JP2002348177A - Static member for heat engine and its manufacturing method - Google Patents

Static member for heat engine and its manufacturing method

Info

Publication number
JP2002348177A
JP2002348177A JP2001161164A JP2001161164A JP2002348177A JP 2002348177 A JP2002348177 A JP 2002348177A JP 2001161164 A JP2001161164 A JP 2001161164A JP 2001161164 A JP2001161164 A JP 2001161164A JP 2002348177 A JP2002348177 A JP 2002348177A
Authority
JP
Japan
Prior art keywords
heat engine
stationary member
silicon nitride
pore diameter
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001161164A
Other languages
Japanese (ja)
Other versions
JP4968988B2 (en
Inventor
Kiko Hiura
規光 日浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001161164A priority Critical patent/JP4968988B2/en
Publication of JP2002348177A publication Critical patent/JP2002348177A/en
Application granted granted Critical
Publication of JP4968988B2 publication Critical patent/JP4968988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a static member for heat engine, which is hard to break at the time of contact, does not cause great deterioration of oxidation resistance of a precise object and mechanical property, and has excellent grinding property, and also to provide its manufacturing method. SOLUTION: This static member for heat engine is characterized in that it includes a silicon nitride as its main crystal phase, an excess oxygen, a 3a group element in the periodic table, and comprises a sintered compact with 0.05-1.5 wt.% total amount of Al, Ca and Fe, has 0.01-0.5 μm central pore size, 1-5 μm mean pore size, <=30 μm maximum pore size by mercury penetration method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被研削性能を向上
した窒化珪素質焼結体からなる、ガスタービン、ジェッ
トエンジンなどにおけるタービン翼先端に対向するター
ビンシュラウド等の熱機関用静止部材とその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stationary member for a heat engine such as a turbine shroud facing a tip of a turbine blade in a gas turbine, a jet engine, or the like, which is made of a silicon nitride-based sintered body having improved grinding performance. It relates to a manufacturing method.

【0002】[0002]

【従来技術】従来から、窒化珪素を主成分とする焼結体
は、耐熱性、耐熱衝撃性に優れることからエンジニアリ
ングセラミツクス、特にターボロータやガスタービンエ
ンジン用部品等の熱機関用として応用が積極的に進めら
れている。
2. Description of the Related Art Conventionally, sintered bodies containing silicon nitride as a main component are excellent in heat resistance and thermal shock resistance, and therefore have been actively applied to engineering ceramics, particularly for heat engines such as parts for turbo rotors and gas turbine engines. Is being advanced.

【0003】この窒化珪素を主成分とする焼結体を作製
するには、Y23等の周期律表第3a族元素酸化物や、
酸化アルミニウム(Al23)、窒化アルミニウム(A
lN)などのアルミニウム化合物、シリカ(SiO2
などを焼結助剤として添加して、常圧や窒素加圧雰囲気
中で焼成することにより、緻密な焼結体が得られてい
る。
In order to produce a sintered body containing silicon nitride as a main component, an oxide of a Group 3a element in the periodic table such as Y 2 O 3 ,
Aluminum oxide (Al 2 O 3 ), aluminum nitride (A
aluminum compound such as 1N), silica (SiO 2 )
And the like are added as a sintering aid, followed by firing in a normal pressure or nitrogen pressurized atmosphere, whereby a dense sintered body is obtained.

【0004】また、例えば、窒化珪素を主成分とする焼
結体は、その用途に応じて、添加する助剤の選択がなさ
れている。例えば、SiO2と周期律表第3a族元素酸
化物を必須として、これにAl23やMgO等を添加す
ると低温で液相が生成されるために、1800℃以下の
比較的低温の常圧で焼成して緻密化することができ、こ
の方法によれば、室温強度の高い焼結体を得ることがで
きるため、室温で使用される用途に多用されている。
[0004] For example, for a sintered body containing silicon nitride as a main component, an auxiliary agent to be added is selected depending on its use. For example, SiO 2 and an oxide of a Group 3a element of the periodic table are essential, and when Al 2 O 3 or MgO is added thereto, a liquid phase is formed at a low temperature. It can be densified by sintering under pressure, and according to this method, a sintered body having high room temperature strength can be obtained.

【0005】さらに、焼成収縮を小さくできるという利
点から、金属珪素と、MgO、Y23 、CeO2 等の
焼結助剤との成形体を、窒素中で1500℃以下の温度
で加熱し珪素を窒化珪素 に窒化させた後、1500℃
を越える温度で焼成し、緻密体を得る方法が用いられて
いる。
Further, from the advantage that firing shrinkage can be reduced, a molded body of metallic silicon and a sintering aid such as MgO, Y 2 O 3 , CeO 2 is heated in nitrogen at a temperature of 1500 ° C. or less. After nitriding silicon to silicon nitride, 1500 ° C
Is used to obtain a dense body.

【0006】このような方法により作製した窒化珪素質
焼結体は緻密体が多いが、従来の高強度、高靱性の窒化
珪素質焼結体を熱機関用静止部材、具体的にはタービン
シュラウドに使用すると、タービンロータの回転中に、
ロータ先端とシュラウドが接触摺動した際にタービンロ
ータやシュラウドが欠損するという問題があった。
Although the silicon nitride-based sintered body produced by such a method has many dense bodies, a conventional high-strength, high-toughness silicon nitride-based sintered body is replaced with a stationary member for a heat engine, specifically, a turbine shroud. Used during the rotation of the turbine rotor,
There is a problem that the turbine rotor and the shroud are broken when the tip of the rotor and the shroud slide.

【0007】また、それら部材の加工用消耗部品の消耗
が激しく、加工コストが高くつくという問題があった。
このように、熱機関用静止部材においては、強度、靭性
の特性はさほど重要ではなく、むしろこれらの部品は大
型複雑形状であるため、コスト面から被研削性のよいこ
とが強く要求されている。
In addition, there is a problem that consumable parts for processing these members are greatly consumed, and the processing cost is high.
As described above, in the heat engine stationary member, the strength and toughness characteristics are not so important. Rather, since these components have a large and complicated shape, good grindability is strongly required from the viewpoint of cost. .

