JP2002348182A - Method for manufacturing porous material - Google Patents

Method for manufacturing porous material

Info

Publication number
JP2002348182A
JP2002348182A JP2001156648A JP2001156648A JP2002348182A JP 2002348182 A JP2002348182 A JP 2002348182A JP 2001156648 A JP2001156648 A JP 2001156648A JP 2001156648 A JP2001156648 A JP 2001156648A JP 2002348182 A JP2002348182 A JP 2002348182A
Authority
JP
Japan
Prior art keywords
slurry
firing
porous material
component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001156648A
Other languages
Japanese (ja)
Inventor
Koichiro Matake
耕一郎 真武
Hidenori Kobayashi
秀紀 小林
Eri Omori
江理 大森
Minoru Takahashi
実 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMASE KK
Toto Ltd
Original Assignee
YAMASE KK
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMASE KK, Toto Ltd filed Critical YAMASE KK
Priority to JP2001156648A priority Critical patent/JP2002348182A/en
Publication of JP2002348182A publication Critical patent/JP2002348182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a very light weight porous material having the porosity 60% or more and enough strength at a comparatively inexpensive cost without giving bad appearance in firing process. SOLUTION: The method for manufacturing porous material consists of a modifying process of a slurry containing a structure component, which does not melt in firing, and a melting component which melts in firing, a process for admixing a gelling agent and air foams into the slurry, a forming process, a drying process, and a firing process for firing materials at temperatures of 400 to 1300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質材の製造方
法に関する。
[0001] The present invention relates to a method for producing a porous material.

【0002】[0002]

【従来の技術】窯業建材は、耐薬品性、耐久性に優れ、
かつ高い質感、多様な意匠性等も同時に発揮できるため
に広く利用されている。さらに、近年においては、施工
の容易性を図るため、軽量の発泡タイルが提案されてい
る。その製造方法としては、例えば、多孔質窯業建材に
はガラス粉や炭化珪素などの発泡剤を原料中に混合して
成形し、それらが焼成時に発泡する事により素地が発泡
し、多孔体を得る方法(特公平7−88248号公報)
や、パーライトなどの軽量中空バルーンを原料に混合
し、これを成形し焼成して多孔質窯業建材を得る方法な
どが知られている。
2. Description of the Related Art Ceramic building materials have excellent chemical resistance and durability.
It is widely used because it can also exhibit high texture and various design properties at the same time. Furthermore, in recent years, lightweight foam tiles have been proposed in order to facilitate construction. As a manufacturing method, for example, for a porous ceramic building material, a foaming agent such as glass powder or silicon carbide is mixed into a raw material and molded, and when they are foamed at the time of firing, the base foams to obtain a porous body. Method (Japanese Patent Publication No. 7-88248)
Also, a method is known in which a lightweight hollow balloon such as pearlite is mixed with a raw material, which is molded and fired to obtain a porous ceramic building material.

【0003】一方、エアスライド等の精密位置決め装置
において、非接触な状態でスライダーを移動させるため
の安定な気流を供給させる手段として、多孔質セラミッ
クスが利用されている。その多孔質セラミックスの製造
方法としては、予め粒径の大きな有機物を添加した成形
体を作製し、焼成時にその有機物を分解して気孔を形成
する方法や、有機物からなる多孔フォームを作製してお
いてそこにニューセラミックス粉末を含有するスラリー
を含浸、固化させ、その後焼成により有機物フォームを
分解する方法の他に、アルミナや窒化珪素などのニュー
セラミックス粉末を溶媒に分散してスラリーを調製し、
これに気泡およびゲル化剤を混合し、ゲル化して成形し
た後、乾燥、脱脂、焼成することによりセラミックス多
孔体を得る方法も提案されている(特開平6−2935
72、特開平7−187852)。
On the other hand, in a precision positioning device such as an air slide, a porous ceramic is used as a means for supplying a stable air flow for moving a slider in a non-contact state. As a method for producing the porous ceramics, a molded body to which an organic substance having a large particle size is added in advance and a pore is formed by decomposing the organic substance at the time of firing, or a porous foam made of an organic substance is produced. In addition to the method of impregnating and solidifying a slurry containing the new ceramic powder therein, and then solidifying and then decomposing the organic foam by firing, a slurry is prepared by dispersing a new ceramic powder such as alumina or silicon nitride in a solvent,
A method has also been proposed in which a foam and a gelling agent are mixed with the mixture, the mixture is gelled, molded, dried, degreased, and fired to obtain a porous ceramic body (JP-A-6-2935).
72, JP-A-7-187852).

【0004】例えば、特開平6−293572には、ア
ルミナ、ムライト、ジルコニア等の酸化物系ニューセラ
ミックス又は炭化ケイ素、窒化ケイ素、窒化アルミニウ
ム、窒化ホウ素、グラファイト等の非酸化物系ニューセ
ラミックス粉末スラリーに、気泡の直径が10〜200
0μmである発泡液と誘導タンパク質を加えて攪拌して
作製したスラリーを型に流し込み、該スラリーに含まれ
る誘導タンパク質をゲル化した後、成形体を脱型及び脱
水し、脱脂し、1400℃〜1500℃で焼成する、軽
量焼成セラミックス成形体が開示されている。
For example, JP-A-6-293572 discloses oxide-based new ceramics such as alumina, mullite and zirconia, or non-oxide-based new ceramics powder slurry such as silicon carbide, silicon nitride, aluminum nitride, boron nitride and graphite. , Bubble diameter is 10 to 200
A slurry prepared by adding and stirring a foaming liquid having a particle size of 0 μm and a derivatized protein is poured into a mold, and the derivatized protein contained in the slurry is gelled. A lightweight fired ceramic molded body which is fired at 1500 ° C. is disclosed.

【0005】また、特開平7−187852には、アル
ミナ等のニューセラミックス粉末と硬化性有機物質とを
溶媒に分散または溶解させたセラミックスラリーを調製
するスラリー調製工程、スラリー調製工程からのセラミ
ックスラリーに硬化剤を添加し、攪拌しセラミックスラ
リーを発泡させるスラリー発泡工程、スラリー発泡工程
からの気泡保持状態のセラミックスラリーを成形し、硬
化させる成形・硬化工程、及び成形・硬化工程からの成
形体を乾燥させ、1650℃程度で焼成させる乾燥・焼
成工程からなることを特徴とするセラミック多孔体の製
造方法が開示されている。
Japanese Patent Application Laid-Open No. Hei 7-187852 discloses a slurry preparation step for preparing a ceramic slurry in which a new ceramic powder such as alumina and a curable organic substance are dispersed or dissolved in a solvent. A curing agent is added, and a slurry foaming step of foaming the ceramic slurry by stirring, a ceramic slurry in a bubble-retained state from the slurry foaming step is molded and cured, and a molding and curing step of drying, and a molded body from the molding and curing step are dried. A method for producing a porous ceramic body, comprising a drying and firing step of firing at about 1650 ° C. is disclosed.

