JP2002343345A - Manufacturing method of electrode plate for battery - Google Patents

Manufacturing method of electrode plate for battery

Info

Publication number
JP2002343345A
JP2002343345A JP2001148777A JP2001148777A JP2002343345A JP 2002343345 A JP2002343345 A JP 2002343345A JP 2001148777 A JP2001148777 A JP 2001148777A JP 2001148777 A JP2001148777 A JP 2001148777A JP 2002343345 A JP2002343345 A JP 2002343345A
Authority
JP
Japan
Prior art keywords
active material
electrode plate
width
core material
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001148777A
Other languages
Japanese (ja)
Other versions
JP4754094B2 (en
Inventor
Tsuneyoshi Murakami
恒義 村上
Katsuhiro Okamoto
克博 岡本
Yoshiyuki Tada
芳之 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001148777A priority Critical patent/JP4754094B2/en
Publication of JP2002343345A publication Critical patent/JP2002343345A/en
Application granted granted Critical
Publication of JP4754094B2 publication Critical patent/JP4754094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which can manufacture an electrode plate for a battery with large active material per unit volume without trouble. SOLUTION: A core material exposed part 24 is formed with active material removed, by giving ultrasound vibration over a marginal part of active material- filled part 22 with active material filled all over a thin-plate core material 21 with porous nature. Lead hoops 9 are bonded by welding to given places along marginal parts in the core material exposed part 24, the part of the core material exposed part 24 where the lead hoops are not yet bonded is compressed toward the active material-filled part 22 to make it in minimal width. The active material-filled part 22 and the lead hoops 9 are cut out in specified dimension to divide into individual electrode plates 28 for a battery. Or, after the lead hoops are bonded, they are cut out in specified dimension to divide into individual electrode base bodies 32, and the part of each electrode base body where the lead hoops 9 are not yet bonded to the core material exposed part 24 is compressed to a minimal width, to make each electrode base body 32 an electrode plate 28.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ニッケル
水素蓄電池、ニッケルカドミウム蓄電池およびリチウム
イオン蓄電池などの二次電池において電解液と共に発電
要素を構成する電池用電極板であって、特に、三次元発
泡メタルなどの多孔質を有する芯材に活物質が充填され
てなる非焼結式の電池用電極板の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode plate for a battery constituting a power generating element together with an electrolyte in a secondary battery such as a nickel hydride battery, a nickel cadmium battery and a lithium ion battery. The present invention relates to a method for producing a non-sintered battery electrode plate in which a porous core material such as a foamed metal is filled with an active material.

【0002】[0002]

【従来の技術】二次電池の電極板としては、高多孔度を
有する連続した三次元的な網目構造を有する発泡メタル
を芯材として、この芯材に活物質を充填したものが、充
電容量の面で非常に優れていることから、広く採用され
ている。さらに、近年の電池には高率放電特性の向上が
強く求められており、その対応策としては以下のような
構成が採用されている。
2. Description of the Related Art As an electrode plate for a secondary battery, a core material made of a foamed metal having a continuous three-dimensional network structure having a high porosity and a core material filled with an active material has a charge capacity. It is widely adopted because it is very good in terms of quality. Further, in recent years, batteries have been strongly required to have improved high-rate discharge characteristics, and the following configuration has been adopted as a countermeasure.

【0003】すなわち、高率放電特性の向上を図った電
池用電極板は、芯材に活物質を充填した活物質充填部の
一辺に沿った箇所に充填済みの活物質を除去した芯材露
出部を形成するとともに、その芯材露出部を、活物質の
充填前または除去後に圧縮して空隙率を低下させること
により、集電部を形成し、この集電部に接続リード部を
溶接により接合した構成とする。
In other words, a battery electrode plate having improved high-rate discharge characteristics has a core material exposed by removing a filled active material at a location along one side of an active material filled portion in which a core material is filled with an active material. A current collector is formed by compressing the exposed portion of the core material before or after filling the active material to reduce the porosity, thereby forming a current collector, and welding a connection lead portion to the current collector by welding. The structure is joined.

【0004】角形電池用電極群は、上記集電部を有する
正負の電極板をその間にセパレータを介在して交互に積
み重ねて構成される。一方、円筒形電池用電極群は、上
記集電部を有する正負の電極板をその間にセパレータを
介在して重ね合わせた状態で渦巻き状に巻回して構成さ
れる。したがって、何れの電極群においても、両端部に
接続リード部が接合された正負の集電部が複数または全
周にわたって形成されるから、この両端の接続リード部
に集電板を接合することにより、各電極板から個々にま
たは渦巻き状の全周部分から集電することが可能となっ
て全体の集電効率が向上する。しかも、上記集電部は金
属の芯材が露出されて接続リード部を溶接するのに適し
た状態になっているから、その接続リード部に集電板な
どを溶接により接合するタブレス方式によって集電特性
が格段に向上し、上述の高率放電特性を向上させるとい
う要望に対応することができる。
[0004] The prismatic battery electrode group is constituted by alternately stacking the positive and negative electrode plates having the above-mentioned current collector with a separator interposed therebetween. On the other hand, the cylindrical battery electrode group is formed by spirally winding the positive and negative electrode plates having the above-mentioned current collectors in a state of being stacked with a separator interposed therebetween. Therefore, in any of the electrode groups, positive and negative current collectors having connection leads joined at both ends are formed over a plurality or all around. By joining a current collector plate to the connection leads at both ends, In addition, it is possible to collect current from each electrode plate individually or from the entire circumference of the spiral shape, thereby improving the overall current collection efficiency. Moreover, since the current collector has a metal core material exposed and is in a state suitable for welding the connection lead, the current collector is collected by a tabless method in which a current collector plate or the like is joined to the connection lead by welding. The electric characteristics are significantly improved, and it is possible to meet the demand for improving the high-rate discharge characteristics described above.

【0005】上述のような高率放電特性の向上を図るこ
とができる電池用電極板は、例えば、図9に示すような
工程を経て製造されている(特開2000-315498 号公報参
照)。先ず、同図(a1)に示す第1工程では、発泡メ
タルなどの三次元構造を有する芯材1に、両側辺に沿っ
た凹み部と、この凹み部に平行であって凹み部の2倍の
溝幅を有する複数本の溝部とを、プレス成型または圧縮
工程を経て形成する。つぎに、凹み部および溝部を含む
芯材1全体には、スラリー状またはペースト状の活物質
を充填し、続いて、凹み部および溝部にそれぞれ付着し
ている活物質をブラシとエアーブローを用いた手段で除
去して芯材1を露出させたのちに、活物質を乾燥させる
ことにより、活物質充填部2と、上記凹み部および溝部
に対応する箇所における芯材露出部3とを形成する。つ
ぎに、溝部に対応する芯材露出部3は、その溝幅の中央
の破線で示す切断線に沿って切断することにより、帯状
の活物質充填部2の長手方向に沿う両端部に芯材露出部
3を有する極板フープ4を製作する。
A battery electrode plate capable of improving the high-rate discharge characteristics as described above is manufactured, for example, through the steps shown in FIG. 9 (see Japanese Patent Application Laid-Open No. 2000-315498). First, in a first step shown in FIG. 3A, a core material 1 having a three-dimensional structure such as a foamed metal is provided with a concave portion along both sides and a double parallel to the concave portion. And a plurality of groove portions having the groove widths described above are formed through a press molding or compression process. Next, the entire core material 1 including the concave portion and the groove portion is filled with a slurry-like or paste-like active material, and the active material attached to the concave portion and the groove portion is then brushed and air blown. After removing the core material 1 by removing the core material 1 and exposing the active material, the active material is dried to form the active material filled portion 2 and the core material exposed portion 3 at a position corresponding to the concave portion and the groove portion. . Next, the core material exposed portion 3 corresponding to the groove is cut along a cutting line indicated by a broken line at the center of the groove width, so that the core material is exposed at both ends along the longitudinal direction of the band-shaped active material filled portion 2. An electrode plate hoop 4 having an exposed portion 3 is manufactured.

【0006】同図(b)に示す第2工程では、一対の圧
縮ロール(図示せず)の間を通過して圧縮を施された上
記極板フープ4の芯材露出部3に、上下の一対の円板電
極7,8を用いたシーム溶接工法によって帯状金属板で
あるリードフープ9を接合する。
In a second step shown in FIG. 1B, the upper and lower core material exposed portions 3 of the electrode plate hoop 4 which have been compressed by passing between a pair of compression rolls (not shown) are provided. The lead hoop 9 which is a strip-shaped metal plate is joined by a seam welding method using a pair of disk electrodes 7 and 8.

【0007】同図(c)に示す第3工程では、トリミン
グパンチ10とトリミングダイ11とを用いてリードフ
ープ9に対し打ち抜き加工を施すことにより、リードフ
ープ9を接続リード部12に成形する。この接続リード
12を成形した極板フープ4は、製作すべき電極板の極
板幅に相当する距離ずつ間欠送りしながら、切断パンチ
13と切断ダイ14とを用いて電池外装缶内に収納する
ときの規格寸法に切断する。これにより、図7(b)に
示すように、活物質充填部2の一端部に接続リード部1
2を有する角形電池用の電極板17が出来上がる。な
お、円筒形電池用の電極板は、上述したとほぼ同様の工
程を経て製作され、角形電池用と相違するのは、接続リ
ード部の形状と角形電池用の極板幅よりも長い長さに切
断することだけである。
In a third step shown in FIG. 1C, the lead hoop 9 is formed into a connection lead portion 12 by punching the lead hoop 9 using a trimming punch 10 and a trimming die 11. The electrode plate hoop 4 in which the connection lead 12 is formed is housed in the battery outer can using the cutting punch 13 and the cutting die 14 while intermittently feeding the electrode plate hoop 4 by a distance corresponding to the electrode plate width of the electrode plate to be manufactured. Cut to standard dimensions. As a result, as shown in FIG. 7B, one end of the active material filling portion 2 is connected to the connection lead portion 1.
Thus, an electrode plate 17 for a prismatic battery having 2 is completed. The electrode plate for a cylindrical battery is manufactured through substantially the same process as described above, and is different from that for a square battery only in the shape of the connection lead and the length longer than the electrode plate width for the square battery. Just cut it.

【0008】また、従来では、図9(a1)の第1の工
程に代えて、同図(a2)に示す工程が採用されること
もある。この(a2)の工程では、芯材1の全体に活物
質を充填したのちに圧延工程を経ることにより、全体に
活物質充填部2を形成し、その活物質充填部2の辺縁部
に沿った所定箇所に、活物質を完全に除去することを目
的として振幅を大きく設定した超音波振動を超音波ホー
ンヘッド18から付与することにより、活物質を剥離し
ながら除去して芯材露出部3を形成している。(特開20
00-77054号公報参照)。
Conventionally, the step shown in FIG. 9A may be employed instead of the first step shown in FIG. 9A1. In the step (a2), the active material is entirely filled with the active material, and then the rolling process is performed. Thus, the active material filled portion 2 is formed as a whole. By applying ultrasonic vibration having a large amplitude to the predetermined portion along the ultrasonic horn head 18 for the purpose of completely removing the active material, the active material is removed while being peeled off, and the core material exposed portion is removed. 3 is formed. (JP 20
00-77054).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た従来の製造方法では、後述する理由により、芯材露出
部3の幅Dを図7(b)に示すように大きく設定する必
要があり、その芯材露出部3の大きな幅D分だけ活物質
充填部2の体積、つまり単位体積当たりの活物質量が減
少して、電池を構成したときの高容量化を図ることがで
きないという問題がある。
However, in the above-mentioned conventional manufacturing method, the width D of the exposed core material 3 needs to be set large as shown in FIG. There is a problem that the volume of the active material filling portion 2, that is, the amount of active material per unit volume is reduced by the large width D of the core exposed portion 3, and it is not possible to increase the capacity when a battery is configured. .

【0010】すなわち、芯材露出部3を、例えば図10
(a)に示すようにリードフープ9の接合に必要なだけ
の可及的に小さな幅dに設定した場合には、上下の円板
電極7,8によるシーム溶接工法によってリードフープ
9を芯材露出部3に接合するときに、活物質充填部2に
おける芯材露出部3に近接箇所の活物質の一部が両円板
電極7,8間に入り込むおそれがある。両円板電極7,
8の間に活物質充填部2から入り込んだ活物質は大きな
電気抵抗となるため、スパークを発生させて円板電極
7,8、リードフープ9および芯材露出部3の何れか又
はこれらの全てが溶ける不良が生じる。その結果、溶接
部分には焼き付きや連続スパークなどが発生して、連続
したシーム溶接を行えなくなる不具合が生じる。しか
も、円板電極7,8は、発生するスパークによって消耗
するので、所要の寿命を確保することができない。
That is, the exposed core member 3 is, for example,
When the width d is set to be as small as necessary for joining the lead hoop 9 as shown in (a), the lead hoop 9 is connected to the core material by the seam welding method using the upper and lower disk electrodes 7 and 8. When joining to the exposed portion 3, there is a possibility that a part of the active material in the vicinity of the core exposed portion 3 in the active material filled portion 2 may enter between the disk electrodes 7 and 8. Both disk electrodes 7,
8, the active material entering from the active material filling portion 2 has a large electric resistance, so that a spark is generated and any one or all of the disk electrodes 7, 8, the lead hoop 9, and the core material exposed portion 3 are generated. Defective melting occurs. As a result, seizure, continuous spark, etc. occur in the welded portion, causing a problem that continuous seam welding cannot be performed. In addition, the disk electrodes 7, 8 are consumed by the generated spark, so that a required life cannot be secured.

【0011】そこで、従来では、同図(b)に示すよう
に、芯材露出部3を十分に大きな幅Dに設定して、上述
した焼き付きや連続スパークなどの発生を確実に防止す
るようにしている。これに伴って、従来の電極板17
は、単位体積当たりの活物質量が減少し、電池を構成し
たときの高容量化を阻害する要因になっている。なお、
芯材露出部3は、リードフープ9を接合すべき箇所をリ
ードフープ9の接合に先立って予め圧縮される場合と、
図10(a),(b)に2点鎖線で示すように、リード
フープ9の接合時に一対の円板電極7,8によってリー
ドフープ9を溶接するのと同時に圧縮される場合とがあ
る。
Therefore, conventionally, as shown in FIG. 1B, the core exposed portion 3 is set to a sufficiently large width D so as to reliably prevent the occurrence of the above-mentioned burn-in and continuous spark. ing. Accordingly, the conventional electrode plate 17
The decrease in the amount of active material per unit volume is a factor that hinders an increase in capacity when a battery is configured. In addition,
The exposed core portion 3 is formed by compressing a portion to be joined with the lead hoop 9 in advance before joining the lead hoop 9,
As shown by a two-dot chain line in FIGS. 10A and 10B, the lead hoop 9 may be compressed at the same time as the lead hoop 9 is welded by the pair of disk electrodes 7 and 8 when the lead hoop 9 is joined.

【0012】一方、図9(a2)の工程は、活物質を完
全に除去しながら幅の小さい芯材露出部3を形成するこ
とを目的としたものであるが、この場合にも芯材露出部
3の幅を小さく設定すれば、超音波振動の付与が不安定
となり、形成された芯材露出部3内に活物質が残存して
しまう。そのため、どうしても活物質を多めに剥離する
必要があるので、結局、形成された芯材露出部3は、
(a1)の工程を用いた場合と同様に幅が大きくなって
しまい、上述したと同様の問題が生じる。
On the other hand, the step of FIG. 9 (a2) aims at forming the core exposed portion 3 having a small width while completely removing the active material. If the width of the portion 3 is set to be small, the application of the ultrasonic vibration becomes unstable, and the active material remains in the formed core exposed portion 3. For this reason, the active material must be excessively peeled off, so that the formed core exposed portion 3 is eventually
The width becomes large as in the case of using the step (a1), and the same problem as described above occurs.

【0013】そこで、本発明は、上記従来の課題に鑑み
てなされたもので、単位体積当たりの活物質量の大きい
電池用電極板を支障なく製造できる製造方法を提供する
ことを目的とするものである。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a manufacturing method capable of manufacturing a battery electrode plate having a large amount of an active material per unit volume without any trouble. It is.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明に係る電池用電極板の製造方法は、多孔
質を有する薄板状の芯材の全体に活物質を充填する活物
質充填工程と、前記活物質が充填済みの活物質充填部の
辺縁部に沿って超音波振動を付与することにより、活物
質を除去した帯状の芯材露出部を前記活物質充填部に沿
って形成する活物質除去工程と、前記芯材露出部におけ
る辺縁部に沿った所定箇所にリードフープを溶接により
接合するリードフープ接合工程と、前記芯材露出部にお
ける前記リードフープが接合されていない箇所を前記活
物質充填部に向け加圧しながら圧縮して極小幅とする幅
寄せ圧縮工程と、前記活物質充填部およびリードフープ
を規定寸法に裁断して個々の電池用電極板に分割する裁
断工程とを有していることを特徴としている。
In order to achieve the above object, a method for manufacturing a battery electrode plate according to a first aspect of the present invention is directed to a method of filling an active material into the entirety of a thin porous core material. A material filling step, and by applying ultrasonic vibrations along the periphery of the active material filled portion filled with the active material, the strip-shaped core material exposed portion from which the active material has been removed is applied to the active material filled portion. An active material removing step to be formed along, a lead hoop joining step of joining a lead hoop by welding to a predetermined portion along a peripheral portion of the core exposed portion, and the lead hoop at the core exposed portion being joined. A compression step of compressing the unfilled portion toward the active material filling portion while pressing it to a minimum width, and cutting the active material filling portion and the lead hoop into prescribed dimensions and dividing the battery electrode plate into individual battery electrode plates. Cutting process It is characterized in Rukoto.

【0015】この電池用電極板の製造方法では、活物質
充填部を、後工程で芯材露出部を圧縮して極めて小さい
幅とできる分を見込んで予め大きな体積に設定すること
ができから、活物質量が相当に増大する。また、十分に
大きな幅とした芯材露出部のうちの所要幅の部分にリー
ドフープを溶接により接合したのちに芯材露出部を小さ
な幅に圧縮するので、溶接時における焼き付きや連続ス
パークの発生を確実に防止して、溶接に用いる電極など
の長寿命化を図ることができる。さらに、一連の連続し
た製造工程中に幅寄せ圧縮工程が介在するだけであるか
ら、生産性の低下を招くことがない。また、リードフー
プを接合した状態でのリードフープの位置ずれなどに起
因する寸法ばらつきを、幅寄せ圧縮工程において芯材露
出部の幅を縮小するときに修正できるから、高い寸法精
度を得ることができる。
According to this method of manufacturing an electrode plate for a battery, the active material filling portion can be set to a large volume in advance in consideration of an extremely small width by compressing the exposed core material in a later step. The amount of active material increases considerably. In addition, after the lead hoop is welded to the required width of the exposed core material, which is sufficiently large, the exposed core material is compressed to a small width, so that seizure and continuous sparking occur during welding. Can be reliably prevented, and the life of the electrodes and the like used for welding can be extended. Further, since only the compression process is interposed in a series of continuous manufacturing processes, the productivity is not reduced. In addition, dimensional variations due to misalignment of the lead hoop in a state where the lead hoop is joined can be corrected when the width of the exposed portion of the core material is reduced in the width shifting compression step, so that high dimensional accuracy can be obtained. it can.

【0016】第2の発明に係る電池用電極板の製造方法
は、多孔質を有する薄板状の芯材の全体に活物質を充填
する活物質充填工程と、前記活物質が充填済みの活物質
充填部の辺縁部に沿って超音波振動を付与することによ
り、活物質を除去した帯状の芯材露出部を前記活物質充
填部に沿って形成する活物質除去工程と、前記芯材露出
部における辺縁部に沿った所定箇所にリードフープを溶
接により接合するリードフープ接合工程と、前記活物質
充填部、芯材露出部およびリードフープを規定寸法に切
断して個々の電極板素体に分割する切断工程と、前記各
電極板素体における前記芯材露出部の前記リードフープ
が接合されていない箇所を前記活物質充填部に向け加圧
しながら極小幅に圧縮することにより、前記各電極板素
体を電極板とする幅寄せ圧縮工程とを有していることを
特徴としている。
According to a second aspect of the present invention, there is provided a method of manufacturing an electrode plate for a battery, comprising: an active material filling step of filling an entirety of a porous thin core material with an active material; and an active material filled with the active material. An active material removing step of forming a strip-shaped core material exposed portion from which the active material has been removed along the active material filled portion by applying ultrasonic vibrations along an edge portion of the filled portion; A lead hoop joining step of welding a lead hoop to a predetermined portion along a peripheral portion of the portion by welding, and cutting the active material filled portion, the core material exposed portion and the lead hoop to a prescribed size to form an individual electrode plate body The cutting step to divide the electrode plate body, by pressing the portion of the core material exposed portion of the core material exposed portion where the lead hoop is not bonded to the active material filling portion while compressing it to an extremely small width, Use the electrode plate body as the electrode plate It is characterized by having a asked compression step.

【0017】この電池用電極板の製造方法では、第1の
発明と同様に、活物質充填部を、後工程で芯材露出部を
圧縮して極めて小さい幅とできる分を見込んで予め大き
な体積に設定することができから、活物質量が相当に増
大する。また、十分に大きな幅とした芯材露出部のうち
の所要幅の部分を圧縮した集電部にリードフープを溶接
により接合したのちに芯材露出部を圧縮するので、溶接
時における焼き付きや連続スパークの発生を確実に防止
して、溶接に用いる電極などの長寿命化を図ることがで
きる。さらに、一連の連続した製造工程中に幅寄せ圧縮
工程が介在するだけであるから、生産性の低下を招くこ
とがない。また、リードフープを接合した状態でのリー
ドフープの位置ずれなどに起因する寸法ばらつきを、幅
寄せ圧縮工程において芯材露出部の幅を縮小するときに
修正できるから、高い寸法精度を得ることができる。
In this method of manufacturing an electrode plate for a battery, as in the first invention, the active material-filled portion is made to have a large volume in advance in consideration of an extremely small width by compressing the exposed core material in a later step. , The amount of active material is considerably increased. In addition, the core exposed part is compressed after the lead hoop is welded to the current collector that has compressed the required width part of the core exposed part, which has been made sufficiently large, so that the seizure during welding and continuous The generation of sparks can be reliably prevented, and the life of electrodes used for welding can be extended. Further, since only the compression process is interposed in a series of continuous manufacturing processes, the productivity is not reduced. In addition, dimensional variations due to misalignment of the lead hoop in a state where the lead hoop is joined can be corrected when the width of the exposed portion of the core material is reduced in the width shifting compression step, so that high dimensional accuracy can be obtained. it can.