【0008】そこで、ガスタービンロータとシュラウド
との組合せ等のように、所定の間隔をもって相対的に駆
動する2つの部材間の間隙を調整する方法として、ロー
タとシュラウドとの間にシール部材を設け、ロータとシ
ール部材とを接触させて、ロータによってシール部材を
摩滅させることにより、ロータとシール部材との間隙を
最小限に調整する方法が特開平11−310465号公
報に提案されている。
Therefore, as a method of adjusting the gap between two members that are relatively driven at a predetermined interval, such as a combination of a gas turbine rotor and a shroud, a seal member is provided between the rotor and the shroud. Japanese Patent Application Laid-Open No. H11-310465 proposes a method in which the gap between the rotor and the seal member is adjusted to a minimum by bringing the rotor and the seal member into contact with each other so that the seal member is worn by the rotor.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開平
11−310465号公報に記載のシール部材は、低密
度、低強度の焼結体を用いるため、ガスタービン等のよ
うに高温に長時間保持されると、酸化してしまい、部材
の寿命が著しく短くなり、また、それ自体が破損してし
まうという問題があった。
However, since the sealing member described in Japanese Patent Application Laid-Open No. H11-310465 uses a low-density, low-strength sintered body, it is kept at a high temperature for a long time like a gas turbine or the like. Then, there is a problem in that the member is oxidized, the life of the member is significantly shortened, and the member itself is damaged.

【0010】また、このようなシール部材を使用する
と、シール部材とシュラウドとの接合を行うのに時間が
かかり、加工コストが高くつき、かつ歩留りが悪いた
め、製品のコストを上昇させる要因となっていた。
Further, when such a seal member is used, it takes time to join the seal member and the shroud, the processing cost is high, and the yield is low, which causes an increase in product cost. I was

【0011】そのため、タービンロータ先端に対向する
シュラウドに対しては、高強度、高硬度、高靱性の特性
はさほど重要ではなく、むしろ2つの部材間の間隙を調
整できるように快削性に優れ、かつ長時間運転に耐える
ために耐酸化性に優れているという特性が要求される
が、これまでこのような特性をもつ部材がないのが現状
であった。
[0011] Therefore, for the shroud facing the tip of the turbine rotor, the characteristics of high strength, high hardness and high toughness are not so important, but rather excellent in free cutting properties so that the gap between the two members can be adjusted. In addition, characteristics that are excellent in oxidation resistance are required in order to withstand long-time operation, but there has been no member having such characteristics so far.

【0012】従って、本発明の目的は、接触時にも破損
しにくく、緻密体の耐酸化性及び機械特性を大きく劣化
させずに、研削性に優れた特性を有する熱機関用静止部
材とその製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a stationary member for a heat engine, which is hardly broken even upon contact and has excellent grinding properties without significantly deteriorating the oxidation resistance and mechanical properties of the dense body, and its production. It is to provide a method.

【0013】[0013]

【課題を解決するための手段】本発明は、金属を含む窒
化珪素質成形体の窒化時に所定の範囲に収縮させ、その
後に焼成することで、微細な気孔が均一に分布した組織
を作製できるという知見に基づくものであり、その結
果、緻密体の機械特性及び耐酸化性をほぼ維持しつつ、
焼結体の被研削性を高め、接触時にも破損しにくくする
ことができる。
SUMMARY OF THE INVENTION According to the present invention, a structure in which fine pores are uniformly distributed can be produced by shrinking a silicon nitride molded body containing a metal to a predetermined range at the time of nitriding and then firing. As a result, while maintaining the mechanical properties and oxidation resistance of the dense body almost,
The grindability of the sintered body can be enhanced, and the sintered body can be hardly damaged during contact.

【0014】即ち、窒化珪素を主結晶相とし、過剰酸
素、周期律表第3a族元素を含み、Al、Ca、Feを
合計で0.05〜1.5重量%を含有する焼結体からな
り、水銀圧入法における中央細孔径が0.01〜0.5
μm、平均気孔径が1〜5μm、最大気孔径が30μm
以下であることを特徴とするものである。これにより、
快削性を有しつつ、且つ焼結体中の気孔が小さいため、
材料破壊を低減することができる。
That is, from a sintered body containing silicon nitride as a main crystal phase, containing excess oxygen, a Group 3a element of the periodic table, and containing a total of 0.05 to 1.5% by weight of Al, Ca and Fe. And the central pore diameter in the mercury intrusion method is 0.01 to 0.5.
μm, average pore diameter is 1-5 μm, maximum pore diameter is 30 μm
It is characterized by the following. This allows
Because it has free cutting properties and small pores in the sintered body,
Material destruction can be reduced.

【0015】特に、前記焼結体のビッカース硬度が10
〜13GPaであることが好ましい。これにより、さら
に被研削加工性を改善でき、また、耐熱部材としての信
頼性をより高めることができる。
In particular, the sintered body has a Vickers hardness of 10
It is preferably from 13 to 13 GPa. Thereby, the grindability can be further improved, and the reliability as a heat-resistant member can be further improved.

【0016】また、前記周期律表第3a族元素を酸化物
換算で1〜10モル%、過剰酸素をシリカ(SiO2
換算量で25モル%以下の割合で含有し、且つ前記周期
律表第3a族元素の酸化物換算量(RE23)に対する
過剰酸素のシリカ換算量(SiO2)のモル比SiO2
RE23が2〜3であることが好ましい。これにより、
焼結体の粒界成分の高融点化を図ることができ、高温雰
囲気中で長時間保持されても強度特性の劣化が少なくな
り、熱機関用静止部品として長期信頼性が向上する。
The Group 3a element of the periodic table is 1 to 10 mol% in terms of oxide, and excess oxygen is converted to silica (SiO 2 ).
It is contained in a converted amount of 25 mol% or less, and has a molar ratio of SiO 2 / SiO 2 in terms of excess oxygen in terms of silica (SiO 2 ) to oxides in terms of the Group 3a element of the periodic table (RE 2 O 3 )
Preferably, RE 2 O 3 is 2-3. This allows
The melting point of the grain boundary component of the sintered body can be increased, and the deterioration of the strength characteristics can be reduced even when the sintered body is kept in a high-temperature atmosphere for a long time, thereby improving the long-term reliability as a stationary part for a heat engine.

【0017】さらに、本発明の熱機関用静止部材の製造
方法は、窒化珪素粉末、珪素粉末及び焼結助剤を含み、
Al、Ca、Feを合計で0.05〜1.5重量%含有
する成形体を作製し、該成形体を、窒素ガスを含む雰囲
気中で熱処理し、前記成形体の収縮率を92〜99%に
せしめると共に、前記珪素を窒化せしめ、しかる後に、
1700〜1900℃の温度で焼成することを特徴とす
るものである。
Further, a method of manufacturing a stationary member for a heat engine of the present invention includes a silicon nitride powder, a silicon powder and a sintering aid,
A molded body containing Al, Ca, and Fe in a total amount of 0.05 to 1.5% by weight is prepared, and the molded body is heat-treated in an atmosphere containing nitrogen gas to reduce the shrinkage of the molded body to 92 to 99%. %, And the silicon is nitrided.
It is characterized by firing at a temperature of 1700 to 1900 ° C.

【0018】これにより、成形体中に均一に分散した不
純物金属により、低温度で収縮を行なわせしめることが
可能となり、窒化処理時に一定量収縮させることによっ
て焼成後の気孔を微細にすることができ、且つ均一に分
散させることができる。その結果、機械特性及び耐酸化
性を大きく劣化させることなく、被研削性に優れた熱機
関用静止部材を実現できる。
[0018] This makes it possible to cause shrinkage at a low temperature due to the impurity metal uniformly dispersed in the compact, and to reduce the pores after firing by shrinking a certain amount during the nitriding treatment. And can be uniformly dispersed. As a result, a stationary member for a heat engine excellent in grindability can be realized without significantly deteriorating mechanical properties and oxidation resistance.

【0019】特に、前記成形体が、前記成形体に含まれ
る窒化珪素(Si34)に対する珪素(Si)の重量比
Si/Si34が0.3以上であることが好ましい。こ
れにより、さらに窒化処理時の焼結を促進でき、より微
細な気孔にする事が可能となる。
In particular, it is preferable that the molded body has a weight ratio Si / Si 3 N 4 of silicon (Si) to silicon nitride (Si 3 N 4 ) contained in the molded body of 0.3 or more. Thereby, sintering during the nitriding treatment can be further promoted, and finer pores can be obtained.

【0020】また、前記熱処理が、1100〜1500
℃で行われることが好ましい。これにより、焼結体内部
まで確実に窒化反応を進行させることができ、窒化珪素
結晶をより均一化することが可能となる。
Further, the heat treatment is performed between 1100 and 1500
It is preferably carried out at a temperature of 0 ° C. Thereby, the nitriding reaction can be surely advanced to the inside of the sintered body, and the silicon nitride crystal can be made more uniform.

【0021】さらに、前記焼成が2気圧以下の圧力で行
われることが好ましい。これにより、微細な気孔を残し
たまま焼結させることが容易となり、被研削性を向上で
きる。
Furthermore, it is preferable that the calcination is performed at a pressure of 2 atm or less. This facilitates sintering while leaving fine pores, thereby improving grindability.

【0022】[0022]

【発明の実施の形態】本発明の熱機関用静止部材は、窒
化珪素を主結晶相とし、過剰酸素、周期律表第3a族元
素を含み、Al、Ca、Feを合計で0.05〜1.5
重量%を含有する焼結体からなることが重要である。A
l、Ca及びFeの含有量を合計で上記の範囲にするこ
とにより、小さな気孔を均一に焼結体内に分布せしめる
ことが可能となる。特に、Al、Ca、Feは、均一に
分布した気孔を形成せしめるため、合計で0.08〜1
重量%、更には0.1〜0.8重量%であることが好ま
しい。また、周期律表第3a族元素を含むことによって
耐酸化性に優れた焼結体を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The stationary member for a heat engine of the present invention contains silicon nitride as a main crystal phase, contains excess oxygen, a Group 3a element of the periodic table, and contains Al, Ca, and Fe in a total amount of 0.05 to 0.05%. 1.5
It is important that the sintered body contains about 10% by weight. A
By setting the contents of l, Ca and Fe in the above range in total, small pores can be uniformly distributed in the sintered body. In particular, Al, Ca, and Fe form uniformly distributed pores, so that 0.08 to 1 in total.
% By weight, more preferably 0.1 to 0.8% by weight. Further, a sintered body having excellent oxidation resistance can be obtained by including a Group 3a element of the periodic table.

【0023】また、周期律表第3a族元素は酸化物換算
で1〜10モル%、特に3〜7モル%、過剰酸素をシリ
カ(SiO2)換算量で25モル%以下、特に20モル
%以下、さらには15モル%以下の割合で含有している
ことが好ましい。そして、周期律表第3a族元素の酸化
物換算量(RE23)に対する過剰酸素のシリカ換算量
(SiO2)のモル比SiO2/RE23が2〜3である
ことが好ましい。このような組成にすることにより、耐
酸化の悪い窒素を含む結晶相の析出を抑えて耐酸化性を
高めつつ、高温雰囲気中での強度特性の劣化を低減でき
る。
The element of Group 3a of the periodic table is 1 to 10 mol%, especially 3 to 7 mol% in terms of oxide, and excess oxygen is 25 mol% or less, particularly 20 mol% in terms of silica (SiO 2 ). Hereafter, it is preferable that the content is further contained at a ratio of 15 mol% or less. The molar ratio SiO 2 / RE 2 O 3 of the amount of excess oxygen in terms of silica (SiO 2 ) to the amount in terms of oxide of the Group 3a element of the periodic table (RE 2 O 3 ) is preferably 2-3. . With such a composition, the deterioration of the strength characteristics in a high-temperature atmosphere can be reduced while suppressing the precipitation of a crystal phase containing nitrogen having poor oxidation resistance and increasing the oxidation resistance.

【0024】本発明によれば、水銀圧入法における中央
細孔径が0.01〜0.5μmであることが重要であ
り、特に0.1〜0.3μmであることが好ましい。中
央細孔径が0.01μmより小さいと快削性が悪くな
り、中央細孔径が0.5μmより大きいと、快削性は有
するものの、気孔が大きいために機械特性が低下する。
According to the present invention, it is important that the central pore diameter in the mercury intrusion method is 0.01 to 0.5 μm, and particularly preferably 0.1 to 0.3 μm. If the central pore diameter is smaller than 0.01 μm, the free-cutting property deteriorates, and if the central pore diameter is larger than 0.5 μm, although the free-cutting property is obtained, the mechanical properties are reduced due to the large pores.

【0025】また、平均気孔径は1〜5μmであること
が重要で、特に1.5〜3μmであることが好ましい。
平均気孔径が1μmより小さいと快削性が悪くなり、平
均気孔径が5μmより大きいと接触時に焼結体が破壊す
る。
It is important that the average pore diameter is 1 to 5 μm, and particularly preferably 1.5 to 3 μm.
If the average pore diameter is smaller than 1 μm, the free-cutting property is deteriorated, and if the average pore diameter is larger than 5 μm, the sintered body is broken at the time of contact.

【0026】さらに、最大気孔径は30μm以下である
ことが重要で、特に15μm以下、さらには10μm以
下であることが好ましい。最大気孔径が30μmより大
きいと、大きな気孔が基点となって材料破壊が進むた
め、部材の信頼性が低下する。
Further, it is important that the maximum pore diameter is 30 μm or less, particularly preferably 15 μm or less, more preferably 10 μm or less. If the maximum pore diameter is larger than 30 μm, the material breaks down with the large pores as a starting point, and the reliability of the member is reduced.

【0027】また、かかる熱機関用静止部材における焼
結体のビッカース硬度は、10〜13GPa、特に11
〜12GPaであることが好ましい。硬度が10GPa
より小さいとエンジン運転中にガスにより減肉する恐れ
があり、耐熱部材としての信頼性に欠け易く、また、1
3GPaを越えると、被研削加工性が劣化する傾向があ
る。
The Vickers hardness of the sintered body in the stationary member for a heat engine is 10 to 13 GPa, particularly 11
It is preferably from 12 to 12 GPa. Hardness is 10 GPa
If the diameter is smaller than the above, there is a possibility that the wall thickness may be reduced by gas during operation of the engine.
If it exceeds 3 GPa, the grindability tends to deteriorate.

【0028】上記のような熱機関用静止部材は、機械特
性を大きく損じることなく、被研削性を向上することが
でき、低コストで信頼性の高い熱機関用静止部材を実現
できる。
The stationary member for a heat engine as described above can improve the grindability without significantly impairing the mechanical characteristics, and can realize a low-cost and highly reliable stationary member for a heat engine.

【0029】なお、本発明の熱機関用静止部材は、高温
雰囲気に長時間曝されるため、耐酸化性に優れており、
1500℃、大気中において100時間保持後の酸化増
量が1.00mg/cm2以下、特に0.8mg/cm2
以下、さらには0.60mg/cm2以下であることが
必要である。酸化増量が1.00mg/cm2より大き
くなると長時間運転での安定性にかけ、熱機関用静止部
材として使用するには信頼性に欠けることとなる。
The heat engine stationary member of the present invention has excellent oxidation resistance because it is exposed to a high temperature atmosphere for a long time.
1500 ° C., oxidation weight gain after 100 hour hold in the atmosphere is 1.00 mg / cm 2 or less, particularly 0.8 mg / cm 2
Below, it is necessary that it is 0.60 mg / cm 2 or less. If the oxidation weight increase is more than 1.00 mg / cm 2 , stability in long-time operation is exerted, and reliability for use as a stationary member for a heat engine is lacking.

【0030】次に、本発明の熱機関用静止部材の製造方
法について説明する。
Next, a method for manufacturing a stationary member for a heat engine according to the present invention will be described.

【0031】まず、原料粉末として窒化珪素粉末、珪素
粉末及び焼結助剤粉末を準備する。窒化珪素粉末は、α
−Si34、β−Si34のいずれの状態であっても良
く、粒径が0.4〜1.2μmでかつ酸素を0.5〜
1.5重量%の範囲で含有しているものを用いることが
良い。
First, silicon nitride powder, silicon powder and sintering aid powder are prepared as raw material powders. Silicon nitride powder is α
-Si 3 N 4 or β-Si 3 N 4 in any state, having a particle size of 0.4 to 1.2 μm and oxygen of 0.5 to 0.5 μm.
It is preferable to use one containing 1.5% by weight.

【0032】また、粒径が1〜10μm、且つ酸素を
0.1〜1.2重量%の範囲で含有している珪素粉末を
添加する。
A silicon powder having a particle size of 1 to 10 μm and containing oxygen in a range of 0.1 to 1.2% by weight is added.

【0033】さらに、焼結助剤として、周期律表第3a
族化合物(RE23)やSiO2等の酸化物を添加混合
する。なお、周期律表第3a族元素とは、Sc、Y、L
a、Ce、Sm、Gd、Ho、Eu、Er、Ybおよび
Luなどである。
Further, as a sintering aid, Periodic Table No. 3a
An oxide such as a group III compound (RE 2 O 3 ) or SiO 2 is added and mixed. The elements of Group 3a of the periodic table include Sc, Y, and L.
a, Ce, Sm, Gd, Ho, Eu, Er, Yb and Lu.

【0034】組成は、窒化珪素焼結体を作製するための
公知のものを用いることができるが、特に、窒化珪素粉
末が10〜70重量%、珪素粉末が20〜80重量%、
残部が焼結助剤として周期律表第3族元素及びAl、C
a及びFeであることが好ましい。この組成を用いるこ
とにより、高温での機械特性や耐酸化特性等の熱機関用
静止部材として高い特性を発現させることができる。
As the composition, a known composition for producing a silicon nitride sintered body can be used. In particular, silicon nitride powder is 10 to 70% by weight, silicon powder is 20 to 80% by weight,
The rest are sintering aids as elements of Group 3 of the periodic table and Al and C
a and Fe are preferred. By using this composition, high characteristics as a stationary member for a heat engine, such as high-temperature mechanical characteristics and oxidation resistance characteristics, can be exhibited.

【0035】また、重量比Si/Si34が0.3より
小さくなると、窒化処理時の気孔の量が低下し、快削性
を得にくい傾向があるため、珪素/窒化珪素の比率が重
量比で0.3以上、特に0.8以上、さらには1.3以
上であることが好ましい。
If the weight ratio Si / Si 3 N 4 is smaller than 0.3, the amount of pores during the nitriding treatment tends to decrease, and it tends to be difficult to obtain free-cutting properties. The weight ratio is preferably 0.3 or more, particularly 0.8 or more, and more preferably 1.3 or more.

【0036】これらの原料粉末を混合し、公知の成形方
法によって所望の形状に成形する。成形は、プレス成
形、押し出し成形、射出成形、鋳込み成形、冷間静水圧
成形等により所望の形状に成形する。
These raw material powders are mixed and molded into a desired shape by a known molding method. The molding is performed into a desired shape by press molding, extrusion molding, injection molding, casting molding, cold isostatic molding, or the like.

【0037】この成形体中に、Al、Ca、Feを合計
で0.05〜1.5重量%含有せしめることが重要であ
る。Al、Ca、Feを合計で0.05重量%以上加え
ると、珪素の融点以下の温度、特に1100〜1500
℃において窒化反応を促進させるとともに、窒化珪素の
焼結を促進する働きがあるため、成形体を収縮させ、大
きな気孔を残存させることを防ぎ、微細で均一な気孔を
形成できる。
It is important that Al, Ca, and Fe be contained in the compact in a total amount of 0.05 to 1.5% by weight. When Al, Ca, and Fe are added in a total amount of 0.05% by weight or more, the temperature is lower than the melting point of silicon, particularly, 1100 to 1500.
Since it has a function of accelerating the nitridation reaction at ℃ and accelerating the sintering of silicon nitride, the compact can be shrunk to prevent large pores from remaining, and fine and uniform pores can be formed.

【0038】また、1.5重量%以下に制限することに
よって過剰な収縮を防ぐとともに、得られる焼結体の高
温特性の劣化を防止することができる。特に、Al、C
a、Feを合計で0.08〜1.0重量%、さらには
0.1〜0.8重量%であることが好ましい。
By limiting the content to 1.5% by weight or less, it is possible to prevent excessive shrinkage and prevent deterioration of the high-temperature characteristics of the obtained sintered body. In particular, Al, C
It is preferable that the total of a and Fe is 0.08 to 1.0% by weight, more preferably 0.1 to 0.8% by weight.

【0039】なお、Al、Ca及びFeは、金属粉末及
び/又は化合物粉末として原料中に添加しても良いし、
また、窒化珪素粉末、珪素粉末及び焼結助剤の不純物成
分として含ませても良い。金属化合物粉末としては、A
23、AlN、CaO、CaCO3、Fe23等を例
示することができる。
It should be noted that Al, Ca and Fe may be added to the raw material as metal powder and / or compound powder,
Further, it may be contained as an impurity component of silicon nitride powder, silicon powder and a sintering aid. As the metal compound powder, A
l 2 O 3, AlN, CaO , and CaCO 3, Fe 2 O 3 or the like can be exemplified.

【0040】次に、上記の成形体を、窒素ガスを含む雰
囲気中で熱処理を行う。成形体中の珪素は窒化されて窒
化珪素となる。また、成形体中にはAl、Ca及びFe
を合計で0.05〜1.5重量%含有するため、150
0℃以下の窒化温度において窒化反応を促進し、成形体
を収縮させることができる。この熱処理により、成形体
を熱処理前に比べて92〜99%の大きさに収縮させて
おくことが重要であり、これにより、均一で微細な気孔
を作製することができる。
Next, the above compact is heat-treated in an atmosphere containing nitrogen gas. Silicon in the compact is nitrided into silicon nitride. Also, Al, Ca and Fe are contained in the compact.
Is contained in a total of 0.05 to 1.5% by weight.
At a nitriding temperature of 0 ° C. or lower, the nitriding reaction can be promoted, and the compact can be shrunk. By this heat treatment, it is important that the compact is shrunk to a size of 92 to 99% as compared with before the heat treatment, whereby uniform and fine pores can be produced.

【0041】この収縮により成形体が熱処理前の92%
よりも小さくなると、焼成によって緻密化が進みすぎて
気孔率が小さくなり、微細な気孔を均一に分布させるこ
とが困難となるため、被研削性の高い焼結体が得られな
い。また、熱処理後の成形体が、処理前の寸法に対して
99%よりも大きいと焼成後の気孔径が大きくなり、機
械的特性が劣化する。収縮率は、特に93〜98%、さ
らには94〜97%が好ましい。
Due to this shrinkage, the molded body was 92%
If the diameter is smaller than the above range, the densification proceeds too much by firing, and the porosity becomes small, and it becomes difficult to uniformly distribute fine pores. Therefore, a sintered body having high grindability cannot be obtained. On the other hand, if the size of the molded body after the heat treatment is larger than 99% of the dimension before the treatment, the pore diameter after the firing becomes large, and the mechanical properties deteriorate. The shrinkage is particularly preferably 93 to 98%, and more preferably 94 to 97%.

【0042】また、上記の熱処理は1100〜1500
℃、特に1150〜1450℃、更には1200〜14
00℃の温度で行われることが好ましい。熱処理温度が
1100℃以上で十分な反応速度が得られ、1500℃
以下とすることにより、焼結が進むために未反応の珪素
の析出を防止することが容易になる。なお、この窒化処
理温度は収縮率が上記の範囲になるように適宜調整すれ
ばよい。
The above heat treatment is performed at 1100 to 1500.
° C, especially 1150-1450 ° C, further 1200-1400
It is preferably performed at a temperature of 00 ° C. A sufficient reaction rate can be obtained at a heat treatment temperature of 1100 ° C. or higher, and 1500 ° C.
The following makes it easy to prevent precipitation of unreacted silicon due to progress of sintering. The nitriding temperature may be appropriately adjusted so that the shrinkage ratio falls within the above range.

【0043】また、かかる焼成は2気圧以下の圧力、特
に常圧で行うことが好ましい。圧力が2気圧より大きく
なると焼成時に気孔が潰れ易くなり、被研削性が低下す
る。
The calcination is preferably performed at a pressure of 2 atm or less, particularly at normal pressure. When the pressure is higher than 2 atm, the pores are easily crushed at the time of firing, and the grindability decreases.

【0044】そして、上記熱処理を行った成形体を、1
700〜1900℃の温度で焼成することが重要であ
る。特に、1750〜1850℃が好ましい。このよう
に、比較的低温で焼成することにより、微細で均一に分
布した気孔を形成することができ、機械特性を大きく損
じることなく、被研削性を向上した熱機関用静止部材を
製造することができる。
Then, the molded body subjected to the heat treatment is
It is important to fire at a temperature of 700 to 1900 ° C. In particular, 1750 to 1850C is preferable. Thus, by firing at a relatively low temperature, it is possible to form fine and uniformly distributed pores, and to produce a stationary member for a heat engine with improved grindability without significantly impairing mechanical characteristics. Can be.

【0045】このようにして得られた焼結体は、快削性
が良く、かつ耐酸化性及び機械特性にも優れるため、タ
ービンシュラウド等熱機関用静止部材に用いた場合、タ
ービンロータとの接触摺動時にタービンロータを傷める
ことがなく、長時間運転での安定性を高めることができ
る。
The sintered body thus obtained has good free-cutting properties and excellent oxidation resistance and mechanical properties. Therefore, when it is used for a stationary member for a heat engine such as a turbine shroud, the sintered body may not be compatible with a turbine rotor. It is possible to enhance stability during long-time operation without damaging the turbine rotor during contact sliding.

【0046】[0046]

【実施例】平均粒径0.5μm、α化率が90%以上の
窒化珪素粉末と、平均粒径5μmの珪素粉末を用い、焼
結助剤として、平均粒径1μmの周期律表第3a族元素
の酸化物粉末を加え、成形体組成が表1に示す組成にな
るようにそれぞれ調合した。
EXAMPLE A silicon nitride powder having an average particle size of 0.5 μm and an α conversion of 90% or more, and a silicon powder having an average particle size of 5 μm were used as sintering aids. An oxide powder of an element of the group III was added, and each was prepared so that the composition of the molded body became the composition shown in Table 1.

【0047】次に、回転ミルにて72時間混合、粉砕し
乾燥させた粉末を100MPaで金型プレスにより成形
し、得られた成形体を窒素常圧中表1の条件で熱処理し
た。得られた処理体について、ノギスにより窒化処理前
後の寸法測定を行い、収縮率(=焼成後寸法÷焼成前寸
法×100)を算出し、その後焼成した。
Next, the powder mixed, ground and dried in a rotary mill for 72 hours was molded by a mold press at 100 MPa, and the obtained molded body was heat-treated under the conditions shown in Table 1 under a normal pressure of nitrogen under nitrogen. The dimensions of the treated body before and after the nitriding treatment were measured with a vernier caliper, and the shrinkage (= size after firing / dimension before firing × 100) was calculated and then fired.

【0048】得られた焼結体について水銀圧入法により
細孔分布測定を行った。また、焼結体表面を鏡面加工
し、この加工面をSEM観察することにより、その写真
より110μm×90μmの範囲内で気孔径を測定し、
平均気孔径と最大気孔径を決定した。
The pore distribution of the obtained sintered body was measured by a mercury intrusion method. Also, the surface of the sintered body was mirror-finished, and the processed surface was observed by SEM to measure the pore diameter within a range of 110 μm × 90 μm from the photograph,
The average pore diameter and the maximum pore diameter were determined.

【0049】また、X線回折により、焼結体の主結晶相
を同定するとともに、室温でのビッカース硬度(Hv)を
測定した。また、得られた焼結体を5mm×5mm×4
0mmに加工して試料を作製し、1500℃の大気中で
100時間保持することによって酸化増量を測定し、
1.00mg/cm2未満を良品とした。
The main crystal phase of the sintered body was identified by X-ray diffraction, and the Vickers hardness ( Hv ) at room temperature was measured. Also, the obtained sintered body was 5 mm × 5 mm × 4
A sample was prepared by processing the sample to 0 mm, and the oxidation increase was measured by holding the sample in the air at 1500 ° C. for 100 hours.
Less than 1.00 mg / cm 2 was regarded as good.

【0050】さらに、かかる焼結体をもって、室温強度
1000MPa、硬度15GPaの窒化珪素質焼結体か
らなるタービンロータに対向するタービンシュラウドを
作製した。そして、タービンロータを4万rpmで回転
させることにより、タービン翼が破損しないかどうかを
試験した。その結果を表1、2に示す。
Further, a turbine shroud opposed to a turbine rotor made of a silicon nitride sintered body having a room temperature strength of 1000 MPa and a hardness of 15 GPa was manufactured using the sintered body. Then, it was tested whether or not the turbine blade was damaged by rotating the turbine rotor at 40,000 rpm. The results are shown in Tables 1 and 2.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】本発明の試料No.3〜10、12、1
3、16〜18、20、21、24、25、28及び2
9は、Al、Ca及びFeの合計含有量が0.08〜
1.2重量%、且つ中央細孔径が0.07〜0.4μ
m、平均気孔径が1.1〜4.4μm、最大気孔径が2
8μm以下、酸化増量が0.9mg/cm2以下で、翼
破損は見られなかった。
In the sample No. of the present invention, 3 to 10, 12, 1
3, 16-18, 20, 21, 24, 25, 28 and 2
9 has a total content of Al, Ca and Fe of 0.08 to
1.2% by weight, and the central pore diameter is 0.07 to 0.4μ
m, average pore size is 1.1 to 4.4 μm, maximum pore size is 2
At 8 μm or less and the weight gain of oxidation was 0.9 mg / cm 2 or less, no blade damage was observed.

【0054】一方、Al、Ca及びFeの合計含有量が
0.01重量%と少なく、熱処理時の収縮が小さい本発
明の範囲外の試料No.19は、翼破損はなかったが、
酸化増量が1.3mg/cm2と大きかった。
On the other hand, the total content of Al, Ca and Fe was as small as 0.01% by weight, and the shrinkage during the heat treatment was small. 19 had no wing damage,
The oxidation weight gain was as large as 1.3 mg / cm 2 .

【0055】また、Al、Ca及びFeの合計含有量が
2重量%と多く、熱処理時の収縮が大きい本発明の範囲
外の試料No.22は、酸化増量が2.3mg/cm2
で、翼が破損した。
In addition, the total content of Al, Ca, and Fe was as large as 2% by weight, and the sample No. which was out of the range of the present invention and had a large shrinkage during heat treatment. 22 has an oxidation weight increase of 2.3 mg / cm 2
The wing was damaged.

【0056】さらに、中央細孔径が0.008μm以
下、平均気孔径が0.9μm以下の本発明の範囲外の試
料No.1、2、14及び30は、翼が破損した。
Further, Sample No. having a central pore diameter of 0.008 μm or less and an average pore diameter of 0.9 μm or less, which is outside the range of the present invention. In 1, 2, 14 and 30, the wing was damaged.

【0057】さらにまた、最大気孔径が35μm以上の
試料No.11及び27は、翼破損はなかったが、酸化
増量が1.2mg/cm2以上と大きかった。
Further, Sample No. having a maximum pore diameter of 35 μm or more was used. In Nos. 11 and 27, there was no blade damage, but the weight gain by oxidation was as large as 1.2 mg / cm 2 or more.

【0058】また、中央細孔径が0.008μm、平均
気孔径が7μmの本発明の範囲外の試料No.15は、
翼が破損した。
The sample No. having a center pore diameter of 0.008 μm and an average pore diameter of 7 μm, which is outside the range of the present invention. 15 is
Wings were damaged.

【0059】なお、熱処理温度が1600℃と高い試料
No.26は、熱処理時にSiが溶融してしまった。ま
た、熱処理温度が1050℃と低い試料No.23は、
熱処理でSiが窒化されなかったため、焼成時にSiが
溶融してしまった。
The sample No. having a heat treatment temperature as high as 1600 ° C. In No. 26, Si was melted during the heat treatment. Further, Sample No. having a low heat treatment temperature of 1050 ° C. 23 is
Since Si was not nitrided by the heat treatment, Si was melted during firing.

【0060】[0060]

【発明の効果】本発明の熱機関用静止部材は、窒化珪素
を主成分とする焼結体からなり、水銀圧入法における中
央細孔径が0.01〜0.5μm、平均気孔径が1〜5
μm、最大気孔径が30μm以下と、小さな気孔を焼結
体中に均一に分散することによって、緻密体の有する機
械特性及び耐酸化性を大きく劣化させずに快削性を向上
し、それにより部材間の間隙調整、あるいは加工費の削
減を可能とし、例え部材間に接触があっても破損しにく
く、信頼性の高い製品を実現できる。
The stationary member for a heat engine of the present invention is made of a sintered body containing silicon nitride as a main component, and has a central pore diameter of 0.01 to 0.5 μm and an average pore diameter of 1 to 1 in a mercury intrusion method. 5
μm, the maximum pore diameter is 30 μm or less, and by uniformly dispersing small pores in the sintered body, the free cutting property is improved without greatly deteriorating the mechanical properties and oxidation resistance of the dense body, and It is possible to adjust the gap between the members or reduce the processing cost, and it is possible to realize a highly reliable product that is hardly damaged even if there is contact between the members.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主結晶相とし、過剰酸素、周期
律表第3a族元素を含み、Al、Ca、Feを合計で
0.05〜1.5重量%を含有する焼結体からなり、水
銀圧入法における中央細孔径が0.01〜0.5μm、
平均気孔径が1〜5μm、最大気孔径が30μm以下で
あることを特徴とする熱機関用静止部材。
1. A sintered body containing silicon nitride as a main crystal phase, containing excess oxygen, a Group 3a element of the periodic table, and containing a total of 0.05 to 1.5% by weight of Al, Ca and Fe. The central pore diameter in the mercury intrusion method is 0.01 to 0.5 μm,
A stationary member for a heat engine, having an average pore diameter of 1 to 5 μm and a maximum pore diameter of 30 μm or less.
【請求項2】前記焼結体のビッカース硬度が10〜13
GPaであることを特徴とする請求項1記載の熱機関用
静止部材。
2. The sintered body has a Vickers hardness of 10 to 13.
The stationary member for a heat engine according to claim 1, wherein the stationary member is GPa.
【請求項3】前記周期律表第3a族元素を酸化物換算で
1〜10モル%、過剰酸素をシリカ(SiO2)換算量
で25モル%以下の割合で含有し、且つ前記周期律表第
3a族元素の酸化物換算量(RE23)に対する過剰酸
素のシリカ換算量(SiO2)のモル比SiO2/RE2
3が2〜3であることを特徴とする請求項1又は2記
載の熱機関用静止部材。
3. The periodic table contains a Group 3a element in an amount of 1 to 10 mol% in terms of oxide, and excess oxygen in a proportion of 25 mol% or less in terms of silica (SiO 2 ). terms of oxide amount of the group 3a element (RE 2 O 3) in terms of silica of excess oxygen to the molar ratio of (SiO 2) SiO 2 / RE 2
Claim 1 or 2 heat engine for still member, wherein the O 3 is 2-3.
【請求項4】窒化珪素粉末、珪素粉末及び焼結助剤を含
み、Al、Ca、Feを合計で0.05〜1.5重量%
含有する成形体を作製し、該成形体を窒素ガスを含む雰
囲気中で熱処理し、前記珪素を窒化せしめると共に、前
記成形体の収縮率を92〜99%にせしめ、しかる後
に、1700〜1900℃の温度で焼成することを特徴
とする熱機関用静止部材の製造方法。
4. A silicon nitride powder, a silicon powder and a sintering aid, wherein Al, Ca and Fe are contained in a total amount of 0.05 to 1.5% by weight.
A molded body containing the molded body is prepared, and the molded body is heat-treated in an atmosphere containing nitrogen gas to nitride the silicon and to reduce the shrinkage of the molded body to 92 to 99%. A method for producing a stationary member for a heat engine, characterized by firing at a temperature of:
【請求項5】前記成形体に含まれる窒化珪素(Si
34)に対する珪素(Si)の重量比Si/Si34
0.3以上であることを特徴とする請求項4記載の熱機
関用静止部材の製造方法。
5. The silicon nitride (Si) contained in said compact.
3 N The process of claim 4 thermal engine for a stationary member according to the weight ratio Si / Si 3 N 4 is equal to or less than 0.3 silicon (Si) for 4).
【請求項6】前記熱処理が、1100〜1500℃で行
われることを特徴とする請求項4又は5記載の熱機関用
静止部材の製造方法。
6. The method for manufacturing a stationary member for a heat engine according to claim 4, wherein the heat treatment is performed at 1100 to 1500 ° C.
【請求項7】前記焼成が2気圧以下の圧力で行われるこ
とを特徴とする請求項4乃至6のうちいずれかに記載の
熱機関用静止部材の製造方法。
7. The method for manufacturing a stationary member for a heat engine according to claim 4, wherein the firing is performed at a pressure of 2 atm or less.
JP2001161164A 2001-05-29 2001-05-29 Static member for heat engine and method for manufacturing the same Expired - Fee Related JP4968988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161164A JP4968988B2 (en) 2001-05-29 2001-05-29 Static member for heat engine and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161164A JP4968988B2 (en) 2001-05-29 2001-05-29 Static member for heat engine and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002348177A true JP2002348177A (en) 2002-12-04
JP4968988B2 JP4968988B2 (en) 2012-07-04

Family

ID=19004483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161164A Expired - Fee Related JP4968988B2 (en) 2001-05-29 2001-05-29 Static member for heat engine and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4968988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019188752A1 (en) * 2018-03-29 2021-03-11 京セラ株式会社 Ceramic structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316465A (en) * 1993-04-28 1994-11-15 Kyocera Corp Silicon nitride-based sintered compact and production thereof
JPH09249457A (en) * 1996-01-09 1997-09-22 Sumitomo Electric Ind Ltd Silicon nitride porous body having high strength and its production
JP2000143352A (en) * 1998-10-30 2000-05-23 Kyocera Corp Silicon nitride-based sintered compact and its production
JP2001130983A (en) * 1999-10-28 2001-05-15 Kyocera Corp Silicon nitride sintered compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316465A (en) * 1993-04-28 1994-11-15 Kyocera Corp Silicon nitride-based sintered compact and production thereof
JPH09249457A (en) * 1996-01-09 1997-09-22 Sumitomo Electric Ind Ltd Silicon nitride porous body having high strength and its production
JP2000143352A (en) * 1998-10-30 2000-05-23 Kyocera Corp Silicon nitride-based sintered compact and its production
JP2001130983A (en) * 1999-10-28 2001-05-15 Kyocera Corp Silicon nitride sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019188752A1 (en) * 2018-03-29 2021-03-11 京セラ株式会社 Ceramic structure

Also Published As

Publication number Publication date
JP4968988B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
EP1134204B1 (en) Silicon nitride wear resistant member and manufacturing method thereof
JPH0255263A (en) Silicon nitride sintered body and production thereof
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP2011132126A (en) Wear-resistant member
JP2002348177A (en) Static member for heat engine and its manufacturing method
JPH10259058A (en) Sialon complex and its production
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP5170612B2 (en) Conductive silicon nitride sintered body and manufacturing method thereof
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH11310465A (en) Ceramic sintered body and sealing material using the same
JP4565954B2 (en) Conductive silicon nitride material and manufacturing method thereof
JP2694354B2 (en) Silicon nitride sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP3207065B2 (en) Silicon nitride sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JP3236733B2 (en) Silicon nitride sintered body
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JP3667145B2 (en) Silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2006182590A (en) Conductive silicon nitride material and its manufacturing method
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH05170542A (en) Silicon nitride-silicon carbide composite sintered product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees