JP2002353477A - Solar battery element and production method therefor - Google Patents

Solar battery element and production method therefor

Info

Publication number
JP2002353477A
JP2002353477A JP2001161510A JP2001161510A JP2002353477A JP 2002353477 A JP2002353477 A JP 2002353477A JP 2001161510 A JP2001161510 A JP 2001161510A JP 2001161510 A JP2001161510 A JP 2001161510A JP 2002353477 A JP2002353477 A JP 2002353477A
Authority
JP
Japan
Prior art keywords
electrode
surface side
solar cell
silver
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001161510A
Other languages
Japanese (ja)
Inventor
Shuichi Fujii
修一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001161510A priority Critical patent/JP2002353477A/en
Publication of JP2002353477A publication Critical patent/JP2002353477A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that cell cracking occurs in a module preparation process by protruding a solder out of a lead wire. SOLUTION: Different conductive areas are formed on one principal surface side and the other principal surface side of a semiconductor wafer, a front surface electrode is connected and provided in the conductive area on one principal surface side, and a rear surface electrode is connected and provided in the conductive region on the other principal surface side. In such a solar battery element, the rear surface electrode is formed from an output takeout part, composed mainly of silver and an electricity collecting part composed mainly of aluminium, and on the output takeout part, a plurality of narrow branch electrodes, composed mainly of silver are connected and provided, while being turned in the same direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコン等を用いた
太陽電池素子とその製造方法に関する。
The present invention relates to a solar cell element using silicon or the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】太陽電池
素子の一般的な構造を図6に示す。図6(a)は従来の
太陽電池素子を示す断面図、図6(b)は従来の太陽電
池素子の表側を示す図、図6(c)は裏側を示す図であ
る。図6において、11は一導電型(例えばP型)を示
す半導体基板、11aは半導体基板11の表面部分にリ
ン原子が高濃度に拡散され他の導電型を呈する領域、1
2は一主面側の反射防止膜、13は半導体接合部であ
る。この反射防止膜12は電極16に相当する部分がエ
ッチングされもしくはエッチングされずにその上から電
極16、17が形成される。14は裏面から出力を取り
出すための銀電極で出力取出用のリード線(不図示)が
溶着される部分に形成される。15は裏面アルミニウム
電極であり、一般にこれがシリコンに焼き付けられた際
には裏面で発生したキャリアが再結合することを防ぐ裏
面電界層としての効果があることも知られている。上記
のように裏面には、銀を主成分とする出力取出部14と
アルミニウムを主成分とする集電部15が形成される
が、両者は電気的伝導を保つために、互いの一部分が重
なっている。表面側には表面電極のバスバー部16と、
このバスバー部16と垂直に交差する集電用のフィンガ
ー部17が設けられている。
2. Description of the Related Art A general structure of a solar cell element is shown in FIG. 6A is a sectional view showing a conventional solar cell element, FIG. 6B is a view showing a front side of the conventional solar cell element, and FIG. 6C is a view showing a back side. In FIG. 6, reference numeral 11 denotes a semiconductor substrate showing one conductivity type (for example, P type);
Reference numeral 2 denotes an antireflection film on one main surface side, and reference numeral 13 denotes a semiconductor junction. Electrodes 16 and 17 are formed on the antireflection film 12 from above without etching the portion corresponding to the electrode 16. Reference numeral 14 denotes a silver electrode for extracting output from the back surface, which is formed in a portion where a lead wire (not shown) for extracting output is welded. Reference numeral 15 denotes a back surface aluminum electrode, which is generally known to have an effect as a back surface electric field layer for preventing carriers generated on the back surface from being recombined when it is baked on silicon. As described above, the output extraction portion 14 mainly composed of silver and the current collection portion 15 mainly composed of aluminum are formed on the back surface, but both of them partially overlap each other to maintain electrical conduction. ing. On the surface side, a bus bar portion 16 of the surface electrode,
A current collecting finger portion 17 that intersects vertically with the bus bar portion 16 is provided.

【0003】このような太陽電池では複数の素子同士を
配線材(不図示)を用いて直列に接続して、電圧を昇圧
させて使用するのが一般的である。この素子間の接続に
ははんだが必要となるため、表面電極16のバスバー部
16と裏面電極の出力取出部14には、はんだコーティ
ングを行っている。アルミニウムははんだ付けが非常に
困難であるため、表面電極のバスバー部16と裏面電極
の出力取出部14のはんだ濡れ性の良好な銀で形成し
て、これに配線材をはんだ付けしている。この半田被覆
は、ディップ引き上げ法、噴流式等で形成される。
In such a solar cell, a plurality of elements are generally connected in series using a wiring member (not shown), and the voltage is generally increased to be used. Since solder is required for the connection between the elements, the bus bar portion 16 of the front surface electrode 16 and the output extraction portion 14 of the back surface electrode are coated with solder. Since it is very difficult to solder aluminum, the bus bar portion 16 of the front electrode and the output extraction portion 14 of the back electrode are formed of silver having good solder wettability, and the wiring material is soldered to this. This solder coating is formed by a dipping method, a jet flow method, or the like.

【0004】ところが、この半田被覆をディップ法で行
った場合に、半田で被覆される出力取出部14のうち、
ディップ引き上げ時に下側となる部分には半田がたまり
易くなり、銅箔等などから成る出力取出用のリード線を
溶着する際にリード線から半田がはみ出てモジュール作
成工程の際にセル割れを発生させる原因になるという問
題があった。
[0004] However, when the solder coating is performed by the dip method, the output extraction portion 14 covered with the solder is not covered with the solder.
Solder easily accumulates on the lower part when pulling up the dip, and when welding the lead wire for output extraction made of copper foil etc., the solder protrudes from the lead wire and cell cracks occur during the module making process There was a problem that caused it.

【0005】本発明はこのような従来の問題に鑑みてな
されたものであり、リード線から半田がはみ出してモジ
ュール作成工程でセル割れが発生するという従来の問題
を解消した太陽電池素子とその製造方法を提供すること
を目的とする。
The present invention has been made in view of such a conventional problem, and a solar cell element and a method of manufacturing the same that have solved the conventional problem that the solder protrudes from the lead wire and cell breakage occurs in a module manufacturing process. It aims to provide a method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る太陽電池素子では、半導体基板の一
主面側と他の主面側に異なる導電領域を形成して、一主
面側の導電領域に表面電極を接続して設けると共に、他
の主面側の導電領域に裏面電極を接続して設けた太陽電
池素子において、前記裏面電極を銀を主成分とする出力
取出部とアルミニウムを主成分とする集電部とで形成す
ると共に、前記出力取出部に銀を主成分とする細幅の複
数の枝電極を同一方向を向くように接続して設けたこと
を特徴とする。
In order to achieve the above object, in the solar cell element according to the first aspect, different conductive regions are formed on one main surface side of the semiconductor substrate and another main surface side, and In a solar cell element provided with a front surface electrode connected to the main surface side conductive region and a back surface electrode connected to the other main surface side conductive region, the back surface electrode has an output extraction mainly composed of silver. And a current collecting portion mainly composed of aluminum, and a plurality of narrow branch electrodes mainly composed of silver are connected to the output extraction portion so as to face in the same direction. And

【0007】上記太陽電池素子では、前記枝電極を前記
集電部上に設けてもよい。
In the above solar cell element, the branch electrode may be provided on the current collector.

【0008】また、上記太陽電池素子では、前記枝電極
を前記半導体基板上に接するように設けてもよい。
In the above solar cell element, the branch electrode may be provided so as to be in contact with the semiconductor substrate.

【0009】また、請求項4に係る太陽電池素子の製造
方法では、半導体基板の一主面側と他の主面側に異なる
導電領域を形成して、一主面側の導電領域に表面電極を
接続して設けると共に、他の主面側の導電領域に裏面電
極を接続して設ける太陽電池素子の製造方法において、
前記裏面電極を銀を主成分とする出力取出部とアルミニ
ウムを主成分とする集電部とで形成し、前記出力取出部
に銀を主成分とする細幅の複数の枝電極を同一方向を向
くように接続して設けた後、前記枝電極が鉛直方向を向
くように前記半導体基板を挟持して半田浴に浸漬して引
き上げることによって前記出力取出部と枝電極部に半田
を被着させることを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a solar cell element, wherein different conductive regions are formed on one main surface side and another main surface side of a semiconductor substrate, and a surface electrode is formed on the one main surface side. In the method for manufacturing a solar cell element provided by connecting a back electrode to the conductive region on the other main surface side,
The back electrode is formed of an output extraction portion mainly composed of silver and a current collection portion mainly composed of aluminum, and a plurality of narrow branch electrodes mainly composed of silver are formed in the output extraction portion in the same direction. After being provided so as to face each other, the semiconductor substrate is sandwiched so that the branch electrodes face in the vertical direction, immersed in a solder bath and pulled up, so that solder is applied to the output extraction portion and the branch electrode portion. It is characterized by the following.

【0010】[0010]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。図1は本発明の太陽電池素子の構造を
示す断面図である。まず、半導体基板1を用意する(図
1(a)参照)。この半導体基板1は、単結晶又は多結
晶シリコンなどから成る。このシリコンなどから成る半
導体基板1は、ボロン(B)などの一導電型半導体不純
物を1×1016〜1018atoms/cm3程度含有
し、比抵抗1.5Ω・cm程度の基板である。単結晶シ
リコンの場合は引き上げ法などによって形成され、多結
晶シリコンの場合は鋳造法などによって形成される。多
結晶シリコンは、大量生産が可能で製造コスト面で単結
晶シリコンよりも有利である。引き上げ法や鋳造法によ
って形成されたインゴットを300μm程度の厚みにス
ライスして、10cm×10cmまたは15cm×15
cm程度の大きさに切断してシリコンなどから成る半導
体基板とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing the structure of the solar cell element of the present invention. First, a semiconductor substrate 1 is prepared (see FIG. 1A). This semiconductor substrate 1 is made of single crystal or polycrystalline silicon. The semiconductor substrate 1 made of silicon or the like is a substrate containing about 1 × 10 16 to 10 18 atoms / cm 3 of one conductivity type semiconductor impurity such as boron (B) and having a specific resistance of about 1.5 Ω · cm. In the case of single crystal silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like. Polycrystalline silicon can be mass-produced and is more advantageous than monocrystalline silicon in terms of manufacturing cost. An ingot formed by a pulling method or a casting method is sliced into a thickness of about 300 μm, and is sliced into 10 cm × 10 cm or 15 cm × 15
A semiconductor substrate made of silicon or the like is cut to a size of about cm.

【0011】次に、半導体基板1の切断面を清浄化する
ために表面をフッ酸やフッ硝酸などでごく微量エッチン
グする。
Next, in order to clean the cut surface of the semiconductor substrate 1, a very small amount of the surface is etched with hydrofluoric acid or hydrofluoric nitric acid.

【0012】次に、半導体基板1を拡散炉中に配置し
て、オキシ塩化リン(POCl3)などの中で加熱する
ことによって、半導体基板1の表面部分にリン原子を拡
散させてシート抵抗が30〜300Ω/□の他の導電型
を呈する領域1aを形成し、半導体接合部3を形成する
(図1(b)参照)。
Next, the semiconductor substrate 1 is placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) to diffuse phosphorus atoms into the surface of the semiconductor substrate 1 to reduce the sheet resistance. A region 1a exhibiting another conductivity type of 30 to 300Ω / □ is formed, and a semiconductor junction 3 is formed (see FIG. 1B).

【0013】次に、半導体基板1の一主面側の他の導電
型を呈する領域1aのみを残して他の部分を除去した
後、純水で洗浄する(図1(c)参照)。この半導体基
板1の一主面側以外の他の導電型を呈する領域1aの除
去は、半導体基板1の一主面側にレジスト膜を塗布し、
フッ酸と硝酸の混合液を用いてエッチング除去した後、
レジスト膜を除去することにより行なう。
Next, the semiconductor substrate 1 is washed with pure water after removing other portions except for the region 1a exhibiting another conductivity type on one main surface side of the semiconductor substrate 1 (see FIG. 1C). To remove the region 1a exhibiting another conductivity type other than the one main surface side of the semiconductor substrate 1, a resist film is applied to the one main surface side of the semiconductor substrate 1,
After etching and removing using a mixed solution of hydrofluoric acid and nitric acid,
This is performed by removing the resist film.

【0014】次に、シリコンなどから成る半導体基板1
の一主面側に反射防止膜2を形成する(図1(d)参
照)。この反射防止膜2は例えば窒化シリコン膜などか
ら成り、例えばシラン(SiH4)とアンモニア(N
3)との混合ガスをグロー放電分解でプラズマ化させ
て堆積させるプラズマCVD法などで形成する。この反
射防止膜2は半導体基板1との屈折率差などを考慮して
屈折率が1.8〜2.3程度になるように形成され、厚
み500〜1000Å程度の厚みに形成される。この窒
化シリコン膜は形成の際にパッシベーション効果があ
り、反射防止の機能と併せて太陽電池の電気特性を向上
させる効果がある。
Next, a semiconductor substrate 1 made of silicon or the like is used.
An anti-reflection film 2 is formed on one principal surface side of the substrate (see FIG. 1D). The antireflection film 2 is made of, for example, a silicon nitride film, and is made of, for example, silane (SiH 4 ) and ammonia (N
It is formed by a plasma CVD method or the like in which a gas mixture with H 3 ) is converted into plasma by glow discharge decomposition and deposited. The antireflection film 2 is formed so as to have a refractive index of about 1.8 to 2.3 in consideration of a refractive index difference from the semiconductor substrate 1 and has a thickness of about 500 to 1000 °. This silicon nitride film has a passivation effect at the time of formation, and has an effect of improving electric characteristics of the solar cell in addition to an antireflection function.

【0015】次に、出力取出部4を形成するために銀を
主成分とする電極材料を塗布して乾燥させる(図1
(c)参照)。この銀を主成分とする裏面電極材料4の
形状は出力取出用のリード線を溶着させる部分にあるこ
とが必要で、図2(a)に示すようなドット状のもの、
あるいは図3(a)に示すようなストレート形状のもの
などがある。
Next, an electrode material containing silver as a main component is applied and dried to form the output extraction portion 4 (FIG. 1).
(C)). The shape of the back electrode material 4 containing silver as a main component is required to be in a portion where a lead wire for extracting output is welded, and a dot-shaped material as shown in FIG.
Alternatively, there is a straight shape as shown in FIG.

【0016】その後、アルミニウムなどから成る集電部
5を出力取出部4の一部と重なるように塗布して乾燥さ
せる(図1(f)参照)。
Thereafter, a current collecting section 5 made of aluminum or the like is applied so as to overlap with a part of the output extracting section 4 and dried (see FIG. 1 (f)).

【0017】その後、裏面電極材料4に接するまたは交
わる枝電極4aを集電部5の上側または集電部5とは接
しない状態で設ける(図2(a)、図3(b))。な
お、この出力取出部4と枝電極4aは同時に塗布されて
もよく、また出力取出部4、枝電極4a、および集電部
5を塗布する順番はこの逆でもよいが、枝電極4aは、
図4に示すように、集電部5の上側に配置されるか、ま
たは、図5に示すように、集電部5のパターンニングに
より接触しない状態で設けることが必要である。
Thereafter, a branch electrode 4a which is in contact with or intersects the back electrode material 4 is provided above the current collector 5 or not in contact with the current collector 5 (FIGS. 2 (a) and 3 (b)). The output extraction unit 4 and the branch electrode 4a may be applied simultaneously, and the order of applying the output extraction unit 4, the branch electrode 4a, and the current collecting unit 5 may be reversed, but the branch electrode 4a is
As shown in FIG. 4, it is necessary to be arranged above the current collecting unit 5, or to be provided in a non-contact state by patterning the current collecting unit 5 as shown in FIG. 5.

【0018】次に、表面電極材料6を塗布して乾燥する
(図1(g)参照)。
Next, the surface electrode material 6 is applied and dried (see FIG. 1 (g)).

【0019】この裏面電極の集電部5はアルミニウムと
有機ビヒクルとガラスフリットをアルミニウム100重
量部に対してそれぞれ10〜30重量部、0.1〜5重
量部を添加してペースト状にしたものを、裏面電極の出
力取出部4と表面電極のバスバー部6は、銀と有機ビヒ
クルとガラスフリットを銀100重量部に対してそれぞ
れ10〜30重量部、0.1〜5重量部を添加してペー
スト状にしたものをスクリーン印刷法で印刷する。これ
ら電極材料4、5、6は乾燥した後に600〜800℃
で1〜30分程度、同時に焼成することにより焼き付け
られる。
The current collector 5 of the back electrode is formed by adding 10 to 30 parts by weight and 0.1 to 5 parts by weight of aluminum, an organic vehicle and glass frit to 100 parts by weight of aluminum to form a paste. The output extraction portion 4 of the back electrode and the bus bar portion 6 of the front electrode are added with 10 to 30 parts by weight and 0.1 to 5 parts by weight of silver, an organic vehicle, and a glass frit with respect to 100 parts by weight of silver, respectively. The paste is printed by a screen printing method. These electrode materials 4, 5, and 6 are dried at 600 to 800 ° C.
For about 1 to 30 minutes at the same time.

【0020】[0020]

【実施例】次に本発明の実施例を示す。半導体基板とし
て15cm角で厚さ0.3mm、比抵抗1.5Ω・cm
のP型シリコンなどから成る半導体基板を準備した。そ
して熱拡散法でオキシ塩化リン(POCl3)を拡散源
として、深さ0.5μmのN型拡散層を形成した。
Next, examples of the present invention will be described. 15cm square, 0.3mm thick, specific resistance 1.5Ωcm as semiconductor substrate
A semiconductor substrate made of P-type silicon or the like was prepared. An N-type diffusion layer having a depth of 0.5 μm was formed by a thermal diffusion method using phosphorus oxychloride (POCl 3 ) as a diffusion source.

【0021】次に、表面にプラズマCVD法で窒化シリ
コンから成る反射防止膜を800Åの厚さで形成し、不
要部のN型拡散層は除去した。
Next, an antireflection film made of silicon nitride was formed on the surface by plasma CVD at a thickness of 800.degree., And unnecessary portions of the N-type diffusion layer were removed.

【0022】最後に、銀ペースト、アルミニウムペース
トをスクリーン印刷し、表面にも銀ペーストをスクリー
ン印刷して700℃で焼成することで裏面電極と表面電
極を形成した後、200℃の半田浴槽に上記基板を浸漬
して引き上げることで、上記電極表面を半田被覆して太
陽電池を製造した。本発明品は、裏面電極の集電部を幅
140mm、長さ145mmに形成し、出力取出部を幅
3mm、長さ145mmに平行に2本形成し、枝電極を
出力取出部の裏面銀電極と垂直に交わり、線幅0.2m
m長さ143mmのものを4mm間隔で形成したもので
あり、従来品はこのような枝電極を形成しなかったもの
である。その結果を表1に示す。
Finally, a silver paste and an aluminum paste are screen-printed, and a silver paste is screen-printed on the surface and baked at 700 ° C. to form a back electrode and a front electrode. The substrate was immersed and pulled up, so that the electrode surface was coated with solder to produce a solar cell. According to the present invention, the current collecting portion of the back electrode is formed to have a width of 140 mm and a length of 145 mm, two output extraction portions are formed in parallel with the width of 3 mm and the length of 145 mm, and the branch electrodes are formed of the back electrode of the output extraction portion. Intersects vertically with 0.2m line width
It is formed with an m-length of 143 mm at intervals of 4 mm, and the conventional product does not have such a branch electrode. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すとおり、本発明による裏面電極
パターンを用いた場合には、出力取出用のリード線を取
り付けるための裏面電極の出力取出部の半田盛の厚みが
0.2〜0.5mmとなり、本発明を用いなかった場合
の1.0〜1.5mmと比べて最低で50%、最高で8
7%低減された。
As shown in Table 1, when the back electrode pattern according to the present invention is used, the thickness of the solder pile at the output extraction portion of the back electrode for attaching the output extraction lead wire is 0.2 to 0.1 mm. 5 mm, which is 50% at the minimum and 8% at the maximum as compared with 1.0 to 1.5 mm when the present invention is not used.
7% reduction.

【0025】[0025]

【発明の効果】以上のように、請求項1に係る太陽電池
素子によれば、裏面電極を銀を主成分とする出力取出部
とアルミニウムを主成分とする集電部とで形成すると共
に、この出力取出部に銀を主成分とする細幅の複数の枝
電極を同一方向を向くように接続して設けたことから、
出力取出用のリード線を取り付けるための出力取出部の
半田盛の厚みを低減できる。もって、太陽電池モジュー
ルを形成する際に、セル割れなどが発生することを防止
でき、太陽電池モジュールの製造歩留りを向上させるこ
とができる。
As described above, according to the solar cell element of the first aspect, the back electrode is formed by the output extraction portion mainly composed of silver and the current collection portion mainly composed of aluminum. Since a plurality of narrow electrode branches mainly composed of silver are provided in this output extraction portion so as to face in the same direction,
It is possible to reduce the thickness of the solder pile at the output extraction portion for attaching the output extraction lead wire. Therefore, when forming the solar cell module, it is possible to prevent the occurrence of cell cracks and the like, and it is possible to improve the manufacturing yield of the solar cell module.

【0026】また、請求項4に係る太陽電池素子の製造
方法によれば、裏面電極を銀を主成分とする出力取出部
とアルミニウムを主成分とする集電部とで形成するとと
もに、出力取出部に銀を主成分とする細幅の複数の枝電
極を同一方向を向くように接続して設けた後、枝電極が
鉛直方向を向くように半導体基板を挟持して半田浴に浸
漬して引き上げることによって出力取出部と枝電極部に
半田を被着させることから、出力取出用のリード線を取
り付けるための出力取出部の半田盛の厚みを低減でき
る。もって、太陽電池モジュールを形成する際に、セル
割れなどが発生することを防止でき、太陽電池モジュー
ルの製造歩留りを向上させることができる。
According to the method of manufacturing a solar cell element of the present invention, the back electrode is formed of an output extraction portion mainly composed of silver and a current collection portion mainly composed of aluminum. After connecting and providing a plurality of narrow branch electrodes containing silver as a main component so as to face the same direction, the semiconductor substrate is sandwiched so that the branch electrodes face the vertical direction and immersed in a solder bath. Since the solder is applied to the output extraction portion and the branch electrode portion by pulling up, the thickness of the solder pile at the output extraction portion for attaching the output extraction lead wire can be reduced. Therefore, when forming the solar cell module, it is possible to prevent the occurrence of cell cracks and the like, and it is possible to improve the manufacturing yield of the solar cell module.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池素子の製造方法を示す図
である。
FIG. 1 is a diagram showing a method for manufacturing a solar cell element according to the present invention.

【図2】本発明に係る太陽電池素子の一態様の製造工程
を裏面側からみた状態を示す図である。
FIG. 2 is a diagram showing a manufacturing process of one embodiment of the solar cell element according to the present invention as viewed from the back surface side.

【図3】本発明に係る太陽電池素子の他の態様の製造工
程を裏面側から見た状態を示す図である。
FIG. 3 is a diagram illustrating a manufacturing process of another embodiment of the solar cell element according to the present invention as viewed from the back surface side.

【図4】本発明に係る太陽電池素子において枝電極を集
電部上に形成した状態を示す図である。
FIG. 4 is a view showing a state in which a branch electrode is formed on a current collector in the solar cell element according to the present invention.

【図5】本発明に係る太陽電池素子において枝電極を集
電部の間に設けた状態を示す図である。
FIG. 5 is a diagram showing a state where branch electrodes are provided between current collectors in the solar cell element according to the present invention.

【図6】従来の太陽電池素子を示す図である。FIG. 6 is a view showing a conventional solar cell element.

【符号の説明】[Explanation of symbols]

1:半導体基板、1a:リン原子が拡散され他の導電型
を呈する領域、2:反射防止膜、3:半導体接合部、
4:裏面電極材料銀、4a:裏面枝電極材料銀、5:裏
面電極材料アルミニウム、6:表面バスバー電極、7:
表面フィンガー電極
1: a semiconductor substrate, 1a: a region where phosphorus atoms are diffused and exhibit another conductivity type, 2: an antireflection film, 3: a semiconductor junction,
4: Backside electrode material silver, 4a: Backside branch electrode material silver, 5: Backside electrode material aluminum, 6: Front busbar electrode, 7:
Surface finger electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面側と他の主面側に異
なる導電領域を形成して、一主面側の導電領域に表面電
極を接続して設けると共に、他の主面側の導電領域に裏
面電極を接続して設けた太陽電池素子において、前記裏
面電極を銀を主成分とする出力取出部とアルミニウムを
主成分とする集電部とで形成すると共に、前記出力取出
部に銀を主成分とする細幅の複数の枝電極を同一方向を
向くように接続して設けたことを特徴とする太陽電池素
子。
1. A semiconductor device according to claim 1, wherein a conductive region is formed on one main surface side of the semiconductor substrate and another conductive surface is formed on another main surface side, and a surface electrode is connected to the conductive region on one main surface side. In a solar cell element provided with a back electrode connected to a conductive region, the back electrode is formed of an output extraction portion mainly composed of silver and a current collection portion mainly composed of aluminum, and the output extraction portion has A solar cell element comprising a plurality of narrow branch electrodes mainly composed of silver which are connected so as to face in the same direction.
【請求項2】 前記枝電極を前記集電部上に設けたこと
を特徴とする請求項1に記載の太陽電池素子。
2. The solar cell element according to claim 1, wherein the branch electrode is provided on the current collector.
【請求項3】 前記枝電極を前記半導体基板上に接する
ように設けたことを特徴とする請求項1に記載の太陽電
池素子。
3. The solar cell element according to claim 1, wherein the branch electrode is provided so as to be in contact with the semiconductor substrate.
【請求項4】 半導体基板の一主面側と他の主面側に異
なる導電領域を形成して、一主面側の導電領域に表面電
極を接続して設けると共に、他の主面側の導電領域に裏
面電極を接続して設ける太陽電池素子の製造方法におい
て、前記裏面電極を銀を主成分とする出力取出部とアル
ミニウムを主成分とする集電部とで形成し、前記出力取
出部に銀を主成分とする細幅の複数の枝電極を同一方向
を向くように接続して設けた後、前記枝電極が鉛直方向
を向くように前記半導体基板を挟持して半田浴に浸漬し
て引き上げることによって前記出力取出部と枝電極部に
半田を被着させることを特徴とする太陽電池素子の製造
方法。
4. A different conductive region is formed on one main surface side and another main surface side of the semiconductor substrate, and a surface electrode is connected to the conductive region on the one main surface side and provided on the other main surface side. In the method for manufacturing a solar cell element provided by connecting a back electrode to a conductive region, the back electrode is formed by an output extraction portion mainly composed of silver and a current collection portion mainly composed of aluminum, and the output extraction portion is formed. After a plurality of narrow branch electrodes mainly composed of silver are connected and provided so as to face in the same direction, the semiconductor substrate is sandwiched so that the branch electrodes face in a vertical direction and immersed in a solder bath. A method of manufacturing a solar cell element, wherein solder is applied to the output extraction section and the branch electrode section by pulling up and pulling up.
JP2001161510A 2001-05-29 2001-05-29 Solar battery element and production method therefor Pending JP2002353477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161510A JP2002353477A (en) 2001-05-29 2001-05-29 Solar battery element and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161510A JP2002353477A (en) 2001-05-29 2001-05-29 Solar battery element and production method therefor

