of the compressed air is provided at an appropriate position of the pipe P. Note that a pipe P and an on-off valve V are also provided on the rear bogie R.

【0007】以上のような構成において、輪重差を低減
する調整を行う場合は、まず空気ばね1Aの自動高さ調
整機構1Mの支持柱1MVを取り外す。そして開閉弁V
を開いて空気ばね1Aと2Aとを連通する。この場合、
後台車Rの自動高さ調整機構3M、4M、前台車Fの自
動高さ調整機構2Mが動作し、空気ばね2A〜4Aの空
気ばね高さが予め定められた基準高さに変化する。その
後、開閉弁Vを閉じ、空気ばね高さが基準高さとなるよ
うに支持柱1MV〜4MVの長さを調整する。このよう
にして製作公差による車体剛体のねじりを吸収して左右
の輪重差を少なくすることとしていた。
In the above-described configuration, when performing an adjustment for reducing the wheel load difference, first, the support column 1MV of the automatic height adjusting mechanism 1M of the air spring 1A is removed. And the opening and closing valve V
The communicating the air spring 1A and 2A open. in this case,
The automatic height adjusting mechanisms 3M and 4M of the rear bogie R and the automatic height adjusting mechanism 2M of the front bogie F operate, and the air spring heights of the air springs 2A to 4A change to a predetermined reference height. Then, the on-off valve V is closed, and the length of the support columns 1MV to 4MV is adjusted so that the air spring height becomes the reference height. In this way, the torsion of the rigid body due to manufacturing tolerances is absorbed to reduce the difference between the left and right wheel loads.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開2
000−344099公報に開示された輪重差低減方法
は、車体剛体にねじれのみが生じている場合は、特に問
題は発生しないが、車体剛体に偏心が生じている場合
は、左右の輪重差が発生し、走行安定性に悪影響を与え
ることとなっていた。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
The wheel load difference reduction method disclosed in Japanese Patent Application Publication No. 000-344099 does not cause any particular problem when only a rigid body is twisted. There occurred, it had become a adversely affect the running stability.

【0009】また、自動高さ調整機構は水平レバーが多
少上下しても動作しないよう一定の不感帯(遊び)が存
在する。この不感帯は自動高さ調整機構毎に異なるにも
拘わらず、従来は特に不感帯の影響を考慮していなかっ
たため、輪重差が十分に低減されてなかった。
Further, the automatic height adjustment mechanism has a certain dead zone (play) so that it does not operate even if the horizontal lever is slightly moved up and down. In spite of the fact that the dead zone differs for each automatic height adjustment mechanism, the influence of the dead zone has not been taken into account in the past, so that the wheel load difference has not been sufficiently reduced.

【0010】本発明は斯かる事情に鑑みてなされたもの
であり、その目的とするところは、前台車及び後台車そ
れぞれで調整した結果の平均値を用いることにより、車
体剛体にねじれが発生している場合の他、偏心が生じて
いる場合でも正確に、左右の輪重差を低減することが可
能な輪重差低減方法を提供することにある。
The present invention has been made in view of such circumstances, and an object of the present invention is to generate a twist in a rigid body of a vehicle body by using an average value of the results adjusted in each of a front bogie and a rear bogie. Another object of the present invention is to provide a wheel load difference reducing method capable of accurately reducing the right and left wheel load differences even when eccentricity occurs, in addition to the case where eccentricity occurs.

【0011】さらに、本発明の他の目的は、自動高さ調
整機構固有に存在する不感帯を考慮することにより、さ
らに的確に輪重差を低減することが可能な輪重差低減方
法を提供することにある。
Still another object of the present invention is to provide a wheel load difference reducing method capable of more accurately reducing a wheel load difference by considering a dead zone inherent to the automatic height adjustment mechanism. lies in the fact.

【0012】[0012]

【課題を解決するための手段】第1発明に係る輪重差低
減方法は、前台車及び後台車上の左右それぞれに、第1
乃至第4の空気ばねを介在させて車体剛体を載置してあ
る鉄道車両の輪重差を、前記台車及び前記車体剛体間の
空気ばね高さに応じて前記空気ばねに給排気を行う自動
高さ調整機構を使用して低減する輪重差低減方法におい
て、第1の空気ばね及び第2の空気ばねの間を連通し
て、第2乃至第4の空気ばねに設けられる自動高さ調整
機構により、前記第2乃至第4の空気ばねに係る空気ば
ね高さを予め定められた基準高さに調整し、前記第1の
空気ばねに係る空気ばね高さと前記基準高さとの差を求
め、第3の空気ばね及び第4の空気ばねの間を連通し
て、第1乃至第3の空気ばねに設けられる自動高さ調整
機構により、前記第1乃至第3の空気ばねに係る空気ば
ね高さを予め定められた基準高さに調整し、前記第4の
空気ばねに係る空気ばね高さと前記基準高さとの差を求
め、求めた2つの差の平均値を算出し、算出した平均値
に基づいて空気ばねの高さを調整することを特徴とす
る。
According to a first aspect of the present invention, there is provided a method for reducing a difference in wheel load between a front bogie and a rear bogie.
To automatically supply and exhaust air to / from the air spring according to the height of the air spring between the bogie and the vehicle body rigid body, based on the wheel load difference of the railway vehicle on which the vehicle body rigid body is mounted with the fourth to fourth air springs interposed. In a method for reducing a wheel load difference using a height adjustment mechanism, an automatic height adjustment provided in the second to fourth air springs is provided by communicating between the first air spring and the second air spring. The mechanism adjusts the air spring heights of the second to fourth air springs to a predetermined reference height, and calculates a difference between the air spring height of the first air spring and the reference height. The air springs according to the first to third air springs are communicated between the third air spring and the fourth air spring by an automatic height adjusting mechanism provided in the first to third air springs. The height is adjusted to a predetermined reference height, and the airbag according to the fourth air spring is adjusted. Obtains the difference between the height and the reference height, and calculates the average value of the two differences obtained, and adjusting the height of the air spring based on the calculated average value.

【0013】第1発明にあっては、従来と同じく、第1
の空気ばねの支持柱を取り外し、第1の空気ばね及び第
2の空気ばねの間を連通する。そして、第2乃至第4の
空気ばねに設けられる自動高さ調整機構を作動させて、
第2乃至第4の空気ばねに係る空気ばね高さを予め定め
られた基準高さに調整する。次いで、第1の空気ばねに
係る空気ばね高さと基準高さとの差を求めておく。
[0013] In the first invention, the conventional and well, first
The support column of the air spring is removed, and communication between the first air spring and the second air spring is performed. Then, by operating the automatic height adjustment mechanism provided in the second to fourth air springs,
The air spring heights of the second to fourth air springs are adjusted to a predetermined reference height. Next, the difference between the air spring height of the first air spring and the reference height is determined.

【0014】本発明ではさらに、この後、第4の空気ば
ねの支持柱を取り外し、第3の空気ばね及び第4の空気
ばねの間をも連通する。そして、第1乃至第3の空気ば
ねに設けられる自動高さ調整機構を作動させて、第1乃
至第3の空気ばねに係る空気ばね高さを予め定められた
基準高さに調整する。次いで、第4の空気ばねに係る空
気ばね高さと基準高さとの差を求める。そして求めた2
つの差の平均値を算出し、算出した平均値に基づいて空
気ばねの高さを調整するようにした。つまり前台車及び
後台車のそれぞれで求めた調整値の平均値に基づき調整
するようにしたので、車体剛体にねじれが発生している
場合はもちろん、偏心が生じている場合でも、従来と比
較して大幅に左右の輪重差を低減することが可能とな
る。
Further, in the present invention, after that, the support column of the fourth air spring is removed, and the communication between the third air spring and the fourth air spring is established. Then, the automatic height adjusting mechanism provided on the first to third air springs is operated to adjust the air spring heights of the first to third air springs to a predetermined reference height. Next, the difference between the air spring height of the fourth air spring and the reference height is determined. And obtained 2
An average value of the two differences was calculated, and the height of the air spring was adjusted based on the calculated average value. In other words, since the adjustment is made based on the average value of the adjustment values obtained for the front bogie and the rear bogie respectively, even if the rigid body is twisted or eccentric, it can be compared with the conventional one. it is possible to significantly reduce the left and right wheel load difference Te.