【0006】[0006]

【発明が解決しようとする課題】上述したように、多孔
質窯業建材では焼成時の発泡を利用した方法や中空の軽
量バルーンを利用した方法などが知られているが、発泡
を利用したものは高気孔率にすると発泡による焼成時の
変形が大きく、またバルーンを利用したものは気孔率を
60%以上とすることが困難で、狙いとする軽量化や防
音、断熱などの効果が十分得られなかった。
As described above, in the case of porous ceramic building materials, a method utilizing foaming at the time of firing and a method utilizing a hollow lightweight balloon are known. If the porosity is increased, deformation during firing due to foaming is large, and it is difficult to increase the porosity to 60% or more in the case of using a balloon, and the intended effects of weight reduction, soundproofing, heat insulation, etc. can be sufficiently obtained. Did not.

【0007】特開平6−293572や特開平7−18
7852に記載の方法では、原料に精製されたファイン
セラミックスを使用しているため、高い気孔率で強度を
出すためには、1400℃以上の非常に高い温度で焼結
させる必要があった。このため原料コストが高いだけで
なく、消費するエネルギーも大きく、また炉材のメイン
テナンスも頻繁に行う必要があるために、不経済であっ
た。さらに、意匠性を向上させるために施釉を行う場合
にも、焼成を1度で済まそうとすると、温度が高すぎる
ために釉薬の熔融粘性が低くなりすぎて外観不良を呈す
る傾向があった。そのために、施釉を行おうとすると、
2度の焼成を必要とし、やはり不経済であった。
[0007] JP-A-6-293572 and JP-A-7-18
In the method described in No. 7852, since refined fine ceramics is used as a raw material, it is necessary to perform sintering at a very high temperature of 1400 ° C. or more in order to obtain strength with high porosity. For this reason, not only is the raw material cost high, but also the energy consumed is large, and the maintenance of the furnace material must be performed frequently, which is uneconomical. Furthermore, even when glazing is carried out to improve the design, if the firing is performed only once, the melting temperature of the glaze tends to be too low due to too high a temperature, resulting in poor appearance. For that reason, if you try to glaze,
It required two firings, which was also uneconomical.

【0008】本発明は、上記事情に鑑みてなされたもの
であり、焼成時に外観不良を呈することなく、充分な強
度を有しながら気孔率60%以上の非常に軽量な多孔質
材を、比較的安価に製造しうる方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and compared a very lightweight porous material having sufficient strength and a porosity of 60% or more without exhibiting poor appearance during firing. It is an object of the present invention to provide a method which can be manufactured at low cost.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の一実施態様においては、 a.焼成時に熔融しない骨格成分と、焼成時に熔融する
熔融成分とを含有するスラリーを調製する工程と、 b.該スラリーにゲル化剤および気泡を混入する工程
と、 c.成形する工程と、 d.乾燥する工程と、 e.400〜1300℃の焼成温度で焼成する工程と、 を具備することを特徴する多孔質材の製造方法を提供す
る。スラリーに、焼成時に熔融する熔融成分を含有さ
せ、かつゲル化剤および気泡を混入したことにより、4
00〜1300℃という低い温度による焼成で、曲げ強
度1MPa以上の充分な強度を有しつつ、気孔率60%
以上の軽量な多孔質材が提供可能となる。
In order to solve the above problems, in one embodiment of the present invention, a. Preparing a slurry containing a skeletal component that does not melt during firing and a melt component that melts during firing, b. Mixing a gelling agent and air bubbles into the slurry; c. Forming; d. Drying; e. Baking at a baking temperature of 400 to 1300 ° C., and a method for producing a porous material. The slurry contains a melting component that melts during firing, and contains a gelling agent and air bubbles, so that 4
By sintering at a low temperature of 00 to 1300 ° C., the porosity is 60% while having a sufficient bending strength of 1 MPa or more.
The above lightweight porous material can be provided.

【0010】本発明の他の態様においては、 a.焼成時に熔融しない骨格成分と、焼成時に熔融する
熔融成分とを含有するスラリーを調製する工程と、 b.該スラリーにゲル化剤および気泡を混入する工程
と、 c.成形する工程と、 d.乾燥する工程と、 f.施釉する工程と、を行った後に、 e.400〜1300℃の焼成温度で焼成する工程、 を行うことを特徴する多孔質材の製造方法を提供する。
スラリーに、焼成時に熔融する熔融成分を含有させ、か
つゲル化剤および気泡を混入したことにより、400〜
1300℃という低い温度による焼成で、曲げ強度1M
Pa以上の充分な強度を有しつつ、気孔率60%以上の
軽量な多孔質材が提供可能となる。また、400〜13
00℃という低い温度により焼成可能となるので、意匠
性を向上させるために施釉を行う場合に、焼成を一度で
済ますことができる。
In another aspect of the invention, there is provided a method comprising: a. Preparing a slurry containing a skeletal component that does not melt during firing and a melt component that melts during firing, b. Mixing a gelling agent and air bubbles into the slurry; c. Forming; d. Drying; f. After performing the step of glazing, e. A step of firing at a firing temperature of 400 to 1300 ° C.
The slurry contains a melting component that melts during firing, and contains a gelling agent and air bubbles, so that the
Firing at a low temperature of 1300 ° C, bending strength 1M
It is possible to provide a lightweight porous material having a porosity of 60% or more while having a sufficient strength of Pa or more. Also, 400-13
Since firing can be performed at a temperature as low as 00 ° C., firing can be performed only once when glazing is performed to improve design properties.

【0011】本発明の好ましい態様においては、前記熔
融成分は、前記スラリー中の固形分の全量に対して5〜
70重量%含むようにする。熔融成分を5重量%以上含
むことで、400〜1300℃という低い温度での焼成
においても焼成体が充分な強度を有するようになる。そ
の理由は、おそらくは、液相焼結機構がこのような低い
温度でも働くようになるためと考えられる。溶融成分を
70%以上とすると、焼成時に溶液成分の軟化温度に達
すると焼成体を構成する成分の大部分が融液化し、溶融
粘性が下がり過ぎて収縮や変形が大きくなり、気孔を維
持できなくなってしまうため70重量%以下とする。
[0011] In a preferred aspect of the present invention, the molten component is 5 to 5 parts by weight based on the total amount of solids in the slurry.
In order to contain 70% by weight. By containing the molten component in an amount of 5% by weight or more, the fired body has sufficient strength even when fired at a low temperature of 400 to 1300 ° C. This is probably because the liquid phase sintering mechanism works even at such low temperatures. When the melting component is 70% or more, when the softening temperature of the solution component is reached at the time of firing, most of the components constituting the fired body are melted, the melt viscosity is excessively reduced, the shrinkage and deformation are increased, and the pores can be maintained. Since it is lost, the content is set to 70% by weight or less.

【0012】[0012]

【発明の実施の形態】以下に本発明の製造方法につき、
より詳しく説明する。本発明において、「焼成時に熔融
しない骨格成分」とは、焼成時に他の成分と反応する、
反応しないとにかかわらず、粒子を残存する成分のこと
を言い、例えば、カオリナイト、ハロイサイト、モンモ
リロナイト、セリサイト、パイロフィライト、タルク等
のアルミノケイ酸塩、石英、ワラストナイト等が好適に
利用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention is described below.
This will be described in more detail. In the present invention, the "skeleton component that does not melt at the time of firing" reacts with other components at the time of firing,
Regarding the components that leave particles irrespective of not reacting, for example, kaolinite, halloysite, montmorillonite, sericite, pyrophyllite, aluminosilicate such as talc, quartz, wollastonite and the like are preferably used. it can.

【0013】本発明において、「焼成時に熔融する熔融
成分」とは、焼成時に他の成分と反応する、もしくはそ
の成分単味で溶融し、粒子として残存しない成分のこと
を言い、例えば長石やガラスなどが好適に利用できる。
In the present invention, the term "molten component that melts during firing" refers to a component that reacts with other components during firing or melts as a single component and does not remain as particles, such as feldspar or glass. Etc. can be suitably used.

【0014】本発明において、「焼成時に熔融しない骨
格成分と、焼成時に熔融する熔融成分とを含有するスラ
リー」の調製は、基本的には、上記で規定される「焼成
時に熔融しない骨格成分」と「焼成時に熔融する熔融成
分」を水に懸濁させることにより行う。ここにおいて、
「焼成時に熔融しない骨格成分」及び「焼成時に熔融す
る熔融成分」の双方を予め備える原料を水に懸濁させて
もよい。このような原料としては、窯業原料として一般
に利用されている粘土鉱物原料や、粘土鉱物の原料山か
ら採掘された原料から粘土や珪石などの利用される部分
を抽出された後に残り、通常は利用されずに廃棄される
キラ、ガラスビンや蛍光灯や廃棄された車の窓ガラスや
ガラス工場から排出されるガラスなどの種々のガラス
屑、タイル工場から排出されるタイル屑や釉薬汚泥、火
力発電所で石炭を燃やした後に排出される石炭灰(フラ
イアッシュ)、製鉄所などから排出される溶融スラグ、
下水の浄化施設等から排出される汚泥を焼却処理した後
に排出される汚泥の焼却灰など、産業廃棄物として出さ
れているものも有効に利用できる。
In the present invention, the preparation of the “slurry containing a skeletal component that does not melt during firing and a melt component that melts during firing” is basically performed using the “skeletal component that does not melt during firing” defined above. And the “melting component that melts during firing” is suspended in water. put it here,
A raw material having both a “skeleton component that does not melt during firing” and a “melt component that melts during firing” may be suspended in water. As such raw materials, clay mineral raw materials generally used as ceramic raw materials and raw materials mined from raw materials of clay minerals are extracted after extracting the used parts such as clay and quartzite, and are usually used. Various types of glass waste such as Kira, glass bottles, fluorescent lights, discarded vehicle window glass and glass discharged from glass factories, tile waste and glaze sludge discharged from tile factories, thermal power plants Coal ash (fly ash) discharged after burning coal in the slag, molten slag discharged from steelworks,
What is discharged as industrial waste, such as incineration ash of sludge discharged after incineration of sludge discharged from sewage purification facilities, etc., can also be used effectively.

【0015】本発明において、「ゲル化剤」とは、以下
に示すいずれか1種以上のゲル化反応を生じさせる材料
をいう。 (1)モノマーの重合硬化反応 (2)水和硬化反応 (3)特定の塩析反応 モノマーの重合硬化反応の場合の「ゲル化剤」はそのモ
ノマーであり、例えば、メタクリルアミド、アクリルア
ミド、ポリビニルアルコール、ポリビニルエーテル、エ
チレングリコール等が好適に利用できる。水和硬化反応
の場合の「ゲル化剤」は水和硬化する物質であり、例え
ば、寒天、ゼラチン、アルギン酸塩、カラギーナン、ペ
クチン、ガム類等が好適に利用できる。この中で寒天、
ゼラチン、カラーギナン、ペクチン、ガム類は溶解のた
めに適当な温度に加熱する必要があり、その後冷却もし
くは常温に放置することでゲル化の特性を発現する。例
えば寒天は約80℃以上で加熱溶解後、約40℃以下に
してゲル化する。同様にゼラチンは約30℃以上、カラ
ギーナン、ペクチンは約40℃以上で加熱溶解後、約2
0℃以下とすることでゲル化する。またアルギン酸塩は
常温の水で容易に溶解し、塩化カルシウムや硫酸カルシ
ウムなどカルシウムイオンを含むものをpHを調製して
微量添加することによりゲル化する。また、特定の塩析
反応としては、水ガラスとセメントの反応によるゲル化
や、水ガラスと炭酸水酸化ナトリウムなどの酸との反応
などが利用できる。ここにおける「ゲル化剤」は、それ
ぞれ水ガラスとセメントの双方、水ガラスと炭酸水酸化
ナトリウムなどの酸の双方と定義される。コスト面か
ら、「ゲル化剤」としては、寒天、ゼラチン、アルギン
酸塩、水ガラスを利用するのが好ましい。
In the present invention, the term "gelling agent" refers to any one or more of the following materials that cause a gelling reaction. (1) Polymerization-curing reaction of monomer (2) Hydration-curing reaction (3) Specific salting-out reaction In the case of polymerization-curing reaction of a monomer, the “gelling agent” is the monomer, for example, methacrylamide, acrylamide, polyvinyl Alcohol, polyvinyl ether, ethylene glycol and the like can be suitably used. The “gelling agent” in the case of the hydration curing reaction is a substance that hydrates and cures. For example, agar, gelatin, alginate, carrageenan, pectin, gums and the like can be suitably used. Agar in this,
Gelatin, carrageenan, pectin, and gums need to be heated to an appropriate temperature for dissolution, and then exhibit a gelling property when cooled or left at room temperature. For example, agar is heated and melted at about 80 ° C. or more, and then gelled at about 40 ° C. or less. Similarly, gelatin is dissolved at about 30 ° C. or more, and carrageenan and pectin are heated and dissolved at about 40 ° C. or more.
Gelation occurs at a temperature of 0 ° C. or lower. Alginate is easily dissolved in water at normal temperature, and gelled by adjusting the pH and adding a small amount of a substance containing calcium ions such as calcium chloride or calcium sulfate. As the specific salting-out reaction, gelation by reaction between water glass and cement, reaction between water glass and an acid such as sodium carbonate hydroxide and the like can be used. The “gelling agent” herein is defined as both water glass and cement, and both water glass and an acid such as sodium carbonate hydroxide. From the viewpoint of cost, it is preferable to use agar, gelatin, alginate, and water glass as the “gelling agent”.

【0016】本発明において、「気泡を混入する」方法
には、例えば、スラリー中に起泡剤として一般に知られ
ている界面活性剤を加えた後、機械的攪拌を行う、超音
波等による振動を与える、多孔板(体)に気体を吹き込
む、化学的反応により気泡を生じさせるなどの方法が利
用できる。ここで界面活性剤として陰イオン性の界面活
性剤が好ましく使用され、アルキル硫酸エステル塩、ア
ルキルベンゼンスルフォン酸塩、ポリオキシエチレンア
ルキル硫酸エステル塩、脂肪酸塩などが利用でき、また
陰イオン性界面活性剤と両性界面活性剤を混合して使用
することも可能であり、両性界面活性剤としてラウリル
ジメチルカルボキシメチルベタインなどが利用できるが
これらの例に制限されるものではない。
In the present invention, the method of “mixing bubbles” includes, for example, adding a surfactant generally known as a foaming agent to a slurry, and then mechanically stirring the slurry, vibration by ultrasonic waves or the like. , A gas is blown into a perforated plate (body), or a bubble is generated by a chemical reaction. Here, an anionic surfactant is preferably used as the surfactant, and an alkyl sulfate, an alkylbenzene sulfonate, a polyoxyethylene alkyl sulfate, a fatty acid salt and the like can be used. And amphoteric surfactants can be used as a mixture, and lauryldimethylcarboxymethylbetaine and the like can be used as the amphoteric surfactant, but are not limited to these examples.

【0017】スラリー中の「焼成時に熔融しない骨格成
分」と「焼成時に熔融する熔融成分」の粉砕粒径が細か
いほどスラリーの気泡量は大きくなるが、粉砕時間、粉
砕コスト、焼成時の反応性を考慮すると平均粒径で5〜
25μmが好適である。
The smaller the crushed particle size of the "skeleton component that does not melt during firing" and "the melt component that melts during firing" in the slurry, the larger the amount of bubbles in the slurry, but the crushing time, crushing cost, and reactivity during calcination. Considering the average particle size of 5
25 μm is preferred.

【0018】本発明における、「成形する工程」は、例
えば、流動性をもった含気泡スラリーを鋳型に流し込む
スリップキャスト、圧力鋳込み、含気泡スラリーの流動
性が低下し、その可塑性や保形性が高くなった状態のも
のを使用した射出成形、押し出し成形などが可能である
が、これらの方法に限定されるものではない。また、形
状もタイルの様な50mm、100mm角などの小さな
板状のもやサイディングやパネルなどの900mm×1
800mmの様な大きな板状のもの、また型の形状によ
り凹凸の面状を造ることや、衛生陶器や洗面化粧台のボ
ールような様々な形状の多孔質窯業建材を作製すること
が可能で、その大きさや形状は限定されるものではな
い。また、成形の際に使用する型の材質は一般に鋳込み
用の型として使用されている、石膏型、金型、樹脂型な
どいずれも使用可能でその材質による制限はない。
In the present invention, the "forming step" includes, for example, slip casting, pressure casting, in which a cell-containing slurry having fluidity is poured into a mold, and the fluidity of the cell-containing slurry is reduced, and its plasticity and shape retention are reduced. Injection molding, extrusion molding, and the like using a material having a high value can be performed, but the method is not limited to these methods. In addition, the shape is a small plate-shaped siding such as 50mm, 100mm square such as tile, 900mm × 1 such as siding or panel.
It is possible to make a large plate-like thing like 800 mm, and to make a rough surface by the shape of the mold, and to make porous ceramic building materials of various shapes such as balls of sanitary ware and washstands, The size and shape are not limited. In addition, the material of the mold used in molding can be any of a plaster mold, a mold, a resin mold, and the like, which are generally used as a casting mold, and is not limited by the material.

【0019】本発明における、「乾燥する工程」は、5
0℃〜150℃程度で行う。
In the present invention, the “drying step” comprises 5
It is performed at about 0 ° C. to 150 ° C.

【0020】「成形する工程」、「乾燥する工程」を行
った後に、施釉工程を行ってもよい。本発明の多孔質材
においてその表面を釉薬、塗料等で覆うことにより、意
匠を付与したり、吸水しない面、汚れ難い面を付与する
事ができる。
After performing the "forming step" and the "drying step", a glaze step may be performed. By covering the surface of the porous material of the present invention with glaze, paint, or the like, it is possible to provide a design, a surface that does not absorb water, and a surface that is not easily stained.

【0021】本発明における、「焼成する工程」は40
0〜1300℃の焼成温度で行う。その温度は、スラリ
ー成分の構成物とその比により適宜選択する。本発明に
おける多孔質材においては、溶融する成分が、その焼成
温度で骨格成分を結び付けて緻密な構造を作る。焼成時
に溶融する成分が10〜70重量%の範囲で含まれる調
合の中で、例えば下記の実施例に示すような調合および
焼成温度を選ぶことで、気孔率60%以上で曲げ強度が
1MPa以上となるような多孔質材を作製することがで
きる。このようにして作製した多孔体は、1400℃以
上の焼成温度により作製したアルミナや窒化珪素の多孔
体と同等気孔率に対して同等の強度を有する。
In the present invention, the “firing step” is 40
This is performed at a firing temperature of 0 to 1300 ° C. The temperature is appropriately selected depending on the components of the slurry component and the ratio thereof. In the porous material of the present invention, the component to be melted binds the skeletal component at the firing temperature to form a dense structure. Among the formulations containing components that melt during firing in the range of 10 to 70% by weight, for example, by selecting the formulation and firing temperature as shown in the following examples, the porosity is 60% or more and the bending strength is 1 MPa or more. A porous material having the following properties can be produced. The porous body thus produced has the same porosity and strength as the alumina or silicon nitride porous body produced at a firing temperature of 1400 ° C. or higher.

【0022】本発明の多孔質材は、スラリー中に混入し
た気泡を維持して多孔質材の気孔とする方法であるた
め、スラリーの気泡を制御することで焼成体の気孔径お
よび気孔率を制御することが可能である。その範囲は平
均気孔径で10〜1000μm、気孔率は40〜95%
で制御可能である。気泡の制御は原料の選定、原料スラ
リーの粉砕粒径、粘性、pHの調整、ゲル化剤、気泡の
導入量を調整することで容易に制御可能である。
Since the porous material of the present invention is a method of maintaining the air bubbles mixed in the slurry to form pores of the porous material, controlling the air bubbles of the slurry reduces the pore diameter and porosity of the fired body. It is possible to control. The range is 10 to 1000 μm in average pore diameter, and the porosity is 40 to 95%.
Can be controlled by The control of the bubbles can be easily controlled by selecting the raw material, adjusting the pulverized particle size, viscosity and pH of the raw material slurry, adjusting the amount of the gelling agent and the amount of the introduced bubbles.

【0023】原料の調製時には、そのスラリーの状態に
応じて解こう剤を用いて、原料の凝集を防ぐことができ
る。解こう剤としてはポリカルボン酸塩系のものやトリ
ポリリン酸ナトリウム等が例示できる。逆にスラリーの
粘性が低すぎて原料の沈殿を生じるような場合は凝集剤
を用いて調整する事ができる。凝集剤としては塩化カリ
ウムの他、塩化マグネシウム、硫酸マグネシウム、硫酸
バリウム等が例示できる。ただし、解こう剤、凝集剤は
これらの例に制限されるものではない。この時のスラリ
ーの粘性が高すぎると気泡し難くなり、逆に低すぎると
固形分が沈殿するため、100〜500mPa・sが好
適である。
At the time of preparing the raw material, a coagulation of the raw material can be prevented by using a peptizer according to the state of the slurry. Examples of peptizers include polycarboxylates and sodium tripolyphosphate. Conversely, when the viscosity of the slurry is too low to cause precipitation of the raw material, it can be adjusted using a flocculant. Examples of the coagulant include potassium chloride, magnesium chloride, magnesium sulfate, barium sulfate and the like. However, peptizers and flocculants are not limited to these examples. If the viscosity of the slurry at this time is too high, it is difficult to form bubbles. If the viscosity is too low, the solid content precipitates. Therefore, the viscosity is preferably 100 to 500 mPa · s.

【0024】本発明の多孔質材の表面にTiO2光触媒
を配置してもよい。そうすることで防汚性、抗菌性、N
X分解性などの機能を発現する多孔質材とすることが
できる。
A TiO 2 photocatalyst may be arranged on the surface of the porous material of the present invention. By doing so, antifouling property, antibacterial property, N
It can be a porous material that exhibits functions such as OX decomposability.

【0025】本発明は、以下に限定されないが、壁材や
床材として利用されるタイル、窯業サイディング、ALC
パネルなどの建築材料等に好適に利用できる。
The present invention is not limited to, but is not limited to, tiles used as wall and flooring, ceramic siding, ALC
It can be suitably used for building materials such as panels.

【0026】[0026]

【実施例】実施例1 廃ガラス55重量%、粘土35重量%、アルミナを主成
分とする廃棄物10重量%に水54重量%を加えポット
ミルで粉砕し、平均粒径10μm、粘性300mPa・
sのスラリーを調製した。このスラリーに寒天を0.3
5重量%加えて攪拌した後、オートクレーブを用いて1
05℃飽和蒸気圧下で5分間加熱溶解した。このスラリ
ーに起泡剤としてアニオン性界面活性剤、エマールAD
−25R(花王製)を0.3重量%加え、泡立て器を用
いて機械的な攪拌により容積が3.0倍になるまで起泡
した。この攪拌の間、スラリーの温度は約70℃に管理
し、寒天がゲル化しない様にした。寒天がゲル化を開始
する約40〜50℃の温度に下がる前にこの含気泡スラ
リーを型に鋳込み成形した。約30分室温で放置し、成
形体の温度が下がりゲル化したものを離型し、60℃の
乾燥機で3時間乾燥した。この乾燥体を1030℃で焼
成し多孔質材を得た。この焼成温度1030℃は気泡を
含まないマトリクス部分を緻密に焼結する温度であり、
上記記載の製造工程において起泡させなかったものを成
形し、この温度で焼成した場合、その焼成体の吸水率は
1%未満であった。またこの緻密体と多孔質材の焼成に
よる収縮はほぼ同じ約8%であり、多孔質材の気泡が維
持されていることがわかった。この多孔質材を水銀圧入
法により気孔率を測定したところ、その気孔率は91%
で嵩比重は0.61あった。またこの基材部の断面をS
EMを用いて観察したところ、その平均気孔径は約10
0μmであった。更にこの多孔質材の曲げ強度を測定し
たところ4MPaであった。
EXAMPLE 1 55% by weight of waste glass, 35% by weight of clay, and 10% by weight of a waste mainly composed of alumina, 54% by weight of water were added and pulverized by a pot mill to obtain an average particle size of 10 μm and a viscosity of 300 mPa · s.
s slurry was prepared. Add agar to this slurry
After adding 5% by weight and stirring, 1% was added using an autoclave.
The mixture was heated and melted at a saturated vapor pressure of 05 ° C for 5 minutes. Anionic surfactant as a foaming agent, Emar AD
-25R (manufactured by Kao) was added in an amount of 0.3% by weight, and foaming was performed by mechanical stirring using a whisk until the volume became 3.0 times. During this stirring, the temperature of the slurry was controlled at about 70 ° C. so that the agar did not gel. The aerated slurry was cast into a mold before the agar had cooled to a temperature of about 40-50 ° C., at which point it began to gel. The molded product was left at room temperature for about 30 minutes, the temperature of the molded product was lowered, and the gelled product was released from the mold and dried with a dryer at 60 ° C for 3 hours. The dried body was fired at 1030 ° C. to obtain a porous material. This firing temperature of 1030 ° C. is a temperature at which the matrix portion containing no bubbles is densely sintered.
In the case where a foam not foamed in the above-described production process was molded and fired at this temperature, the water absorption of the fired body was less than 1%. Further, the shrinkage of the dense body and the porous material due to the firing was about the same of about 8%, and it was found that the air bubbles of the porous material were maintained. When the porosity of this porous material was measured by a mercury intrusion method, the porosity was 91%.
The bulk specific gravity was 0.61. Also, the cross section of this base material portion is S
Observation using EM revealed that the average pore diameter was about 10
It was 0 μm. Further, the flexural strength of this porous material was measured and found to be 4 MPa.

【0027】実施例2 実施例1と同様の方法で調製した寒天溶解スラリーに、
同じ起泡剤を0.25重量%添加し容積比が2.5倍に
なるように起泡し、その他は同様の方法で多孔質材を作
製した。実施例1と同様の方法で気孔率および気孔径の
測定を行ったところ、気孔率は88%、嵩比重は0.7
0、平均気孔径は約50μmであった。更にこの多孔質
材の曲げ強度を測定したところ6MPaであった。
Example 2 Agar-dissolved slurry prepared in the same manner as in Example 1
The same foaming agent was added in an amount of 0.25% by weight, and foaming was performed so that the volume ratio became 2.5 times, and otherwise, a porous material was produced in the same manner. When the porosity and the pore diameter were measured in the same manner as in Example 1, the porosity was 88% and the bulk specific gravity was 0.7.
0, the average pore diameter was about 50 μm. Further, the flexural strength of this porous material was measured to be 6 MPa.

【0028】実施例3 実施例1と同様の方法で調製した寒天溶解スラリーに、
同じ起泡剤を0.20重量%添加し容積比が2.0倍に
なるように起泡し、その他は同様の方法で多孔質材を作
製した。実施例1と同様の方法で気孔率および気孔径の
測定を行ったところ、気孔率は71%、平均気孔径は約
130μmであった。更にこの多孔質材の曲げ強度を測
定したところ10MPaであった。
Example 3 Agar-agar slurry prepared in the same manner as in Example 1
The same foaming agent was added in an amount of 0.20% by weight, foaming was performed so that the volume ratio became 2.0 times, and the other method was the same as that described above to produce a porous material. When the porosity and the pore diameter were measured in the same manner as in Example 1, the porosity was 71% and the average pore diameter was about 130 μm. Further, the bending strength of this porous material was measured and found to be 10 MPa.

【0029】実施例4 窯業原料として利用されている蝋石45重量%、粘土3
5重量%、およびタイル屑15重量%、釉薬汚泥5重量
%に対し、水50重量%を加えて粉砕し、平均粒径8μ
m、粘性350mPa・sのスラリーを調製した。この
スラリーにおいて、「焼成時に熔融する熔融成分」は釉
薬汚泥より供給される珪酸塩ガラスである。このスラリ
ーに起泡剤としてアニオン性界面活性剤、エマールAD
−25R(花王製)を1.5重量%、両性界面活性剤ア
ンヒトール24B(花王製)を0.1重量%加え、この
容器中に多孔板を挿入し、攪拌しながらこれに空気を吹
き込み容積が2.3倍になるまで起泡した。この含気泡
スラリーにJIS3号水ガラス5重量%とポルトランド
セメント3重量%加え更に攪拌し、これを洗面化粧台の
ボール形状の型内に圧力を加えながら鋳込んだ。約1時
間経過後に離型し100℃の乾燥機で約3時間乾燥した
後、1150℃で焼成し多孔質材を作製した。この多孔
質材の気孔率は80%であった。更にこの多孔質材の曲
げ強度を測定したところ2MPaであった。
Example 4 45% by weight of roesite used as a ceramic raw material, clay 3
5% by weight, 15% by weight of tile waste, and 5% by weight of glaze sludge are added with 50% by weight of water and pulverized to obtain an average particle size of 8 μm.
m, a slurry having a viscosity of 350 mPa · s was prepared. In this slurry, the “molten component that melts during firing” is silicate glass supplied from glaze sludge. Anionic surfactant as a foaming agent, Emar AD
-25R (manufactured by Kao) and 1.5% by weight of amphoteric surfactant Amphitol 24B (manufactured by Kao) are added, and a perforated plate is inserted into the container, and air is blown into the container while stirring. Was 2.3 times. 5% by weight of JIS No. 3 water glass and 3% by weight of Portland cement were added to the bubble-containing slurry, and the mixture was further stirred and cast into a ball-shaped mold of a vanity while applying pressure. After about 1 hour, the mold was released, dried with a dryer at 100 ° C. for about 3 hours, and fired at 1150 ° C. to produce a porous material. The porosity of this porous material was 80%. Further, the flexural strength of this porous material was measured and found to be 2 MPa.

【0030】実施例5 汚泥の焼却灰40重量%、タイル屑60重量%に対し、
水55重量%を加えて粉砕し、平均粒径15μm、粘性
400mPa・sのスラリーを調製した。このスラリー
において、「焼成時に熔融しない骨格成分」はタイル屑
より供給される石英や粘土分である。また、「焼成時に
熔融する熔融成分」は汚泥の焼却灰より供給される灰長
石分である。汚泥の焼却灰は汚泥の焼却時に大量の石灰
等のアルカリ分を加えて高温で焼却処理するため、処理
後の灰中には結晶として長石分が精製されており、ここ
ではこの長石分を溶融成分として利用した。このスラリ
ーにモノマーとしてメタクリルアミドを8重量%、架橋
剤としてアクリルアミドを0.4重量%加えて攪拌し、
これを酸素雰囲気中で起泡剤としてリポラン(ライオン
製)を0.7重量%加え、泡立て器を用いて容積比2.
3倍になるまで起泡し、これに開始剤として過硫酸アン
モニウム0.08重量%、触媒としてテトラメチルエチ
レンジアミン0.05重量%を加えて更に攪拌し含気泡
スラリーを調製した。このスラリーを200×50×1
0mmの型内に鋳込みゲル化し2時間後に離型して、ゲ
ル状多孔質成形体を作製した。これを湿度管理した乾燥
機内で乾燥後、800℃で脱脂した後、1100℃で焼
成し、多孔質焼成体を得た。この多孔質材の気孔率は7
0%であった。更にこの多孔質材の曲げ強度を測定した
ところ8MPaであった。
Example 5 Sludge incineration ash 40% by weight and tile waste 60% by weight
55% by weight of water was added and pulverized to prepare a slurry having an average particle size of 15 μm and a viscosity of 400 mPa · s. In this slurry, the “skeleton component that does not melt at the time of firing” is quartz or clay supplied from tile waste. The “melt component that melts during firing” is an anorthite supplied from sludge incineration ash. The sludge incineration ash is incinerated at a high temperature by adding a large amount of alkali such as lime when incinerating the sludge.Therefore, feldspar is purified as crystals in the treated ash, and this feldspar is melted here. Used as an ingredient. 8% by weight of methacrylamide as a monomer and 0.4% by weight of acrylamide as a cross-linking agent are added to the slurry, and the mixture is stirred.
0.7% by weight of Lipolan (manufactured by Lion) was added as a foaming agent in an oxygen atmosphere, and a volume ratio of 2.
Foaming was performed until the volume became three times, and 0.08% by weight of ammonium persulfate as an initiator and 0.05% by weight of tetramethylethylenediamine as a catalyst were added thereto, followed by further stirring to prepare a bubble-containing slurry. This slurry is 200 × 50 × 1
The mixture was cast into a 0 mm mold and turned into a gel. After 2 hours, the mold was released to prepare a gel-like porous molded body. This was dried in a dryer under controlled humidity, degreased at 800 ° C., and fired at 1100 ° C. to obtain a porous fired body. The porosity of this porous material is 7
It was 0%. Further, the flexural strength of this porous material was measured and found to be 8 MPa.

【0031】実施例6 磁器質モザイクタイル素地用原料を湿式粉砕し、平均粒
径12μm、粘性200mPa・sのスラリーを調製し
た。このスラリーにおいて、「焼成時に熔融しない骨格
成分」は粘土より供給されるカオリナイトや珪石より供
給される石英である。また、このスラリーにおいて、
「焼成時に熔融する熔融成分」は原料調合中の砂婆より
供給される長石である。このスラリーにゼラチンを3.
0重量%加えて攪拌した後、オートクレーブを用いて7
0℃飽和蒸気圧下で5分間加熱溶解した。このスラリー
に起泡剤としてアニオン性界面活性剤、エマールAD−
25R(花王製)を0.8重量%加え、攪拌しながら超
音波振動により容積が2.4倍になるまで起泡した。こ
の含気泡スラリーを100×100×10mmの金型に
鋳込み成形した。ゼラチンは冷却により5〜10℃でゲ
ル化するので、冷蔵室の中で5℃に冷却しゲル化させ、
1時間後に離型した。ゼラチンが劣化することから、こ
の成形体を40℃の乾燥機中で乾燥して多孔質乾燥体を
得た。これにタイルに通常使用する釉薬をスプレーによ
り施釉した物を1250℃で焼成し多孔質タイルを作製
した。この多孔質タイルの気孔率は75%であった。
Example 6 A raw material for a porcelain mosaic tile base was wet-pulverized to prepare a slurry having an average particle size of 12 μm and a viscosity of 200 mPa · s. In this slurry, the “skeleton component that does not melt at the time of firing” is kaolinite supplied from clay or quartz supplied from silica stone. Also, in this slurry,
The “melt component that melts during firing” is feldspar supplied by Saba during the preparation of raw materials. 2. Gelatin was added to this slurry.
After adding 0% by weight and stirring, 7% was added using an autoclave.
The mixture was heated and dissolved under a saturated vapor pressure of 0 ° C. for 5 minutes. Anionic surfactant as a foaming agent, Emal AD-
0.8R by weight of 25R (manufactured by Kao) was added, and the mixture was foamed by ultrasonic vibration with stirring until the volume became 2.4 times. This bubble-containing slurry was cast into a 100 × 100 × 10 mm mold. Since gelatin gels at 5 to 10 ° C. by cooling, it is cooled to 5 ° C. in a refrigerator to gel.
After 1 hour, the mold was released. Since the gelatin deteriorated, this molded body was dried in a dryer at 40 ° C. to obtain a porous dried body. This was glazed with a glaze usually used for the tile by spraying and fired at 1250 ° C. to produce a porous tile. The porosity of this porous tile was 75%.

【0032】[0032]

【発明の効果】本発明によれば、焼成時に外観不良を呈
することなく、充分な強度を有しながら気孔率60%以
上の非常に軽量な多孔質材を、比較的安価に製造しうる
方法を提供することが可能となる。
According to the present invention, a very lightweight porous material having sufficient strength and a porosity of 60% or more can be produced relatively inexpensively without exhibiting poor appearance during firing. Can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 秀紀 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 大森 江理 岐阜県土岐郡笠原町1865番地 株式会社ヤ マセ内 (72)発明者 高橋 実 岐阜県多治見市希望が丘3−60 Fターム(参考) 4G019 GA01 GA02 GA04  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Kobayashi 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-city, Fukuoka Prefecture Inside Totoki Equipment Co., Ltd. (72) Inventor Eri Omori 1865 Kasaharacho, Toki-gun, Gifu Yamase Co., Ltd. (72) Inventor Minoru Takahashi 3-60 Kibogaoka, Tajimi-shi, Gifu F-term (reference) 4G019 GA01 GA02 GA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】a.焼成時に熔融しない骨格成分と、焼成
時に熔融する熔融成分とを含有するスラリーを調製する
工程と、 b.該スラリーにゲル化剤および気泡を混入する工程
と、 c.成形する工程と、 d.乾燥する工程と、 e.400〜1300℃の焼成温度で焼成する工程と、 を具備することを特徴する多孔質材の製造方法。
1. A method according to claim 1, Preparing a slurry containing a skeletal component that does not melt during firing and a melt component that melts during firing, b. Mixing a gelling agent and air bubbles into the slurry; c. Forming; d. Drying; e. A step of firing at a firing temperature of 400 to 1300 ° C.
【請求項2】a.焼成時に熔融しない骨格成分と、焼成
時に熔融する熔融成分とを含有するスラリーを調製する
工程と、 b.該スラリーにゲル化剤および気泡を混入する工程
と、 c.成形する工程と、 d.乾燥する工程と、 f.施釉する工程と、を行った後に、 e.400〜1300℃の焼成温度で焼成する工程、 を行うことを特徴する多孔質材の製造方法。
2. a. Preparing a slurry containing a skeletal component that does not melt during firing and a melt component that melts during firing, b. Mixing a gelling agent and air bubbles into the slurry; c. Forming; d. Drying; f. After performing the step of glazing, e. A step of firing at a firing temperature of 400 to 1300 ° C.
【請求項3】 前記熔融成分は、前記スラリー中の固形
分の全量に対して5〜70重量%含むことを特徴とする
請求項1または2に記載の多孔質材の製造方法。
3. The method for producing a porous material according to claim 1, wherein the molten component is contained in an amount of 5 to 70% by weight based on the total amount of solids in the slurry.
JP2001156648A 2001-05-25 2001-05-25 Method for manufacturing porous material Pending JP2002348182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156648A JP2002348182A (en) 2001-05-25 2001-05-25 Method for manufacturing porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156648A JP2002348182A (en) 2001-05-25 2001-05-25 Method for manufacturing porous material

Publications (1)

Publication Number Publication Date
JP2002348182A true JP2002348182A (en) 2002-12-04

Family

ID=19000635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156648A Pending JP2002348182A (en) 2001-05-25 2001-05-25 Method for manufacturing porous material

Country Status (1)

Country Link
JP (1) JP2002348182A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095614A (en) * 2011-10-28 2013-05-20 Isolite Insulating Products Co Ltd Fire resistant insulation material and method for producing the same
WO2015060803A1 (en) * 2013-10-22 2015-04-30 Insa Grup Enerji Yapi Malzemeleri Imalat Sanayi Ticaret Limited Sirketi Pyroclastic rock and clay based light construction material and a production method thereof
JP2016069203A (en) * 2014-09-29 2016-05-09 大和ハウス工業株式会社 Fired body and method for producing the same
WO2017038360A1 (en) * 2015-08-31 2017-03-09 株式会社ジーシー Method for producing porous body including calcium carbonate and method for producing porous body including carbonated apatite
CN107162391A (en) * 2017-05-12 2017-09-15 清华大学 A kind of preparation method that the regulatable foam glass of micron order air hole structure is prepared by raw material of cullet
IT201700006271A1 (en) * 2017-01-20 2018-07-20 Consorzio Interuniversitario Naz Per La Scienza E Tecnologia Dei Materiali Process for obtaining a porous material starting from powdered materials, porous material and its use for the capture of atmospheric particulate and organic contaminants
CN114478059A (en) * 2021-12-31 2022-05-13 西安理工大学 Preparation method of ceramic filter material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095614A (en) * 2011-10-28 2013-05-20 Isolite Insulating Products Co Ltd Fire resistant insulation material and method for producing the same
WO2015060803A1 (en) * 2013-10-22 2015-04-30 Insa Grup Enerji Yapi Malzemeleri Imalat Sanayi Ticaret Limited Sirketi Pyroclastic rock and clay based light construction material and a production method thereof
JP2016069203A (en) * 2014-09-29 2016-05-09 大和ハウス工業株式会社 Fired body and method for producing the same
WO2017038360A1 (en) * 2015-08-31 2017-03-09 株式会社ジーシー Method for producing porous body including calcium carbonate and method for producing porous body including carbonated apatite
US20180237300A1 (en) * 2015-08-31 2018-08-23 Gc Corporation Method for manufacturing porous material including calcium carbonate, and method for manufacturing porous material including carbonate apatite
IT201700006271A1 (en) * 2017-01-20 2018-07-20 Consorzio Interuniversitario Naz Per La Scienza E Tecnologia Dei Materiali Process for obtaining a porous material starting from powdered materials, porous material and its use for the capture of atmospheric particulate and organic contaminants
WO2018134334A1 (en) * 2017-01-20 2018-07-26 Consorzio Interuniversitario Nazionale Per La Scienza E Tecnologia Dei Materiali Process for obtaining a porous material from powder materials, a porous material and use thereof for the capture of atmospheric particulate matter and organic contaminants
CN107162391A (en) * 2017-05-12 2017-09-15 清华大学 A kind of preparation method that the regulatable foam glass of micron order air hole structure is prepared by raw material of cullet
CN107162391B (en) * 2017-05-12 2020-08-21 清华大学 Preparation method for preparing foam glass with adjustable and controllable micron-sized pore structure by taking waste glass as raw material
CN114478059A (en) * 2021-12-31 2022-05-13 西安理工大学 Preparation method of ceramic filter material

Similar Documents

Publication Publication Date Title
CN102918002B (en) For the manufacture of method and the thus obtained material of construction of gas concrete material of construction
JPH0543666B2 (en)
US20020128142A1 (en) Lightweight substance molded body, method for the production and use thereof
ATE216686T1 (en) LIGHTWEIGHT MASONRY MORTAR
JPH0445471B2 (en)
JP2002348182A (en) Method for manufacturing porous material
JP2005239467A (en) Ceramic sintered compact with binary structure pores and its production method
CN1887756A (en) Foamed glass and ceramic product and its making process
KR100863139B1 (en) The manufacturing method of construction materials using waterworks sludge
JP2000281424A (en) Lightweight nonburned tile
RU2387623C2 (en) Raw mix for production of porous, fireproof, heat insulation material
GB2166427A (en) Composition - silicate bound pumice, pulverised fuel ash, light expanded clay aggregates, cintered clay, furnace bottom ash, sand and or aerated concrete
JP2007261901A (en) Ceramic formed by using waste as main material, and its manufacturing method
JP3464043B2 (en) Method for producing porous sintered body
JP4129695B2 (en) Method for producing porous water-absorbing ceramics
JPH09110514A (en) Sintered compact as raw material of asbestos and its production
JPH0925155A (en) Sintered body from coal ash as source material and its production
RU2375303C2 (en) Preparation method of ultrafine bonding material
JPH06144898A (en) Mixed hydraulic substance, hardened material and burnt material
US3928058A (en) Expanded synthetic calcium silicates
JPH0280363A (en) Ceramics product which prevents efflorescence and its production
JPH1017376A (en) Ceramic block
JPH09309772A (en) Ceramic block
JPH0741357A (en) Production of architectural burnt plate
JPH08253378A (en) Foamed ceramic molded plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308