JP2002350105A - Non-contact displacement gauge and measurement method using the same - Google Patents

Non-contact displacement gauge and measurement method using the same

Info

Publication number
JP2002350105A
JP2002350105A JP2001157877A JP2001157877A JP2002350105A JP 2002350105 A JP2002350105 A JP 2002350105A JP 2001157877 A JP2001157877 A JP 2001157877A JP 2001157877 A JP2001157877 A JP 2001157877A JP 2002350105 A JP2002350105 A JP 2002350105A
Authority
JP
Japan
Prior art keywords
measurement
work
electrode
probe
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001157877A
Other languages
Japanese (ja)
Inventor
Shigehiro Niki
茂博 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHIMA DENSEI KK
Original Assignee
TOKUSHIMA DENSEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHIMA DENSEI KK filed Critical TOKUSHIMA DENSEI KK
Priority to JP2001157877A priority Critical patent/JP2002350105A/en
Publication of JP2002350105A publication Critical patent/JP2002350105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly measure the dimensional displacement of a work to be measured by readily and easily setting the measurement environment of the work to a state which close to the ideal state. SOLUTION: A non-contact displacement gauge is provided with a probe 2 having a measuring electrode 3 at its front end and measures the displacement of the interval between the work 1 to be measured and probe 2 from the change of the capacitance between the work 1 and electrode 3. The electrode 3 of the probe 2 is covered with an insulating coating film 7. The film 7 insulates the measuring electrode 3 from a liquid 9 when the electrode 3 is dipped in the liquid 9 for measuring the interval between the electrode 3 and work 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定ワークとの距
離の変化を静電容量を介して測定する非接触変位計とこ
れを使用する測定方法に関する。とくに、本発明は、研
削した測定ワークを、速やかに測定するのに最適な非接
触変位計と、これを使用する測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact displacement meter for measuring a change in distance from a measurement work via a capacitance and a measuring method using the same. In particular, the present invention relates to a non-contact displacement meter which is optimal for quickly measuring a ground measurement work, and a measuring method using the same.

【0002】[0002]

【従来の技術】静電容量式の非接触変位計は、極めて高
い精度で測定ワークの変位を検出できる。たとえば、最
大測定変位を1mmとする非接触変位計は、最小検出変
位である分解能を0.1μmと極めて高い精度としてい
る。最大測定変位がさらに小さいものは、分解能を0.
005μmとより高い精度のものがある。
2. Description of the Related Art A capacitive non-contact displacement meter can detect a displacement of a measurement work with extremely high accuracy. For example, a non-contact displacement meter with a maximum measured displacement of 1 mm has a very high accuracy of 0.1 μm in resolution, which is the minimum detected displacement. If the maximum measured displacement is smaller, the resolution is set to 0.
Some have higher accuracy of 005 μm.

【0003】非接触変位計は、プローブを測定ワークに
接近して、測定ワークとの間隔を静電容量の変化として
検出する。図1は測定原理を示す。この図において、測
定ワーク1と測定電極3との間の静電容量は、測定電極
3の面積と測定ワーク1と測定電極3との間の物質の誘
電率の積に比例し、測定電極3と測定ワーク1との間隔
に反比例する。静電容量は次の式で表すことができる。 C=K×S/d ただし、Cは静電容量、Kは誘電率、Sは測定電極の面
積、dは測定電極と測定ワークとの距離である。この式
において、誘電率と、測定電極の面積は定数であるか
ら、静電容量から測定電極と測定ワークとの間隔を検出
できる。この式から明らかなように、静電容量の変化
は、dが小さくなるにしたがって大きくなる。したがっ
て、dが0に近付くにしたがって静電容量は無限大に大
きくなる。このため、静電容量による方法は、dを小さ
くする領域でより正確に測定ワークの変位を検出でき
る。
A non-contact displacement meter approaches a probe to a work to be measured, and detects a distance between the probe and the work as a change in capacitance. FIG. 1 shows the measurement principle. In this figure, the capacitance between the measurement work 1 and the measurement electrode 3 is proportional to the product of the area of the measurement electrode 3 and the dielectric constant of the substance between the measurement work 1 and the measurement electrode 3. Is inversely proportional to the distance between the workpiece 1 The capacitance can be expressed by the following equation. C = K × S / d where C is the capacitance, K is the dielectric constant, S is the area of the measurement electrode, and d is the distance between the measurement electrode and the measurement work. In this equation, since the dielectric constant and the area of the measurement electrode are constants, the distance between the measurement electrode and the measurement work can be detected from the capacitance. As is apparent from this equation, the change in the capacitance increases as d decreases. Therefore, the capacitance becomes infinitely large as d approaches 0. For this reason, the capacitance-based method can more accurately detect the displacement of the measurement work in a region where d is reduced.

【0004】[0004]

【発明が解決しようとする課題】非接触変位計は、たと
えば研削されたベアリングの内輪や外輪等のように、極
めて高い寸法精度が要求される測定ワークの検査に最適
である。とくに、平面や湾曲する面に研削された研削面
は、ミクロに観察すると微細な凹凸があるので、レーザ
ーのようにスポットに集束した点との距離を測定する非
接触変位計は、好ましい状態で研削面との間隔を測定で
きない。静電容量を介して間隔を測定する非接触変位計
は、研削面との平均距離を測定できるので、理想的な状
態で検査面との距離を測定できる。
The non-contact displacement meter is most suitable for inspection of a measurement work requiring extremely high dimensional accuracy, such as an inner ring or an outer ring of a ground bearing. In particular, a non-contact displacement meter that measures the distance to a point focused on a spot like a laser is in a favorable state because the ground surface ground to a flat or curved surface has fine irregularities when observed microscopically. The distance from the ground surface cannot be measured. Since a non-contact displacement meter that measures an interval via a capacitance can measure an average distance from a ground surface, it can measure a distance from an inspection surface in an ideal state.