Publications (1)

Publication Number Publication Date
JP2002353477A true JP2002353477A (en) 2002-12-06

Family

ID=19004774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161510A Pending JP2002353477A (en) 2001-05-29 2001-05-29 Solar battery element and production method therefor

Country Status (1)

Country Link
JP (1) JP2002353477A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109524A1 (en) * 2004-05-07 2005-11-17 Mitsubishi Denki Kabushiki Kaisha Solar cell and manufacturing method thereof
JP2008252147A (en) * 2008-07-22 2008-10-16 Kyocera Corp Solar battery module
CN103171253A (en) * 2011-12-23 2013-06-26 昆山允升吉光电科技有限公司 Matching metal solar screen for multi-time printing and use method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109524A1 (en) * 2004-05-07 2005-11-17 Mitsubishi Denki Kabushiki Kaisha Solar cell and manufacturing method thereof
JPWO2005109524A1 (en) * 2004-05-07 2008-03-21 三菱電機株式会社 Solar cell and manufacturing method thereof
US8106291B2 (en) 2004-05-07 2012-01-31 Mitsubishi Electric Corporation Solar battery and manufacturing method therefor
US8481105B2 (en) 2004-05-07 2013-07-09 Mitsubishi Denki Kabushiki Kaisha Solar battery and manufacturing method therefor
JP2008252147A (en) * 2008-07-22 2008-10-16 Kyocera Corp Solar battery module
CN103171253A (en) * 2011-12-23 2013-06-26 昆山允升吉光电科技有限公司 Matching metal solar screen for multi-time printing and use method thereof

Similar Documents

Publication Publication Date Title
JP4738149B2 (en) Solar cell module
JP5989243B2 (en) SOLAR BATTERY CELL, ITS MANUFACTURING METHOD, AND SOLAR BATTERY MODULE
US20080092944A1 (en) Semiconductor structure and process for forming ohmic connections to a semiconductor structure
JP5726303B2 (en) Solar cell and method for manufacturing the same
JP2001068699A (en) Solar cell
TW201236171A (en) Solar cell and solar-cell module
CN105324849A (en) Back-contact-type solar cell
JPWO2011162406A1 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
KR20110122176A (en) Solar battery module
JP4331827B2 (en) Method for manufacturing solar cell element
JP4953562B2 (en) Solar cell module
JP4658380B2 (en) Solar cell element and solar cell module using the same
JP4412842B2 (en) Solar cell
JP5516441B2 (en) Solar cell module and manufacturing method thereof
JP4458651B2 (en) Solar cell device
JP5806395B2 (en) Solar cell element and manufacturing method thereof
JP2002198547A (en) Method for manufacturing solar cell
JP2002353477A (en) Solar battery element and production method therefor
JP2002198546A (en) Formation method for solar cell element
JP5537637B2 (en) Solar cell element and solar cell module using the same
JPH11135812A (en) Formation method for solar cell element
JP4203247B2 (en) Method for forming solar cell element
JP2005136148A (en) Solar cell device and method of manufacturing the same
KR20110010224A (en) Solar cell, method for solar cell and heat treatment apparatus for thermal diffusion
JP2002111016A (en) Method for forming solar cell