【0018】上記第2の発明における幅寄せ圧縮工程に
おいて、正極側または負極側の電極板素体と負極側また
は正極側の電極板とをこれらの間にセパレータを介在し
て重ね合わせた状態で幅寄せ治具の内部または電池ケー
スの内部に固定したのち、前記電極板素体における芯材
露出部のリードフープが接合されていない箇所を前記活
物質充填部に向け加圧しながら極小幅に圧縮することも
できる。
[0018] In the width-adjusting compression step in the second invention, the positive or negative electrode plate body and the negative or positive electrode plate are overlapped with a separator interposed therebetween. After being fixed inside the width-adjusting jig or inside the battery case, the portion of the electrode plate body where the lead hoop of the exposed core material is not joined is compressed toward the minimum width while pressing toward the active material filling portion. You can also.

【0019】これにより、電極板素体を、これの芯材露
出部の幅を圧縮して小さくすることによって所要形状の
電極板とすると同時に、角形電池用または円筒形電池用
の電極群を構成することができるから、電池の生産性の
一層の向上を図ることが可能となる。
Thus, the electrode plate body is formed into an electrode plate having a required shape by compressing and reducing the width of the exposed portion of the core material, and an electrode group for a prismatic battery or a cylindrical battery is formed. Therefore, it is possible to further improve the productivity of the battery.

【0020】上記各発明において、活物質除去工程を経
て形成された芯材露出部のうちの辺縁部に沿った所定箇
所にリードフープを溶接により接合し、前記芯材露出部
のうちの前記リードフープの接合箇所を、接合前または
接合時に圧縮して集電部とし、幅寄せ圧縮工程におい
て、残存する芯材露出部に、リードフープに加えた押圧
力を前記集電部を介し付与することにより、前記芯材露
出部を活物質充填部寄りに加圧して圧縮することが好ま
しい。
In each of the above inventions, a lead hoop is joined by welding to a predetermined portion along a peripheral portion of the exposed core material formed through the active material removing step, and The joining portion of the lead hoop is compressed before or at the time of joining to form a current collecting portion, and a pressing force applied to the lead hoop is applied to the remaining exposed core material through the current collecting portion in the compression process. Accordingly, it is preferable that the exposed portion of the core material is compressed by being pressed toward the active material filled portion.

【0021】これにより、リードフープが接合されてい
る集電部は、残存する芯材露出部に比較して、圧縮され
たことによって機械的な強度や密度が高められているの
で、芯材露出部を圧縮しながらリードフープと一体的に
移動して、残存する芯材露出部を容易、且つ確実に圧縮
することができる。
As a result, the current collecting portion to which the lead hoop is joined has increased mechanical strength and density by being compressed as compared with the remaining exposed core material. While moving the part, the part moves integrally with the lead hoop, and the remaining exposed core material can be easily and reliably compressed.

【0022】同上の幅寄せ圧縮工程において、リードフ
ープのうちの所定長さを外方に突出させた配置で活物質
充填部を支持台上に載置し、極板押えにおける2段階に
突出した2つの規制面を前記リードフープと前記活物質
充填部および芯材露出部とに対し少許の間隙で対向させ
た状態で、前記リードフープにおける前記支持台からの
突出部分を前記支持台寄りに押し込んだのち、前記極板
押えを前記間隙分だけ前記支持台側に近接移動させるこ
とが好ましい。
In the above-mentioned width-adjusting compression step, the active material-filled portion is placed on the support base in such a manner that a predetermined length of the lead hoop is projected outward, and is projected in two stages in holding the electrode plate. In a state where the two regulating surfaces are opposed to the lead hoop and the active material filling portion and the core material exposed portion with a small gap, a protruding portion of the lead hoop from the support base is pushed toward the support base. After that, it is preferable to move the electrode plate holder close to the support base by the gap.

【0023】これにより、リードフープは、極板押えの
規制面に対し少許の間隙を有しているから、規制面に曲
がり変形するのが防止されながら摺動して円滑に移動す
る。一方、芯材露出部は、極板押えの規制面に対し少許
の間隙を有しているから、僅かに膨れ上がりながらスム
ーズに圧縮される。そののち、極板押えが間隙分だけ支
持台側に近接移動したときに、芯材露出部における圧縮
時の膨出部分を加圧して、芯材露出部を活物質充填部と
面一となるよう修正できる。
Thus, since the lead hoop has a small gap with respect to the regulating surface of the electrode plate holder, the lead hoop slides and moves smoothly while being prevented from being bent and deformed on the regulating surface. On the other hand, since the exposed portion of the core material has a small gap with respect to the regulating surface of the electrode plate holder, it is smoothly compressed while slightly expanding. Thereafter, when the electrode plate presser moves close to the support base by the gap, the swelling portion of the exposed core portion when compressed is pressed, and the exposed core portion is flush with the active material filled portion. Can be modified as follows.

【0024】本発明に係る電池用電極板は、上述の何れ
かの製造方法による製造工程を経て製造されたものであ
る。この電池用電極板では、芯材露出部の幅を圧縮して
小さくできる分だけ活物質量を増大できるので、電池を
構成したときの高容量化を図ることができる。
The battery electrode plate according to the present invention is manufactured through the manufacturing process according to any of the above-described manufacturing methods. In this battery electrode plate, the amount of active material can be increased as much as the width of the exposed core material can be reduced by compression, so that the capacity of the battery can be increased.

【0025】[0025]

【発明の実施の形態】以下、本発明の好ましい実施の形
態について図面を参照しつつ詳細に説明する。図1は本
発明の第1の実施の形態に係る電池用電極板の製造方法
を具現化した製造工程を順に示した斜視図である。この
実施の形態では、積層型電極群を構成して角形電池に用
いる電池用電極板を製造する場合を例示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a perspective view sequentially showing a manufacturing process which embodies a method for manufacturing a battery electrode plate according to a first embodiment of the present invention. In this embodiment, a case is described in which a stacked electrode group is formed to manufacture a battery electrode plate used for a prismatic battery.

【0026】先ず、(a)に示す所定サイズの矩形状若
しくは帯状の三次元発泡メタルからなる芯材21の全体
に、(b)に示すように活物質を充填して活物質充填部
22とする。この活物質充填部22の形成に際しては、
プレス加工前であって全く凹凸のない芯材21に対し活
物質を充填するので、全体にわたり均一な充填密度に充
填できるとともに、凹凸つまり高低差がないことから、
充填した活物質が流動することなく内部に保持されて、
均一な充填密度を保持したまま乾燥される。これに対し
従来の製造方法による図9(a1)の工程では、プレス
成型または圧延工程を経て凹み部および溝部を予め形成
した芯材1に活物質を充填するので、凹凸面の存在に起
因して活物質の充填密度にばらつきが生じる。
First, as shown in (b), the entire core material 21 made of a rectangular or band-shaped three-dimensional foamed metal having a predetermined size is filled with an active material as shown in (b), and an active material filling portion 22 is formed. I do. In forming the active material filling portion 22,
Since the active material is filled into the core material 21 having no unevenness before the press working, it can be filled with a uniform packing density throughout, and since there is no unevenness, that is, no difference in elevation,
The filled active material is held inside without flowing,
It is dried while maintaining a uniform packing density. On the other hand, in the step of FIG. 9 (a1) according to the conventional manufacturing method, the active material is filled into the core material 1 in which the concave portion and the groove portion are formed in advance through the press molding or the rolling process. Therefore, the packing density of the active material varies.

【0027】つぎに、上述のように均一な充填密度の活
物質充填部22が形成された芯材21は、(c)に示す
ように、後工程において芯材露出部となる部分を除く全
ての部分にプレス加工が施されることにより、ほぼ1/
2に圧縮され、後工程で芯材露出部となる部分が2本の
平行なレール状の残存凸条部23として残存する。この
プレス加工には、図示していないが、本件出願人による
出願に係る特願2000-261471 号における図2に示したス
トライプロールプレス機と基本構造が同じであって、加
工プレスロールが所定の配置で設けられたストライプロ
ールプレス機が用いられる。
Next, as shown in (c), the core material 21 on which the active material filled portions 22 having a uniform packing density are formed as shown in FIG. By pressing the part of
2 and a portion which becomes a core material exposed portion in a subsequent step remains as two parallel rail-shaped remaining convex portions 23. Although not shown, this press working has the same basic structure as the stripe roll press shown in FIG. 2 in Japanese Patent Application No. 2000-261471 filed by the present applicant, and the working press roll has a predetermined shape. A strip roll press provided in an arrangement is used.

【0028】続いて、2つの残存凸条部23は、(d)
に示す活物質除去工程において、自体の内部に充填され
ている活物質充填部22が除去されることにより、2つ
の芯材露出部24とされる。この活物質除去工程では、
上述した特願2000-261471 号における図4に示した超音
波振動器を備えた活物質除去装置とほぼ同様の構成を有
する活物質除去装置(図示せず)を用いて処理される。
ここでの芯材露出部24の幅Dは、後工程でリードフー
プを接合するのに必要な所定幅よりも大きく設定されて
いる。それにより、超音波振動器からは、十分に大きな
振幅に設定した超音波振動を付与することができ、活物
質の結合度の如何に関わらず、活物質を残存することな
く完全に除去した芯材露出部24を形成することができ
る。
Subsequently, the two remaining ridges 23 are formed as shown in FIG.
In the active material removal step shown in (2), the active material filling portion 22 filled in itself is removed to form two core material exposed portions 24. In this active material removal step,
The processing is performed using an active material removing device (not shown) having substantially the same configuration as the active material removing device having the ultrasonic vibrator shown in FIG. 4 in Japanese Patent Application No. 2000-261471.
Here, the width D of the core exposed portion 24 is set to be larger than a predetermined width necessary for joining the lead hoop in a later step. As a result, ultrasonic vibration set to a sufficiently large amplitude can be applied from the ultrasonic vibrator, and the core from which the active material has been completely removed without remaining remains regardless of the degree of coupling of the active material. The material exposed portion 24 can be formed.