【0005】この特長が生かされて、ベアリング等の製
造工程においては、内輪や外輪の寸法精度を静電容量式
の非接触変位計で測定している。さらに、ベアリングは
極めて高い加工精度が要求されるので、研削された内輪
や外輪の内径や外径が、非接触変位計法で検出される。
非接触変位計で検出した寸法は、標準値に比較される。
測定した寸法の標準値からのずれは、研削工程にフィー
ドバックされる。ただ、従来の静電容量式の非接触変位
計は、測定ワークの表面の汚れ等が原因で誤差が発生し
やすい欠点がある。また、この表面汚れによる誤差を少
なくするために、研削した測定ワークを綺麗に洗浄して
いるが、この洗浄工程によって、寸法を速やかに測定す
るのが難しくなる欠点もある。研削した測定ワークを綺
麗に洗浄した後、クリーンルームの清澄な環境で測定す
るからである。したがって、ベアリングの製造工程にお
いては、たとえば1日に1回の割合で研削した測定ワー
クの寸法を測定しているのが実状である。ただ、このよ
うにして測定された寸法は、次の日に加工する測定ワー
クの寸法精度を補正するので、最悪の場合は、1日に研
削した測定ワークが全て規格外になることがある。
Taking advantage of this feature, in the manufacturing process of bearings and the like, the dimensional accuracy of the inner ring and the outer ring is measured by a capacitance-type non-contact displacement meter. Further, since bearings require extremely high machining accuracy, the inner and outer diameters of the ground inner ring and outer ring are detected by a non-contact displacement meter method.
The dimensions detected by the non-contact displacement meter are compared with standard values.
The deviation of the measured dimension from the standard value is fed back to the grinding process. However, the conventional capacitance-type non-contact displacement meter has a disadvantage that an error easily occurs due to contamination of the surface of the measurement work. Further, in order to reduce errors due to surface contamination, the ground measurement work is cleaned thoroughly, but this cleaning step has a disadvantage that it is difficult to measure dimensions quickly. This is because after the ground measurement work is thoroughly cleaned, measurement is performed in a clean environment in a clean room. Therefore, in the manufacturing process of the bearing, the actual condition is that the dimensions of the measurement work ground, for example, once a day are measured. However, the dimension measured in this way corrects the dimensional accuracy of the measurement workpiece to be processed the next day, and in the worst case, all the measurement workpieces ground in one day may be out of specification.

【0006】このような弊害は、切削した測定ワークを
速やかに測定して解消できる。従来の非接触変位計は、
測定精度を高くするために、測定環境をきわめて厳しく
制約する必要があるので、測定ワークを速やかに測定で
きない。切削された測定ワークは、表面の汚れが測定誤
差の原因となり、また、測定ワークの温度変化も測定誤
差の原因となるので、これらの条件を一定に制御して寸
法を測定する必要がある。このため、切削加工した測定
ワークを短時間で正確に測定できない。
[0006] Such an adverse effect can be eliminated by quickly measuring the cut measurement work. Conventional non-contact displacement meter
In order to increase the measurement accuracy, it is necessary to restrict the measurement environment very severely, so that the measurement work cannot be measured quickly. Since the surface of the cut measurement work causes measurement errors due to surface contamination, and a change in the temperature of the measurement work also causes measurement errors, it is necessary to measure these dimensions under constant conditions. For this reason, it is not possible to accurately measure the cut work piece in a short time.

【0007】本発明は、このような欠点を解決すること
を目的に開発されたものである。本発明の重要な目的
は、測定ワークの測定環境を、簡単かつ容易に、理想に
近い状態として、測定ワークの寸法変位を速やかに測定
できる非接触変位計とこの非接触変位計を使用する測定
方法を提供することにある。
[0007] The present invention has been developed for the purpose of solving such disadvantages. An important object of the present invention is to provide a non-contact displacement meter capable of quickly and easily measuring a dimensional displacement of a measurement workpiece by setting a measurement environment of the measurement workpiece to a state close to an ideal, and a measurement using the non-contact displacement meter. It is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明の非接触変位計
は、先端に測定電極3を有するプローブ2を備え、この
プローブ2を測定ワーク1に接近させて、測定ワーク1
と測定電極3との間の静電容量の変化でもって、測定ワ
ーク1とプローブ2との間隔の変位を測定する。プロー
ブ2は、測定電極3の表面を絶縁皮膜7で被覆してい
る。この絶縁皮膜7は、測定電極3を液体中に入れる状
態で液体9から絶縁して、測定電極3と測定ワーク1と
の間隔を測定している。
The non-contact displacement meter according to the present invention includes a probe 2 having a measuring electrode 3 at a tip thereof.
The displacement of the distance between the measurement work 1 and the probe 2 is measured based on the change in the capacitance between the measurement work 1 and the measurement electrode 3. The probe 2 covers the surface of the measurement electrode 3 with an insulating film 7. The insulating film 7 is insulated from the liquid 9 while the measurement electrode 3 is immersed in the liquid, and measures the distance between the measurement electrode 3 and the measurement work 1.

【0009】絶縁皮膜7は、紫外線を照射して硬化させ
る紫外線硬化樹脂、あるいはガラスとすることができ
る。絶縁皮膜7の膜厚は、2〜50μmとすることがで
きる。
The insulating film 7 can be made of an ultraviolet curable resin which is cured by irradiating ultraviolet rays, or glass. The thickness of the insulating film 7 can be set to 2 to 50 μm.

【0010】本発明の非接触変位計を使用する測定方法
は、先端に測定電極3を有するプローブ2を測定ワーク
1の表面に接近させて、測定ワーク1と測定電極3との
間の静電容量の変化でもって、測定ワーク1とプローブ
2との間隔の変位を測定する。この測定方法は、測定ワ
ーク1を液体中に入れると共に、耐水性と耐油性の絶縁
皮膜7で表面を被覆しているプローブ2を使用する。プ
ローブ2の測定電極3を、液体中で測定ワーク1表面に
接近させて、測定電極3と測定ワーク1との間隔の変位
を静電容量を介して測定する。
In the measuring method using the non-contact displacement meter of the present invention, the probe 2 having the measuring electrode 3 at the tip is brought close to the surface of the measuring work 1 and the electrostatic force between the measuring work 1 and the measuring electrode 3 is increased. The displacement of the distance between the measurement work 1 and the probe 2 is measured based on the change in the capacitance. In this measurement method, a probe 2 whose surface is covered with a water-resistant and oil-resistant insulating film 7 is used while the measurement work 1 is placed in a liquid. The measurement electrode 3 of the probe 2 is brought close to the surface of the measurement work 1 in the liquid, and the displacement of the distance between the measurement electrode 3 and the measurement work 1 is measured via the capacitance.

【0011】測定ワーク1を入れる液体9には、切削し
た測定ワーク1の洗浄油を使用することができる。
As the liquid 9 to be filled with the measuring work 1, a cleaning oil of the cut measuring work 1 can be used.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。ただし、以下に示す実施例は、本発明
の技術思想を具体化するための非接触変位計とこれを使
用する測定方法を例示するものであって、本発明は非接
触変位計と測定方法を下記のものに特定しない。
Embodiments of the present invention will be described below with reference to the drawings. However, the following examples illustrate a non-contact displacement meter for embodying the technical idea of the present invention and a measuring method using the same, and the present invention describes a non-contact displacement meter and a measuring method. Not specified below.

【0013】さらに、この明細書は、特許請求の範囲を
理解し易いように、実施例に示される部材に対応する番
号を、「特許請求の範囲の欄」、および「課題を解決す
るための手段の欄」に示される部材に付記している。た
だ、特許請求の範囲に示される部材を、実施例の部材に
特定するものでは決してない。
Further, in this specification, in order to make it easy to understand the claims, the numbers corresponding to the members shown in the embodiments will be referred to as “claims” and “ In the column of “means”. However, the members described in the claims are not limited to the members of the embodiments.

【0014】図2に示す非接触変位計は、測定ワーク1
との間隔を検出する測定電極3を内蔵するプローブ2
と、このプローブ2の測定電極3に接続して、プローブ
2の測定電極3と測定ワーク1との間隔を測定する測定
回路8とを備える。
The non-contact displacement meter shown in FIG.
Probe 2 with built-in measuring electrode 3 for detecting the distance between
And a measurement circuit 8 connected to the measurement electrode 3 of the probe 2 to measure the distance between the measurement electrode 3 of the probe 2 and the measurement work 1.

【0015】プローブ2は、先端に埋設している測定電
極3と、この測定電極3の周囲に配置しているガードリ
ング4と、このガードリング4と測定電極3とを埋設し
ている絶縁体5と、この絶縁体5に埋設されて、測定電
極3とガードリング4に接続しているリード線6と、絶
縁体5の表面を被覆している絶縁皮膜7とを備える。
The probe 2 includes a measurement electrode 3 embedded at the tip, a guard ring 4 disposed around the measurement electrode 3, and an insulator embedded between the guard ring 4 and the measurement electrode 3. 5, a lead wire 6 buried in the insulator 5 and connected to the measurement electrode 3 and the guard ring 4, and an insulating film 7 covering the surface of the insulator 5.

【0016】測定電極3は、金属板等の導電プレートで
ある。測定電極3は、測定ワーク1との対向面を測定ワ
ーク1の表面に沿う形状としている。測定面を平面とす
る測定ワーク1との間隔を測定する測定電極3は、測定
ワーク1との対向面を平面状とする。ベアリングの内輪
や外輪のように、測定面が湾曲面である測定ワークとの
寸法を測定する測定電極は、測定ワークとの対向面を測
定ワークに沿う湾曲面とする。測定ワークの測定面に沿
う形状の測定電極は、より高い精度で測定ワークとの間
隔を検出できる。ただし、測定電極は、測定ワークとの
対向面を平面状として、測定ワークの間隔を検出するこ
ともできる。
The measuring electrode 3 is a conductive plate such as a metal plate. The measurement electrode 3 has a surface facing the measurement work 1 having a shape along the surface of the measurement work 1. The measurement electrode 3 for measuring the distance from the measurement work 1 having the measurement surface as a plane has a flat surface facing the measurement work 1. A measurement electrode, such as an inner ring or an outer ring of a bearing, that measures a dimension with a measurement work having a curved measurement surface has a curved surface along the measurement work that faces the measurement work. The measurement electrode having a shape along the measurement surface of the measurement work can detect the interval with the measurement work with higher accuracy. However, the measurement electrode can also detect the interval between the measurement workpieces by making the surface facing the measurement workpiece a flat surface.

【0017】ガードリング4は、測定電極3の周囲に配
設しているリング状で、測定電極3から絶縁して、測定
電極3と同一平面に配置している。ガードリング4は、
測定電極3の周囲をシールドして、測定電極3に誘導さ
れる雑音による誤差を少なくできる。
The guard ring 4 is in the form of a ring provided around the measuring electrode 3 and is insulated from the measuring electrode 3 and arranged on the same plane as the measuring electrode 3. Guard ring 4
By shielding the periphery of the measurement electrode 3, errors due to noise induced to the measurement electrode 3 can be reduced.

【0018】絶縁体5は、プラスチック等の絶縁材で、
先端に測定電極3とガードリング4を埋設して、測定電
極3とガードリング4を定位置に配設する。絶縁体5を
プラスチックで成形するときに、測定電極3とガードリ
ング4はインサートして埋設される。
The insulator 5 is an insulating material such as plastic,
The measurement electrode 3 and the guard ring 4 are buried at the tip, and the measurement electrode 3 and the guard ring 4 are arranged at fixed positions. When the insulator 5 is formed of plastic, the measurement electrode 3 and the guard ring 4 are embedded and buried.

【0019】さらに、絶縁体5には、測定電極3とガー
ドリング4に接続しているリード線6を埋設している。
リード線6は、測定電極3に接続している芯線6Aと、
ガードリング4に接続している外側リード6Bとからな
る。外側リード6Bは、芯線6Aの周囲に円筒状に配置
して、絶縁体5に埋設される。芯線6Aと外側リード6
Bは同軸ケーブルの構造で絶縁体5に埋設される。
Further, a lead wire 6 connected to the measurement electrode 3 and the guard ring 4 is embedded in the insulator 5.
The lead wire 6 includes a core wire 6A connected to the measurement electrode 3,
And outer leads 6B connected to the guard ring 4. The outer leads 6B are arranged in a cylindrical shape around the core wire 6A and embedded in the insulator 5. Core wire 6A and outer lead 6
B is a coaxial cable structure embedded in the insulator 5.

【0020】図2のプローブ2は、絶縁皮膜7でもっ
て、測定電極3とガードリング4の両方の表面を絶縁し
ている。プローブは、必ずしもガードリングを設ける必
要はない。ガードリングのないプローブで測定ワークと
の間隔を測定できるからである。ガードリングのないプ
ローブは、絶縁皮膜で測定電極の表面を絶縁する。測定
電極3とガードリング4を備えるプローブ2は、測定電
極3とガードリング4の両方の表面を絶縁皮膜7で被覆
する。絶縁皮膜7は、プローブ2を液体9に入れた状態
で、測定電極3とガードリング4を液体9から絶縁す
る。したがって、絶縁皮膜7は、油や水等の液体9に入
れた状態で、測定電極3とガードリング4を絶縁できる
特性を有する。この絶縁皮膜7には、紫外線を照射して
硬化させる紫外線硬化樹脂が使用できる。このタイプの
樹脂としてウレタン系とエポキシ系の樹脂がある。紫外
線硬化樹脂は、硬化した状態で非常に硬く、測定電極3
とガードリング4を有効に保護して絶縁する。さらに、
絶縁皮膜7には、ガラスも使用できる。絶縁皮膜7は、
測定電極3を有効に絶縁できるかぎり膜厚を薄くする。
厚い絶縁皮膜7は、測定精度を低下させる原因となるか
らである。ただ、絶縁皮膜7が薄すぎると、測定電極3
を充分に絶縁できなくなって、絶縁特性が低下する。絶
縁皮膜7の膜厚は、測定精度と絶縁特性を考慮して、た
とえば2〜50μm、好ましくは3〜30μm、さらに
好ましくは5〜20μmとする。
The probe 2 in FIG. 2 insulates both surfaces of the measurement electrode 3 and the guard ring 4 with an insulating film 7. The probe does not necessarily need to be provided with a guard ring. This is because the probe and the guard ring can measure the distance from the measurement work. Probes without guard rings insulate the surface of the measurement electrode with an insulating film. The probe 2 including the measurement electrode 3 and the guard ring 4 covers both surfaces of the measurement electrode 3 and the guard ring 4 with the insulating film 7. The insulating film 7 insulates the measurement electrode 3 and the guard ring 4 from the liquid 9 while the probe 2 is in the liquid 9. Therefore, the insulating film 7 has a characteristic that the measurement electrode 3 and the guard ring 4 can be insulated when the insulating film 7 is in a liquid 9 such as oil or water. As the insulating film 7, an ultraviolet curable resin that is cured by irradiating ultraviolet light can be used. As this type of resin, there are urethane resins and epoxy resins. The ultraviolet curable resin is very hard in a cured state, and the measuring electrode 3
And the guard ring 4 are effectively protected and insulated. further,
Glass can also be used for the insulating film 7. The insulating film 7
The film thickness is reduced as far as the measurement electrode 3 can be effectively insulated.
This is because the thick insulating film 7 causes a decrease in measurement accuracy. However, if the insulating film 7 is too thin, the measuring electrode 3
Cannot be sufficiently insulated, and the insulation characteristics deteriorate. The thickness of the insulating film 7 is, for example, 2 to 50 μm, preferably 3 to 30 μm, and more preferably 5 to 20 μm in consideration of measurement accuracy and insulating characteristics.

【0021】図2のプローブ2は、絶縁体5に測定電極
3とガードリング4を埋設し、この絶縁体5の表面を絶
縁皮膜7で被覆している。プローブ2は、図3に示すよ
うに、絶縁体5と絶縁皮膜7とを一体構造とすることも
できる。このプローブ2は、絶縁体5と絶縁皮膜7とを
一体構造とする絶縁材に、測定電極3とガードリング4
とを埋設して製作される。このプローブ2は、測定電極
3とガードリング4の表面を絶縁材で被覆して絶縁する
ように、測定電極3とガードリング4を埋設する。
The probe 2 shown in FIG. 2 has a measurement electrode 3 and a guard ring 4 embedded in an insulator 5, and the surface of the insulator 5 is covered with an insulating film 7. As shown in FIG. 3, the probe 2 may have an integral structure of the insulator 5 and the insulating film 7. The probe 2 is composed of an insulating material having an integral structure of an insulator 5 and an insulating film 7, a measuring electrode 3 and a guard ring 4.
It is manufactured by burying it. The probe 2 has the measurement electrode 3 and the guard ring 4 embedded so that the surfaces of the measurement electrode 3 and the guard ring 4 are covered with an insulating material to be insulated.

【0022】図2に示すプローブ2は、絶縁体5の先端
面と周囲とを絶縁皮膜7で被覆している。ただ、プロー
ブは、図示しないが、絶縁体の先端面のみに絶縁皮膜を
設けて、測定電極とガードリングを絶縁できる。絶縁体
の周囲にはガードリングと測定電極が表出されないから
である。ただ、図2に示すように、先端面と周囲とを絶
縁皮膜7で被覆し、あるいは絶縁体5の全表面を絶縁皮
膜7で被覆するプローブ2は、絶縁体5に、液体9に入
れて絶縁特性が好ましくない絶縁材を使用することがで
きる。絶縁皮膜7が液体9に対して絶縁するからであ
る。
The probe 2 shown in FIG. 2 has an insulating film 7 covering the distal end surface of the insulator 5 and the periphery. However, although not shown, the probe can be provided with an insulating film only on the tip surface of the insulator to insulate the measurement electrode from the guard ring. This is because the guard ring and the measurement electrode are not exposed around the insulator. However, as shown in FIG. 2, the probe 2 in which the front end surface and the periphery are covered with the insulating film 7 or the entire surface of the insulator 5 is covered with the insulating film 7 is obtained by putting the probe 5 in the liquid 9 in the insulator 5. An insulating material having poor insulation properties can be used. This is because the insulating film 7 insulates the liquid 9.

【0023】以上のプローブ2は、液体9に入れている
測定ワーク1に測定電極3を接近させて、測定ワーク1
と測定電極3との間隔を測定できる。測定電極3に接続
している測定回路8を図4に示す。この測定回路8は、
交流を発振する発振回路10と、発振回路10と測定電
極3との間に接続している電流検出回路11と、電流検
出回路11の出力信号で発振回路10の出力電圧を制御
する制御回路12と、この制御回路12に制御される発
振回路10の出力電圧から測定電極3と測定ワーク1と
の間隔を検出して表示する表示回路13とを備える。
The above-described probe 2 moves the measurement electrode 3 close to the measurement work 1 contained in the liquid 9 and
The distance between the electrode and the measurement electrode 3 can be measured. FIG. 4 shows the measuring circuit 8 connected to the measuring electrode 3. This measuring circuit 8
An oscillation circuit 10 for oscillating an alternating current; a current detection circuit 11 connected between the oscillation circuit 10 and the measurement electrode 3; and a control circuit 12 for controlling an output voltage of the oscillation circuit 10 by an output signal of the current detection circuit 11 And a display circuit 13 for detecting and displaying the distance between the measurement electrode 3 and the measurement work 1 from the output voltage of the oscillation circuit 10 controlled by the control circuit 12.

【0024】図4の測定回路8は、測定電極3に流れる
電流が一定の値になるように、発振回路10の出力電圧
を制御回路12で制御する。測定電極3に流れる電流
は、電流検出回路11で検出される。電流検出回路11
で検出され電流信号は、制御回路12に入力される。制
御回路12は、入力される電流信号を基準値に比較し、
電流信号が基準値よりも低いときは、発振回路10の出
力電圧を高くし、電流信号が基準値よりも高いときは、
発振回路10の出力電圧を低くする。制御回路12が入
力された電流信号を比較する基準値は、測定電極3と測
定ワーク1との間隔があらかじめ設定された間隔のと
き、いいかえると、測定電極3と測定ワーク1との静電
容量が設定された容量のときの値としている。測定電極
3に流れる電流は、測定電極3と測定ワーク1との間
隔、すなわち静電容量によって変化するので、たとえ
ば、測定電極3と測定ワーク1との間隔が設定された間
隔よりも広くなって静電容量が小さくなると、測定電極
3に流れる電流が減少する。測定電極3と測定ワーク1
との間のインピーダンスが大きくなるからである。表示
回路13は、制御回路12から出力される発振回路10
の出力電圧から測定電極3と測定ワーク1の間隔を検出
する。発振回路10の出力電圧が静電容量によって変化
し、この静電容量が測定電極3と測定ワーク1との間隔
で変化するので、発振回路10の出力電圧から測定電極
3と測定ワーク1との間隔を検出できる。表示回路13
は、発振回路10の出力電圧から間隔を検出して、その
値を表示する。
In the measuring circuit 8 shown in FIG. 4, the control circuit 12 controls the output voltage of the oscillation circuit 10 so that the current flowing through the measuring electrode 3 becomes a constant value. The current flowing through the measurement electrode 3 is detected by the current detection circuit 11. Current detection circuit 11
The current signal detected by the control circuit 12 is input to the control circuit 12. The control circuit 12 compares the input current signal with a reference value,
When the current signal is lower than the reference value, the output voltage of the oscillation circuit 10 is increased, and when the current signal is higher than the reference value,
The output voltage of the oscillation circuit 10 is reduced. The reference value with which the control circuit 12 compares the input current signals is the capacitance between the measurement electrode 3 and the measurement work 1 when the distance between the measurement electrode 3 and the measurement work 1 is a preset distance. Is the value for the set capacity. Since the current flowing through the measurement electrode 3 changes depending on the distance between the measurement electrode 3 and the measurement work 1, that is, the capacitance, for example, the distance between the measurement electrode 3 and the measurement work 1 becomes wider than the set distance. When the capacitance decreases, the current flowing through the measurement electrode 3 decreases. Measurement electrode 3 and measurement work 1
This is because the impedance between them increases. The display circuit 13 includes the oscillation circuit 10 output from the control circuit 12.
The distance between the measurement electrode 3 and the measurement work 1 is detected from the output voltage. Since the output voltage of the oscillation circuit 10 changes according to the capacitance, and the capacitance changes at the interval between the measurement electrode 3 and the measurement work 1, the output voltage of the oscillation circuit 10 Intervals can be detected. Display circuit 13
Detects the interval from the output voltage of the oscillation circuit 10 and displays the value.

【0025】以上の測定回路8は、測定電極3と測定ワ
ーク1との間隔を設定された間隔に比較して正確に測定
する。ただ、測定回路8は、必ずしも以上の方法で測定
電極3と測定ワーク1との間の静電容量を検出する必要
はない。たとえば、発振回路10の出力電圧を一定にし
て、測定電極3に流れる電流を検出して、測定電極3と
測定ワーク1との間隔を検出することもできる。また、
測定電極3と測定ワーク1との間の静電容量で発振回路
10の発振周波数が変化するようにし、発振周波数で測
定電極3と測定ワーク1との間隔を検出することもでき
る。
The above measuring circuit 8 accurately measures the distance between the measuring electrode 3 and the measuring work 1 in comparison with the set distance. However, the measurement circuit 8 does not necessarily need to detect the capacitance between the measurement electrode 3 and the measurement work 1 by the above method. For example, the interval between the measurement electrode 3 and the measurement work 1 can be detected by keeping the output voltage of the oscillation circuit 10 constant and detecting the current flowing through the measurement electrode 3. Also,
The oscillation frequency of the oscillation circuit 10 can be changed by the capacitance between the measurement electrode 3 and the measurement work 1, and the interval between the measurement electrode 3 and the measurement work 1 can be detected by the oscillation frequency.

【0026】以上の非接触変位計は、以下のようにし
て、測定電極3と測定ワーク1との間隔を検出する。図
2に示すように、測定ワーク1を容器14に充填してい
る液体9に入れる。測定ワーク1は、好ましくは図に示
すように、全体を液体9に浸漬する。全体を液体9に浸
漬して測定ワーク1との間隔を測定する方法は、測定ワ
ーク1全体の温度を液体9の温度にできる。空気に比較
して液体9は熱伝導率が高い。このため、液体9に浸漬
される測定ワーク1は、速やかに液体温度となる。この
ため、液体温度で測定ワーク1の温度を正確に検出でき
る。ただ、本発明の測定方法は、必ずしも測定ワーク全
体を液体に浸漬する必要はない。測定ワークとの測定部
分のみを液体に入れて間隔を測定することもできるから
である。
The above-described non-contact displacement meter detects the distance between the measuring electrode 3 and the measuring work 1 as follows. As shown in FIG. 2, the measurement work 1 is placed in the liquid 9 filling the container 14. The measuring work 1 is preferably entirely immersed in a liquid 9 as shown in the figure. In the method of immersing the entirety in the liquid 9 and measuring the distance from the measurement work 1, the temperature of the entire measurement work 1 can be set to the temperature of the liquid 9. The liquid 9 has a higher thermal conductivity than air. Therefore, the temperature of the measurement work 1 immersed in the liquid 9 quickly becomes the liquid temperature. For this reason, the temperature of the measurement work 1 can be accurately detected based on the liquid temperature. However, in the measurement method of the present invention, it is not always necessary to immerse the entire measurement work in the liquid. This is because only the measurement part with the measurement work can be put in the liquid to measure the interval.

【0027】プローブ2全体、あるいは測定電極3を設
けている先端部を液体9に入れると共に、測定電極3を
測定ワーク1と対向させる位置に固定する。図は、プロ
ーブ2を固定する構造を図示していないが、プローブ2
は、たとえば液体9を入れている容器14、あるいは容
器14を載せている台(図示せず)等に固定される。こ
の状態で、測定電極3と測定ワーク1との間には液体9
が介在される。液体9は、油または水である。ベアリン
グの内輪や外輪の寸法を測定する場合、液体9には洗浄
油を使用する。液体9の誘電率は、空気の誘電率とは異
なる。誘電率が相違すると静電容量も相違する。静電容
量が誘電率に比例して大きくなるからである。誘電率の
補正は、表示回路13が行う。表示回路13は、プロー
ブ2と測定ワーク1を入れる液体9の誘電率に対する補
正係数を記憶している。たとえば、誘電率が空気の2倍
である液体9を使用して、測定電極3と測定ワーク1と
の間隔を測定する場合、空気の表示値の1/2倍の間隔
として表示する。液体9を使用して測定するときは、測
定電極3と測定ワーク1との間隔が空気のときの2倍の
ときに、同じ静電容量となるからである。
The whole probe 2 or the tip provided with the measuring electrode 3 is put into the liquid 9 and the measuring electrode 3 is fixed at a position facing the measuring work 1. Although the figure does not show the structure for fixing the probe 2, the probe 2
Is fixed to, for example, a container 14 containing the liquid 9 or a table (not shown) on which the container 14 is placed. In this state, the liquid 9 is placed between the measurement electrode 3 and the measurement work 1.
Is interposed. The liquid 9 is oil or water. When measuring the dimensions of the inner and outer rings of the bearing, a cleaning oil is used as the liquid 9. The dielectric constant of the liquid 9 is different from the dielectric constant of air. Different dielectric constants result in different capacitances. This is because the capacitance increases in proportion to the dielectric constant. The display circuit 13 corrects the permittivity. The display circuit 13 stores a correction coefficient for the permittivity of the liquid 9 in which the probe 2 and the measurement work 1 are put. For example, when the distance between the measurement electrode 3 and the measurement work 1 is measured using the liquid 9 whose dielectric constant is twice that of air, the distance is displayed as 1/2 of the display value of air. This is because when the measurement is performed using the liquid 9, the same capacitance is obtained when the distance between the measurement electrode 3 and the measurement work 1 is twice as large as that in the case of air.

【0028】容器14の液体9に浸漬している測定ワー
ク1を次々と入れ換えて、測定電極3と測定ワーク1と
の間隔を検出する。測定ワーク1は所定の位置に入れら
れて、測定電極3との間隔が測定される。液体9に混入
する異物は、測定誤差の原因となる。したがって、液体
9には異物のない綺麗な液体9を使用する。液体9に入
れる測定ワーク1も、たとえば洗浄液で洗浄して、液体
9に浸漬する。容器14内の液体9は、フィルターに循
環させて異物を除去して清澄にできる。液体9に洗浄液
を使用すると、洗浄液で洗浄した測定ワーク1をそのま
まの状態で液体9に入れて測定できる。
The distance between the measuring electrode 3 and the measuring work 1 is detected by successively changing the measuring works 1 immersed in the liquid 9 of the container 14. The measurement work 1 is placed in a predetermined position, and the distance between the measurement work 1 and the measurement electrode 3 is measured. Foreign matter mixed into the liquid 9 causes a measurement error. Therefore, a clean liquid 9 free from foreign matter is used as the liquid 9. The measurement work 1 to be put in the liquid 9 is also cleaned, for example, with a cleaning liquid and immersed in the liquid 9. The liquid 9 in the container 14 can be clarified by circulating through a filter to remove foreign substances. When a cleaning liquid is used as the liquid 9, the measurement work 1 washed with the cleaning liquid can be put into the liquid 9 as it is to perform measurement.

【0029】[0029]

【発明の効果】本発明の非接触変位計と非接触変位計を
使用する測定方法は、測定ワークの測定環境を、簡単か
つ容易に、理想に近い状態として、測定ワークの寸法変
位を速やかに測定できる特長がある。それは、本発明の
非接触変位計が、先端に測定電極を有するプローブを備
え、この測定電極の表面を絶縁皮膜で被覆して、測定電
極を液体中に入れる状態で液体から絶縁しており、さら
に、本発明の測定方法が、絶縁皮膜で表面を被覆してい
るプローブの測定電極を、液体中に入れた測定ワーク表
面に接近させて、測定電極と測定ワークとの間隔の変位
を静電容量を介して測定しているからである。液体中で
測定ワークとの間隔の変位を測定する非接触変位計と測
定方法は、測定ワークの表面を液体で除去する状態で測
定できるので、表面の異物が測定誤差の原因となるのを
有効に防止できる。さらに、測定ワークを液体に入れる
ことで、測定ワークの温度変化も低減できるので、これ
に起因する測定誤差も極減できる。このように本発明の
非接触変位計と測定方法は、測定電極と測定ワークとの
間隔の変位を液体中で測定することにより、従来のよう
に、測定精度を高くするために測定環境を厳しく制約す
ることなく、極めて簡単に条件を一定にして、測定ワー
クの寸法変位を短時間で正確に測定できる。
According to the non-contact displacement meter and the measuring method using the non-contact displacement meter of the present invention, the measurement environment of the measurement work can be easily and easily set to a state close to the ideal, and the dimensional displacement of the measurement work can be quickly changed. There is a feature that can be measured. That is, the non-contact displacement meter of the present invention is provided with a probe having a measurement electrode at the tip, the surface of the measurement electrode is coated with an insulating film, and the measurement electrode is insulated from the liquid in a state of being immersed in the liquid, Further, the measuring method of the present invention is such that the measuring electrode of the probe whose surface is covered with the insulating film is brought close to the surface of the measuring work put in the liquid, and the displacement of the distance between the measuring electrode and the measuring work is electrostatically changed. This is because the measurement is performed via the capacitance. The non-contact displacement meter and the measuring method that measure the displacement of the distance between the measurement work and the liquid in the liquid can be measured while removing the surface of the measurement work with the liquid, so it is effective that foreign substances on the surface cause measurement errors. Can be prevented. Further, since the temperature change of the measurement work can be reduced by putting the measurement work in the liquid, the measurement error caused by this can be minimized. As described above, the non-contact displacement meter and the measurement method of the present invention measure the displacement of the distance between the measurement electrode and the measurement work in the liquid. The dimensional displacement of the measurement work can be accurately measured in a short period of time without any restrictions, while keeping the conditions extremely simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】静電容量方式の非接触変位計の測定原理を示す
概略図
FIG. 1 is a schematic diagram showing the measurement principle of a capacitance-type non-contact displacement meter.

【図2】本発明の実施例の非接触変位計の断面図FIG. 2 is a sectional view of a non-contact displacement meter according to an embodiment of the present invention.

【図3】本発明の他の実施例の非接触変位計の断面図FIG. 3 is a sectional view of a non-contact displacement meter according to another embodiment of the present invention.

【図4】図2に示す非接触変位計の測定回路の回路図FIG. 4 is a circuit diagram of a measurement circuit of the non-contact displacement meter shown in FIG.

【符号の説明】[Explanation of symbols]

1…測定ワーク 2…プローブ 3…測定電極 4…ガードリング 5…絶縁体 6…リード線 6A…芯線 6
B…外側リード 7…絶縁皮膜 8…測定回路 9…液体 10…発振回路 11…電流検出回路 12…制御回路 13…表示回路 14…容器
DESCRIPTION OF SYMBOLS 1 ... Measurement work 2 ... Probe 3 ... Measurement electrode 4 ... Guard ring 5 ... Insulator 6 ... Lead wire 6A ... Core wire 6
B ... Outer lead 7 ... Insulating film 8 ... Measurement circuit 9 ... Liquid 10 ... Oscillation circuit 11 ... Current detection circuit 12 ... Control circuit 13 ... Display circuit 14 ... Container

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 先端に測定電極(3)を有するプローブ(2)
を備え、このプローブ(2)を測定ワーク(1)に接近させ
て、測定ワーク(1)と測定電極(3)との間の静電容量の変
化でもって、測定ワーク(1)とプローブ(2)との間隔の変
位を測定する非接触変位計であって、 プローブ(2)が測定電極(3)の表面を絶縁皮膜(7)で被覆
しており、この絶縁皮膜(7)でもって、測定電極(3)を液
体中に入れる状態で液体(9)から絶縁して、測定電極(3)
と測定ワーク(1)との間隔を測定するようにしてなる非
接触変位計。
1. A probe (2) having a measuring electrode (3) at its tip.
The probe (2) is brought close to the measurement work (1), and the change in the capacitance between the measurement work (1) and the measurement electrode (3) causes the measurement work (1) and the probe ( This is a non-contact displacement meter that measures the displacement at the distance from 2), and the probe (2) covers the surface of the measuring electrode (3) with an insulating film (7). The measurement electrode (3) is insulated from the liquid (9) with the measurement electrode (3)
Non-contact displacement meter that measures the distance between the workpiece and the work (1).
【請求項2】 絶縁皮膜(7)が、紫外線を照射して硬化
させる紫外線硬化樹脂である請求項1に記載される非接
触変位計。
2. The non-contact displacement meter according to claim 1, wherein the insulating film (7) is an ultraviolet curing resin which is cured by irradiating ultraviolet rays.
【請求項3】 絶縁皮膜(7)がガラスである請求項1に
記載される非接触変位計。
3. The non-contact displacement meter according to claim 1, wherein the insulating film is glass.
【請求項4】 絶縁皮膜(7)の膜厚が2〜50μmであ
る請求項1に記載される非接触変位計。
4. The non-contact displacement meter according to claim 1, wherein the thickness of the insulating film (7) is 2 to 50 μm.
【請求項5】 先端に測定電極(3)を有するプローブ(2)
を測定ワーク(1)の表面に接近させて、測定ワーク(1)と
測定電極(3)との間の静電容量の変化でもって、測定ワ
ーク(1)とプローブ(2)との間隔の変位を測定する非接触
変位計を使用する測定方法において、 測定ワーク(1)を液体中に入れると共に、耐水性と耐油
性の絶縁皮膜(7)で表面を被覆しているプローブ(2)を使
用し、このプローブ(2)の測定電極(3)を、液体中で測定
ワーク(1)表面に接近し、測定電極(3)と測定ワーク(1)
との間隔の変位を静電容量を介して測定するようにして
なる非接触変位計を使用する測定方法。
5. A probe (2) having a measuring electrode (3) at its tip.
Is brought close to the surface of the measurement work (1), and the distance between the measurement work (1) and the probe (2) is determined by the change in capacitance between the measurement work (1) and the measurement electrode (3). In a measurement method using a non-contact displacement meter that measures displacement, a probe (2) whose surface is covered with a water-resistant and oil-resistant insulating film (7) while a measurement work (1) is Use the measurement electrode (3) of this probe (2) close to the surface of the measurement work (1) in the liquid, and move the measurement electrode (3) and the measurement work (1).
A measurement method using a non-contact displacement meter configured to measure a displacement of an interval between the two through a capacitance.
【請求項6】 測定ワーク(1)を入れる液体(9)に、切削
した測定ワーク(1)の洗浄油を使用する請求項5に記載
される非接触変位計を使用する測定方法。
6. A measuring method using a non-contact displacement meter according to claim 5, wherein a cleaning oil of the cut measuring work (1) is used as the liquid (9) for charging the measuring work (1).
JP2001157877A 2001-05-25 2001-05-25 Non-contact displacement gauge and measurement method using the same Pending JP2002350105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001157877A JP2002350105A (en) 2001-05-25 2001-05-25 Non-contact displacement gauge and measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001157877A JP2002350105A (en) 2001-05-25 2001-05-25 Non-contact displacement gauge and measurement method using the same

Publications (1)

Publication Number Publication Date
JP2002350105A true JP2002350105A (en) 2002-12-04

Family

ID=19001669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001157877A Pending JP2002350105A (en) 2001-05-25 2001-05-25 Non-contact displacement gauge and measurement method using the same

Country Status (1)

Country Link
JP (1) JP2002350105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021937A (en) * 2010-07-16 2012-02-02 Vinogradov Alexei Rotation detection apparatus
JP2013215743A (en) * 2012-04-05 2013-10-24 Amada Co Ltd Laser processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012021937A (en) * 2010-07-16 2012-02-02 Vinogradov Alexei Rotation detection apparatus
JP2013215743A (en) * 2012-04-05 2013-10-24 Amada Co Ltd Laser processing device

Similar Documents

Publication Publication Date Title
Bera et al. Study of a modified capacitance-type level transducer for any type of liquid
Bera et al. A low-cost noncontact capacitance-type level transducer for a conducting liquid
US5528153A (en) Method for non-destructive, non-contact measurement of dielectric constant of thin films
US4626774A (en) Method and arrangement for measuring the contamination of a capacitive dew-point sensor
US3400331A (en) Gaging device including a probe having a plurality of concentric and coextensive electrodes
US6885190B2 (en) In-situ metalization monitoring using eddy current measurements during the process for removing the film
US5512836A (en) Solid-state micro proximity sensor
US3781672A (en) Continuous condition measuring system
US4797614A (en) Apparatus and method for measuring conductance including a temperature controlled resonant tank circuit with shielding
US4188826A (en) Device for measuring the liquid level of an electrically conductive liquid
US20040155666A1 (en) Method and apparatus for measuring thickness of thin films with improved accuracy
KR20080035541A (en) Apparatus for measuring the thickness of a thin film
Chakraborty et al. Study on further modification of non-contact capacitance type-level transducer for a conducting liquid
JP7071723B2 (en) Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
EP0067643A2 (en) Method for determining the dimensions and/or form of surfaces
CA2672794C (en) Apparatus for determining and/or monitoring a process variable
JP2002350105A (en) Non-contact displacement gauge and measurement method using the same
KR102047799B1 (en) Surface potential measuring apparatus and surface potential measuring method
KR0150428B1 (en) Non-destructive measuring sensor for semiconductor wafer and method of manufacturing the same
JP5319057B2 (en) Charging potential distribution measuring system and charging potential distribution measuring device
JP4873689B2 (en) Surface potential meter and surface potential measurement method
GB1603793A (en) Apparatus and method for measuring the level of electrically conducting liquids
Khan et al. A non-contact capacitance type level transducer for liquid characterization
JP2772495B2 (en) Capacity measuring device
RU2107257C1 (en) Device for measuring of flat article thickness and method of its realization