【0015】第2発明に係る輪重差低減方法は、前台車
及び後台車上の左右それぞれに、第1乃至第4の空気ば
ねを介在させて車体剛体を載置してある鉄道車両の輪重
差を、前記台車及び前記車体剛体間の空気ばね高さに応
じて前記空気ばねに給排気を行う自動高さ調整機構を使
用して低減する輪重差低減方法において、第1の空気ば
ね及び第2の空気ばねの間を連通して、第2乃至第4の
空気ばねに設けられる自動高さ調整機構により、前記第
2乃至第4の空気ばねに係る空気ばね高さを調整した状
態で、対角位置にそれぞれ設けられる空気ばねの空気ば
ね高さの合計値から、他の対角位置にそれぞれ設けられ
る空気ばねの空気ばね高さの合計値を減じて差を求め、
第3の空気ばね及び第4の空気ばねの間を連通して、第
1乃至第3の空気ばねに設けられる自動高さ調整機構に
より、前記第1乃至第3の空気ばねに係る空気ばね高さ
を予め定められた基準高さに調整した状態で、対角位置
にそれぞれ設けられる空気ばねの空気ばね高さの合計値
から、他の対角位置にそれぞれ設けられる空気ばねの空
気ばね高さの合計値を減じて差を求め、求めた2つの差
の平均値を算出し、算出した平均値に基づいて空気ばね
の高さを調整することを特徴とする。
According to a second aspect of the present invention, there is provided a wheel load difference reducing method for a railway vehicle having a vehicle body rigid body mounted on first and fourth air springs on left and right sides of a front bogie and a rear bogie, respectively. A method for reducing a difference in weight using an automatic height adjustment mechanism that supplies and exhausts air to and from the air spring in accordance with the height of the air spring between the bogie and the rigid body of the vehicle, comprising: And a state in which the heights of the air springs of the second to fourth air springs are adjusted by an automatic height adjustment mechanism provided in the second to fourth air springs by communicating between the second and fourth air springs. Then, from the total value of the air spring heights of the air springs provided at each of the diagonal positions, the difference is obtained by subtracting the total value of the air spring heights of the air springs provided at the other diagonal positions,
An automatic height adjustment mechanism provided in the first to third air springs communicates between the third air spring and the fourth air spring, and the air spring height of the first to third air springs is increased. The air spring heights of the air springs provided at the other diagonal positions are calculated from the total value of the air spring heights of the air springs provided at the diagonal positions in a state where the height of the air springs is adjusted at a predetermined reference height. , The difference is obtained by subtracting the sum of the two, the average value of the two obtained differences is calculated, and the height of the air spring is adjusted based on the calculated average value.

【0016】第2発明にあっては、第1発明と同様に、
第1の空気ばねの支持柱を取り外し、第1の空気ばね及
び第2の空気ばねの間を連通する。そして、第2乃至第
4の空気ばねに設けられる自動高さ調整機構により、第
2乃至第4の空気ばねに係る空気ばね高さを調整した状
態で、対角位置にそれぞれ設けられる空気ばねの空気ば
ね高さの合計値から、他の対角位置にそれぞれ設けられ
る空気ばねの空気ばね高さの合計値を減じて差を求め
る。例えば、対角位置に設けられる第1及び第の空気
ばね高さの合計値から、他の対角位置に設けられる第2
及び第の空気ばね高さの合計値を減じその値を求めて
おく。
[0016] In the second aspect, as in the first invention,
The support column of the first air spring is removed, and communication between the first air spring and the second air spring is performed. Then, in a state where the heights of the air springs of the second to fourth air springs are adjusted by the automatic height adjustment mechanisms provided to the second to fourth air springs, the air springs provided at the diagonal positions are adjusted. The difference is obtained by subtracting the total value of the air spring heights of the air springs provided at the other diagonal positions from the total value of the air spring heights. For example, from the sum of the heights of the first and fourth air springs provided at the diagonal positions, the second
And the total value of the third air spring heights is subtracted to obtain the value.

【0017】同様に、第4の空気ばねの支持柱を取り外
し、第3の空気ばね及び第4の空気ばねの間を連通し
て、第1乃至第3の空気ばねに設けられる自動高さ調整
機構により、第1乃至第3の空気ばねに係る空気ばね高
さを予め定められた基準高さに調整した状態で、対角位
置にそれぞれ設けられる空気ばねの空気ばね高さの合計
値から、他の対角位置にそれぞれ設けられる空気ばねの
空気ばね高さの合計値を減じて差を求める。そして、求
めた2つの差の平均値を算出し、算出した平均値に基づ
いて空気ばねの高さを調整する。つまり、自動高さ調整
機構には不感帯が存在することから、厳密に基準高さに
調整することは困難である。そこで、対角位置に設けら
れる空気ばね高さの合計値の差を求め、その平均値を調
整すべき値として適用することにしたので、自動高さ調
整機構に不可避的に存在する不感帯を考慮した、的確な
輪重差低減を達成することが可能となる。
Similarly, the support column of the fourth air spring is removed, and the third air spring and the fourth air spring are communicated with each other to automatically adjust the height of the first to third air springs. With the mechanism, the air spring heights of the first to third air springs are adjusted to a predetermined reference height, and from the total value of the air spring heights of the air springs provided at diagonal positions, The difference is obtained by subtracting the sum of the air spring heights of the air springs provided at the other diagonal positions. Then, an average value of the obtained two differences is calculated, and the height of the air spring is adjusted based on the calculated average value. That is, since the automatic height adjustment mechanism has a dead zone, it is difficult to strictly adjust the height to the reference height. Therefore, the difference between the total values of the heights of the air springs provided at the diagonal positions is determined, and the average value is applied as a value to be adjusted. Therefore, a dead zone inevitably present in the automatic height adjustment mechanism is taken into consideration. It was, it is possible to achieve the correct wheel load difference reducing.

【0018】第3発明に係る輪重差低減方法は、第1発
明または第2発明において、前記算出した平均値に基づ
く空気ばね高さの調整は、算出した平均値に応じたライ
ナーを、前記台車と前記空気ばねとの間、または前記空
気ばねと前記車体剛体との間に挿入または除去すること
により行うことを特徴とする。
According to a third aspect of the present invention, in the first or second aspect, the adjustment of the air spring height based on the calculated average value includes the step of: It is performed by inserting or removing between a bogie and the air spring or between the air spring and the rigid body.

【0019】第3発明にあっては、算出した平均値に応
じたライナーを、台車と空気ばねとの間、または空気ば
ねと車体剛体との間に挿入または除去することとした。
このように最適な厚みのライナーを挿入または除去する
ことで、車体剛体のねじれ及び偏心の影響を低減でき、
結果として走行安定性を高めることが可能となる。
In the third invention, a liner according to the calculated average value is inserted or removed between the bogie and the air spring or between the air spring and the rigid body.
By inserting or removing the liner with the optimal thickness in this way, the effects of twisting and eccentricity of the rigid body can be reduced,
As a result, it is possible to improve running stability.

【0020】第4発明に係る輪重差低減方法は、第1発
明または第2発明において、前記算出した平均値に基づ
く空気ばね高さの調整は、算出した平均値に応じた圧縮
空気を、空気ばねに対して給排気することにより行うこ
とを特徴とする。
According to a fourth aspect of the present invention, in the first or second aspect, the adjustment of the air spring height based on the calculated average value includes the step of: It is characterized by performing the supply and exhaust to and from the air spring.

【0021】第4発明にあっては、算出した平均値に応
じた圧縮空気を空気ばねに対して給排気することとし
た。このように最適な圧縮空気を給排気することで、車
体剛体のねじれ及び偏心の影響を低減でき、結果として
走行安定性を高めることが可能となる。
In the fourth invention, compressed air corresponding to the calculated average value is supplied to and exhausted from the air spring. By supplying and discharging the optimal compressed air in this manner, the effects of torsion and eccentricity of the rigid body of the vehicle body can be reduced, and as a result, running stability can be improved.

【0022】第5発明に係る輪重差低減方法は、第1発
明または第2発明において、前記算出した平均値に基づ
く空気ばね高さの調整は、算出した平均値に応じた、前
記台車に立設される前記自動高さ調整機構を構成する支
持柱の長さを、調整することにより行うことを特徴とす
る。
According to a fifth aspect of the present invention, in the method of the first or second aspect, the adjustment of the air spring height based on the calculated average value includes adjusting the height of the air spring based on the calculated average value. It is characterized by adjusting the length of the support column that constitutes the automatic height adjustment mechanism to be erected.

【0023】第5発明にあっては、算出した平均値に応
じて、台車に立設される自動高さ調整機構の支持柱の長
さを調整することとした。このように最適な長さの支持
柱を用意することで、車体剛体のねじれ及び偏心の影響
を低減でき、結果として走行安定性を高めることが可能
となる。
In the fifth invention, the length of the support column of the automatic height adjusting mechanism erected on the bogie is adjusted according to the calculated average value. By providing a support column having an optimum length in this way, the effects of torsion and eccentricity of the rigid body of the vehicle body can be reduced, and as a result, running stability can be improved.

【0024】[0024]

【発明の実施の形態】以下本発明を実施の形態を示す図
面に基づいて詳述する。 実施の形態1 図1は鉄道車両の構成を示す模式図である。図に示すよ
うに前台車F及び後台車R(以下場合により台車FRで
代表する)上の左右それぞれには、空気ばね1A〜4A
(以下場合によりAで代表する)が、台車FRと車体剛
体Bとの間に介在させて設けられている。各空気ばねA
には自動高さ調整機構1M〜4M(2Mおよび4Mは図
示せず)がそれぞれ設けられており、台車FRと車体剛
体Bとの間の高さ(以下、空気ばね高さという)に応じ
て各空気ばねAに圧縮空気を給排気する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing embodiments. Embodiment 1 FIG. 1 is a schematic view showing a railway vehicle configuration. As shown in the figure, air springs 1A to 4A are provided on the left and right sides of a front bogie F and a rear bogie R (hereinafter, occasionally represented by bogie FR).
(Hereinafter sometimes represented by A) is provided between the bogie FR and the rigid body B. Each air spring A
Are provided with automatic height adjustment mechanisms 1M to 4M (2M and 4M are not shown), respectively, according to the height between the bogie FR and the vehicle body rigid body B (hereinafter referred to as air spring height). Compressed air is supplied to and exhausted from each air spring A.

【0025】自動高さ調整機構1Mは、前台車F上にそ
の一端が立設される支持柱1MVと、支持柱1MVの他
端と回転可能に連結される水平レバー1MHとにより構
成され、空気ばね1Aが上昇した場合、すなわち水平レ
バー1MHが支持柱1MVとの接合部を中心に上昇した
場合は、空気ばね1Aの図示しない排気口から圧縮空気
を排気して、高さを機械的に低下させるよう構成されて
いる。一方、空気ばね1Aが下降した場合、すなわち水
平レバー1MHが支持柱1MVとの接合部を中心に下降
した場合は、図示しない空気だめから圧縮空気を給気し
て空気ばね1Aの高さを機械的に上昇させるよう構成さ
れている。
The automatic height adjusting mechanism 1M includes a support column 1MV having one end standing on the front bogie F, and a horizontal lever 1MH rotatably connected to the other end of the support column 1MV. When the spring 1A rises, that is, when the horizontal lever 1MH rises around the joint with the support column 1MV, compressed air is exhausted from an exhaust port (not shown) of the air spring 1A, and the height is mechanically reduced. It is configured to. On the other hand, when the air spring 1A is lowered, that is, when the horizontal lever 1MH is lowered around the joint with the support column 1MV, compressed air is supplied from an air reservoir (not shown) to adjust the height of the air spring 1A to mechanical. It is configured to be ascended.

【0026】さらに、各空気ばねAには空気ばね内の圧
縮空気を排気する排気弁1E〜4E(以下場合によりE
で代表する)が設けられている。各空気ばねAを連通す
る場合は、ホース等の配管Pを排気弁E、Eに差し込
み、圧縮空気を自由に移動させる場合は排気弁Eを開
き、圧縮空気の移動を制限する場合は排気弁Eを閉じ
る。
Further, each of the air springs A has exhaust valves 1E to 4E for exhausting compressed air in the air springs.
Representative) is provided in. To communicate each air spring A, a pipe P such as a hose is inserted into the exhaust valves E, E. The exhaust valve E is opened to move the compressed air freely, and the exhaust valve is restricted to restrict the movement of the compressed air. Close E.

【0027】以上のような構成において、本発明の輪重
差低減方法の処理手順を図2及び図3を用いて説明す
る。図2及び図3は輪重差低減方法の処理手順を示すフ
ローチャートである。まず、空気ばね1Aに付設される
自動高さ調整機構1Mの支持柱1MVまたは水平レバー
1MHを取り外す(ステップS21)等して自動高さ調
整機構1Mの動作を不能にする。
With the above configuration, the processing procedure of the wheel load difference reducing method of the present invention will be described with reference to FIGS. 2 and 3 is a flowchart showing a processing procedure of HanawaShigerusa reduction method. First, the operation of the automatic height adjustment mechanism 1M is disabled by removing the support column 1MV or the horizontal lever 1MH of the automatic height adjustment mechanism 1M attached to the air spring 1A (step S21).

【0028】そして、空気ばね1Aと2Aとを連通する
(ステップS22)。具体的には排気弁Eにホース等の
配管Pを差し込み、その後排気弁Eを開いて空気ばね1
Aと2Aとの間の圧縮空気の移動を自由にする。その
後、自動高さ調整機構2M〜4Mを作動させ、予め定め
られた基準高さ(例えば30mm)に空気ばね2A〜4
Aの高さを調整する(ステップS23)。このときの空
気ばね1Aの空気ばね高さと基準高さとの差を求める
(ステップS24)。なお、この後排気弁Eを閉じ配管
Pを取り外し、また取り外された自動高さ調整機構1M
の支持柱1MVまたは水平レバー1MHを取り付ける。
Then, the air springs 1A and 2A are communicated (step S22). Specifically, a pipe P such as a hose is inserted into the exhaust valve E, and then the exhaust valve E is opened and the air spring 1 is opened.
Freeing the movement of the compressed air between A and 2A. Thereafter, the automatic height adjustment mechanisms 2M to 4M are operated to bring the air springs 2A to 4M to a predetermined reference height (for example, 30 mm).
The height of A is adjusted (step S23). The difference between the air spring height of the air spring 1A at this time and the reference height is obtained (step S24). After that, the exhaust valve E is closed, the pipe P is removed, and the removed automatic height adjustment mechanism 1M
Attaching the support columns 1MV or horizontal lever 1 MH.

【0029】続いて以上の処理と同じように、自動高さ
調整機構4Mの支持柱4MVまたは水平レバー4MHを
取り外し(ステップS25)、空気ばね3Aと4Aとを
連通する(ステップS26)。連通後自動高さ調整機構
1M〜3Mを作動させ、空気ばね1A〜3Aの空気ばね
高さを基準高さに調整する(ステップS27)。空気ば
ね1A〜3Aの空気ばね高さを基準高さに調整した後、
空気ばね4Aの空気ばね高さと基準高さとの差を求める
(ステップS31)。
Subsequently, in the same manner as the above processing, the support column 4MV or the horizontal lever 4MH of the automatic height adjustment mechanism 4M is removed (step S25), and the air springs 3A and 4A are communicated (step S26). After the communication, the automatic height adjustment mechanisms 1M to 3M are operated to adjust the air spring heights of the air springs 1A to 3A to the reference height (step S27). After adjusting the air spring height of the air springs 1A to 3A to the reference height,
The difference between the air spring height of the air spring 4A and the reference height is obtained (step S31).

【0030】そして、ステップS24で求めた差とステ
ップS31で求めた差との平均値を算出する(ステップ
S32)。最後に算出した平均値に基づいて空気ばねA
の高さを調整する(ステップS33)。空気ばねAの高
さの調整は以下の3とおりの方法がある。
Then, an average value of the difference obtained in step S24 and the difference obtained in step S31 is calculated (step S32). The air spring A is calculated based on the average value calculated last.
Is adjusted (step S33). Adjustment of the height of the air spring A has the following three ways.

【0031】第1の方法として、求めた平均値に応じた
ライナー(図示せず)を台車FRと空気ばねAとの間、
または空気ばねAと車体剛体Bとの間に挿入または除去
することにより行う。すなわち台車FRと空気ばねAと
の間等に、ライナー(シム)を介在させることにより、
擬似的に車体剛体Bのねじれ及び偏心を無くし、左右の
輪重差を低減する。
As a first method, a liner (not shown) corresponding to the obtained average value is placed between the bogie FR and the air spring A.
Alternatively, it is performed by inserting or removing between the air spring A and the vehicle body rigid body B. That is, by interposing a liner (shim) between the bogie FR and the air spring A,
The twist and eccentricity of the vehicle body rigid body B are eliminated in a simulated manner, and the difference between the left and right wheel loads is reduced.

【0032】第2の方法として、求めた平均値に応じ
た、圧縮空気を空気ばねAに対して給排気することによ
り行う。すなわち適宜の量の圧縮空気を給排気して擬似
的に車体剛体Bのねじれ及び偏心を無くし、左右の輪重
差を低減する。
The second method is to supply and exhaust compressed air to and from the air spring A in accordance with the obtained average value. In other words, an appropriate amount of compressed air is supplied and exhausted to eliminate the torsion and eccentricity of the vehicle body rigid body B in a simulated manner, thereby reducing the difference between the left and right wheel loads.

【0033】第3の方法として、求めた平均値に応じて
自動高さ調整機構Mを構成する支持柱MVの長さを調整
することにより行う。すなわち、支持柱MVの長さを適
宜変更することで、擬似的に車体剛体Bのねじれ及び偏
心を無くし、左右の輪重差を低減する。
As a third method, the adjustment is performed by adjusting the length of the support pillar MV constituting the automatic height adjustment mechanism M according to the obtained average value. That is, by appropriately changing the length of the support column MV, the torsion and eccentricity of the vehicle body rigid body B are eliminated in a pseudo manner, and the difference between the left and right wheel loads is reduced.

【0034】[0034]

【表1】 [Table 1]

【0035】表1は求めた平均値をXとした場合に、各
空気ばね1A〜4Aの空気ばね高さを調整すべき調整量
を一覧表示したものである。表1に示す、(1)平均値
に応じたライナーを挿入または除去し、(2)平均値に
応じた圧縮空気を給排気し、または(3)平均値に応じ
た長さに支持柱MVを調整することで輪重差を低減する
ことが可能となる。
Table 1 shows a list of adjustment amounts for adjusting the air spring heights of the air springs 1A to 4A, where X is the obtained average value. As shown in Table 1, (1) insert or remove a liner according to the average value, (2) supply and exhaust compressed air according to the average value, or (3) support column MV to a length according to the average value. it is possible to reduce the wheel load difference by adjusting the.

【0036】例えば、第1の方法であるライナーを挿入
または除去する場合であって、空気ばね1A〜4Aの全
部位にライナー調整を行う場合は(表1の(a))、1
位空気ばね1A及び4位空気ばね4AにX/4のライナ
ーを挿入し、2位空気ばね2A及び3位空気ばね3Aに
はX/4のライナーを除去することにより調整する。な
お、平均値Xが負の場合は、これとは逆に1位空気ばね
1A及び4位空気ばね4AからX/4のライナーを除去
し、2位空気ばね2A及び3位空気ばね3AにはX/4
のライナーを挿入することにより調整する。
For example, when the liner is inserted or removed, which is the first method, and when the liner adjustment is performed on all the portions of the air springs 1A to 4A ((a) in Table 1), 1
The X / 4 liner is inserted into the position air springs 1A and 4A, and the X / 4 liner is removed from the position 2 air spring 2A and the position 3 air spring 3A. When the average value X is negative, on the contrary, the liner of X / 4 is removed from the first air spring 1A and the fourth air spring 4A, and the second air spring 2A and the third air spring 3A are removed. X / 4
Adjusted by inserting a liner.

【0037】一部位の空気ばねAのみを調整する場合
(表1の(c)の場合)であって、平均値Xが正の場
合、1位空気ばね1Aまたは4位空気ばね4Aのみにつ
いて平均値Xのライナーを挿入する、或いは2位空気ば
ね2Aまたは3位空気ばね3Aのみについて平均値Xの
ライナーを除去するようにすればよい。
When only the air spring A at one position is adjusted (case (c) of Table 1) and the average value X is positive, the average is obtained only for the air spring 1A for the first position or the air spring 4A for the fourth position. A liner having a value X may be inserted, or a liner having an average value X may be removed only for the second air spring 2A or the third air spring 3A.

【0038】空気ばねAへの圧縮空気の給排気により空
気ばねの高さを調整する場合も同様に表1を参照して適
量の圧縮空気を給排気し空気ばねAの高さを調整する。
また、支持柱MVの長さも同様に、表1に基づいて適宜
の長さに調整するようにすればよい。
When the height of the air spring is adjusted by supplying and discharging compressed air to and from the air spring A, an appropriate amount of compressed air is supplied and exhausted with reference to Table 1 to adjust the height of the air spring A.
Similarly, the length of the support column MV may be adjusted to an appropriate length based on Table 1.

【0039】なお、以上の説明においては、空気ばね1
Aと空気ばね2A、及び空気ばね3Aと空気ばね4Aと
を連通することとしたが、空気ばね1Aと空気ばね3
A、及び空気ばね2Aと空気ばね4Aとを連通する等し
て、本発明の輪重差低減方法を実施するようにしても良
い。
[0039] In the above description, the air spring 1
A and the air spring 2A, and the air spring 3A and the air spring 4A are communicated.
A and the air spring 2A and the air spring 4A may be communicated with each other to implement the wheel load difference reducing method of the present invention.

【0040】実施の形態2 実施の形態2は、自動高さ調整機構M固有に存在する不
感帯の影響を低減する輪重差低減方法に関する。
Embodiment 2 Embodiment 2 relates to a wheel load difference reducing method for reducing the influence of a dead zone inherent in the automatic height adjustment mechanism M.

【0041】図4及び図5は実施の形態2に係る輪重差
低減方法の処理手順を示すフローチャートである。実施
の形態1と同様に、まず、空気ばね1Aに付設される自
動高さ調整機構1Mの支持柱1MVまたは水平レバー1
MHを取り外す(ステップS41)等して自動高さ調整
機構1Mの動作を不能にする。
FIGS. 4 and 5 are flowcharts showing the processing procedure of the wheel weight difference reducing method according to the second embodiment. As in the first embodiment, first, the support column 1MV or the horizontal lever 1 of the automatic height adjustment mechanism 1M attached to the air spring 1A.
The operation of the automatic height adjustment mechanism 1M is disabled by removing the MH (step S41) or the like.

【0042】そして、空気ばね1Aと2Aとを連通する
(ステップS42)。その後、自動高さ調整機構2M〜
4Mを作動させ、予め定められた基準高さに空気ばね2
A〜4Aの高さを調整する(ステップS43)。このと
きの対角位置に設けられる空気ばね高さの合計値(空気
ばね1Aの高さと空気ばね4Aの高さとの合計値)か
ら、他の対角位置に設けられる空気ばね高さの合計値
(空気ばね2Aの高さと空気ばね3Aの高さとの合計
値)を減じて差を求める(ステップS44)。なお、こ
の後、排気弁Eを閉じ配管Pを取り外し、また取り外さ
れた自動高さ調整機構1Mの支持柱1MVまたは水平レ
バー1MHを取り付ける。
Then, the air springs 1A and 2A are communicated (step S42). After that, automatic height adjustment mechanism 2M~
Actuating the 4M, air spring 2 as a reference predetermined height
The height of A to 4A is adjusted (step S43). From the sum of the heights of the air springs provided at the diagonal positions at this time (the sum of the height of the air spring 1A and the height of the air spring 4A), the total value of the heights of the air springs provided at the other diagonal positions The difference is obtained by subtracting (the total value of the height of the air spring 2A and the height of the air spring 3A) (step S44). After that, the exhaust valve E is closed, the pipe P is removed, and the support column 1MV or the horizontal lever 1MH of the removed automatic height adjustment mechanism 1M is attached.

【0043】続いて以上の処理と同じように、自動高さ
調整機構4Mの支持柱4MVまたは水平レバー4MHを
取り外し(ステップS45)、空気ばね3Aと4Aとを
連通する(ステップS46)。連通後自動高さ調整機構
1M〜3Mを作動させ、空気ばね1A〜3Aの空気ばね
高さを基準高さに調整する(ステップS47)。空気ば
ね1A〜3Aの空気ばね高さを基準高さに調整した後、
対角位置に設けられる空気ばね高さの合計値(空気ばね
1Aの高さと空気ばね4Aとの合計値)から、他の対角
位置に設けられる空気ばね高さの合計値(空気ばね2A
の高さと空気ばね3Aの高さとの合計値)を減じて差を
求める(ステップS51)。
Subsequently, in the same manner as the above processing, the support column 4MV or the horizontal lever 4MH of the automatic height adjustment mechanism 4M is removed (step S45), and the air springs 3A and 4A are communicated (step S46). After the communication, the automatic height adjustment mechanisms 1M to 3M are operated to adjust the air spring heights of the air springs 1A to 3A to the reference height (step S47). After adjusting the air spring height of the air springs 1A to 3A to the reference height,
From the total value of the air spring heights provided at the diagonal positions (the total value of the height of the air spring 1A and the air spring 4A), the total value of the air spring heights provided at the other diagonal positions (the air spring 2A)
(The total value of the height of the air spring 3A) and the height of the air spring 3A (step S51).

【0044】そして、ステップS44で求めた差とステ
ップS51で求めた差との平均値を算出する(ステップ
S52)。最後に算出した平均値に基づいて空気ばねA
の高さを調整する(ステップS53)。その後の手順は
実施の形態1と同様であるので省略する。
Then, an average value of the difference obtained in step S44 and the difference obtained in step S51 is calculated (step S52). The air spring A is calculated based on the average value calculated last.
Is adjusted (step S53). Subsequent procedures are the same as in the first embodiment, and a description thereof will be omitted.

【0045】最後に実施の形態2に係る本発明の輪重差
低減方法による効果を検証する。図6は任意の車体剛体
Bのねじれまたは偏心の特性を示すグラフである。図の
グラフは縦軸に各空気ばねAの内圧を、横軸に対角位置
に設けられる空気ばねAの高さの合計値から他の対角位
置に設けられる空気ばねAの高さの合計値を減じた値
(以下、対角高さ差という)を用意したものである。そ
して、対角高さ差が変動するように各空気ばねAの高さ
を変更し、そのときの各空気ばねAの内圧を測定して図
6のグラフ上にプロットしたものである。
Finally, the effect of the method for reducing wheel load difference according to the second embodiment of the present invention will be verified. FIG. 6 is a graph showing the torsional or eccentric characteristics of an arbitrary rigid body B of the vehicle body. In the graph of the figure, the vertical axis represents the internal pressure of each air spring A, and the horizontal axis represents the sum of the heights of the air springs A provided at other diagonal positions based on the total height of the air springs A provided at diagonal positions. A value obtained by subtracting the value (hereinafter referred to as a diagonal height difference) is prepared. Then, the height of each air spring A is changed so that the diagonal height difference fluctuates, and the internal pressure of each air spring A at that time is measured and plotted on the graph of FIG.

【0046】車体剛体Bにねじれも、偏心もない場合
は、4本の線はそれぞれ基準点(対角高さ差0mm、内
圧160kPa)の1点で交差し、車体剛体Bにねじれ
のみが存在する場合は、ねじれの大きさに応じて4本の
線は基準点からずれた位置で交差する。この実験に用い
た、車体剛体Bはねじれ及び偏心も存在するため4本の
線は一点で交差しない形態となっている。
When there is no twist or eccentricity in the rigid body B, the four lines intersect at one of the reference points (diagonal height difference 0 mm, internal pressure 160 kPa), and the rigid body B has only twist. If so, the four lines intersect at a position shifted from the reference point according to the magnitude of the twist. The rigid body B used in this experiment has a form in which the four lines do not intersect at one point because the rigid body B also has torsion and eccentricity.

【0047】図6からも明らかなように、1位空気ばね
1Aと2位空気ばね2Aとを連通して対角高さ差3.5
mmを求め、また3位空気ばね3Aと4位空気ばね4A
とを連通して対角高さ差13.5mmを求める。そし
て、その平均である8.5mmを平均値Xとして求め
る。この求めた平均値Xを表1に従って各空気ばねAの
高さ調整を行い、そのときの走行安定性の是非について
検証した。結果は表2に示すとおりである。
As is apparent from FIG. 6, the first-place air spring 1A and the second-place air spring 2A communicate with each other, and the diagonal height difference is 3.5.
Seeking mm, also 3-position air spring 3A and 4-position air spring 4A
DOO seek communication with diagonal height difference 13.5mm to. Then, the average 8.5 mm is obtained as an average X. The height of each of the air springs A was adjusted according to Table 1 based on the obtained average value X, and the propriety of running stability at that time was verified. The results are shown in Table 2.

【0048】[0048]

【表2】 [Table 2]

【0049】なお、評価値は以下の式1に従い算出し
た。 前台車評価値(%)=|1位空気ばね1Aの内圧―2位空気ばね2Aの内圧| ÷(1位空気ばね1Aの内圧+2位空気ばね2Aの内圧)×100 後台車評価値(%)=|3位空気ばね3Aの内圧―4位空気ばね4Aの内圧| ÷(3位空気ばね3Aの内圧+4位空気ばね4Aの内圧)×100 …式1
[0049] The evaluation value was calculated according to equation 1 below. Front bogie evaluation value (%) = | Internal pressure of 1st air spring 1A−Internal pressure of 2nd air spring 2A | ÷ (Internal pressure of 1st air spring 1A + Internal pressure of 2nd air spring 2A) × 100 Rear bogie evaluation value (% ) = | Internal pressure of 3rd air spring 3A−internal pressure of 4th air spring 4A | A (internal pressure of 3rd air spring 3A + internal pressure of 4th air spring 4A) × 100 Equation 1

【0050】高さ調整を全く行わない場合(表2
(a))は、特に後台車Rで圧力差が生じておりその結
果輪重に大きな影響を与えていることになり、緩和曲線
通過時には走行安定性が低いといえる。
When no height adjustment is performed (Table 2)
In (a)), a pressure difference is generated especially in the rear bogie R, and as a result, the wheel weight is greatly affected, and it can be said that running stability is low when the vehicle passes through the relaxation curve.

【0051】従来の方法により高さ調整を行った場合
(表2(b))、改善の効果が見られるが、特に前台車
Fにおいて圧力差が発生しており走行安定性は低いとい
える。なお、従来の手法では3位線と4位線の交点であ
る13.5mmを調整量としたものである。
When the height is adjusted by the conventional method (Table 2 (b)), the effect of improvement can be seen, but it can be said that the running stability is low especially because the pressure difference occurs in the front bogie F. In the conventional method, the adjustment amount is 13.5 mm, which is the intersection of the third and fourth lines.

【0052】本発明の方法により高さ調整を行った場合
(表2(c))、1位が4.8%、2位が−4.8%、
3位が7.1%、4位が−7.1%となり、圧力差が低
く押さえられ、走行安定性は極めて高いといえる。
When the height was adjusted by the method of the present invention (Table 2 (c)), the first place was 4.8%, the second place was -4.8%,
The third position is 7.1%, the fourth position is -7.1%, the pressure difference is kept low, and it can be said that the running stability is extremely high.

【0053】このように対角高さ差の平均値Xをもって
調整量とすることの利点について以下に述べておく。図
7は車体剛体Bのねじれ及び偏心の特性を示す模式図で
ある。図7(a)は車体剛体Bにねじれも偏心もない場
合の特性を示したものである。図7(a)に示すように
4本の線は基準点で交差する。また、図7(b)は車体
剛体Bにねじれのみが存在し偏心がない場合の特性を示
したものである。図7(b)に示すように、基準点から
ずれた位置に4本の線が交差する。
The advantage of using the average value X of the diagonal height differences as the adjustment amount as described above will be described below. FIG. 7 is a schematic diagram showing the characteristics of torsion and eccentricity of the vehicle body rigid body B. FIG. 7A shows the characteristics when the vehicle body rigid body B has no twist or eccentricity. As shown in FIG. 7A, the four lines intersect at the reference point. FIG. 7B shows the characteristics when only the torsion exists in the vehicle body rigid body B and there is no eccentricity. As shown in FIG. 7B, four lines intersect at positions shifted from the reference point.

【0054】このような場合は、それぞれの交点の対角
高さ差(1位と4位との交点、または2位と3位との交
点)を調整量とすれば十分である。しかしながら実際の
車体剛体Bは図6に示すように、ねじれ及び偏心が存在
し、1位と2位との交点の対角高さ差(図6では3.5
mm)または3位と4位との交点の対角高さ差(図6で
は13.5mm)を調整量とした場合は、表2で示した
結果からも明らかなように、改善は見られるが輪重差を
低減することには一定の限界がある。本願出願人は4本
の線で囲まれる図形の図芯座標の、対角高さ差の座標
値、換言すれば対角高さ差の平均値の値が、理想的な調
整量であることを知見し、平均値を調整量として採用す
ることとしたのである。これにより、車体剛体Bにねじ
れ及び偏心が存在する場合でも、輪重差を低減して走行
安定性を高めることが可能となる。
In such a case, it is sufficient that the diagonal height difference between the respective intersections (the intersection between the first and fourth positions or the intersection between the second and third positions) is used as the adjustment amount. However, as shown in FIG. 6, the actual rigid body B has torsion and eccentricity, and the diagonal height difference between the intersections of the first and second positions (3.5 in FIG. 6).
mm) or the diagonal height difference (13.5 mm in FIG. 6) at the intersection of the 3rd and 4th positions, the improvement is seen as is clear from the results shown in Table 2. there is a certain limit in reducing the HanawaShigerusa. The applicant of the present application has determined that the coordinate value of the diagonal height difference, that is, the average value of the diagonal height difference, of the figure center coordinates of the figure surrounded by four lines is an ideal adjustment amount. was findings, it was decided to adopt the mean value as the adjustment amount. Thus, even when the rigid body B is twisted and eccentric, the difference in wheel load can be reduced and running stability can be increased.

【0055】本実施の形態2は以上の如き構成としてあ
り、その他の構成及び作用は実施の形態1と同様である
ので、対応する部分には同一の参照番号を付してその詳
細な説明を省略する。
The second embodiment has the above-described configuration, and the other configurations and operations are the same as those of the first embodiment. Corresponding portions are allotted with the same reference numerals, and description thereof is not repeated. omitted.

【0056】[0056]

【発明の効果】以上詳述した如く、第1発明にあって
は、空気ばねを前台車及び後台車でそれぞれ連通させ、
自動高さ調整機構で調整した後、基準高さからの差を求
める。そして求めた2つの差の平均値を算出し、算出し
た平均値に基づいて空気ばねの高さを調整するようにし
た。つまり前台車及び後台車のそれぞれで求めた調整値
の平均値に基づき調整するようにしたので、車体剛体に
ねじれが発生している場合はもちろん、偏心が生じてい
る場合でも、従来と比較して大幅に左右の輪重差を低減
することが可能となる。
As described above in detail, in the first invention, the air spring is communicated with the front bogie and the rear bogie, respectively.
After adjusting the automatic height adjusting mechanism, obtaining a difference from the reference height. Then, an average value of the obtained two differences is calculated, and the height of the air spring is adjusted based on the calculated average value. In other words, since the adjustment is made based on the average value of the adjustment values obtained for the front bogie and the rear bogie respectively, even if the rigid body is twisted or eccentric, it can be compared with the conventional one. it is possible to significantly reduce the left and right wheel load difference Te.

【0057】第2発明にあっては、第1発明と同様に、
空気ばねを前台車及び後台車でそれぞれ連通させ、自動
高さ調整機構で調整した後、対角位置にそれぞれ設けら
れる空気ばねの空気ばね高さの合計値から、他の対角位
置にそれぞれ設けられる空気ばねの空気ばね高さの合計
値を減じて差を求める。そして、求めた2つの差の平均
値を算出し、算出した平均値に基づいて空気ばねの高さ
を調整する。つまり、自動高さ調整機構には不感帯が存
在することから、厳密に基準高さに調整することは困難
である。そこで、対角位置に設けられる空気ばね高さの
合計値の差を求め、その平均値を調整すべき値として適
用することにしたので、自動高さ調整機構に不可避的に
存在する不感帯を考慮した、的確な輪重差低減を達成す
ることが可能となる。さらにその平均値を採用すること
としたので、車体剛体にねじれ及び偏心が発生している
場合でも輪重差を低減することが可能となる。
[0057] In the second aspect, as in the first invention,
After the air springs are communicated with the front bogie and the rear bogie, respectively, and adjusted by the automatic height adjustment mechanism, the air springs are provided at the other diagonal positions based on the sum of the air spring heights of the air springs provided at the diagonal positions. determining a difference by subtracting the total value of the air spring height of the air spring to be. Then, an average value of the obtained two differences is calculated, and the height of the air spring is adjusted based on the calculated average value. That is, since the automatic height adjustment mechanism has a dead zone, it is difficult to strictly adjust the height to the reference height. Therefore, the difference between the total values of the heights of the air springs provided at the diagonal positions is determined, and the average value is applied as a value to be adjusted. Therefore, a dead zone inevitably present in the automatic height adjustment mechanism is taken into consideration. It was, it is possible to achieve the correct wheel load difference reducing. Further, since the average value is adopted, it is possible to reduce the difference in wheel load even when the rigid body is twisted and eccentric.

【0058】第3発明にあっては、算出した平均値に応
じたライナーを、台車と空気ばねとの間、または空気ば
ねと車体剛体との間に挿入または除去することとした。
このように最適な厚みのライナーを挿入または除去する
ことで、車体剛体のねじれ及び偏心の影響を低減でき、
結果として走行安定性を高めることが可能となる。
In the third invention, a liner according to the calculated average value is inserted or removed between the bogie and the air spring or between the air spring and the rigid body.
By inserting or removing the liner with the optimal thickness in this way, the effects of twisting and eccentricity of the rigid body can be reduced,
As a result, it is possible to improve running stability.

【0059】第4発明にあっては、算出した平均値に応
じた圧縮空気を空気ばねに対して給排気することとし
た。このように最適な圧縮空気を給排気することで、車
体剛体のねじれ及び偏心の影響を低減でき、結果として
走行安定性を高めることが可能となる。
In the fourth invention, compressed air corresponding to the calculated average value is supplied to and discharged from the air spring. By supplying and discharging the optimal compressed air in this manner, the effects of torsion and eccentricity of the rigid body of the vehicle body can be reduced, and as a result, running stability can be improved.

【0060】第5発明にあっては、算出した平均値に応
じて、台車に立設される自動高さ調整機構の支持柱の長
さを調整することとした。このように最適な長さの支持
柱を用意することで、車体剛体のねじれ及び偏心の影響
を低減でき、結果として走行安定性を高めることが可能
となる等、本発明は優れた効果を奏し得る。
In the fifth invention, the length of the support column of the automatic height adjusting mechanism erected on the bogie is adjusted according to the calculated average value. By preparing the support columns having the optimum length in this manner, the effects of the torsion and eccentricity of the rigid body of the vehicle body can be reduced, and as a result, the running stability can be improved. obtain.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鉄道車両の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a railway vehicle.

【図2】輪重差低減方法の処理手順を示すフローチャー
トである。
2 is a flowchart showing a processing procedure of HanawaShigerusa reduction method.

【図3】輪重差低減方法の処理手順を示すフローチャー
トである。
3 is a flowchart showing a processing procedure of HanawaShigerusa reduction method.

【図4】実施の形態2に係る輪重差低減方法の処理手順
を示すフローチャートである。
FIG. 4 is a flowchart showing a processing procedure of a wheel load difference reducing method according to a second embodiment.

【図5】実施の形態2に係る輪重差低減方法の処理手順
を示すフローチャートである。
FIG. 5 is a flowchart showing a processing procedure of a wheel load difference reducing method according to the second embodiment.

【図6】任意の車体剛体のねじれまたは偏心の特性を示
すグラフである。
FIG. 6 is a graph showing a characteristic of torsion or eccentricity of an arbitrary rigid body.

【図7】車体剛体のねじれ及び偏心の特性を示す模式図
である。
FIG. 7 is a schematic diagram showing characteristics of torsion and eccentricity of a rigid body of a vehicle body.

【図8】従来の輪重差低減方法を示す模式図である。FIG. 8 is a schematic diagram showing a conventional wheel load difference reducing method.

【符号の説明】[Explanation of symbols]

A(1A〜4A) 空気ばね F 前台車 R 後台車 P 配管 E(1E〜4E) 排気弁 M(1M〜4M) 自動高さ調整機構 MH(1MH〜4MH) 水平レバー MV(1MV〜4MV) 支持柱 B 車体剛体 V 開閉弁 A (1A to 4A) Air spring F Front bogie R Rear bogie P Piping E (1E to 4E) Exhaust valve M (1M to 4M) Automatic height adjustment mechanism MH (1MH to 4MH) Horizontal lever MV (1MV to 4MV) Support Pillar B Rigid body V On-off valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 敏明 大阪府大阪市此花区島屋5丁目1番109号 住金デザインエンジ株式会社内 (72)発明者 仲田 摩智 大阪府大阪市此花区島屋5丁目1番109号 住友金属工業株式会社関西製造所製鋼品 事業所内 (72)発明者 下川 嘉之 大阪府大阪市此花区島屋5丁目1番109号 住友金属工業株式会社関西製造所製鋼品 事業所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiaki Matsui 5-1-1109 Shimaya, Konohana-ku, Osaka, Japan Inside Sumikin Design Engi Co., Ltd. (72) Machi Nakata 5-chome, Shimaya, Konohana-ku, Osaka, Osaka 1-109 Sumitomo Metal Industries, Ltd.Kansai Works Steelworks Office (72) Inventor Yoshiyuki Shimokawa 5-1-1 Shimaya, Konohana-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd.Kansai Works Steelworks Office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 前台車及び後台車上の左右それぞれに、
第1乃至第4の空気ばねを介在させて車体剛体を載置し
てある鉄道車両の輪重差を、前記台車及び前記車体剛体
間の空気ばね高さに応じて前記空気ばねに給排気を行う
自動高さ調整機構を使用して低減する輪重差低減方法に
おいて、 第1の空気ばね及び第2の空気ばねの間を連通して、第
2乃至第4の空気ばねに設けられる自動高さ調整機構に
より、前記第2乃至第4の空気ばねに係る空気ばね高さ
を予め定められた基準高さに調整し、 前記第1の空気ばねに係る空気ばね高さと前記基準高さ
との差を求め、 第3の空気ばね及び第4の空気ばねの間を連通して、第
1乃至第3の空気ばねに設けられる自動高さ調整機構に
より、前記第1乃至第3の空気ばねに係る空気ばね高さ
を予め定められた基準高さに調整し、 前記第4の空気ばねに係る空気ばね高さと前記基準高さ
との差を求め、 求めた2つの差の平均値を算出し、 算出した平均値に基づいて空気ばねの高さを調整するこ
とを特徴とする輪重差低減方法。
To claim 1, wherein each left and right on the front carriage and rear carriage,
A difference in wheel load of a railway vehicle having a rigid body mounted thereon with first to fourth air springs interposed therebetween is used to supply and exhaust air to and from the air spring according to the height of the air spring between the bogie and the rigid body. A method for reducing a wheel load difference using an automatic height adjustment mechanism, wherein the automatic height adjustment mechanism is provided on the second to fourth air springs by communicating between the first air spring and the second air spring. The height adjustment mechanism adjusts the air spring heights of the second to fourth air springs to a predetermined reference height, and calculates a difference between the air spring heights of the first air springs and the reference height. According to the first to third air springs, an automatic height adjustment mechanism provided in the first to third air springs communicates between the third air spring and the fourth air spring. Adjusting the air spring height to a predetermined reference height, Calculating a difference between an air spring height and the reference height, calculating an average value of the obtained two differences, and adjusting a height of the air spring based on the calculated average value. .
【請求項2】 前台車及び後台車上の左右それぞれに、
第1乃至第4の空気ばねを介在させて車体剛体を載置し
てある鉄道車両の輪重差を、前記台車及び前記車体剛体
間の空気ばね高さに応じて前記空気ばねに給排気を行う
自動高さ調整機構を使用して低減する輪重差低減方法に
おいて、 第1の空気ばね及び第2の空気ばねの間を連通して、第
2乃至第4の空気ばねに設けられる自動高さ調整機構に
より、前記第2乃至第4の空気ばねに係る空気ばね高さ
を調整した状態で、対角位置にそれぞれ設けられる空気
ばねの空気ばね高さの合計値から、他の対角位置にそれ
ぞれ設けられる空気ばねの空気ばね高さの合計値を減じ
て差を求め、 第3の空気ばね及び第4の空気ばねの間を連通して、第
1乃至第3の空気ばねに設けられる自動高さ調整機構に
より、前記第1乃至第3の空気ばねに係る空気ばね高さ
を予め定められた基準高さに調整した状態で、対角位置
にそれぞれ設けられる空気ばねの空気ばね高さの合計値
から、他の対角位置にそれぞれ設けられる空気ばねの空
気ばね高さの合計値を減じて差を求め、 求めた2つの差の平均値を算出し、 算出した平均値に基づいて空気ばねの高さを調整するこ
とを特徴とする輪重差低減方法。
To the claim 2, wherein each left and right on the front carriage and rear carriage,
A difference in wheel load of a railway vehicle having a rigid body mounted thereon with first to fourth air springs interposed therebetween is used to supply and exhaust air to and from the air spring according to the height of the air spring between the bogie and the rigid body. A method for reducing a wheel load difference using an automatic height adjustment mechanism, wherein the automatic height adjustment mechanism is provided on the second to fourth air springs by communicating between the first air spring and the second air spring. In a state where the heights of the air springs of the second to fourth air springs are adjusted by the height adjustment mechanism, the sum of the air spring heights of the air springs provided at the diagonal positions is calculated based on the sum of the air spring heights at the other diagonal positions. The difference is obtained by subtracting the total value of the air spring heights of the air springs provided in each of the first to third air springs so as to communicate between the third air spring and the fourth air spring. The air height of the first to third air springs is adjusted by an automatic height adjustment mechanism. With the height adjusted to a predetermined reference height, the air spring heights of the air springs provided at the other diagonal positions are calculated from the sum of the air spring heights of the air springs provided at the diagonal positions. A wheel weight difference reduction method, comprising: calculating a difference by subtracting a total value of the two values; calculating an average value of the obtained two differences; and adjusting a height of the air spring based on the calculated average value.
【請求項3】 前記算出した平均値に基づく空気ばね高
さの調整は、 算出した平均値に応じたライナーを、前記台車と前記空
気ばねとの間、または前記空気ばねと前記車体剛体との
間に挿入または除去することにより行うことを特徴とす
る請求項1または2に記載の輪重差低減方法。
3. The method of adjusting the height of the air spring based on the calculated average value, comprising: forming a liner corresponding to the calculated average value between the bogie and the air spring or between the air spring and the rigid body. The method according to claim 1 or 2, wherein the method is performed by inserting or removing the intermediate member.
【請求項4】 前記算出した平均値に基づく空気ばね高
さの調整は、 算出した平均値に応じた圧縮空気を、空気ばねに対して
給排気することにより行うことを特徴とする請求項1ま
たは2に記載の輪重差低減方法。
4. The air spring height adjustment based on the calculated average value is performed by supplying and discharging compressed air to the air spring according to the calculated average value. or wheel load difference reducing method according to.
【請求項5】 前記算出した平均値に基づく空気ばね高
さの調整は、 算出した平均値に応じた、前記台車に立設される前記自
動高さ調整機構を構成する支持柱の長さを、調整するこ
とにより行うことを特徴とする請求項1または2に記載
の輪重差低減方法。
5. The method of adjusting the height of the air spring based on the calculated average value, comprising: adjusting a length of a support column that constitutes the automatic height adjustment mechanism erected on the bogie according to the calculated average value. The method according to claim 1 or 2, wherein the method is performed by adjusting.
JP2001163484A 2001-05-30 2001-05-30 Wheel load difference reduction method Expired - Fee Related JP3760797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163484A JP3760797B2 (en) 2001-05-30 2001-05-30 Wheel load difference reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163484A JP3760797B2 (en) 2001-05-30 2001-05-30 Wheel load difference reduction method

