JP2002353025A - Plastic magnet - Google Patents

Plastic magnet

Info

Publication number
JP2002353025A
JP2002353025A JP2001159342A JP2001159342A JP2002353025A JP 2002353025 A JP2002353025 A JP 2002353025A JP 2001159342 A JP2001159342 A JP 2001159342A JP 2001159342 A JP2001159342 A JP 2001159342A JP 2002353025 A JP2002353025 A JP 2002353025A
Authority
JP
Japan
Prior art keywords
plastic magnet
ferromagnetic alloy
magnetic flux
particles
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001159342A
Other languages
Japanese (ja)
Other versions
JP5129418B2 (en
Inventor
Shigenobu Sekine
重信 関根
Yoshiki Kuwabara
芳樹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanei Kasei Co Ltd
Original Assignee
Sanei Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanei Kasei Co Ltd filed Critical Sanei Kasei Co Ltd
Priority to JP2001159342A priority Critical patent/JP5129418B2/en
Publication of JP2002353025A publication Critical patent/JP2002353025A/en
Application granted granted Critical
Publication of JP5129418B2 publication Critical patent/JP5129418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plastic magnet, where the disposals of its magnetic poles and the density of its magnetic flux can be set arbitrarily in order to improve the freedom of the design for miniaturizing and simplifying the apparatuses which utilize it. SOLUTION: The plastic magnet is the assembly of micro-particles made of a ferromagnetic alloy, where there is molded and magnetized the fused and kneaded substance made of spherical ferromagnetic-alloy particles and a thermoplastic resin, which has such a nanocomposite structure that the individual particles are separated from each other by metal oxide layers, scattered substances, or voids. Further, in the plastic magnet, the disposals of its magnetic poles and the density of its magnetic flux are set arbitrarily, and its leakage magnetic flux to its side surfaces is made not larger than 40% of all the total magnetic fluxes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マグネットを利用した
装置の小型化、単純化のための設計の自由度が高いプラ
スチックマグネットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic magnet having a high degree of design freedom for downsizing and simplifying an apparatus using a magnet.

【0002】[0002]

【従来の技術】特開2000−286120号には、一
端面部側に形成されたN極に隣接してS極が形成され、
該一端面部側にだけ着磁されているマグネット、あるい
は一端面部側に形成されたN極から一端面部側に該N極
に隣接して形成されたS極に向かう磁束の密度が、他端
面部側に形成されたN極から他端面部側に該N極に隣接
して形成されたS極に向かう磁束の密度よりも大きいマ
グネットが開示されている。このようなマグネットを用
いることにより、マグネットを利用した装置の小型化、
単純化のための設計の自由度を高める。
2. Description of the Related Art In Japanese Patent Application Laid-Open No. 2000-286120, an S pole is formed adjacent to an N pole formed on one end surface side,
The density of the magnetic flux directed from the magnet magnetized only on the one end face side or the S pole formed adjacent to the N pole from the N pole formed on the one end face side to the other end face part There is disclosed a magnet having a density higher than the density of magnetic flux from an N pole formed on one side to an S pole formed adjacent to the N pole on the other end face side. By using such a magnet, the size of the device using the magnet can be reduced,
Increase design freedom for simplicity.

【0003】このようなマグネットの製造法として、特
開2000−286120号には、一端面部側に形成さ
れたN極から一端面部側に該N極に隣接して形成された
S極に向かう磁束の密度が他端面部側に形成されたN極
から他端面部側に該N極に隣接して形成されたS極に向
かう磁束の密度よりも大きいマグネットを形成するため
に、着磁装置のN極とS極とを着磁前の磁性体の一端面
部側にのみ臨ませて該磁性体に磁界を加えることを特徴
とする着磁方法が開示されている。
As a method of manufacturing such a magnet, Japanese Patent Application Laid-Open No. 2000-286120 discloses a magnetic flux from an N pole formed on one end face to an S pole formed adjacent to the N pole on one end face. In order to form a magnet whose density is higher than the density of magnetic flux from the N pole formed on the other end face to the S pole formed adjacent to the N pole on the other end face, A magnetizing method is disclosed in which a magnetic field is applied to a magnetic body with the N pole and the S pole facing only one end surface side of the magnetic body before magnetization.

【0004】プラスチックマグネットは、先ず強磁性合
金の粉末と熱可塑性樹脂とを溶融混練し押し出し成形し
てペレット状とし、そのペレットを用いて所望の形状の
型内で磁場の存在下で加熱成形することにより得られ
る。
A plastic magnet is first melt-kneaded with a ferromagnetic alloy powder and a thermoplastic resin, extruded and formed into pellets, and the pellets are heated and molded in a desired shape in the presence of a magnetic field. It can be obtained by:

【0005】強磁性合金の粉末は、通常、所定の組成を
有する合金を機械的に粉砕することにより得られる。例
えば希土類含有鉄合金(R・Fe・B系:Rは希土類)
の粉末は、先ず溶融状態の合金をフィルム状にして急冷
し、それを機械的に粉砕することにより得られる。フィ
ルムを機械的に粉砕した場合、顕微鏡的にはフレーク状
に破砕されたものが得られ、大きさも一定でない。この
ような粒子を用いた場合には、ペレット製造時の流動性
が悪いので、樹脂量を増やすか、押し出し圧を高めるか
する必要がある。また磁性粉末のこのような形状は、磁
場の存在下で加熱成形する際に、相互に引っかかりあ
い、すべての磁性粉末の磁極が同一方向に整列しないの
で、得られるプラスチックマグネットの磁気特性の点で
も好ましいものではない。
The ferromagnetic alloy powder is usually obtained by mechanically pulverizing an alloy having a predetermined composition. For example, rare earth-containing iron alloys (R / Fe / B system: R is rare earth)
Can be obtained by first quenching a molten alloy into a film and then mechanically pulverizing it. When the film is mechanically pulverized, it is microscopically obtained in the form of flakes, and the size is not constant. When such particles are used, the fluidity during pellet production is poor, so it is necessary to increase the amount of resin or increase the extrusion pressure. In addition, such a shape of the magnetic powder is caught by each other when being heat-formed in the presence of a magnetic field, and the magnetic poles of all the magnetic powders are not aligned in the same direction. Not preferred.

【0006】[0006]

【発明が解決しようとする課題】マグネットを利用した
装置の小型化、単純化のための設計の自由度を高くする
ため、磁極の配置や磁束密度を任意に設定でき、しかも
磁気特性に優れたプラスチックマグネットを提供する。
The arrangement of magnetic poles and the magnetic flux density can be arbitrarily set in order to increase the degree of freedom of design for miniaturization and simplification of a device using a magnet, and it is excellent in magnetic characteristics. Provide plastic magnets.

【0007】[0007]

【課題を解決するための手段】本発明にかかわるプラス
チックマグネットは、強磁性合金の微小粒子の集合体で
あって個々の微小粒子が金属酸化物の層又は点在物或い
は空隙により相互に隔離されているナノコンポジット構
造を有する球状の強磁性合金粒子と熱可塑性樹脂との溶
融混練物を成形し磁化したもので、任意に設定された磁
極配置と磁束密度を有し、側面への洩れ磁束が全磁束の
40%以下であることを特徴とする。
The plastic magnet according to the present invention is an aggregate of fine particles of a ferromagnetic alloy, and the individual fine particles are isolated from each other by a metal oxide layer or interspersed objects or voids. It is formed by molding and magnetizing a melt-kneaded product of a spherical ferromagnetic alloy particle having a nanocomposite structure and a thermoplastic resin, and has an arbitrarily set magnetic pole arrangement and magnetic flux density. It is characterized by being 40% or less of the total magnetic flux.

【0008】強磁性合金粒子が球状であると、磁場の存
在下で加熱成形する際に相互に引っかかりあうことがな
く、殆どすべての磁性粉末の磁極が与えられた磁界と同
一方向に整列し、磁束の漏洩が少ないので、優れた時期
特性を有するプラスチックマグネットが得られる。球状
の強磁性合金粒子の平均粒径は10μm〜100μmの
範囲が好ましい。
[0008] When the ferromagnetic alloy particles are spherical, they do not catch on each other when heated and formed in the presence of a magnetic field, and almost all of the magnetic powder magnetic poles are aligned in the same direction as the given magnetic field, Since the leakage of the magnetic flux is small, a plastic magnet having excellent timing characteristics can be obtained. The average particle diameter of the spherical ferromagnetic alloy particles is preferably in the range of 10 μm to 100 μm.

【0009】[0009]

【発明の実施の形態】本発明のプラスチックマグネット
において、任意に設定された磁極配置と磁束密度を有す
ると言うことは、特開2000−286120号に開示
された、一端面部側に形成されたN極に隣接してS極が
形成され、該一端面部側にだけ着磁されているマグネッ
ト、あるいは一端面部側に形成されたN極から一端面部
側に該N極に隣接して形成されたS極に向かう磁束の密
度が、他端面部側に形成されたN極から他端面部側に該
N極に隣接して形成されたS極に向かう磁束の密度より
も大きいマグネットをも含むものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The plastic magnet according to the present invention having an arbitrarily set magnetic pole arrangement and magnetic flux density is disclosed in Japanese Patent Application Laid-Open No. 2000-286120. An S pole is formed adjacent to the pole, and a magnet is magnetized only on the one end face side, or an N pole formed on one end face side is formed on the one end face side adjacent to the N pole. It also includes a magnet in which the density of the magnetic flux toward the pole is higher than the density of the magnetic flux from the N pole formed on the other end face side to the S pole formed adjacent to the N pole on the other end face side.

【0010】本発明において使用する、強磁性合金の微
小粒子の集合体で個々の微小粒子が金属酸化物の層又は
点在物或いは空隙により相互に隔離されているナノコン
ポジット構造を有する球状の強磁性合金粒子の製造法の
一例を述べると、遠心力により中心部から放射状に遠心
場に飛散する溶融強磁性合金小滴をアルゴンを主体とす
るガスの環状上昇流と遠心場中で強制的に接触させるこ
とにより製造される。具体的には、高速水平回転するデ
ィスクの上に溶融強磁性合金を供給し、溶融強磁性合金
に遠心力を作用させて小滴として放射状に遠心場に飛散
させ、ディスクの上面より下方で且つディスクに対して
同心円をなす位置に設置されたドーナツ状のガス供給管
に上向き又は斜め上向きに設けたスリット状開口から放
出されるアルゴンを主体とするガスの環状上昇流と遠心
場中で強制的に接触させる。
[0010] The present invention relates to an aggregate of fine particles of a ferromagnetic alloy, wherein the fine particles have a nanocomposite structure in which individual fine particles are separated from each other by metal oxide layers or interspersed objects or voids. As an example of a method for producing magnetic alloy particles, the molten ferromagnetic alloy droplets scattered radially from the center to the centrifugal field by centrifugal force are forced into an annular upward flow of a gas mainly composed of argon in the centrifugal field. Manufactured by contact. Specifically, a molten ferromagnetic alloy is supplied onto a high-speed horizontally rotating disk, and centrifugal force is applied to the molten ferromagnetic alloy to scatter radially as small droplets in a centrifugal field. An annular upward flow of argon-based gas discharged from a slit-shaped opening provided upward or obliquely upward in a donut-shaped gas supply pipe installed at a position concentric with the disk and forced in a centrifugal field Contact.

【0011】アルゴンを主体とするガスとは、アルゴン
100%のガス、又は微量の反応性ガス、特に酸素を含
有するアルゴンガスを言う。アルゴンガス中の酸素濃度
は2容積ppm以下が好ましい。この微量酸素の存在に
より、生成した微小球状強磁性合金粒子の表面に極めて
薄い金属酸化物皮膜が形成し、空気中でそれ以上酸化が
進行するのを防止するなどの働きをする。
The gas mainly composed of argon refers to a gas containing 100% of argon or a trace amount of a reactive gas, particularly an argon gas containing oxygen. The oxygen concentration in the argon gas is preferably 2 ppm by volume or less. Due to the presence of this trace amount of oxygen, an extremely thin metal oxide film is formed on the surface of the generated fine spherical ferromagnetic alloy particles, and serves to prevent further oxidation from proceeding in air.

【0012】ナノコンポジット構造を有する球状強磁性
合金粒子の製造に際して使用する遠心式粒状化装置の構
造例を図1に示す。粒状化室1は上部が円筒状、下部が
コーン状になっており、上部に蓋2を有する。蓋2の中
心部には垂直に溶融金属注加用のノズル3が挿入されノ
ズル3の直下には回転ディスク4が設けられている。回
転ディスク4は、その直下に連結されたモータ5により
高速回転される。また粒状化室1のコーン部分の下端に
は生成した微小球状金属粒子の排出管6が接続されてい
る。ノズル3の上部は粒状化する金属を溶融する電気炉
(高周波炉)7に接続されている。ディスク4の上面よ
り下方で、ディスク4(又はその直下のモータ5の回転
軸)に対して同心円をなす位置にドーナツ状のガス供給
管8が設置されている。ドーナツ状のガス供給管8は、
上向きにガスを放出するスリット状開口9を有してい
る。ガス供給タンク10からのアルゴンガス又は微量酸
素含有アルゴンガスは配管11を通してドーナツ状のガ
ス供給管8に供給される。ガス供給量は弁12により制
御される。符号13は排気装置で、それに接続する弁1
4を操作することにより粒状化室内の圧力を任意の値に
制御する。粒状化室1には水冷用ジャケット15が設け
られている。符号16は冷却用水の送入管、符号17は
冷却用水の排出管である。
FIG. 1 shows an example of the structure of a centrifugal granulator used for producing spherical ferromagnetic alloy particles having a nanocomposite structure. The granulation chamber 1 has a cylindrical shape at the top and a cone shape at the bottom, and has a lid 2 at the top. A nozzle 3 for pouring molten metal is inserted vertically into the center of the lid 2, and a rotating disk 4 is provided directly below the nozzle 3. The rotating disk 4 is rotated at a high speed by a motor 5 connected directly below the rotating disk 4. A discharge pipe 6 for the generated fine spherical metal particles is connected to the lower end of the cone portion of the granulation chamber 1. The upper part of the nozzle 3 is connected to an electric furnace (high frequency furnace) 7 for melting the metal to be granulated. A donut-shaped gas supply pipe 8 is provided below the upper surface of the disk 4 and at a position concentric with the disk 4 (or the rotating shaft of the motor 5 immediately below). The donut-shaped gas supply pipe 8
It has a slit-shaped opening 9 for discharging gas upward. The argon gas or the trace oxygen-containing argon gas from the gas supply tank 10 is supplied to a donut-shaped gas supply pipe 8 through a pipe 11. The gas supply amount is controlled by the valve 12. Reference numeral 13 denotes an exhaust device, and a valve 1 connected to the exhaust device.
By manipulating 4, the pressure in the granulation chamber is controlled to an arbitrary value. The granulation chamber 1 is provided with a water cooling jacket 15. Reference numeral 16 denotes a cooling water inlet pipe, and reference numeral 17 denotes a cooling water discharge pipe.

【0013】図2は図1に示した装置における回転ディ
スク及びドーナツ状のガス供給管付近の拡大図、図3は
図2に示した部分の水平断面図である。電気炉7で溶融
された金属は、ノズル3から高速水平回転ディスク4上
に供給される。供給された溶融金属は高速水平回転ディ
スク4による遠心力の作用で微細な液滴状になって点線
20で示すように放射状に遠心場に飛散する。一方、ド
ーナツ状のガス供給管8のスリット状開口9から上向き
に放出されたアルゴンを主体とするガスは点線21で示
される環状の上昇ガス流を形成する。放射状に遠心場に
飛散する溶融金属小滴20とアルゴンを主体とする環状
の上昇ガス流21の両者は符号Aで示される環状領域付
近で接触し、溶融金属は極めて速やかに真球に近い状態
になって固化する。アルゴンを主体とする環状のガス流
中に微量の反応性ガス、例えば酸素が含まれている場合
は、金属成分の一部は酸化物となり、ナノコンポジット
構造を有する微小球状金属粒子になる。
FIG. 2 is an enlarged view of the vicinity of the rotary disk and the donut-shaped gas supply pipe in the apparatus shown in FIG. 1, and FIG. 3 is a horizontal sectional view of the portion shown in FIG. The metal melted in the electric furnace 7 is supplied from the nozzle 3 onto the high-speed horizontal rotating disk 4. The supplied molten metal is formed into fine droplets by the action of the centrifugal force by the high-speed horizontal rotating disk 4 and scatters radially into the centrifugal field as shown by a dotted line 20. On the other hand, the gas mainly composed of argon discharged upward from the slit-shaped opening 9 of the donut-shaped gas supply pipe 8 forms an annular rising gas flow indicated by a dotted line 21. Both the molten metal droplet 20 scattered radially in the centrifugal field and the annular rising gas flow 21 mainly composed of argon come into contact with each other near the annular region indicated by the symbol A, and the molten metal becomes very close to a true sphere very quickly. To solidify. When a small amount of a reactive gas, for example, oxygen is contained in an annular gas flow mainly composed of argon, a part of the metal component becomes an oxide and becomes fine spherical metal particles having a nanocomposite structure.

【0014】[0014]

【実施例1】図1に示した装置を使用し、直径35m
m、回転数10万rpm、周縁線速度183m/秒の非
接触磁気浮上軸回転ディスクに、希土類含有鉄合金(R
−Fe−B;Rは希土類金属)溶融物を供給し遠心力を
作用させ小滴として飛散させ、上向きのスリット状開口
を有するドーナツ状のガス供給管(スリット部分の直径
400mm)から放出されるアルゴンガスの環状上昇流
と接触させた。また排気装置13を作動させ粒状化室内
の圧力を大気圧より低くした。得られた粒子の電子顕微
鏡写真を図4に示す。直径約20μm程度の粒径の揃っ
た真球に近い粒子が得られた。この球状強磁性粉末92
重量%とナイロン樹脂8重量%との混合ペレットを直径
10mm、厚さ2mmの円板状に圧縮成型し、着磁して
プラスチック磁石を製造した。この磁石の磁束密度は約
1000ガウスであった。この磁石表面の拡大写真を図
5に示す。球状で大きさの揃った強磁性粉末が整然と分
布している状態が分かる。図6は上記プラスチックマグ
ネットからナイロン樹脂を溶解除去した状態の拡大写真
である。球状磁石が連結しているが、これは地球のよう
に球の北極部分と南極部分にN極とS極を有する磁石が
整列しているものである。
EXAMPLE 1 The apparatus shown in FIG.
m, rotating speed of 100,000 rpm, peripheral linear velocity of 183 m / sec.
-Fe-B; R is a rare-earth metal) supplied and melted by centrifugal force to be scattered as small droplets, which are discharged from a donut-shaped gas supply pipe (400 mm in diameter of the slit portion) having an upward slit-like opening. Contact was made with an annular ascending flow of argon gas. Further, the exhaust device 13 was operated to lower the pressure in the granulation chamber below the atmospheric pressure. An electron micrograph of the obtained particles is shown in FIG. Particles having a diameter of about 20 μm and having a nearly uniform sphere were obtained. This spherical ferromagnetic powder 92
A mixed pellet of 8% by weight and 8% by weight of a nylon resin was compression-molded into a disk having a diameter of 10 mm and a thickness of 2 mm, and was magnetized to produce a plastic magnet. The magnetic flux density of this magnet was about 1000 gauss. FIG. 5 shows an enlarged photograph of the magnet surface. It can be seen that the ferromagnetic powders of spherical and uniform size are orderly distributed. FIG. 6 is an enlarged photograph of a state where the nylon resin is dissolved and removed from the plastic magnet. Spherical magnets are connected, in which magnets having north and south poles are arranged at the north and south poles of the sphere like the earth.

【0015】[0015]

【比較例1】希土類含有鉄合金(R・Fe・B系:Rは
希土類)をフィルム状にして急冷することにより得られ
た市販の強磁性体粉末92重量%とナイロン樹脂8重量
%との混合ペレットを直径10mm、厚さ2mmの円板
状に圧縮成型し、着磁してプラスチック磁石を製造し
た。この磁石の磁束密度は約500ガウスであった。
Comparative Example 1 A 92% by weight of a commercially available ferromagnetic powder obtained by quenching a rare earth-containing iron alloy (R.Fe.B system: R is a rare earth) and 8% by weight of a nylon resin was obtained. The mixed pellet was compression-molded into a disk having a diameter of 10 mm and a thickness of 2 mm, and was magnetized to produce a plastic magnet. The magnetic flux density of this magnet was about 500 gauss.

【0016】[0016]

【発明の効果】マグネットを利用した装置の小型化、単
純化のための設計の自由度を高くするため、磁極の配置
や磁束密度を任意に設定でき、しかも磁気特性に優れた
プラスチックマグネットが得られる。
As described above, in order to increase the degree of freedom of design for miniaturization and simplification of a device using a magnet, the arrangement of magnetic poles and the magnetic flux density can be arbitrarily set, and a plastic magnet having excellent magnetic properties can be obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】球状の強磁性合金粒子を製造する装置の概念図
である。
FIG. 1 is a conceptual diagram of an apparatus for producing spherical ferromagnetic alloy particles.

【図2】図1に示した装置における回転ディスク及びド
ーナツ状のガス供給管付近の拡大図である。
FIG. 2 is an enlarged view of the vicinity of a rotating disk and a donut-shaped gas supply pipe in the apparatus shown in FIG.

【図3】図2に示した部分の水平断面図である。FIG. 3 is a horizontal sectional view of a portion shown in FIG. 2;

【図4】実施例1により得られた粒子の電子顕微鏡写真
である。
FIG. 4 is an electron micrograph of the particles obtained in Example 1.

【図5】実施例1において得られたプラスチック磁石の
電子顕微鏡写真である。
FIG. 5 is an electron micrograph of the plastic magnet obtained in Example 1.

【図6】実施例1において得られたプラスチック磁石か
らナイロン樹脂を溶解除去した球状磁石が連結している
状態を示す拡大写真である。
FIG. 6 is an enlarged photograph showing a state in which a spherical magnet obtained by dissolving and removing a nylon resin from the plastic magnet obtained in Example 1 is connected.

【符号の説明】[Explanation of symbols]

1 粒状化室 2 蓋 3 ノズル 4 回転ディスク 5 モータ 6 粒子排出管 7 電気炉 8 ドーナツ状のガス供給管 9 スリット状開口 10 ガス供給タンク 11 配管 12 弁 13 排気装置 14 弁 15 水冷用ジャケット 16 冷却水送入管 17 冷却水排出管 18 比較試験用ガス供給管 19 弁 20 飛散する溶融金属の小滴 21 環状のアルゴンガス流 22 弁 DESCRIPTION OF SYMBOLS 1 Granulation chamber 2 Cover 3 Nozzle 4 Rotating disk 5 Motor 6 Particle discharge pipe 7 Electric furnace 8 Donut-shaped gas supply pipe 9 Slit-shaped opening 10 Gas supply tank 11 Piping 12 Valve 13 Exhaust device 14 Valve 15 Water cooling jacket 16 Cooling Water inlet pipe 17 Cooling water outlet pipe 18 Gas supply pipe for comparison test 19 Valve 20 Droplets of molten metal scattered 21 Ring-shaped argon gas flow 22 Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑原 芳樹 東京都渋谷区本町6丁目40番11号 Fターム(参考) 4K017 CA01 DA04 ED02 FA08 FA29 4K018 BB03 BB04 BB06 GA04 KA46 5E040 AC05 BD03 CA01 HB15 NN01 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiki Kuwahara 6-40-11 Honcho, Shibuya-ku, Tokyo F-term (reference) 4K017 CA01 DA04 ED02 FA08 FA29 4K018 BB03 BB04 BB06 GA04 KA46 5E040 AC05 BD03 CA01 HB15 NN01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁性合金の微小粒子の集合体であって
個々の微小粒子が金属酸化物の層又は点在物或いは空隙
により相互に隔離されているナノコンポジット構造を有
する球状の強磁性合金粒子と熱可塑性樹脂との溶融混練
物を成形し磁化したもので、任意に設定された磁極配置
と磁束密度を有し、側面への洩れ磁束が全磁束の40%
以下であることを特徴とするプラスチックマグネット。
1. A spherical ferromagnetic alloy having a nanocomposite structure, which is an aggregate of microparticles of a ferromagnetic alloy, in which individual microparticles are isolated from one another by metal oxide layers or interspersed objects or voids. It is formed by molding and magnetizing a melt-kneaded product of particles and a thermoplastic resin, has an arbitrarily set magnetic pole arrangement and magnetic flux density, and leakage magnetic flux to the side surface is 40% of the total magnetic flux.
A plastic magnet characterized by the following.
【請求項2】 任意に設定された磁極配置が、同一面上
にN極面とS極面が異なった面積で存在するものである
請求項1に記載のプラスチックマグネット。
2. The plastic magnet according to claim 1, wherein the magnetic pole arrangement arbitrarily set is such that the N-pole surface and the S-pole surface have different areas on the same surface.
【請求項3】 球状の強磁性合金粒子の平均粒径が10
μm〜100μmである請求項1に記載のプラスチック
マグネット。
3. The spherical ferromagnetic alloy particles having an average particle size of 10
The plastic magnet according to claim 1, which has a size of μm to 100 μm.
【請求項4】 強磁性合金の微小粒子の集合体で個々の
微小粒子が金属酸化物の層又は点在物或いは空隙により
相互に隔離されているナノコンポジット構造を有する球
状の強磁性合金粒子が、遠心力により中心部から放射状
に遠心場に飛散する溶融強磁性合金小滴をアルゴンを主
体とするガスの環状上昇流と遠心場中で強制的に接触さ
せたものである請求項1に記載のプラスチックマグネッ
ト。
4. Spherical ferromagnetic alloy particles having a nanocomposite structure in which individual microparticles are aggregates of ferromagnetic alloy microparticles and are separated from each other by metal oxide layers or interspersed objects or voids. 2. The method according to claim 1, wherein the molten ferromagnetic alloy droplets scattered radially from the center to the centrifugal field by centrifugal force are forcibly brought into contact with the annular upward flow of gas mainly composed of argon in the centrifugal field. Plastic magnet.
JP2001159342A 2001-05-28 2001-05-28 Plastic magnet Expired - Lifetime JP5129418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001159342A JP5129418B2 (en) 2001-05-28 2001-05-28 Plastic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001159342A JP5129418B2 (en) 2001-05-28 2001-05-28 Plastic magnet

Publications (2)

Publication Number Publication Date
JP2002353025A true JP2002353025A (en) 2002-12-06
JP5129418B2 JP5129418B2 (en) 2013-01-30

Family

ID=19002943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001159342A Expired - Lifetime JP5129418B2 (en) 2001-05-28 2001-05-28 Plastic magnet

Country Status (1)

Country Link
JP (1) JP5129418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028951B2 (en) 2013-09-10 2015-05-12 Magnetnotes, Ltd. Magnetic receptive printable media

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229803A (en) * 1986-03-29 1987-10-08 Kobe Steel Ltd Nd-fe-b alloy powder for plastic magnet
JPH0487305A (en) * 1990-07-31 1992-03-19 Sankyo Seiki Mfg Co Ltd Rare earth bonded magnet
JPH0498803A (en) * 1990-08-16 1992-03-31 Showa Denko Kk Manufacture of rare-earth alloy magnet powder
JPH0523597A (en) * 1991-07-23 1993-02-02 Nikko Rika Kk Production of spherical raney alloy for catalyst
JPH05258931A (en) * 1992-03-12 1993-10-08 Daido Gakuen Magnet powder
JPH06306415A (en) * 1993-04-16 1994-11-01 Shin Etsu Chem Co Ltd Method and device for production rare-earth metal globular particle
JPH1085583A (en) * 1996-09-13 1998-04-07 Dowa Iron Powder Co Ltd Method for producing fine powder
JP2000286120A (en) * 1999-03-30 2000-10-13 Bosch Braking Systems Co Ltd Magnet, and method for magnetizing the same
JP2000348917A (en) * 1999-06-02 2000-12-15 Seiko Epson Corp Magnet powder, manufacture of thereof, and bonded magnet
JP2001257111A (en) * 2000-03-13 2001-09-21 Sanei Kasei Kk Structure of plastic magnet material pellet
JP2002317212A (en) * 2001-04-17 2002-10-31 Sanei Kasei Kk Method for producing micro spherical metallic grain

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229803A (en) * 1986-03-29 1987-10-08 Kobe Steel Ltd Nd-fe-b alloy powder for plastic magnet
JPH0487305A (en) * 1990-07-31 1992-03-19 Sankyo Seiki Mfg Co Ltd Rare earth bonded magnet
JPH0498803A (en) * 1990-08-16 1992-03-31 Showa Denko Kk Manufacture of rare-earth alloy magnet powder
JPH0523597A (en) * 1991-07-23 1993-02-02 Nikko Rika Kk Production of spherical raney alloy for catalyst
JPH05258931A (en) * 1992-03-12 1993-10-08 Daido Gakuen Magnet powder
JPH06306415A (en) * 1993-04-16 1994-11-01 Shin Etsu Chem Co Ltd Method and device for production rare-earth metal globular particle
JPH1085583A (en) * 1996-09-13 1998-04-07 Dowa Iron Powder Co Ltd Method for producing fine powder
JP2000286120A (en) * 1999-03-30 2000-10-13 Bosch Braking Systems Co Ltd Magnet, and method for magnetizing the same
JP2000348917A (en) * 1999-06-02 2000-12-15 Seiko Epson Corp Magnet powder, manufacture of thereof, and bonded magnet
JP2001257111A (en) * 2000-03-13 2001-09-21 Sanei Kasei Kk Structure of plastic magnet material pellet
JP2002317212A (en) * 2001-04-17 2002-10-31 Sanei Kasei Kk Method for producing micro spherical metallic grain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028951B2 (en) 2013-09-10 2015-05-12 Magnetnotes, Ltd. Magnetic receptive printable media

Also Published As

Publication number Publication date
JP5129418B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
CA1202864A (en) High coercivity rare earth-iron magnets
JP5744269B2 (en) Production of ND-Fe-B magnets using hot pressing with reduced dysprosium or terbium
KR101193437B1 (en) Spherical magnet alloy powder and producing method of the same
JP2018090892A (en) Rare-earth-iron-nitrogen-based magnetic powder and method for producing the same
KR101426021B1 (en) Manufacturing method of amorphous alloy powder and apparatus for the same
US6555018B2 (en) Bonded magnets made with atomized permanent magnetic powders
JP2002353025A (en) Plastic magnet
EP1295658A1 (en) Method and apparatus for producing magnetic rare earth alloy powder, method for producing bonded magnet, method for producing rare earth sintering magnet, and method and apparatus for improving purity of inert gas
JP2000077219A (en) Manufacture of magnet material and the magnet material and bonded magnet
JP2002317212A (en) Method for producing micro spherical metallic grain
JP2010159168A (en) Method for producing spherical metal oxide powder
JP2001257111A (en) Structure of plastic magnet material pellet
JP3556786B2 (en) Method and apparatus for producing anisotropic granulated powder
JP4186790B2 (en) Manufacturing method of magnet material
JP2000040611A (en) Resin coupled permanent magnet material and magnetization thereof as well as encoder using the same
JP3624704B2 (en) Magnet material manufacturing method, magnet material, and bonded magnet
JP3606036B2 (en) Magnet material manufacturing method, magnet material, and bonded magnet
JP2005216791A (en) Electromagnetic wave absorbing and shielding material
CN114472909B (en) Integrated into one piece inductance alloy raw material powder preparation facilities
JPH09194911A (en) Production of raw material powder for permanent magnet excellent in moldability
JP2001353227A (en) Magnetic therapeutic apparatus
JP3840893B2 (en) Bond magnet manufacturing method and bond magnet
JP2004237251A (en) Production method of fine powder, and fine powder
JP2000355708A (en) MANUFACTURE OF Sm-Fe-N MAGNETIC POWDER
JP2010001545A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110712

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5129418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term