【0029】つぎに、(e)に示すように、各芯材露出
部24のうちのリードフープを接合するのに必要な所定
幅dの部分は、プレスロール(図示せず)で圧縮され
て、残存する元の芯材露出部24よりも一段低い集電部
27とされる。続いて、(f)に示すように、集電部2
7には、図10に示したと同様の一対の円板電極7,8
を用いたシーム溶接工法によってリードフープ9が接合
される。このリードフープ9は、十分に大きな幅Dに設
定して活物質を完全に除去した芯材露出部24の一部を
圧縮してなる集電部27にシーム溶接するのとともに、
一対の円板電極7,8の内方側に活物質が残存しない芯
材露出部24が存在しているから、一対の円板電極7,
8間に活物質が介在するおそれが全くなく、焼き付きや
連続スパークなどが生じることがない。
Next, as shown in (e), a portion of each core exposed portion 24 having a predetermined width d necessary for joining the lead hoop is compressed by a press roll (not shown). The current collector 27 is one step lower than the remaining original core exposed portion 24. Subsequently, as shown in FIG.
7, a pair of disk electrodes 7, 8 similar to those shown in FIG.
The lead hoop 9 is joined by a seam welding method using. This lead hoop 9 is set to a sufficiently large width D and seam-welded to a current collector 27 formed by compressing a part of the exposed core 24 from which the active material has been completely removed.
Since there is a core exposed portion 24 in which the active material does not remain on the inner side of the pair of disk electrodes 7 and 8,
There is no possibility that an active material intervenes between 8, and no burn-in or continuous spark is generated.

【0030】そのため、円板電極7,8は所要の長寿命
を確実に確保することができる。実測結果によると、図
10(a)に示すように、芯材露出部3をリードフープ
9の接合に必要とする可及的に小さな幅に設定した場合
には、円板電極7,8の寿命が72時間であったのに対
し、この実施の形態の工程を採用した場合には、円板電
極7,8の寿命が1200時間に大幅に延びた。
Therefore, the disk electrodes 7 and 8 can ensure a required long life. According to actual measurement results, as shown in FIG. 10A, when the exposed core material 3 is set to a width as small as necessary for joining the lead hoop 9, the disk electrodes 7 and 8 The life of the disk electrodes 7, 8 was greatly extended to 1200 hours when the process of this embodiment was adopted, while the life was 72 hours.

【0031】上述のリードフープ9を接合したのち、圧
縮されなかった芯材露出部24は、(g)に示す幅寄せ
圧縮工程において、活物質充填部22寄りに加圧されて
圧縮されることにより、極めて小さな幅とされる。この
幅寄せ圧縮工程の詳細については後述する。最後に、
(h)に1点鎖線で示す各切断線に沿って打ち抜きおよ
び裁断されることにより、(i)および図7(a)に示
すような角形電池用の電極板28が得られる。この電池
用電極板28は、活物質充填部28aと、活物質が除去
されたのちに圧縮された集電部28bと、この集電部2
8bに接合された接続リード部28cとを有しており、
幅方向に圧縮された芯材露出部28dは、殆ど無視でき
る極めて小さな幅になっている。
After the above-described lead hoop 9 is joined, the core material exposed portion 24 that has not been compressed is compressed by being pressed toward the active material filling portion 22 in the width shifting compression process shown in FIG. , Makes the width extremely small. The details of the compression process will be described later. Finally,
By punching and cutting along each cutting line indicated by a dashed line in (h), an electrode plate 28 for a prismatic battery as shown in (i) and FIG. 7A is obtained. The battery electrode plate 28 includes an active material filling portion 28a, a current collector 28b compressed after the active material is removed, and a current collector 2b.
8b, and a connection lead portion 28c joined to the
The exposed core member 28d compressed in the width direction has an extremely small width that can be almost ignored.

【0032】なお、(h)における打ち抜き加工では、
図9(c)に示したトリミングパンチ10とトリミング
ダイ11とを用いてリードフープ9を打ち抜くことによ
り、リードフープ9を接続リード部28cに成形する。
切断加工では、同じく図9(c)に示した切断パンチ1
3と切断ダイ14とを用いて、電池ケース内に収納する
ときの規格寸法に切断する。
In the punching process in (h),
The lead hoop 9 is formed into the connection lead portion 28c by punching out the lead hoop 9 using the trimming punch 10 and the trimming die 11 shown in FIG. 9C.
In the cutting process, the cutting punch 1 also shown in FIG.
3 and the cutting die 14 are used to cut to the standard dimensions for storage in the battery case.

【0033】図2(a)〜(d)は図1(g)の幅寄せ
圧縮工程における加工行程を順に示した縦断面図であ
る。先ず、(a)に示す第1の行程では、極板押え29
が上方へ、且つ一対のプッシャ31が側方へそれぞれ退
避した状態において、一対の集電部27にリードフープ
9が接合された被加工物が、図の手前側に向け所定長さ
分だけ間欠送りされて支持台30上の所定位置にセット
される。このとき、両側の一対のリードフープ9は、極
板押え29と支持台30とからなる幅寄せ治具26から
共に同じ所定長さだけ外方に突出するように設定されて
いる。すなわち、リードフープ9の突出長は、芯材露出
部24の幅よりも僅かに小さく設定されている。
FIGS. 2A to 2D are longitudinal sectional views sequentially showing the processing steps in the width shifting compression step of FIG. 1G. First, in the first step shown in FIG.
When the lead hoop 9 is joined to the pair of current collectors 27 in a state in which the pair of pushers 31 are retracted to the side and The sheet is fed and set at a predetermined position on the support table 30. At this time, the pair of lead hoops 9 on both sides are set so as to protrude outward by the same predetermined length from the width adjusting jig 26 including the electrode plate holder 29 and the support base 30. That is, the projecting length of the lead hoop 9 is set to be slightly smaller than the width of the core exposed portion 24.

【0034】つぎに、(b)に示す第2の行程では、極
板押え29が所定位置まで下降する。このとき、極板押
え29の下段規制面29aとリードフープ9との間隙G
1および極板押え29の中断規制面29bと芯材露出部
24および活物質充填部22との間隙G2は、共に0.05
〜0.10mmの少許の範囲に設定されている。
Next, in the second stroke shown in FIG. 3B, the electrode plate retainer 29 is lowered to a predetermined position. At this time, the gap G between the lower regulating surface 29a of the electrode plate retainer 29 and the lead hoop 9 is set.
1 and the gap G2 between the interruption restricting surface 29b of the electrode plate holder 29 and the core material exposed portion 24 and the active material filled portion 22 are both 0.05
It is set within a small range of about 0.10 mm.

【0035】続いて、(c)に示す第3の行程では、一
対のプッシャ31が、幅寄せ治具26に接触する位置ま
で移動して、外方に突出していた一対のリードフープ9
をそれぞれ幅寄せ治具26内に押し込む。このとき、リ
ードフープ9が接合されている集電部27は、図1
(e)の工程において圧縮されたことによって芯材露出
部24よりも機械的な強度や密度が高められているの
で、芯材露出部24を圧縮しながらリードフープ9と一
体的に幅寄せ治具26の内方側へ押し込められる。これ
により、図1(e)の工程で圧縮されずに高い空孔率
(90%程度)のままの芯材露出部24は、極めて小さい
幅に圧縮される。
Subsequently, in the third step shown in FIG. 3C, the pair of pushers 31 move to the position where they contact the width-adjusting jig 26, and the pair of lead hoops 9 projecting outward.
Are respectively pushed into the width approaching jigs 26. At this time, the current collector 27 to which the lead hoop 9 is joined is
Since the mechanical strength and density are higher than that of the exposed core 24 due to the compression in the step (e), the width adjustment is performed integrally with the lead hoop 9 while compressing the exposed core 24. The tool 26 is pushed inward. Thus, the core exposed portion 24 that is not compressed in the step of FIG. 1E and remains at a high porosity (about 90%) is compressed to an extremely small width.

【0036】このとき、両側のプッシャ31は対応する
リードフープ9を同時に同一の力で同一の距離だけ押圧
するので、両側の芯材露出部24は、中央の活物質充填
部22によって恰も自動調心され、ほぼ同等に圧縮され
る。また、リードフープ9は、上述のように極板押え2
9の下段規制面29aに対し0.05〜0.10mmの間隙を有
しているから、下段規制面29aに曲がり変形するのが
防止されながら摺動して円滑に移動する。一方、芯材露
出部24は、極板押え29の中段規制面29bに対し0.
05〜0.10mmの間隙を有しているから、僅かに膨れ上が
りながらスムーズに圧縮される。最後に、(d)に示す
第4の行程では、極板押え29が、上述した間隙(0.05
〜0.10mm)分だけ下降しながら芯材露出部24におけ
る圧縮時の上方への膨出部分を加圧して、芯材露出部2
4を活物質充填部22と面一となるよう修正する。
At this time, the pushers 31 on both sides simultaneously press the corresponding lead hoops 9 with the same force and the same distance, so that the core exposed portions 24 on both sides are automatically adjusted by the active material filling portion 22 at the center. Centered and compressed almost equally. In addition, the lead hoop 9 is connected to the electrode plate holder 2 as described above.
Since the lower regulating surface 29a has a gap of 0.05 to 0.10 mm with respect to the lower regulating surface 29a, the lower regulating surface 29a slides and moves smoothly while being prevented from being bent and deformed. On the other hand, the core exposed portion 24 is set at 0.
Since it has a gap of 05 to 0.10 mm, it is smoothly compressed while slightly expanding. Finally, in the fourth step shown in (d), the electrode plate retainer 29 moves the gap (0.05
0.10.10 mm), and presses the upwardly swelling portion of the exposed core portion 24 during compression to lower the exposed core portion 2.
4 is modified so as to be flush with the active material filling section 22.

【0037】図1の製造工程を経て得られた図7(a)
の電池用電極板28は、同図(b)に示す従来の製造工
程による電池用電極板17と比較した場合、活物質充填
部28aを、芯材露出部28dを圧縮して極めて小さい
幅とできる分を見込んで予め大きな体積に設定すること
ができから、活物質量が相当に増大して、それに伴って
電池を構成したときの高容量化を図ることができる。
FIG. 7A obtained through the manufacturing process of FIG.
When compared with the battery electrode plate 17 according to the conventional manufacturing process shown in FIG. 2B, the battery electrode plate 28 of the present embodiment has the active material filling portion 28a having a very small width by compressing the core exposed portion 28d. Since a large volume can be set in advance in consideration of the possible amount, the amount of the active material is considerably increased, and accordingly, the capacity of the battery can be increased.

【0038】具体的な実測値を示すと、極板幅(図7の
横寸法)が15mm、極板長さ(図7の縦寸法)が31m
m、厚みが0.8 mmの規格値を有する形状の電極板2
8,17を得る場合、従来の電極板17では芯材露出部
3の幅(図7の縦寸法)が1.5 mmであったのに対し、
実施の形態の製造工程を経た電極板28では芯材露出部
28dの幅が0.5 mmとなった。これにより、上記実施
の形態の製造工程を経て得られた電極板28では、活物
質充填部28aの長さ(縦寸法)が1mm増大して、活
物質量が従来の電極板17に比較して約3%増大した。
しかも、十分に大きな幅とした芯材露出部24のうちの
所要幅の部分を圧縮した集電部28bにリードフープ9
をシーム溶接工法で接合したのちに芯材露出部24を圧
縮するので、シーム溶接時における焼き付きや連続スパ
ークの発生を確実に防止できる。
The specific measured values are as follows: the electrode plate width (horizontal dimension in FIG. 7) is 15 mm, and the electrode plate length (vertical dimension in FIG. 7) is 31 m.
m, an electrode plate 2 having a thickness of 0.8 mm
In obtaining the electrodes 8 and 17, the width (the vertical dimension in FIG. 7) of the core exposed portion 3 was 1.5 mm in the conventional electrode plate 17,
In the electrode plate 28 having undergone the manufacturing process of the embodiment, the width of the exposed core material 28d is 0.5 mm. Thus, in the electrode plate 28 obtained through the manufacturing process of the above-described embodiment, the length (longitudinal dimension) of the active material filling portion 28a is increased by 1 mm, and the amount of the active material is larger than that of the conventional electrode plate 17. About 3%.
In addition, the lead hoop 9 is attached to the current collecting portion 28b by compressing a portion of a required width of the core exposed portion 24 having a sufficiently large width.
Is bonded by the seam welding method, and then the exposed core member 24 is compressed, so that seizure and continuous spark during seam welding can be reliably prevented.

【0039】また、図1の製造工程では、一連の連続し
た工程中に幅寄せ圧縮工程が介在するだけであるから、
生産性の低下を招くことがなく、それに加えて、特に極
板長さの寸法精度の高い電極板28を得ることができ
る。この高い寸法精度が得られるのは、図1(c)の工
程でプレス加工する際芯材21とプレスロール(図示せ
ず)との位置ずれ、および図1(f)の工程でリードフ
ープ9を集電部27に接合した状態での幅W1に、リー
ドフープ9の位置ずれ、さらに同(f)工程で芯材21
の供給位置ずれなどが発生し易いことに起因して約±0.
3 mmの寸法ばらつきが生じるが、同図(g)の幅寄せ
圧縮工程において、一対のリードフープ9の外方側端部
がプッシャ31によって図2の幅寄せ治具26に外側端
面に一致するよう押し込められることから、この幅寄せ
圧縮工程後の幅W2が±0.05mmの寸法ばらつきに抑え
られるからである。
Also, in the manufacturing process of FIG. 1, since the width-adjusting compression process is only interposed in a series of continuous processes,
It is possible to obtain the electrode plate 28 having high dimensional accuracy, particularly, the length of the electrode plate, without lowering the productivity. This high dimensional accuracy can be obtained because of the displacement between the core 21 and the press roll (not shown) during the press working in the step of FIG. 1C, and the lead hoop 9 in the step of FIG. Is shifted to the width W1 when the lead hoop 9 is joined to the current collecting portion 27, and the core material 21 is formed in the same step (f).
About ± 0.
Although a dimensional variation of 3 mm occurs, the outer ends of the pair of lead hoops 9 coincide with the outer end surfaces of the pair of lead hoops 9 by the pushers 31 in the width shifting compression process of FIG. This is because the width W2 after the width shifting compression step can be suppressed to a dimensional variation of ± 0.05 mm.

【0040】ところで、図9の製造工程を経て製造され
た従来の電池用電極板17では、活物質を正確な幅に管
理しながら除去するのが困難であることから、活物質露
出部3の幅および活物質露出部3の幅にばらつきが生じ
易く、それに応じて活物質充填部2における活物質の重
量にばらつきが生じていた。そのため、積層型電極群を
構成するに際しては、製造後の電池用電極板17を重量
選別して、ほぼ同じ重量の電池用電極板17を組み合わ
せて積層するといった煩雑な工程を必要としていた。
In the conventional battery electrode plate 17 manufactured through the manufacturing process shown in FIG. 9, it is difficult to remove the active material while controlling the width of the active material accurately. The width and the width of the active material exposed portion 3 tended to vary, and accordingly, the weight of the active material in the active material filling portion 2 varied. For this reason, when composing the stacked electrode group, a complicated process of selecting the weight of the manufactured battery electrode plate 17 and combining and stacking battery electrode plates 17 having substantially the same weight is required.

【0041】これに対し、上記第1の実施の形態で得ら
れた電池用電極板28では、図1(a)の工程におい
て、凹凸の存在しない芯材21の全体に活物質を均一に
充填でき、(g)の幅寄せ圧縮工程において、両側の芯
材露出部24が中央の活物質充填部22によって恰も自
動調心される状態で圧縮されることにより、リードフー
プ9の接合位置のばらつきなどが修正されて、上述した
ように幅寄せ圧縮工程後の幅W2が±0.05mmの寸法ば
らつきに抑えられ、その幅W2の中央部を切断して2分
割したのちに、規定寸法に裁断するので、得られた電極
板28には活物質量のばらつきが極めて少なくなり、従
来の重量選別の工程を削減することができるという大き
な利点がある。
On the other hand, in the battery electrode plate 28 obtained in the first embodiment, in the step of FIG. 1A, the active material is uniformly filled in the entire core material 21 having no irregularities. In the width-adjusting compression step of (g), the core exposed portions 24 on both sides are compressed by the active material filling portion 22 in a state where they are self-centered, so that the bonding position of the lead hoop 9 varies. As described above, the width W2 after the width shifting compression process is suppressed to a dimensional variation of ± 0.05 mm, and the center portion of the width W2 is cut and divided into two, and then cut into a specified size. Therefore, the obtained electrode plate 28 has a great advantage that the variation in the amount of the active material is extremely small, and the conventional weight sorting process can be reduced.

【0042】なお、図1の製造工程では、リードフープ
9の接合に先立って、(e)の工程で芯材露出部24の
うちのリードフープを接合するのに必要な所定幅dの部
分を圧縮して集電部27を形成するようにしたが、上記
(e)の工程は削除してもよい。この場合には、(f)
の工程において、リードフープ9を、(d)の工程で形
成した芯材露出部24の所定箇所に直接的に溶接して接
合することになるが、図10で説明したように、リード
フープ9の溶接時に、芯材露出部24におけるリードフ
ープ9が溶接される箇所が、一対の円板電極7,8によ
って溶接と同時に圧縮されて、集電部27とされるから
である。
In the manufacturing process of FIG. 1, prior to the joining of the lead hoop 9, the portion of the core exposed portion 24 having a predetermined width d required for joining the lead hoop in the step (e) is used. Although the current collector 27 is formed by compression, the step (e) may be omitted. In this case, (f)
In the step (d), the lead hoop 9 is directly welded and joined to a predetermined portion of the core exposed portion 24 formed in the step (d), but as described with reference to FIG. This is because, at the time of welding, the portion of the core exposed portion 24 where the lead hoop 9 is welded is compressed simultaneously with welding by the pair of disk electrodes 7 and 8 to form the current collector 27.

【0043】また、図1(g)の幅寄せ圧縮工程では、
図2(a)〜(d)の加工行程を終了したのちに、図3
(e)〜(f)に示す加工行程を設けるようにしてもよ
い。図3において、極板押え29には、図2に示した箇
所に対し後段側箇所、つまり集電部27にリードフープ
9が接合された活物質充填部22が図2の位置よりも所
定長さだけ間欠送りされた位置に対応する後段側箇所
に、図2に示した下段規制面29aより長い幅の下段規
制面29cと、下段規制面29cの幅が長くなった分だ
け図2の中段規制面29bよりも幅が短くなった中段規
制面29dとが設けられている。上記下段規制面29c
は、図2の工程において内方へ押し込められたリードフ
ープ9の内端部に対応する箇所まで延びた大きな幅に設
定されている。
Also, in the width shifting compression step of FIG.
After finishing the machining steps of FIGS. 2A to 2D, FIG.
The processing steps shown in (e) to (f) may be provided. In FIG. 3, the electrode plate retainer 29 has an active material filled portion 22 in which the lead hoop 9 is joined to the current collecting portion 27 at a later stage than the portion shown in FIG. The lower-stage regulating surface 29c having a width longer than the lower-stage regulating surface 29a shown in FIG. 2 and the middle stage in FIG. A middle regulating surface 29d having a width shorter than the regulating surface 29b is provided. The lower regulation surface 29c
Is set to a large width extending to a position corresponding to the inner end of the lead hoop 9 pushed inward in the process of FIG.

【0044】図2と図3とに示す支持台30および極板
押え29は一体物であるから、図3(e)〜(h)の各
行程と図2(a)〜(d)の各行程とは、それぞれ対応
する同一動作状態を示している。この図3(e)〜
(h)の各行程を設ければ、(e)に示すように、図2
の各行程を終えたのちに、芯材露出部24の一部にリー
プフープ9の上方への突出部24aが形成されても、こ
の突出部24aは、(f)の行程において、極板押え2
9が下降した時に下段規制面29cによってリードフー
プ9の内端面上に押し付けられたのちに、(h)の行程
において、極板押え29がリードフープ9に接触する位
置までさらに下降したときに、内部側に押し戻され、僅
かな一部がリードフープ9上に薄く押し広げられる。こ
れにより、残存する芯材露出部24は所要の形状に確実
に整形できる。
Since the support base 30 and the electrode plate holder 29 shown in FIGS. 2 and 3 are integrally formed, the respective steps shown in FIGS. 3 (e) to 3 (h) and the steps shown in FIGS. 2 (a) to 2 (d) are performed. The process indicates the same corresponding operation state. This FIG.
If each step of (h) is provided, as shown in (e), FIG.
After each of the steps described above, even if a protruding portion 24a upward of the leaping hoop 9 is formed on a part of the core material exposed portion 24, the protruding portion 24a is
When the electrode plate presser 29 further descends to a position where it comes into contact with the lead hoop 9 in the process (h) after being pressed onto the inner end surface of the lead hoop 9 by the lower regulating surface 29c when the lower portion 9 is lowered, It is pushed back inside and a small part is spread thinly on the lead hoop 9. Thereby, the remaining exposed core material 24 can be reliably shaped into a required shape.

【0045】図4は本発明の第2の実施の形態に係る電
池用電極板の製造方法を具現化した製造工程を順に示し
た斜視図である。この実施の形態においても、積層型電
極群を構成して角形電池に用いる電池用電極板を製造す
る場合を例示してあり、(a)〜(f)の各工程は図1
と同様であるので、その説明を省略する。(g)の工程
では、芯材露出部24を幅寄せ圧縮しない状態におい
て、1点鎖線で示す各切断線に沿って打ち抜きおよび切
断することにより、(h)に示すように、後工程を経て
個々の電極板となる電極板素体32に分割する。
FIG. 4 is a perspective view showing, in order, manufacturing steps which embody the method for manufacturing a battery electrode plate according to the second embodiment of the present invention. This embodiment also exemplifies a case in which a stacked electrode group is formed to manufacture a battery electrode plate used for a prismatic battery, and the steps (a) to (f) are shown in FIG.
Therefore, the description is omitted. In the step (g), the core exposed portion 24 is punched and cut along each cutting line indicated by a one-dot chain line in a state where the core exposed portion 24 is not compressed in the width direction. It is divided into electrode plate element bodies 32 which become individual electrode plates.

【0046】上記電極板素体32は、第1の実施の形態
で得られた電池用電極板28と同様の活物質充填部28
aと集電部28bと接続リード部28cとを備えている
ので、上記電極板28との関連を明確にして理解を容易
にするために、同一の符号を付してあり、芯材露出部2
4のみが幅寄せ圧縮されずにそのまま残存している。そ
こで、各電極板素体32には、(i)の工程において各
々の芯材露出部24に対し幅寄せ圧縮加工を施すことに
より、幅が極めて小さい芯材露出部28dに成形して、
第1の実施の形態と同様の電池用電極板28とされる。
なお、図4の工程において、(e)の工程を削除しても
支障が生じないのは、図1の工程で説明した通りであ
る。
The above-mentioned electrode plate body 32 has an active material filled portion 28 similar to the battery electrode plate 28 obtained in the first embodiment.
a, a current collecting portion 28b, and a connection lead portion 28c, so that the same reference numerals are assigned to clarify the relationship with the electrode plate 28 and facilitate understanding. 2
Only 4 remains without compression. Therefore, in the step (i), each of the electrode plate base bodies 32 is subjected to a width shifting compression process on each of the exposed core members 24 so as to be formed into the exposed core members 28d having an extremely small width.
The battery electrode plate 28 is the same as in the first embodiment.
In the process of FIG. 4, there is no problem even if the process of (e) is deleted, as described in the process of FIG. 1.

【0047】図5(a)〜(d)は図4(i)の幅寄せ
圧縮工程における加工行程を順に示した縦断面図であ
る。この幅寄せ圧縮工程に用いられる幅寄せ治具33
は、一端側にストッパ壁面部37を有する支持台34
と、単一の下段規制面38aと一対の中段規制面38b
を有する極板押え38とを備えている。先ず、(a)に
示す第1の行程では、極板押え38が上方へ、且つプッ
シャ31が側方へそれぞれ退避下状態において、所定個
数の電極板素体32が、図の手前側に送給されて、各々
の活物質充填部28aの端面をストッパ壁面部37に当
接した状態で支持台34上の所定位置にセットされる。
このとき、リードフープ9は、支持台34から所定長さ
だけ外方に突出されている。
FIGS. 5A to 5D are longitudinal sectional views sequentially showing the processing steps in the width-adjusting compression step of FIG. 4I. Width adjustment jig 33 used in this width adjustment compression process
Is a support table 34 having a stopper wall 37 at one end.
And a single lower regulating surface 38a and a pair of middle regulating surfaces 38b
And an electrode plate holder 38 having First, in the first step shown in FIG. 6A, a predetermined number of electrode plate bodies 32 are fed to the near side in the drawing in a state where the electrode plate retainer 38 is moved upward and the pusher 31 is retracted to the side. The active material-filled portions 28 a are set at predetermined positions on the support table 34 with the end surfaces of the active material filled portions 28 a abutting against the stopper wall portions 37.
At this time, the lead hoop 9 projects outward from the support table 34 by a predetermined length.

【0048】つぎに、(b)に示す第2の行程では、極
板押え38が所定位置まで下降する。このとき、第1の
実施の形態と同様に、極板押え38の下段規制面38a
とリードフープ9との間隙および極板押え38の中断規
制面38bと芯材露出部24との間隙は、共に0.05〜0.
10mmの範囲に設定されている。
Next, in the second stroke shown in FIG. 5B, the electrode plate holder 38 descends to a predetermined position. At this time, similarly to the first embodiment, the lower plate regulating surface 38a
The gap between the lead hoop 9 and the gap between the interruption restricting surface 38b of the electrode plate retainer 38 and the exposed core material 24 is 0.05 to 0.
It is set in the range of 10 mm.

【0049】続いて、(c)に示す第3の行程では、プ
ッシャ31が、幅寄せ治具33に接触する位置まで移動
して、外方に突出していたリードフープ9を幅寄せ治具
33内に押し込む。このとき、リードフープ9が接合さ
れている集電部27は、図4(e)の工程において圧縮
されたことによって芯材露出部24よりも機械的な強度
や密度が高められているので、芯材露出部24を圧縮し
ながらリードフープ9と一体的に幅寄せ治具33の内方
側へ押し込められる。これにより、図1(e)の工程で
圧縮されずに高い空孔率(90%程度)のままの芯材露出
部24は、圧縮されて、極めて小さい幅の芯材露出部2
8dとなる。このとき、リードフープ9は、上述のよう
に極板押え38の下段規制面38aに対し0.05〜0.10m
mの間隙を有しているから、下段規制面38aに曲がり
変形するのが防止されながら摺動して円滑に移動する。
一方、芯材露出部28dは、極板押え38の中段規制面
38bに対し0.05〜0.10mmの間隙を有しているから、
僅かに膨れ上がりながらスムーズに圧縮される。
Subsequently, in the third step shown in FIG. 9C, the pusher 31 moves to a position where it contacts the width-adjusting jig 33, and moves the lead hoop 9 projecting outward to the width-adjusting jig 33. Push in. At this time, the current collecting portion 27 to which the lead hoop 9 is joined has a higher mechanical strength and density than the core exposed portion 24 by being compressed in the step of FIG. The core exposed portion 24 is pressed into the inside of the width approaching jig 33 integrally with the lead hoop 9 while being compressed. As a result, the core exposed portion 24 which is not compressed in the step of FIG. 1E and remains at a high porosity (about 90%) is compressed, and the core exposed portion 2 having an extremely small width is compressed.
8d. At this time, the lead hoop 9 is 0.05 to 0.10 m with respect to the lower regulating surface 38a of the electrode plate retainer 38 as described above.
Since it has a gap of m, it slides and moves smoothly while being prevented from bending and deforming to the lower regulating surface 38a.
On the other hand, since the core material exposed portion 28d has a gap of 0.05 to 0.10 mm with respect to the middle regulating surface 38b of the electrode plate retainer 38,
Smoothly compressed while slightly swelling.

【0050】最後に、(d)に示す第4の行程では、極
板押え38が上述した間隙(0.05〜0.10mm)分だけ下
降して、芯材露出部28dにおける圧縮時の上方への膨
出部分を加圧して芯材露出部28dを活物質充填部28
aと面一となるよう修正する。これにより、第1の実施
の形態と同様の電池用電極板28が出来上がる。この電
極板28は、極板押え38が上方へ、且つプッシャ31
が側方へそれぞれ退避したのちに取り出され、以後、上
述と同様の加工動作が繰り返される。したがって、この
実施の形態の製造方法は、第1の実施の形態の製造方法
に対し一部の工程が入れ替わるだけであり、第1の実施
の形態において説明したと同様の効果を確実に得ること
ができるとともに、第1の実施の形態と同様の電池用電
極板28を得ることができる。
Finally, in the fourth step shown in (d), the electrode plate retainer 38 is lowered by the above-mentioned gap (0.05 to 0.10 mm) to expand upward in the core exposed portion 28d during compression. The protruding portion is pressurized so that the core material exposed portion 28 d is
Modify to be flush with a. Thus, a battery electrode plate 28 similar to that of the first embodiment is completed. In this electrode plate 28, the electrode plate holder 38 moves upward and the pusher 31
Are taken out after being respectively retracted to the side, and thereafter, the same processing operation as described above is repeated. Therefore, the manufacturing method according to the second embodiment is different from the manufacturing method according to the first embodiment only in that only a part of the steps is replaced, and the same effect as that described in the first embodiment can be reliably obtained. And the same battery electrode plate 28 as in the first embodiment can be obtained.

【0051】なお、図4(i)の幅寄せ圧縮工程では、
図5(a)〜(d)の加工行程を終了したのちに、図3
(e)〜(f)に示した加工行程に相当する加工工程を
行って芯材露出部28dの形状を整形するようにすれ
ば、一層好ましい。
Incidentally, in the width shifting compression step of FIG.
After finishing the machining steps of FIGS. 5A to 5D, FIG.
It is more preferable that the processing steps corresponding to the processing steps shown in (e) to (f) be performed to shape the shape of the core exposed portion 28d.

【0052】上記第1および第2の実施の形態では、角
形電池用の電極板28の製造について説明したが、本発
明の製造方法は、円筒形電池に用いる渦巻状電極群用の
電極板の製造にも適用することができる。例えば、図1
の(a)〜(e)の各工程を経たのち、両側の集電部2
7上にこれと同幅のリードフープ9をシーム溶接し、同
図(f)に2点鎖線で示す切断線で切断して活物質充填
部22を2分割することにより、図8(a)に示すよう
な形状とする。つぎに、図5の幅寄せ治具33とほぼ同
様の幅寄せ治具を用いて芯材露出部24を極めて小さい
幅になるよう圧縮したのちに、所定の長さに切断するこ
とにより、図8(b)に示すような円筒形電池用の電極
板39を得ることができる。なお、リードフープ9をシ
ーム溶接したのちに、図2に示した幅寄せ治具26と同
様の幅寄せ治具を用いて芯材露出部24を予め幅寄せ圧
縮し、そののちに裁断するようにしてもよいのは勿論で
ある。
In the first and second embodiments, the production of the electrode plate 28 for the prismatic battery has been described. However, the production method of the present invention is not limited to the production of the electrode plate for the spiral electrode group used for the cylindrical battery. It can also be applied to manufacturing. For example, FIG.
After the respective steps (a) to (e), the current collectors 2 on both sides
8A is obtained by seam welding a lead hoop 9 having the same width as that of FIG. 7 and cutting the active material filled portion 22 into two parts by cutting along a cutting line indicated by a two-dot chain line in FIG. The shape is as shown in FIG. Next, the core material exposed portion 24 is compressed to an extremely small width using a width-adjusting jig substantially similar to the width-adjusting jig 33 in FIG. 5, and then cut to a predetermined length. An electrode plate 39 for a cylindrical battery as shown in FIG. 8B can be obtained. After the lead hoop 9 is seam-welded, the core exposed portion 24 is preliminarily compressed by using a width-adjusting jig similar to the width-adjusting jig 26 shown in FIG. 2, and then cut. Of course, it may be done.

【0053】上記円筒形電池の渦巻状電極群用の電極板
39は、芯材露出部24を圧縮して極めて小さい幅とで
きる分だけ活物質充填部22の体積を大きく設定するこ
とができるので、活物質量の増大に伴って電池を構成し
たときの高容量化を図ることができる。また、上記電極
板39は、芯材露出部24を極めて小さな幅に圧縮する
ことにより、極板幅のばらつきが格段に低減して高い寸
法精度を得ることができるとともに、凹凸の存在しない
芯材の全体に活物質を均一に充填して所要の工程を経た
のちに規定寸法に裁断するので、活物質量のばらつきも
極めて少なくなる。
In the electrode plate 39 for the spiral electrode group of the cylindrical battery, the volume of the active material filled portion 22 can be set to be as large as possible by compressing the core exposed portion 24 to have an extremely small width. In addition, a higher capacity can be achieved when a battery is configured with an increase in the amount of active material. In addition, the electrode plate 39 compresses the core exposed portion 24 to an extremely small width, thereby significantly reducing variations in the electrode plate width and obtaining high dimensional accuracy. Is uniformly filled with the active material and cut into prescribed dimensions after the required steps, so that the variation in the amount of the active material is extremely reduced.

【0054】図6は本発明の第3の実施の形態に係る電
池用電極板の製造方法を具現化した製造工程の一部を示
した縦断面図である。この実施の形態では、積層型電極
群を構成して角形電池に用いる電池用電極板を製造する
場合を例示してあり、図4(a)〜(h)と同様の工程
を経て、正極用の電極板素体32を形成する。つぎに、
図6(a)に示すように、積層型電極群を構成するのに
必要な枚数の電極板素体32と負極側電極板41とをそ
れらの間にセパレータ40を介在して重ね合わせ、その
積層状態で幅寄せ治具42の支持台43上に載置し、且
つ両側から一対の極板押え44で挟持して固定する。
FIG. 6 is a longitudinal sectional view showing a part of a manufacturing process which embodies a method for manufacturing a battery electrode plate according to a third embodiment of the present invention. This embodiment exemplifies a case in which a stacked electrode group is formed to manufacture a battery electrode plate used for a prismatic battery, and through the same steps as those shown in FIGS. Is formed. Next,
As shown in FIG. 6A, the number of electrode plate bodies 32 and the number of the negative electrode plates 41 necessary for constituting the stacked electrode group are overlapped with a separator 40 interposed therebetween. In a stacked state, it is placed on the support table 43 of the width-adjusting jig 42, and is clamped and fixed by a pair of electrode plate holders 44 from both sides.

【0055】続いて、同図(b)に示すように、各電極
板素体32の各々の接続リード部28cは、幅寄せ治具
42側に近接移動するプッシャ31によって下方に押圧
される。これにより、芯材露出部24は、上記各実施の
形態と同様に、接続リード部28cからの押圧力を集電
部28bを介し受けて圧縮されて、極めて小さい幅に縮
小される。これにより、電極板素体32は所要形状の正
極側電極板28とされ、それと同時に、正極側電極板2
8と負極側電極板41とがそれらの間にセパレータ40
を介在して積層されてなる角形電池用の電極群47が出
来上がる。したがって、この電極群47は、そのまま角
形電池用の電池ケース内に収納することができるので、
角形電池の生産性の向上を図ることができる。
Subsequently, as shown in FIG. 6B, each connection lead portion 28c of each electrode plate body 32 is pressed downward by the pusher 31 which moves toward the width shifting jig 42 side. As a result, the core exposed portion 24 is compressed by receiving the pressing force from the connection lead portion 28c via the current collecting portion 28b and reduced to an extremely small width, similarly to the above embodiments. Thus, the electrode plate body 32 is formed into the required shape of the positive electrode plate 28, and at the same time, the positive electrode plate 2
8 and the negative electrode plate 41 have a separator 40 therebetween.
The electrode group 47 for the prismatic battery, which is laminated with interposing, is completed. Therefore, this electrode group 47 can be stored in a battery case for a prismatic battery as it is,
The productivity of the prismatic battery can be improved.

【0056】なお、上記幅寄せ治具42に代えて、図6
(a)の積層状態とした電極板素体32、負極側電極板
41およびセパレータ40を電池ケース内に直接挿入し
て、その状態で同図(b)に示すようにプッシャ31で
各接続リード部28cを押圧して芯材露出部24を圧縮
することもでき、この場合には角形電池の生産性の一層
の向上を図ることができる。
It should be noted that, instead of the width shifting jig 42, FIG.
The electrode plate body 32, the negative electrode plate 41, and the separator 40 in the laminated state of (a) are directly inserted into the battery case, and in this state, each connection lead is pushed by the pusher 31 as shown in FIG. The core exposed portion 24 can be compressed by pressing the portion 28c. In this case, the productivity of the prismatic battery can be further improved.

【0057】また、図8の円筒形電池用の電極板39の
製造に際しても、図6と同様の製造工程を用いることが
できる。すなわち、図8(a)に示す状態としたものを
所定の極板長さ(図の左右方向の長さ)に切断して電極
板素体とし、この正極側の電極板素体と負極側電極板と
をこれらの間にセパレータを介在して重ね合わせた状態
で渦巻き状に巻回して、その巻回状態で幅寄せ治具また
は円筒形の電池ケース内に挿入する。そののち、プッシ
ャでリードフープおよび集電部を押圧して芯材露出部を
圧縮させれば、正極側の電極板39の形成と同時に円筒
形電池用の電極群を構成することができる。
In manufacturing the electrode plate 39 for a cylindrical battery in FIG. 8, the same manufacturing steps as in FIG. 6 can be used. 8A is cut into a predetermined electrode plate length (length in the left-right direction in the figure) to form an electrode plate body. The electrode plate body on the positive electrode side and the electrode plate body on the negative electrode side are cut off. The electrode plate and the electrode plate are spirally wound in a state of being overlapped with a separator interposed therebetween, and inserted into a width adjusting jig or a cylindrical battery case in the wound state. Thereafter, if the lead hoop and the current collector are pressed by the pusher to compress the core exposed portion, an electrode group for a cylindrical battery can be formed simultaneously with the formation of the positive electrode plate 39.

【0058】[0058]

【発明の効果】以上のように本発明の電池用電極板の製
造方法によれば、活物質充填部を、後工程で芯材露出部
を圧縮して極めて小さい幅とできる分を見込んで予め大
きな体積に設定することができから、活物質量が相当に
増大する。また、十分に大きな幅とした芯材露出部のう
ちの所要幅の部分を圧縮した集電部にリードフープを溶
接により接合したのちに芯材露出部を圧縮するので、溶
接時における焼き付きや連続スパークの発生を確実に防
止して、溶接に用いる電極などの長寿命化を図ることが
できる。さらに、一連の連続した製造工程中に幅寄せ圧
縮工程が介在するだけであるから、生産性の低下を招く
ことがない。また、リードフープを接合した状態でのリ
ードフープの位置ずれなどに起因する寸法ばらつきを、
幅寄せ圧縮工程において芯材露出部の幅を縮小するとき
に修正できるから、高い寸法精度を得ることができる。
As described above, according to the method for manufacturing a battery electrode plate of the present invention, the active material-filled portion is preliminarily formed in consideration of the possibility that the exposed portion of the core material is compressed to a very small width in a later step. Since the volume can be set to be large, the amount of the active material is considerably increased. In addition, the core exposed part is compressed after the lead hoop is welded to the current collector that has compressed the required width part of the core exposed part, which has been made sufficiently large, so that the seizure during welding and continuous The generation of sparks can be reliably prevented, and the life of electrodes used for welding can be extended. Further, since only the compression process is interposed in a series of continuous manufacturing processes, the productivity is not reduced. In addition, dimensional variations due to misalignment of the lead hoop when the lead hoop is joined,
Since the correction can be made when the width of the exposed portion of the core material is reduced in the width shifting compression process, high dimensional accuracy can be obtained.

【0059】また、本発明の電池用電極板によれば、芯
材露出部の幅を圧縮して小さくできる分だけ活物質量を
増大できるので、電池を構成したときの高容量化を図る
ことができる。
Further, according to the battery electrode plate of the present invention, the amount of active material can be increased by the amount that the width of the exposed portion of the core can be reduced by compression, so that the capacity of the battery can be increased. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(i)は本発明の第1の実施の形態に
係る電池用電極板の製造方法を具現化した製造工程を順
に示した斜視図。
FIGS. 1A to 1I are perspective views sequentially showing manufacturing steps which embody a method for manufacturing a battery electrode plate according to a first embodiment of the present invention.

【図2】(a)〜(d)は図1(g)の幅寄せ圧縮工程
における前半の加工行程を順に示した縦断面図。
2 (a) to 2 (d) are longitudinal sectional views sequentially showing a first half of a processing step in a width-adjusting compression step of FIG. 1 (g).

【図3】(e)〜(h)は図1(g)の幅寄せ圧縮工程
における後半の加工行程を順に示した縦断面図。
3 (e) to 3 (h) are longitudinal sectional views sequentially showing the latter half of a processing step in the width shifting compression step of FIG. 1 (g).

【図4】(a)〜(i)は本発明の第2の実施の形態に
係る電池用電極板の製造方法を具現化した製造工程を順
に示した斜視図。
FIGS. 4A to 4I are perspective views sequentially showing manufacturing steps which embody a method for manufacturing a battery electrode plate according to a second embodiment of the present invention.

【図5】(a)〜(d)は図4(i)の幅寄せ圧縮工程
における加工行程を順に示した縦断面図。
5 (a) to 5 (d) are longitudinal sectional views sequentially showing a processing step in a width shifting compression step of FIG. 4 (i).

【図6】(a),(b)は本発明の第3の実施の形態に
係る電池用電極板の製造方法を具現化した一部の製造工
程を示す縦断面図。
FIGS. 6 (a) and (b) are longitudinal sectional views showing a part of manufacturing steps embodying a method for manufacturing a battery electrode plate according to a third embodiment of the present invention.

【図7】(a)は同上の製造方法により製造された電池
用電極板を示す斜視図、(b)は比較のために示した従
来の製造方法による電池用電極板の斜視図。
FIG. 7A is a perspective view showing a battery electrode plate manufactured by the above manufacturing method, and FIG. 7B is a perspective view of a battery electrode plate according to a conventional manufacturing method shown for comparison.

【図8】(a)は本発明の製造方法を円筒形電池用電極
板に適用した場合の製造過程の斜視図、(b)は製造完
了した電極板の斜視図。
8A is a perspective view of a manufacturing process when the manufacturing method of the present invention is applied to an electrode plate for a cylindrical battery, and FIG. 8B is a perspective view of a completed electrode plate.

【図9】(a1),(a2),(b),(c)は従来の
電池用電極板の製造方法による製造工程を工程順に示し
た斜視図。
FIGS. 9 (a), (a2), (b), and (c) are perspective views showing a manufacturing process according to a conventional method for manufacturing a battery electrode plate in the order of steps.

【図10】(a),(b)は同上の製造方法による問題
点を説明するための一工程の断面図。
FIGS. 10A and 10B are cross-sectional views of one process for describing a problem caused by the manufacturing method.

【符号の説明】[Explanation of symbols]

9 リードフープ 21 芯材 22 活物質充填部 24 芯材露出部 26,33,42 幅寄せ治具 27 集電部 28,39 電池用電極板(正極側電極板) 29,38,44 極板押え 29a〜29d,38a,38b 規制面 30,34,43 支持台 32 電極板素体 40 セパレータ 41 負極側電極板 9 Lead hoop 21 Core material 22 Active material filling part 24 Core material exposed part 26, 33, 42 Width adjustment jig 27 Current collector part 28, 39 Battery electrode plate (positive electrode plate) 29, 38, 44 Electrode plate holder 29a-29d, 38a, 38b Regulatory surface 30, 34, 43 Support 32 Electrode plate body 40 Separator 41 Negative electrode plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 芳之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H022 AA04 AA09 BB01 BB02 BB03 BB05 BB11 BB21 CC05 CC17 5H050 AA02 AA08 AA19 BA13 BA14 BA17 DA04 FA02 FA05 FA06 GA03 GA04 GA07 GA12 GA23 GA27 GA30 HA12  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshiyuki Tada 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) BA17 DA04 FA02 FA05 FA06 GA03 GA04 GA07 GA12 GA23 GA27 GA30 HA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多孔質を有する薄板状の芯材の全体に活
物質を充填する活物質充填工程と、 前記活物質が充填済みの活物質充填部の辺縁部に沿って
超音波振動を付与することにより、活物質を除去した帯
状の芯材露出部を前記活物質充填部に沿って形成する活
物質除去工程と、 前記芯材露出部における辺縁部に沿った所定箇所にリー
ドフープを溶接により接合するリードフープ接合工程
と、 前記芯材露出部における前記リードフープが接合されて
いない箇所を前記活物質充填部に向け加圧しながら圧縮
して極小幅とする幅寄せ圧縮工程と、 前記活物質充填部およびリードフープを規定寸法に裁断
して個々の電池用電極板に分割する裁断工程とを有して
いることを特徴とする電池用電極板の製造方法。
1. An active material filling step of filling an entirety of a porous thin plate-shaped core material with an active material, and ultrasonic vibration along an edge of an active material filled portion filled with the active material. An active material removing step of forming a strip-shaped core material exposed portion from which the active material has been removed along the active material filling portion, and providing a lead hoop at a predetermined position along a peripheral portion of the core material exposed portion. A lead hoop joining step of joining the parts by welding, and a width approaching compression step of compressing the part where the lead hoop is not joined in the exposed part of the core toward the active material filling part to make the part a minimum width, A step of cutting the active material filling portion and the lead hoop into prescribed dimensions and dividing into individual battery electrode plates.
【請求項2】 多孔質を有する薄板状の芯材の全体に活
物質を充填する活物質充填工程と、 前記活物質が充填済みの活物質充填部の辺縁部に沿って
超音波振動を付与することにより、活物質を除去した帯
状の芯材露出部を前記活物質充填部に沿って形成する活
物質除去工程と、 前記芯材露出部における辺縁部に沿った所定箇所にリー
ドフープを溶接により接合するリードフープ接合工程
と、 前記活物質充填部、芯材露出部およびリードフープを規
定寸法に切断して個々の電極板素体に分割する切断工程
と、 前記各電極板素体における前記芯材露出部の前記リード
フープが接合されていない箇所を前記活物質充填部に向
け加圧しながら極小幅に圧縮することにより、前記各電
極板素体を電極板とする幅寄せ圧縮工程とを有している
ことを特徴とする電池用電極板の製造方法。
2. An active material filling step of filling the entirety of a porous thin core material with an active material; and ultrasonic vibration along an edge of the active material filled portion filled with the active material. An active material removing step of forming a strip-shaped core material exposed portion from which the active material has been removed along the active material filling portion, and providing a lead hoop at a predetermined position along a peripheral portion of the core material exposed portion. Joining step by welding, a cutting step of cutting the active material filled portion, the exposed core material and the lead hoop into prescribed dimensions and dividing into individual electrode plate bodies, And compressing a portion of the core material exposed portion where the lead hoop is not bonded to the active material filling portion to an extremely small width while pressing the portion toward the active material filling portion. Characterized by having Method for manufacturing a battery electrode plate which.
【請求項3】 幅寄せ圧縮工程において、正極側または
負極側の電極板素体と負極側または正極側の電極板とを
これらの間にセパレータを介在して重ね合わせた状態で
幅寄せ治具の内部または電池ケースの内部に固定したの
ち、前記電極板素体における芯材露出部のリードフープ
が接合されていない箇所を前記活物質充填部に向け加圧
しながら極小幅に圧縮するようにした請求項2に記載の
電池用電極板の製造方法。
3. The width-adjusting jig in the width-adjusting compression step in a state where the positive electrode side or the negative electrode side electrode plate body and the negative electrode side or the positive electrode side electrode plate are overlapped with a separator interposed therebetween. After being fixed to the inside of the battery case or the inside of the battery case, the portion of the electrode plate body where the lead hoop of the exposed core material is not joined is compressed toward an extremely small width while being pressed toward the active material filling portion. A method for producing the electrode plate for a battery according to claim 2.
【請求項4】 活物質除去工程を経て形成された芯材露
出部のうちの辺縁部に沿った所定箇所にリードフープを
溶接により接合し、前記芯材露出部のうちの前記リード
フープの接合箇所を、接合前または接合時に圧縮して集
電部とし、幅寄せ圧縮工程において、残存する芯材露出
部に、リードフープに加えた押圧力を前記集電部を介し
付与することにより、前記芯材露出部を活物質充填部寄
りに加圧して圧縮するようにした請求項1ないし3の何
れかに記載の電池用電極板の製造方法。
4. A lead hoop is joined by welding to a predetermined portion along a peripheral portion of the exposed core material formed through the active material removing step, and the lead hoop of the exposed core material is welded. The joining portion is compressed before or at the time of joining to form a current collecting portion, and in the width shifting compression process, by applying a pressing force applied to the lead hoop to the remaining exposed core material through the current collecting portion, 4. The method for manufacturing an electrode plate for a battery according to claim 1, wherein the exposed portion of the core material is compressed by being pressed toward the active material filling portion.
【請求項5】 幅寄せ圧縮工程において、リードフープ
のうちの所定長さを外方に突出させた配置で活物質充填
部を支持台上に載置し、極板押えにおける2段階に突出
した2つの規制面を前記リードフープと前記活物質充填
部および芯材露出部とに対し少許の間隙で対向させた状
態で、前記リードフープにおける前記支持台からの突出
部分を前記支持台寄りに押し込んだのち、前記極板押え
を前記間隙分だけ前記支持台側に近接移動させるように
した請求項4に記載の電池用電極板の製造方法。
5. In the width-adjusting compression step, the active material-filled portion is placed on a support base in such a manner that a predetermined length of the lead hoop is projected outward, and is projected in two stages in holding the electrode plate. In a state where the two regulating surfaces are opposed to the lead hoop and the active material filling portion and the core material exposed portion with a small gap, a protruding portion of the lead hoop from the support base is pushed toward the support base. 5. The method for manufacturing an electrode plate for a battery according to claim 4, wherein the electrode plate retainer is moved closer to the support base by the gap.
【請求項6】 請求項1ないし5の何れかに記載の製造
方法による製造工程を経て製造された電池用電極板。
6. An electrode plate for a battery manufactured through a manufacturing process according to the manufacturing method according to claim 1.
JP2001148777A 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate Expired - Fee Related JP4754094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148777A JP4754094B2 (en) 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148777A JP4754094B2 (en) 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate

Publications (2)

Publication Number Publication Date
JP2002343345A true JP2002343345A (en) 2002-11-29
JP4754094B2 JP4754094B2 (en) 2011-08-24

Family

ID=18994031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148777A Expired - Fee Related JP4754094B2 (en) 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate

Country Status (1)

Country Link
JP (1) JP4754094B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104271A1 (en) * 2004-04-21 2005-11-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Battery electrode plate and method of manufacturing the same
JP2006252805A (en) * 2005-03-08 2006-09-21 Furukawa Battery Co Ltd:The Manufacturing method of electrode plate for alkaline storage battery
JP2010027414A (en) * 2008-07-22 2010-02-04 Murata Mfg Co Ltd Manufacturing method for battery
JP2013211123A (en) * 2012-03-30 2013-10-10 Panasonic Corp Battery
JP2014130800A (en) * 2012-11-28 2014-07-10 Toyota Motor Corp Manufacturing method and manufacturing apparatus for battery electrode
KR101520345B1 (en) * 2013-12-03 2015-05-15 (주)오렌지파워 Three dimensional electrode assembly and manufacturing method of the same
WO2016114426A1 (en) * 2015-01-15 2016-07-21 (주)오렌지파워 Three-dimensional electrode assembly and method for manufacturing same
WO2023221614A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Marking device and electrode sheet production system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136759A (en) * 1985-12-10 1987-06-19 Matsushita Electric Ind Co Ltd Manufacture of electrode for battery
JPS6340253A (en) * 1986-08-04 1988-02-20 Sanyo Electric Co Ltd Manufacture of electrode for battery
JP2000106169A (en) * 1998-07-29 2000-04-11 Japan Storage Battery Co Ltd Electrode manufacturing method and battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136759A (en) * 1985-12-10 1987-06-19 Matsushita Electric Ind Co Ltd Manufacture of electrode for battery
JPS6340253A (en) * 1986-08-04 1988-02-20 Sanyo Electric Co Ltd Manufacture of electrode for battery
JP2000106169A (en) * 1998-07-29 2000-04-11 Japan Storage Battery Co Ltd Electrode manufacturing method and battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104271A1 (en) * 2004-04-21 2005-11-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Battery electrode plate and method of manufacturing the same
JP2005310542A (en) * 2004-04-21 2005-11-04 Ishikawajima Harima Heavy Ind Co Ltd Battery electrode plate and manufacturing method of battery electrode plate
KR100810465B1 (en) * 2004-04-21 2008-03-07 가부시키가이샤 아이에이치아이 Cell electrode plate and process for producing the same
US7510583B2 (en) 2004-04-21 2009-03-31 Ishikawajima-Harima Heavy Industries Co., Ltd. Cell electrode plate and process for producing the same
JP2006252805A (en) * 2005-03-08 2006-09-21 Furukawa Battery Co Ltd:The Manufacturing method of electrode plate for alkaline storage battery
JP2010027414A (en) * 2008-07-22 2010-02-04 Murata Mfg Co Ltd Manufacturing method for battery
JP2013211123A (en) * 2012-03-30 2013-10-10 Panasonic Corp Battery
JP2014130800A (en) * 2012-11-28 2014-07-10 Toyota Motor Corp Manufacturing method and manufacturing apparatus for battery electrode
KR101520345B1 (en) * 2013-12-03 2015-05-15 (주)오렌지파워 Three dimensional electrode assembly and manufacturing method of the same
WO2016114426A1 (en) * 2015-01-15 2016-07-21 (주)오렌지파워 Three-dimensional electrode assembly and method for manufacturing same
WO2023221614A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 Marking device and electrode sheet production system

Also Published As

Publication number Publication date
JP4754094B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
KR100438262B1 (en) Method and device for manufacturing electrode plate for cell, and cell using the electrode plate
JP4401634B2 (en) Storage battery and manufacturing method thereof
JP4580620B2 (en) Method for manufacturing spiral electrode group used in battery
JP2006310254A (en) Manufacturing method of battery
JP4754094B2 (en) Manufacturing method of battery electrode plate
US5025551A (en) Method for the assembly of lead-acid batteries and associated apparatus
JP3089351B2 (en) Tab welding apparatus for battery electrode plate and method for manufacturing battery electrode plate using the same
JP2003282032A (en) Battery and its manufacturing method
JP2003297430A (en) Method of manufacturing secondary battery and device for manufacturing secondary battery electrode
JP4342160B2 (en) Storage battery and manufacturing method thereof
JP3349268B2 (en) Electrode manufacturing method
JP4794184B2 (en) Method for producing electrode plate for alkaline storage battery
CN216502930U (en) Multilayer utmost point ear welded fastening device
JPH0770311B2 (en) Battery electrode manufacturing method
JP5196824B2 (en) Cylindrical battery and manufacturing method thereof
US4973335A (en) Method for the assembly of lead-acid batteries and associated apparatus
JP2001043889A (en) Forming method of flat-shaped rolled-type electrode body, and flat-shaped rolled-type electrode body
JP3500863B2 (en) Electrode material cutting equipment
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
JPH10228908A (en) Alkaline storage battery
JP2001043844A (en) Long electrode plate for cylindrical storage battery
JPH02250261A (en) Manufacture of paste type electrode for alkaline storage battery
JP2984816B2 (en) How to attach tab to positive plate
CN117497965A (en) Method for mounting current collecting disc of full-tab battery
CN115149067A (en) Battery module preparation equipment and manufacturing method of battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees