JP2002352710A - Manufacturing method of light-emitting device - Google Patents

Manufacturing method of light-emitting device

Info

Publication number
JP2002352710A
JP2002352710A JP2001160278A JP2001160278A JP2002352710A JP 2002352710 A JP2002352710 A JP 2002352710A JP 2001160278 A JP2001160278 A JP 2001160278A JP 2001160278 A JP2001160278 A JP 2001160278A JP 2002352710 A JP2002352710 A JP 2002352710A
Authority
JP
Japan
Prior art keywords
emitting device
light
manufacturing
light emitting
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001160278A
Other languages
Japanese (ja)
Inventor
Yosuke Kawahito
洋介 川人
Toshiharu Okada
俊治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001160278A priority Critical patent/JP2002352710A/en
Publication of JP2002352710A publication Critical patent/JP2002352710A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a light-emitting device, which is capable of effectively reducing fault phenomena such as light emission nonuniformity and waste of gas consumption at plural stages of a conventional sealing process for very small light-emitting devices, and also effectively miniaturizing the light-emitting device. SOLUTION: In this manufacturing method of a light-emitting device, a pair of electrodes 4, 5, of which the edges are disposed at a prescribed space, are formed in a material 3 having transparency for the wavelength of a laser beam 2, and the laser beam 2 irradiates the center between the electrodes 4 and 5, and a gap 7 is installed there.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ加工による
発光デバイスの製造方法に関する。
The present invention relates to a method for manufacturing a light emitting device by laser processing.

【0002】[0002]

【従来の技術】発光デバイスの代表的なものとして、蛍
光灯・ナトリウムランプ等のランプ、あるいはプラズマ
ディスプレイの発光デバイスが挙げられる。これらのデ
バイスを製造するキーテクノロジーの一つとして、放電
が行われる程度の真空度での封止技術や、発光時に必要
なHe及びXe等のガスの封止技術が挙げられる。具体
的には、真空ポンプでガスを封止する発光デバイスの内
部を真空にひいた後、この真空にひいた内部の壁に熱を
加え溶解させて封止する技術や、空気等、発光デバイス
内部に既に存在するガスを追出し、発光デバイス内部を
発光に必要なガスで満たした後、このガスで満たした内
部の壁に熱を加え溶解させ、封止する技術である。
2. Description of the Related Art Typical light emitting devices include lamps such as fluorescent lamps and sodium lamps, and light emitting devices for plasma displays. As one of the key technologies for manufacturing these devices, there are a sealing technique at a degree of vacuum enough to perform a discharge and a sealing technique for gases such as He and Xe necessary for light emission. Specifically, after vacuuming the inside of a light emitting device that seals a gas with a vacuum pump, and then applying heat to the inner wall that has been vacuumed to melt and seal the light emitting device, or a light emitting device such as air. This is a technique in which a gas already existing in the inside is expelled, the inside of the light emitting device is filled with a gas necessary for light emission, and then heat is applied to the inner wall filled with the gas to melt and seal the light emitting device.

【0003】[0003]

【発明が解決しようとする課題】この従来のプロセスに
は、放電あるいは発光デバイス内部の残留空気の問題が
ある。例えば、プラズマディスプレイのように、非常に
小型で、特に一度に複数の発光デバイス内部を、発光に
必要なガスで満たす場合には、ガスの注入口からの距離
や、放電および発光デバイス内部の構造等により、各発
光デバイス内部に残留する空気の量にムラが生じ、その
結果、発光に必要なガス量にもムラが生じるため、発光
ムラという不良現象が生じる。また、従来のプロセスで
は、空気等の発光デバイス内部に既に存在するガスを追
出す工程、発光デバイス内部を発光に必要なガスで満た
す工程、必要なガスを封止する工程等複数の複雑な工程
を必要とする。さらに、発光に必要なガスを充填する時
間もかかる上、発光デバイス内部に既に存在するガスを
追出すためのガスが必要となり、製造上のムダが多い。
This conventional process has the problem of discharge or residual air inside the light emitting device. For example, when the inside of a plurality of light-emitting devices is very small, such as a plasma display, and particularly when the inside of a plurality of light-emitting devices is filled with a gas necessary for light emission at a time, the distance from a gas inlet, and the structure inside the discharge and light-emitting devices. As a result, unevenness occurs in the amount of air remaining inside each light emitting device, and as a result, unevenness also occurs in the amount of gas required for light emission. Further, in the conventional process, a plurality of complicated steps such as a step of purging a gas already existing inside the light emitting device such as air, a step of filling the inside of the light emitting device with a gas necessary for light emission, a step of sealing a necessary gas, and the like. Need. Further, it takes time to fill a gas necessary for light emission, and a gas for purging a gas already existing inside the light emitting device is required, which is wasteful in manufacturing.

【0004】[0004]

【課題を解決するための手段】この課題を解決するため
に本発明は、端部が所定の間隔をもって設けられた一対
の電極を内部に設け、加工レーザの波長に対して透過性
がある材料の前記一対の電極間の中央にレーザを照射し
て、この電極間に空隙を設けるものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention is directed to a material having a pair of electrodes having ends provided at a predetermined interval therein and having a transparency to a wavelength of a processing laser. The center between the pair of electrodes is irradiated with a laser to provide a gap between the electrodes.

【0005】これにより、製造上のムダを減少させ、発
光デバイスの製造時間を大幅に短縮化することが可能と
なった。
As a result, it is possible to reduce waste in manufacturing and significantly shorten the manufacturing time of the light emitting device.

【0006】[0006]

【発明の実施の形態】図1は、本発明の第1の実施の形
態に係る発光デバイスの製造方法を示す図で、被加工物
3の電極4と電極5の間に、レーザビーム2を照射する
レーザ加工プロセスを示している。また図2は、レーザ
加工後の被加工物3の電極4と電極5の間に空隙7を形
成し、電極に電圧をかけ放電8を発生させている概略図
を示すものである。
FIG. 1 is a view showing a method of manufacturing a light emitting device according to a first embodiment of the present invention. A laser beam 2 is applied between an electrode 4 and an electrode 5 of a workpiece 3. 3 shows a laser processing process for irradiation. FIG. 2 is a schematic view showing a state where a gap 7 is formed between the electrode 4 and the electrode 5 of the workpiece 3 after the laser processing, and a voltage is applied to the electrode to generate a discharge 8.

【0007】ここで、レーザの波長に対して透過性があ
る材料の内部にレーザを集光させ、空隙が発生する原理
について説明する。この現象は、被加工物3内部でアブ
レーションが起こる現象である。つまり、表面では加工
できないレベルのエネルギー密度でしかないが、内部で
はエネルギー密度が加工の閾値を超える必要がある。さ
らに、内部でアブレーションを起こさせるため、材料に
基本的にレーザの吸収が少ない波長のレーザを用いるの
で、被加工物3内部でエネルギーを高める必要がある。
一般のソーダガラス等のガラス材料では、表面での加工
のためのエネルギー密度の閾値は、内部の閾値の1/1
0であり、さらに裏面で加工を生じさせないためには、
内部の閾値の2/3程度に低くする必要があることが知
られている。
Here, the principle that a laser is focused inside a material that is transparent to the wavelength of the laser and a void is generated will be described. This phenomenon is a phenomenon in which ablation occurs inside the workpiece 3. That is, although the energy density is only at a level that cannot be processed on the surface, the energy density needs to exceed the processing threshold value inside. Further, in order to cause ablation inside, a laser having a wavelength that is basically low in laser absorption is used as a material. Therefore, it is necessary to increase energy inside the workpiece 3.
In a glass material such as general soda glass, the threshold of the energy density for processing on the surface is 1/1 of the internal threshold.
0, and in order to prevent processing on the back surface,
It is known that it is necessary to lower the internal threshold value to about の.

【0008】図1では、加工のレーザ2として、波長5
32nm、パルスエネルギー2mJ、パルス幅、78n
sであるQスイッチYAGレーザの第2高調波を使用
し、集光レンズ1によりスポット径50μmで集光させ
た。レーザが透過する材料として、主成分がシリコン・
酸素・ナトリウムの構成からなるソーダガラスを被加工
物3に使用している。被加工物3の電極材料として、タ
フピッチ銅を使用し、ガラス内部に電極4と電極5の間
を50μmの間隔をとり、ガラス内部から外部に銅線を
引き出せる構造にした。
In FIG. 1, a laser 5 having a wavelength of 5
32 nm, pulse energy 2 mJ, pulse width, 78 n
Using the second harmonic of a Q-switched YAG laser, which is s, the light was condensed by the condenser lens 1 with a spot diameter of 50 μm. The main component of the laser transmitting material is silicon
Soda glass having a composition of oxygen and sodium is used for the workpiece 3. Tough pitch copper was used as the electrode material of the workpiece 3, and a space between the electrodes 4 and 5 of 50 μm was provided inside the glass so that a copper wire could be drawn from the inside of the glass to the outside.

【0009】電極4と電極5の間を加工部6とし、Qス
イッチYAGレーザの第2高調波を前記記載のレーザ加
工条件で加工すると、大きさ50μm程度の空隙7が形
成される。この空隙7は、QスイッチYAGレーザの第
2高調波を加工部6に照射し、加工部6の被加工物3が
レーザ2のエネルギーを吸収することで、加工部6の温
度を急激に増加して昇華現象がおき、被加工物3の昇華
による圧力が加わり、空隙7を形成するものと考えらて
いる。つまり、空隙7の内部には、ガラスを構成する酸
素等の分子が存在するものと考えられるが、真空度の高
い状態となっていることが報告されている。この状態
で、図2に示すように電極4と電極5の間に電圧を加え
ると、放電8が空隙7の部分に発生した。この例では、
電極4と電極5の間の電圧を25Vを印加している。こ
れは、室温、大気圧中で放電を起すのに必要な電圧が1
cmに対して5000Vであることを参考にした。
When a portion between the electrode 4 and the electrode 5 is a processing portion 6 and the second harmonic of the Q-switched YAG laser is processed under the above-described laser processing conditions, a gap 7 having a size of about 50 μm is formed. The gap 7 irradiates the processing section 6 with the second harmonic of the Q-switched YAG laser, and the workpiece 3 of the processing section 6 absorbs the energy of the laser 2, thereby rapidly increasing the temperature of the processing section 6. It is considered that a sublimation phenomenon occurs, and a pressure due to the sublimation of the workpiece 3 is applied to form the void 7. In other words, although it is considered that molecules such as oxygen constituting glass exist inside the void 7, it is reported that the state of vacuum is high. In this state, when a voltage was applied between the electrode 4 and the electrode 5 as shown in FIG. 2, a discharge 8 was generated in the space 7. In this example,
A voltage of 25 V is applied between the electrode 4 and the electrode 5. This means that the voltage required to cause a discharge at room temperature and atmospheric pressure is one.
It referred to being 5000V with respect to cm.

【0010】図3は、本発明の第2の実施の形態に係る
発光デバイスの製造方法を示す図で、被加工物3の電極
4と電極5の間に、レーザビーム2を照射するレーザ加
工プロセスを示している。
FIG. 3 is a view showing a method of manufacturing a light emitting device according to a second embodiment of the present invention, in which a laser beam is applied between an electrode 4 and an electrode 5 of a workpiece 3 by laser processing. Shows the process.

【0011】図3が図1と異なる点は、電極4と電極5
とがそれぞれ5μmずつ長くなっており、この間隔が4
0μmという点である。
FIG. 3 differs from FIG. 1 in that electrodes 4 and 5
Are each 5 μm longer, and this interval is 4 μm.
The point is 0 μm.

【0012】この状態で、電極4と電極5の間の加工部
6に、レーザ2を前記記載の条件で照射すると、大きさ
50μm程度の空隙7が形成される。この時、電極4と
電極5の端部がレーザによって加工され、空隙7の銅蒸
気として存在する。このため、電極間に、25Vの電圧
をかけると、緑色の発光が観測された。
In this state, when the laser 2 is irradiated on the processing portion 6 between the electrode 4 and the electrode 5 under the above-described conditions, a gap 7 having a size of about 50 μm is formed. At this time, the ends of the electrodes 4 and 5 are processed by the laser, and exist as copper vapor in the voids 7. Therefore, when a voltage of 25 V was applied between the electrodes, green light emission was observed.

【0013】このように、発光デバイスの製造工程を簡
略化させ、製造時間を大幅に短縮化することができた。
As described above, the manufacturing process of the light emitting device can be simplified, and the manufacturing time can be greatly reduced.

【0014】[0014]

【発明の効果】以上のように本発明は、従来のプロセス
方式では、非常に小型で一度に複数の発光デバイス内部
を発光に必要なガスの満たすような難しい封止技術に対
して、レーザ加工により被加工物内部に空隙を形成させ
発光デバイスを形成するので、外部から空気等のガスが
発光デバイス内部に残留することがなく、一定の発光が
得られ、ムラ等の不良現象が生じる課題を解消する。ま
た、プロセスの短所として、空気等の発光デバイス内部
に既に存在するガスを追出し工程、発光デバイス内部を
発光に必要なガスで満たす工程、必要なガスを封止する
工程等複数の複雑な工程を必要とせず、一つの工程に集
約できる。
As described above, according to the present invention, the conventional processing method is very small, and it is difficult to fill a plurality of light emitting devices at once with a gas required for light emission by a difficult sealing technique. Because a light emitting device is formed by forming a gap inside the workpiece, air and other gases do not remain inside the light emitting device from the outside, so that a constant light emission is obtained and a defect phenomenon such as unevenness occurs. To eliminate. In addition, as a disadvantage of the process, there are a plurality of complicated steps such as a step of purging gas already existing inside the light emitting device such as air, a step of filling the inside of the light emitting device with a gas necessary for light emission, a step of sealing a necessary gas, and the like. It is not necessary and can be integrated into one process.

【0015】さらに、さらなる発光デバイスの小型が期
待されるという可能性をも有する。
Further, there is a possibility that further miniaturization of the light emitting device is expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る発光デバイス
の製造プロセスの概略図
FIG. 1 is a schematic diagram of a manufacturing process of a light emitting device according to a first embodiment of the present invention.

【図2】本発明による発光デバイスの放電を説明する図FIG. 2 is a diagram illustrating a discharge of a light emitting device according to the present invention.

【図3】本発明の第2の実施の形態に係る発光デバイス
の製造プロセスの概略図
FIG. 3 is a schematic diagram of a manufacturing process of a light emitting device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 加工レーザ 3 被加工物 4 電極(陽極) 5 電極(陰極) 7 空隙 2 Processing laser 3 Workpiece 4 Electrode (anode) 5 Electrode (cathode) 7 Void

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 端部が所定の間隔をもって設けられた一
対の電極を内部に設け、加工レーザの波長に対して透過
性がある材料の前記一対の電極間の中央にレーザを照射
して、この電極間に空隙を設けることを特徴とする発光
デバイスの製造方法。
1. A pair of electrodes whose ends are provided at predetermined intervals are provided inside, and a laser is irradiated to the center between the pair of electrodes made of a material that is transparent to the wavelength of a processing laser. A method for manufacturing a light emitting device, wherein a gap is provided between the electrodes.
【請求項2】 空隙を設ける際に電極も同時に加工し
て、電極材料を前記空隙内に気体化させて封止すること
を特徴とする請求項1に記載の発光デバイスの製造方
法。
2. The method for manufacturing a light-emitting device according to claim 1, wherein the electrode is processed simultaneously when the gap is provided, and the electrode material is gasified and sealed in the gap.
【請求項3】 レーザの照射は、材料の表面と裏面では
加工の閾値以下で、材料内部は加工の閾値以上であるこ
とを特徴とする請求項1、2記載の発光デバイスの製造
方法。
3. The method of manufacturing a light emitting device according to claim 1, wherein the laser irradiation is performed at a processing threshold value or less on the front and back surfaces of the material and at a processing threshold value or more inside the material.
JP2001160278A 2001-05-29 2001-05-29 Manufacturing method of light-emitting device Pending JP2002352710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160278A JP2002352710A (en) 2001-05-29 2001-05-29 Manufacturing method of light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160278A JP2002352710A (en) 2001-05-29 2001-05-29 Manufacturing method of light-emitting device

Publications (1)

Publication Number Publication Date
JP2002352710A true JP2002352710A (en) 2002-12-06

Family

ID=19003720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160278A Pending JP2002352710A (en) 2001-05-29 2001-05-29 Manufacturing method of light-emitting device

Country Status (1)

Country Link
JP (1) JP2002352710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527147A (en) * 2012-09-05 2015-09-17 ウニヴェアズィテート ツー リューベックUniversitaet zu Luebeck Device for laser cutting inside transparent material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527147A (en) * 2012-09-05 2015-09-17 ウニヴェアズィテート ツー リューベックUniversitaet zu Luebeck Device for laser cutting inside transparent material

Similar Documents

Publication Publication Date Title
JP2002137939A (en) Method of fabricating display panel and fabricating device therefor
JP3394645B2 (en) Arc tube and manufacturing method thereof
KR20010020487A (en) Low temperature glass frit sealing for thin computer displays
JP2011090941A (en) High-pressure discharge lamp, and manufacturing method of high-pressure discharge lamp
JP2008235177A (en) Manufacturing method of organic el display, and organic el display
KR100799300B1 (en) High Intensity Discharge Lamp and Its Starting Method
US20070257598A1 (en) Sealing material, image display device using the sealing material, method for manufacturing the image display device, and image display device manufactured by the manufacturing method
JP2002352710A (en) Manufacturing method of light-emitting device
JP3968113B1 (en) Excimer lamp
JP2005347569A (en) Flash lamp irradiation apparatus
JP2007317484A (en) Plasma display panel, and method and device for manufacturing plasma display panel
KR100726668B1 (en) Manufacturing Method of Plasma Display Panel
KR100820361B1 (en) Method for coating fluorescent layer of lamp
JP2018037277A (en) Laser drive lamp
JP2001043802A (en) Manufacture of gas discharge panel
JP3439749B2 (en) Light emitting device
KR100603271B1 (en) Method for injecting the plasma discharge gas into the apparatus of plasma display panel
JP3683200B2 (en) Backlight for light emitting device and flat display
KR100396759B1 (en) Method to manufacture a plasma display panel
JP2003007207A (en) Manufacturing method of luminescent device, manufacturing method of backlight for flat display and luminescent device
KR200269248Y1 (en) Apparatus for repairing injection tube of discharge gas
JPH11273572A (en) Manufacture of plasma display panel
KR20220045890A (en) Lamp sealing structure, lamp, and method of lamp sealing
JP2005166556A (en) External electrode type fluorescent lamp
KR100562955B1 (en) Gas injection tube for plasma display panel and method of injecting plasma gas