Publications (2)

Publication Number Publication Date
JP2002356163A true JP2002356163A (en) 2002-12-10
JP3760797B2 JP3760797B2 (en) 2006-03-29

Family

ID=19006449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163484A Expired - Fee Related JP3760797B2 (en) 2001-05-30 2001-05-30 Wheel load difference reduction method

Country Status (1)

Country Link
JP (1) JP3760797B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131125A (en) * 2005-11-10 2007-05-31 Central Japan Railway Co Method of detecting abnormal condition of vehicle body inclination device
JP2014240273A (en) * 2012-07-13 2014-12-25 川崎重工業株式会社 Vehicle body support device and railroad vehicle
JP2017197061A (en) * 2016-04-28 2017-11-02 川崎重工業株式会社 Wheel weight adjusting device for railway vehicle
CN110723162A (en) * 2019-10-24 2020-01-24 中国人民解放军国防科技大学 Balancing device for air spring height valve of medium-low speed magnetic levitation vehicle
CN113200067A (en) * 2021-05-25 2021-08-03 中车株洲电力机车有限公司 Steering frame

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131125A (en) * 2005-11-10 2007-05-31 Central Japan Railway Co Method of detecting abnormal condition of vehicle body inclination device
JP2014240273A (en) * 2012-07-13 2014-12-25 川崎重工業株式会社 Vehicle body support device and railroad vehicle
US9932050B2 (en) 2012-07-13 2018-04-03 Kawasaki Jukogyo Kabushiki Kaisha Carbody support device and railway vehicle
US10464581B2 (en) 2012-07-13 2019-11-05 Kawasaki Jukogyo Kabushiki Kaisha Carbody support device and railway vehicle
US10464582B2 (en) 2012-07-13 2019-11-05 Kawasaki Jukogyo Kabushiki Kaisha Carbody support device and railway vehicle
JP2017197061A (en) * 2016-04-28 2017-11-02 川崎重工業株式会社 Wheel weight adjusting device for railway vehicle
CN110723162A (en) * 2019-10-24 2020-01-24 中国人民解放军国防科技大学 Balancing device for air spring height valve of medium-low speed magnetic levitation vehicle
CN113200067A (en) * 2021-05-25 2021-08-03 中车株洲电力机车有限公司 Steering frame

Also Published As

Publication number Publication date
JP3760797B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP3118414B2 (en) Vehicle sprung unsprung relative speed calculation device
JP2007176400A (en) Vertical vibration control device for railway vehicle
JP2002356163A (en) Wheel load difference reducing method
JP3196494B2 (en) Suspension control device
JPH10287241A (en) Car body tilt control device for rolling stock and its car body tilt control method
JP3124629B2 (en) Vehicle suspension device
JP2003048538A (en) Adjustment quantity calculation method, adjustment quantity calculation device and computer program
JP2003054403A (en) Adjustment quantity computing method, adjustment quantity computing device and computer program
JP3565918B2 (en) Damper device
JPH071937A (en) Suspension of vehicle
KR20020018556A (en) Pneumatic pressure control device
JP3011005B2 (en) Vehicle suspension device
JP3156533B2 (en) Suspension preview control device
JP3963627B2 (en) Air suspension vehicle height adjustment device
JP2903364B2 (en) Air suspension system for vehicles
CN218719825U (en) Guarantee way and make an uproar rack developments horizontally gas circuit structure
JPH07125521A (en) Roll controlling device of active suspension for tractor
JPH03178862A (en) Wheel load fluctuation preventing method for rolling stock
Serrier et al. Active roll control device for vehicles equipped with hydropneumatic suspensions
JP2591671Y2 (en) Air suspension system for vehicles
JPH0848243A (en) Vibration controller for vehicle
JP4292792B2 (en) Car body tilting device
KR20030050010A (en) Suspension system for seat of vehicle
JP3843764B2 (en) Wheel load difference reducing method, adjustment amount calculating device, computer program, and recording medium
JP3052678B2 (en) Active suspension

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3760797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees