JP4754094B2 - Manufacturing method of battery electrode plate - Google Patents

Manufacturing method of battery electrode plate Download PDF

Info

Publication number
JP4754094B2
JP4754094B2 JP2001148777A JP2001148777A JP4754094B2 JP 4754094 B2 JP4754094 B2 JP 4754094B2 JP 2001148777 A JP2001148777 A JP 2001148777A JP 2001148777 A JP2001148777 A JP 2001148777A JP 4754094 B2 JP4754094 B2 JP 4754094B2
Authority
JP
Japan
Prior art keywords
active material
electrode plate
core material
width
exposed portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001148777A
Other languages
Japanese (ja)
Other versions
JP2002343345A (en
Inventor
恒義 村上
克博 岡本
芳之 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001148777A priority Critical patent/JP4754094B2/en
Publication of JP2002343345A publication Critical patent/JP2002343345A/en
Application granted granted Critical
Publication of JP4754094B2 publication Critical patent/JP4754094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、ニッケル水素蓄電池、ニッケルカドミウム蓄電池およびリチウムイオン蓄電池などの二次電池において電解液と共に発電要素を構成する電池用電極板であって、特に、三次元発泡メタルなどの多孔質を有する芯材に活物質が充填されてなる非焼結式の電池用電極板の製造方法に関するものである。
【0002】
【従来の技術】
二次電池の電極板としては、高多孔度を有する連続した三次元的な網目構造を有する発泡メタルを芯材として、この芯材に活物質を充填したものが、充電容量の面で非常に優れていることから、広く採用されている。さらに、近年の電池には高率放電特性の向上が強く求められており、その対応策としては以下のような構成が採用されている。
【0003】
すなわち、高率放電特性の向上を図った電池用電極板は、芯材に活物質を充填した活物質充填部の一辺に沿った箇所に充填済みの活物質を除去した芯材露出部を形成するとともに、その芯材露出部を、活物質の充填前または除去後に圧縮して空隙率を低下させることにより、集電部を形成し、この集電部に接続リード部を溶接により接合した構成とする。
【0004】
角形電池用電極群は、上記集電部を有する正負の電極板をその間にセパレータを介在して交互に積み重ねて構成される。一方、円筒形電池用電極群は、上記集電部を有する正負の電極板をその間にセパレータを介在して重ね合わせた状態で渦巻き状に巻回して構成される。したがって、何れの電極群においても、両端部に接続リード部が接合された正負の集電部が複数または全周にわたって形成されるから、この両端の接続リード部に集電板を接合することにより、各電極板から個々にまたは渦巻き状の全周部分から集電することが可能となって全体の集電効率が向上する。しかも、上記集電部は金属の芯材が露出されて接続リード部を溶接するのに適した状態になっているから、その接続リード部に集電板などを溶接により接合するタブレス方式によって集電特性が格段に向上し、上述の高率放電特性を向上させるという要望に対応することができる。
【0005】
上述のような高率放電特性の向上を図ることができる電池用電極板は、例えば、図9に示すような工程を経て製造されている(特開2000-315498 号公報参照)。先ず、同図(a1)に示す第1工程では、発泡メタルなどの三次元構造を有する芯材1に、両側辺に沿った凹み部と、この凹み部に平行であって凹み部の2倍の溝幅を有する複数本の溝部とを、プレス成型または圧縮工程を経て形成する。つぎに、凹み部および溝部を含む芯材1全体には、スラリー状またはペースト状の活物質を充填し、続いて、凹み部および溝部にそれぞれ付着している活物質をブラシとエアーブローを用いた手段で除去して芯材1を露出させたのちに、活物質を乾燥させることにより、活物質充填部2と、上記凹み部および溝部に対応する箇所における芯材露出部3とを形成する。つぎに、溝部に対応する芯材露出部3は、その溝幅の中央の破線で示す切断線に沿って切断することにより、帯状の活物質充填部2の長手方向に沿う両端部に芯材露出部3を有する極板フープ4を製作する。
【0006】
同図(b)に示す第2工程では、一対の圧縮ロール(図示せず)の間を通過して圧縮を施された上記極板フープ4の芯材露出部3に、上下の一対の円板電極7,8を用いたシーム溶接工法によって帯状金属板であるリードフープ9を接合する。
【0007】
同図(c)に示す第3工程では、トリミングパンチ10とトリミングダイ11とを用いてリードフープ9に対し打ち抜き加工を施すことにより、リードフープ9を接続リード部12に成形する。この接続リード12を成形した極板フープ4は、製作すべき電極板の極板幅に相当する距離ずつ間欠送りしながら、切断パンチ13と切断ダイ14とを用いて電池外装缶内に収納するときの規格寸法に切断する。これにより、図7(b)に示すように、活物質充填部2の一端部に接続リード部12を有する角形電池用の電極板17が出来上がる。なお、円筒形電池用の電極板は、上述したとほぼ同様の工程を経て製作され、角形電池用と相違するのは、接続リード部の形状と角形電池用の極板幅よりも長い長さに切断することだけである。
【0008】
また、従来では、図9(a1)の第1の工程に代えて、同図(a2)に示す工程が採用されることもある。この(a2)の工程では、芯材1の全体に活物質を充填したのちに圧延工程を経ることにより、全体に活物質充填部2を形成し、その活物質充填部2の辺縁部に沿った所定箇所に、活物質を完全に除去することを目的として振幅を大きく設定した超音波振動を超音波ホーンヘッド18から付与することにより、活物質を剥離しながら除去して芯材露出部3を形成している。(特開2000-77054号公報参照)。
【0009】
【発明が解決しようとする課題】
しかしながら、上述した従来の製造方法では、後述する理由により、芯材露出部3の幅Dを図7(b)に示すように大きく設定する必要があり、その芯材露出部3の大きな幅D分だけ活物質充填部2の体積、つまり単位体積当たりの活物質量が減少して、電池を構成したときの高容量化を図ることができないという問題がある。
【0010】
すなわち、芯材露出部3を、例えば図10(a)に示すようにリードフープ9の接合に必要なだけの可及的に小さな幅dに設定した場合には、上下の円板電極7,8によるシーム溶接工法によってリードフープ9を芯材露出部3に接合するときに、活物質充填部2における芯材露出部3に近接箇所の活物質の一部が両円板電極7,8間に入り込むおそれがある。両円板電極7,8の間に活物質充填部2から入り込んだ活物質は大きな電気抵抗となるため、スパークを発生させて円板電極7,8、リードフープ9および芯材露出部3の何れか又はこれらの全てが溶ける不良が生じる。その結果、溶接部分には焼き付きや連続スパークなどが発生して、連続したシーム溶接を行えなくなる不具合が生じる。しかも、円板電極7,8は、発生するスパークによって消耗するので、所要の寿命を確保することができない。
【0011】
そこで、従来では、同図(b)に示すように、芯材露出部3を十分に大きな幅Dに設定して、上述した焼き付きや連続スパークなどの発生を確実に防止するようにしている。これに伴って、従来の電極板17は、単位体積当たりの活物質量が減少し、電池を構成したときの高容量化を阻害する要因になっている。なお、芯材露出部3は、リードフープ9を接合すべき箇所をリードフープ9の接合に先立って予め圧縮される場合と、図10(a),(b)に2点鎖線で示すように、リードフープ9の接合時に一対の円板電極7,8によってリードフープ9を溶接するのと同時に圧縮される場合とがある。
【0012】
一方、図9(a2)の工程は、活物質を完全に除去しながら幅の小さい芯材露出部3を形成することを目的としたものであるが、この場合にも芯材露出部3の幅を小さく設定すれば、超音波振動の付与が不安定となり、形成された芯材露出部3内に活物質が残存してしまう。そのため、どうしても活物質を多めに剥離する必要があるので、結局、形成された芯材露出部3は、(a1)の工程を用いた場合と同様に幅が大きくなってしまい、上述したと同様の問題が生じる。
【0013】
そこで、本発明は、上記従来の課題に鑑みてなされたもので、単位体積当たりの活物質量の大きい電池用電極板を支障なく製造できる製造方法を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、第1の発明に係る電池用電極板の製造方法は、多孔質を有する薄板状の芯材の全体に活物質を充填する活物質充填工程と、前記活物質が充填済みの活物質充填部の辺縁部に沿って超音波振動を付与することにより、活物質を除去した帯状の芯材露出部を前記活物質充填部に沿って形成する活物質除去工程と、前記芯材露出部における辺縁部に沿った所定箇所にリードフープを溶接により接合するリードフープ接合工程と、前記芯材露出部における前記リードフープが接合されていない箇所を前記活物質充填部に向け加圧しながら圧縮して極小幅とする幅寄せ圧縮工程と、前記活物質充填部およびリードフープを規定寸法に裁断して個々の電池用電極板に分割する裁断工程とを有していることを特徴としている。
【0015】
この電池用電極板の製造方法では、活物質充填部を、後工程で芯材露出部を圧縮して極めて小さい幅とできる分を見込んで予め大きな体積に設定することができから、活物質量が相当に増大する。また、十分に大きな幅とした芯材露出部のうちの所要幅の部分にリードフープを溶接により接合したのちに芯材露出部を小さな幅に圧縮するので、溶接時における焼き付きや連続スパークの発生を確実に防止して、溶接に用いる電極などの長寿命化を図ることができる。さらに、一連の連続した製造工程中に幅寄せ圧縮工程が介在するだけであるから、生産性の低下を招くことがない。また、リードフープを接合した状態でのリードフープの位置ずれなどに起因する寸法ばらつきを、幅寄せ圧縮工程において芯材露出部の幅を縮小するときに修正できるから、高い寸法精度を得ることができる。
【0016】
第2の発明に係る電池用電極板の製造方法は、多孔質を有する薄板状の芯材の全体に活物質を充填する活物質充填工程と、前記活物質が充填済みの活物質充填部の辺縁部に沿って超音波振動を付与することにより、活物質を除去した帯状の芯材露出部を前記活物質充填部に沿って形成する活物質除去工程と、前記芯材露出部における辺縁部に沿った所定箇所にリードフープを溶接により接合するリードフープ接合工程と、前記活物質充填部、芯材露出部およびリードフープを規定寸法に切断して個々の電極板素体に分割する切断工程と、前記各電極板素体における前記芯材露出部の前記リードフープが接合されていない箇所を前記活物質充填部に向け加圧しながら極小幅に圧縮することにより、前記各電極板素体を電極板とする幅寄せ圧縮工程とを有していることを特徴としている。
【0017】
この電池用電極板の製造方法では、第1の発明と同様に、活物質充填部を、後工程で芯材露出部を圧縮して極めて小さい幅とできる分を見込んで予め大きな体積に設定することができから、活物質量が相当に増大する。また、十分に大きな幅とした芯材露出部のうちの所要幅の部分を圧縮した集電部にリードフープを溶接により接合したのちに芯材露出部を圧縮するので、溶接時における焼き付きや連続スパークの発生を確実に防止して、溶接に用いる電極などの長寿命化を図ることができる。さらに、一連の連続した製造工程中に幅寄せ圧縮工程が介在するだけであるから、生産性の低下を招くことがない。また、リードフープを接合した状態でのリードフープの位置ずれなどに起因する寸法ばらつきを、幅寄せ圧縮工程において芯材露出部の幅を縮小するときに修正できるから、高い寸法精度を得ることができる。
【0018】
上記第2の発明における幅寄せ圧縮工程において、正極側または負極側の電極板素体と負極側または正極側の電極板とをこれらの間にセパレータを介在して重ね合わせた状態で幅寄せ治具の内部または電池ケースの内部に固定したのち、前記電極板素体における芯材露出部のリードフープが接合されていない箇所を前記活物質充填部に向け加圧しながら極小幅に圧縮することもできる。
【0019】
これにより、電極板素体を、これの芯材露出部の幅を圧縮して小さくすることによって所要形状の電極板とすると同時に、角形電池用または円筒形電池用の電極群を構成することができるから、電池の生産性の一層の向上を図ることが可能となる。
【0020】
上記各発明において、活物質除去工程を経て形成された芯材露出部のうちの辺縁部に沿った所定箇所にリードフープを溶接により接合し、前記芯材露出部のうちの前記リードフープの接合箇所を、接合前または接合時に圧縮して集電部とし、幅寄せ圧縮工程において、残存する芯材露出部に、リードフープに加えた押圧力を前記集電部を介し付与することにより、前記芯材露出部を活物質充填部寄りに加圧して圧縮することが好ましい。
【0021】
これにより、リードフープが接合されている集電部は、残存する芯材露出部に比較して、圧縮されたことによって機械的な強度や密度が高められているので、芯材露出部を圧縮しながらリードフープと一体的に移動して、残存する芯材露出部を容易、且つ確実に圧縮することができる。
【0022】
同上の幅寄せ圧縮工程において、リードフープのうちの所定長さを外方に突出させた配置で活物質充填部を支持台上に載置し、極板押えにおける2段階に突出した2つの規制面を前記リードフープと前記活物質充填部および芯材露出部とに対し少許の間隙で対向させた状態で、前記リードフープにおける前記支持台からの突出部分を前記支持台寄りに押し込んだのち、前記極板押えを前記間隙分だけ前記支持台側に近接移動させることが好ましい。
【0023】
これにより、リードフープは、極板押えの規制面に対し少許の間隙を有しているから、規制面に曲がり変形するのが防止されながら摺動して円滑に移動する。一方、芯材露出部は、極板押えの規制面に対し少許の間隙を有しているから、僅かに膨れ上がりながらスムーズに圧縮される。そののち、極板押えが間隙分だけ支持台側に近接移動したときに、芯材露出部における圧縮時の膨出部分を加圧して、芯材露出部を活物質充填部と面一となるよう修正できる。
【0025】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について図面を参照しつつ詳細に説明する。図1は本発明の第1の実施の形態に係る電池用電極板の製造方法を具現化した製造工程を順に示した斜視図である。この実施の形態では、積層型電極群を構成して角形電池に用いる電池用電極板を製造する場合を例示してある。
【0026】
先ず、(a)に示す所定サイズの矩形状若しくは帯状の三次元発泡メタルからなる芯材21の全体に、(b)に示すように活物質を充填して活物質充填部22とする。この活物質充填部22の形成に際しては、プレス加工前であって全く凹凸のない芯材21に対し活物質を充填するので、全体にわたり均一な充填密度に充填できるとともに、凹凸つまり高低差がないことから、充填した活物質が流動することなく内部に保持されて、均一な充填密度を保持したまま乾燥される。これに対し従来の製造方法による図9(a1)の工程では、プレス成型または圧延工程を経て凹み部および溝部を予め形成した芯材1に活物質を充填するので、凹凸面の存在に起因して活物質の充填密度にばらつきが生じる。
【0027】
つぎに、上述のように均一な充填密度の活物質充填部22が形成された芯材21は、(c)に示すように、後工程において芯材露出部となる部分を除く全ての部分にプレス加工が施されることにより、ほぼ1/2に圧縮され、後工程で芯材露出部となる部分が2本の平行なレール状の残存凸条部23として残存する。このプレス加工には、図示していないが、本件出願人による出願に係る特願2000-261471 号における図2に示したストライプロールプレス機と基本構造が同じであって、加工プレスロールが所定の配置で設けられたストライプロールプレス機が用いられる。
【0028】
続いて、2つの残存凸条部23は、(d)に示す活物質除去工程において、自体の内部に充填されている活物質充填部22が除去されることにより、2つの芯材露出部24とされる。この活物質除去工程では、上述した特願2000-261471 号における図4に示した超音波振動器を備えた活物質除去装置とほぼ同様の構成を有する活物質除去装置(図示せず)を用いて処理される。ここでの芯材露出部24の幅Dは、後工程でリードフープを接合するのに必要な所定幅よりも大きく設定されている。それにより、超音波振動器からは、十分に大きな振幅に設定した超音波振動を付与することができ、活物質の結合度の如何に関わらず、活物質を残存することなく完全に除去した芯材露出部24を形成することができる。
【0029】
つぎに、(e)に示すように、各芯材露出部24のうちのリードフープを接合するのに必要な所定幅dの部分は、プレスロール(図示せず)で圧縮されて、残存する元の芯材露出部24よりも一段低い集電部27とされる。続いて、(f)に示すように、集電部27には、図10に示したと同様の一対の円板電極7,8を用いたシーム溶接工法によってリードフープ9が接合される。このリードフープ9は、十分に大きな幅Dに設定して活物質を完全に除去した芯材露出部24の一部を圧縮してなる集電部27にシーム溶接するのとともに、一対の円板電極7,8の内方側に活物質が残存しない芯材露出部24が存在しているから、一対の円板電極7,8間に活物質が介在するおそれが全くなく、焼き付きや連続スパークなどが生じることがない。
【0030】
そのため、円板電極7,8は所要の長寿命を確実に確保することができる。実測結果によると、図10(a)に示すように、芯材露出部3をリードフープ9の接合に必要とする可及的に小さな幅に設定した場合には、円板電極7,8の寿命が72時間であったのに対し、この実施の形態の工程を採用した場合には、円板電極7,8の寿命が1200時間に大幅に延びた。
【0031】
上述のリードフープ9を接合したのち、圧縮されなかった芯材露出部24は、(g)に示す幅寄せ圧縮工程において、活物質充填部22寄りに加圧されて圧縮されることにより、極めて小さな幅とされる。この幅寄せ圧縮工程の詳細については後述する。最後に、(h)に1点鎖線で示す各切断線に沿って打ち抜きおよび裁断されることにより、(i)および図7(a)に示すような角形電池用の電極板28が得られる。この電池用電極板28は、活物質充填部28aと、活物質が除去されたのちに圧縮された集電部28bと、この集電部28bに接合された接続リード部28cとを有しており、幅方向に圧縮された芯材露出部28dは、殆ど無視できる極めて小さな幅になっている。
【0032】
なお、(h)における打ち抜き加工では、図9(c)に示したトリミングパンチ10とトリミングダイ11とを用いてリードフープ9を打ち抜くことにより、リードフープ9を接続リード部28cに成形する。切断加工では、同じく図9(c)に示した切断パンチ13と切断ダイ14とを用いて、電池ケース内に収納するときの規格寸法に切断する。
【0033】
図2(a)〜(d)は図1(g)の幅寄せ圧縮工程における加工行程を順に示した縦断面図である。先ず、(a)に示す第1の行程では、極板押え29が上方へ、且つ一対のプッシャ31が側方へそれぞれ退避した状態において、一対の集電部27にリードフープ9が接合された被加工物が、図の手前側に向け所定長さ分だけ間欠送りされて支持台30上の所定位置にセットされる。このとき、両側の一対のリードフープ9は、極板押え29と支持台30とからなる幅寄せ治具26から共に同じ所定長さだけ外方に突出するように設定されている。すなわち、リードフープ9の突出長は、芯材露出部24の幅よりも僅かに小さく設定されている。
【0034】
つぎに、(b)に示す第2の行程では、極板押え29が所定位置まで下降する。このとき、極板押え29の下段規制面29aとリードフープ9との間隙G1および極板押え29の中断規制面29bと芯材露出部24および活物質充填部22との間隙G2は、共に0.05〜0.10mmの少許の範囲に設定されている。
【0035】
続いて、(c)に示す第3の行程では、一対のプッシャ31が、幅寄せ治具26に接触する位置まで移動して、外方に突出していた一対のリードフープ9をそれぞれ幅寄せ治具26内に押し込む。このとき、リードフープ9が接合されている集電部27は、図1(e)の工程において圧縮されたことによって芯材露出部24よりも機械的な強度や密度が高められているので、芯材露出部24を圧縮しながらリードフープ9と一体的に幅寄せ治具26の内方側へ押し込められる。これにより、図1(e)の工程で圧縮されずに高い空孔率(90%程度)のままの芯材露出部24は、極めて小さい幅に圧縮される。
【0036】
このとき、両側のプッシャ31は対応するリードフープ9を同時に同一の力で同一の距離だけ押圧するので、両側の芯材露出部24は、中央の活物質充填部22によって恰も自動調心され、ほぼ同等に圧縮される。また、リードフープ9は、上述のように極板押え29の下段規制面29aに対し0.05〜0.10mmの間隙を有しているから、下段規制面29aに曲がり変形するのが防止されながら摺動して円滑に移動する。一方、芯材露出部24は、極板押え29の中段規制面29bに対し0.05〜0.10mmの間隙を有しているから、僅かに膨れ上がりながらスムーズに圧縮される。最後に、(d)に示す第4の行程では、極板押え29が、上述した間隙(0.05〜0.10mm)分だけ下降しながら芯材露出部24における圧縮時の上方への膨出部分を加圧して、芯材露出部24を活物質充填部22と面一となるよう修正する。
【0037】
図1の製造工程を経て得られた図7(a)の電池用電極板28は、同図(b)に示す従来の製造工程による電池用電極板17と比較した場合、活物質充填部28aを、芯材露出部28dを圧縮して極めて小さい幅とできる分を見込んで予め大きな体積に設定することができから、活物質量が相当に増大して、それに伴って電池を構成したときの高容量化を図ることができる。
【0038】
具体的な実測値を示すと、極板幅(図7の横寸法)が15mm、極板長さ(図7の縦寸法)が31mm、厚みが0.8 mmの規格値を有する形状の電極板28,17を得る場合、従来の電極板17では芯材露出部3の幅(図7の縦寸法)が1.5 mmであったのに対し、実施の形態の製造工程を経た電極板28では芯材露出部28dの幅が0.5 mmとなった。これにより、上記実施の形態の製造工程を経て得られた電極板28では、活物質充填部28aの長さ(縦寸法)が1mm増大して、活物質量が従来の電極板17に比較して約3%増大した。しかも、十分に大きな幅とした芯材露出部24のうちの所要幅の部分を圧縮した集電部28bにリードフープ9をシーム溶接工法で接合したのちに芯材露出部24を圧縮するので、シーム溶接時における焼き付きや連続スパークの発生を確実に防止できる。
【0039】
また、図1の製造工程では、一連の連続した工程中に幅寄せ圧縮工程が介在するだけであるから、生産性の低下を招くことがなく、それに加えて、特に極板長さの寸法精度の高い電極板28を得ることができる。この高い寸法精度が得られるのは、図1(c)の工程でプレス加工する際芯材21とプレスロール(図示せず)との位置ずれ、および図1(f)の工程でリードフープ9を集電部27に接合した状態での幅W1に、リードフープ9の位置ずれ、さらに同(f)工程で芯材21の供給位置ずれなどが発生し易いことに起因して約±0.3 mmの寸法ばらつきが生じるが、同図(g)の幅寄せ圧縮工程において、一対のリードフープ9の外方側端部がプッシャ31によって図2の幅寄せ治具26に外側端面に一致するよう押し込められることから、この幅寄せ圧縮工程後の幅W2が±0.05mmの寸法ばらつきに抑えられるからである。
【0040】
ところで、図9の製造工程を経て製造された従来の電池用電極板17では、活物質を正確な幅に管理しながら除去するのが困難であることから、活物質露出部3の幅および活物質露出部3の幅にばらつきが生じ易く、それに応じて活物質充填部2における活物質の重量にばらつきが生じていた。そのため、積層型電極群を構成するに際しては、製造後の電池用電極板17を重量選別して、ほぼ同じ重量の電池用電極板17を組み合わせて積層するといった煩雑な工程を必要としていた。
【0041】
これに対し、上記第1の実施の形態で得られた電池用電極板28では、図1(a)の工程において、凹凸の存在しない芯材21の全体に活物質を均一に充填でき、(g)の幅寄せ圧縮工程において、両側の芯材露出部24が中央の活物質充填部22によって恰も自動調心される状態で圧縮されることにより、リードフープ9の接合位置のばらつきなどが修正されて、上述したように幅寄せ圧縮工程後の幅W2が±0.05mmの寸法ばらつきに抑えられ、その幅W2の中央部を切断して2分割したのちに、規定寸法に裁断するので、得られた電極板28には活物質量のばらつきが極めて少なくなり、従来の重量選別の工程を削減することができるという大きな利点がある。
【0042】
なお、図1の製造工程では、リードフープ9の接合に先立って、(e)の工程で芯材露出部24のうちのリードフープを接合するのに必要な所定幅dの部分を圧縮して集電部27を形成するようにしたが、上記(e)の工程は削除してもよい。この場合には、(f)の工程において、リードフープ9を、(d)の工程で形成した芯材露出部24の所定箇所に直接的に溶接して接合することになるが、図10で説明したように、リードフープ9の溶接時に、芯材露出部24におけるリードフープ9が溶接される箇所が、一対の円板電極7,8によって溶接と同時に圧縮されて、集電部27とされるからである。
【0043】
また、図1(g)の幅寄せ圧縮工程では、図2(a)〜(d)の加工行程を終了したのちに、図3(e)〜(f)に示す加工行程を設けるようにしてもよい。図3において、極板押え29には、図2に示した箇所に対し後段側箇所、つまり集電部27にリードフープ9が接合された活物質充填部22が図2の位置よりも所定長さだけ間欠送りされた位置に対応する後段側箇所に、図2に示した下段規制面29aより長い幅の下段規制面29cと、下段規制面29cの幅が長くなった分だけ図2の中段規制面29bよりも幅が短くなった中段規制面29dとが設けられている。上記下段規制面29cは、図2の工程において内方へ押し込められたリードフープ9の内端部に対応する箇所まで延びた大きな幅に設定されている。
【0044】
図2と図3とに示す支持台30および極板押え29は一体物であるから、図3(e)〜(h)の各行程と図2(a)〜(d)の各行程とは、それぞれ対応する同一動作状態を示している。この図3(e)〜(h)の各行程を設ければ、(e)に示すように、図2の各行程を終えたのちに、芯材露出部24の一部にリープフープ9の上方への突出部24aが形成されても、この突出部24aは、(f)の行程において、極板押え29が下降した時に下段規制面29cによってリードフープ9の内端面上に押し付けられたのちに、(h)の行程において、極板押え29がリードフープ9に接触する位置までさらに下降したときに、内部側に押し戻され、僅かな一部がリードフープ9上に薄く押し広げられる。これにより、残存する芯材露出部24は所要の形状に確実に整形できる。
【0045】
図4は本発明の第2の実施の形態に係る電池用電極板の製造方法を具現化した製造工程を順に示した斜視図である。この実施の形態においても、積層型電極群を構成して角形電池に用いる電池用電極板を製造する場合を例示してあり、(a)〜(f)の各工程は図1と同様であるので、その説明を省略する。(g)の工程では、芯材露出部24を幅寄せ圧縮しない状態において、1点鎖線で示す各切断線に沿って打ち抜きおよび切断することにより、(h)に示すように、後工程を経て個々の電極板となる電極板素体32に分割する。
【0046】
上記電極板素体32は、第1の実施の形態で得られた電池用電極板28と同様の活物質充填部28aと集電部28bと接続リード部28cとを備えているので、上記電極板28との関連を明確にして理解を容易にするために、同一の符号を付してあり、芯材露出部24のみが幅寄せ圧縮されずにそのまま残存している。そこで、各電極板素体32には、(i)の工程において各々の芯材露出部24に対し幅寄せ圧縮加工を施すことにより、幅が極めて小さい芯材露出部28dに成形して、第1の実施の形態と同様の電池用電極板28とされる。なお、図4の工程において、(e)の工程を削除しても支障が生じないのは、図1の工程で説明した通りである。
【0047】
図5(a)〜(d)は図4(i)の幅寄せ圧縮工程における加工行程を順に示した縦断面図である。この幅寄せ圧縮工程に用いられる幅寄せ治具33は、一端側にストッパ壁面部37を有する支持台34と、単一の下段規制面38aと一対の中段規制面38bを有する極板押え38とを備えている。先ず、(a)に示す第1の行程では、極板押え38が上方へ、且つプッシャ31が側方へそれぞれ退避下状態において、所定個数の電極板素体32が、図の手前側に送給されて、各々の活物質充填部28aの端面をストッパ壁面部37に当接した状態で支持台34上の所定位置にセットされる。このとき、リードフープ9は、支持台34から所定長さだけ外方に突出されている。
【0048】
つぎに、(b)に示す第2の行程では、極板押え38が所定位置まで下降する。このとき、第1の実施の形態と同様に、極板押え38の下段規制面38aとリードフープ9との間隙および極板押え38の中断規制面38bと芯材露出部24との間隙は、共に0.05〜0.10mmの範囲に設定されている。
【0049】
続いて、(c)に示す第3の行程では、プッシャ31が、幅寄せ治具33に接触する位置まで移動して、外方に突出していたリードフープ9を幅寄せ治具33内に押し込む。このとき、リードフープ9が接合されている集電部27は、図4(e)の工程において圧縮されたことによって芯材露出部24よりも機械的な強度や密度が高められているので、芯材露出部24を圧縮しながらリードフープ9と一体的に幅寄せ治具33の内方側へ押し込められる。これにより、図1(e)の工程で圧縮されずに高い空孔率(90%程度)のままの芯材露出部24は、圧縮されて、極めて小さい幅の芯材露出部28dとなる。このとき、リードフープ9は、上述のように極板押え38の下段規制面38aに対し0.05〜0.10mmの間隙を有しているから、下段規制面38aに曲がり変形するのが防止されながら摺動して円滑に移動する。一方、芯材露出部28dは、極板押え38の中段規制面38bに対し0.05〜0.10mmの間隙を有しているから、僅かに膨れ上がりながらスムーズに圧縮される。
【0050】
最後に、(d)に示す第4の行程では、極板押え38が上述した間隙(0.05〜0.10mm)分だけ下降して、芯材露出部28dにおける圧縮時の上方への膨出部分を加圧して芯材露出部28dを活物質充填部28aと面一となるよう修正する。これにより、第1の実施の形態と同様の電池用電極板28が出来上がる。この電極板28は、極板押え38が上方へ、且つプッシャ31が側方へそれぞれ退避したのちに取り出され、以後、上述と同様の加工動作が繰り返される。したがって、この実施の形態の製造方法は、第1の実施の形態の製造方法に対し一部の工程が入れ替わるだけであり、第1の実施の形態において説明したと同様の効果を確実に得ることができるとともに、第1の実施の形態と同様の電池用電極板28を得ることができる。
【0051】
なお、図4(i)の幅寄せ圧縮工程では、図5(a)〜(d)の加工行程を終了したのちに、図3(e)〜(f)に示した加工行程に相当する加工工程を行って芯材露出部28dの形状を整形するようにすれば、一層好ましい。
【0052】
上記第1および第2の実施の形態では、角形電池用の電極板28の製造について説明したが、本発明の製造方法は、円筒形電池に用いる渦巻状電極群用の電極板の製造にも適用することができる。例えば、図1の(a)〜(e)の各工程を経たのち、両側の集電部27上にこれと同幅のリードフープ9をシーム溶接し、同図(f)に2点鎖線で示す切断線で切断して活物質充填部22を2分割することにより、図8(a)に示すような形状とする。つぎに、図5の幅寄せ治具33とほぼ同様の幅寄せ治具を用いて芯材露出部24を極めて小さい幅になるよう圧縮したのちに、所定の長さに切断することにより、図8(b)に示すような円筒形電池用の電極板39を得ることができる。なお、リードフープ9をシーム溶接したのちに、図2に示した幅寄せ治具26と同様の幅寄せ治具を用いて芯材露出部24を予め幅寄せ圧縮し、そののちに裁断するようにしてもよいのは勿論である。
【0053】
上記円筒形電池の渦巻状電極群用の電極板39は、芯材露出部24を圧縮して極めて小さい幅とできる分だけ活物質充填部22の体積を大きく設定することができるので、活物質量の増大に伴って電池を構成したときの高容量化を図ることができる。また、上記電極板39は、芯材露出部24を極めて小さな幅に圧縮することにより、極板幅のばらつきが格段に低減して高い寸法精度を得ることができるとともに、凹凸の存在しない芯材の全体に活物質を均一に充填して所要の工程を経たのちに規定寸法に裁断するので、活物質量のばらつきも極めて少なくなる。
【0054】
図6は本発明の第3の実施の形態に係る電池用電極板の製造方法を具現化した製造工程の一部を示した縦断面図である。この実施の形態では、積層型電極群を構成して角形電池に用いる電池用電極板を製造する場合を例示してあり、図4(a)〜(h)と同様の工程を経て、正極用の電極板素体32を形成する。つぎに、図6(a)に示すように、積層型電極群を構成するのに必要な枚数の電極板素体32と負極側電極板41とをそれらの間にセパレータ40を介在して重ね合わせ、その積層状態で幅寄せ治具42の支持台43上に載置し、且つ両側から一対の極板押え44で挟持して固定する。
【0055】
続いて、同図(b)に示すように、各電極板素体32の各々の接続リード部28cは、幅寄せ治具42側に近接移動するプッシャ31によって下方に押圧される。これにより、芯材露出部24は、上記各実施の形態と同様に、接続リード部28cからの押圧力を集電部28bを介し受けて圧縮されて、極めて小さい幅に縮小される。これにより、電極板素体32は所要形状の正極側電極板28とされ、それと同時に、正極側電極板28と負極側電極板41とがそれらの間にセパレータ40を介在して積層されてなる角形電池用の電極群47が出来上がる。したがって、この電極群47は、そのまま角形電池用の電池ケース内に収納することができるので、角形電池の生産性の向上を図ることができる。
【0056】
なお、上記幅寄せ治具42に代えて、図6(a)の積層状態とした電極板素体32、負極側電極板41およびセパレータ40を電池ケース内に直接挿入して、その状態で同図(b)に示すようにプッシャ31で各接続リード部28cを押圧して芯材露出部24を圧縮することもでき、この場合には角形電池の生産性の一層の向上を図ることができる。
【0057】
また、図8の円筒形電池用の電極板39の製造に際しても、図6と同様の製造工程を用いることができる。すなわち、図8(a)に示す状態としたものを所定の極板長さ(図の左右方向の長さ)に切断して電極板素体とし、この正極側の電極板素体と負極側電極板とをこれらの間にセパレータを介在して重ね合わせた状態で渦巻き状に巻回して、その巻回状態で幅寄せ治具または円筒形の電池ケース内に挿入する。そののち、プッシャでリードフープおよび集電部を押圧して芯材露出部を圧縮させれば、正極側の電極板39の形成と同時に円筒形電池用の電極群を構成することができる。
【0058】
【発明の効果】
以上のように本発明の電池用電極板の製造方法によれば、活物質充填部を、後工程で芯材露出部を圧縮して極めて小さい幅とできる分を見込んで予め大きな体積に設定することができから、活物質量が相当に増大する。また、十分に大きな幅とした芯材露出部のうちの所要幅の部分を圧縮した集電部にリードフープを溶接により接合したのちに芯材露出部を圧縮するので、溶接時における焼き付きや連続スパークの発生を確実に防止して、溶接に用いる電極などの長寿命化を図ることができる。さらに、一連の連続した製造工程中に幅寄せ圧縮工程が介在するだけであるから、生産性の低下を招くことがない。また、リードフープを接合した状態でのリードフープの位置ずれなどに起因する寸法ばらつきを、幅寄せ圧縮工程において芯材露出部の幅を縮小するときに修正できるから、高い寸法精度を得ることができる。
【0059】
また、本発明の電池用電極板によれば、芯材露出部の幅を圧縮して小さくできる分だけ活物質量を増大できるので、電池を構成したときの高容量化を図ることができる。
【図面の簡単な説明】
【図1】(a)〜(i)は本発明の第1の実施の形態に係る電池用電極板の製造方法を具現化した製造工程を順に示した斜視図。
【図2】(a)〜(d)は図1(g)の幅寄せ圧縮工程における前半の加工行程を順に示した縦断面図。
【図3】(e)〜(h)は図1(g)の幅寄せ圧縮工程における後半の加工行程を順に示した縦断面図。
【図4】(a)〜(i)は本発明の第2の実施の形態に係る電池用電極板の製造方法を具現化した製造工程を順に示した斜視図。
【図5】(a)〜(d)は図4(i)の幅寄せ圧縮工程における加工行程を順に示した縦断面図。
【図6】(a),(b)は本発明の第3の実施の形態に係る電池用電極板の製造方法を具現化した一部の製造工程を示す縦断面図。
【図7】(a)は同上の製造方法により製造された電池用電極板を示す斜視図、(b)は比較のために示した従来の製造方法による電池用電極板の斜視図。
【図8】(a)は本発明の製造方法を円筒形電池用電極板に適用した場合の製造過程の斜視図、(b)は製造完了した電極板の斜視図。
【図9】(a1),(a2),(b),(c)は従来の電池用電極板の製造方法による製造工程を工程順に示した斜視図。
【図10】(a),(b)は同上の製造方法による問題点を説明するための一工程の断面図。
【符号の説明】
9 リードフープ
21 芯材
22 活物質充填部
24 芯材露出部
26,33,42 幅寄せ治具
27 集電部
28,39 電池用電極板(正極側電極板)
29,38,44 極板押え
29a〜29d,38a,38b 規制面
30,34,43 支持台
32 電極板素体
40 セパレータ
41 負極側電極板
[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, a battery electrode plate that constitutes a power generation element together with an electrolyte in a secondary battery such as a nickel metal hydride storage battery, a nickel cadmium storage battery, and a lithium ion storage battery. The present invention relates to a method for producing a non-sintered battery electrode plate in which an active material is filled in a core material.
[0002]
[Prior art]
As the electrode plate of the secondary battery, a foam metal having a continuous three-dimensional network structure having a high porosity is used as a core material, and the core material is filled with an active material. Widely adopted because of its superiority. Furthermore, recent batteries are strongly required to improve high-rate discharge characteristics, and the following configuration is adopted as a countermeasure.
[0003]
In other words, the battery electrode plate with improved high-rate discharge characteristics forms a core material exposed portion in which the active material that has been filled is removed at a location along one side of the active material filled portion in which the core material is filled with the active material. In addition, the core exposed portion is compressed before filling or removing the active material to reduce the porosity, thereby forming a current collecting portion, and connecting lead portions to the current collecting portion by welding And
[0004]
The rectangular battery electrode group is configured by alternately stacking positive and negative electrode plates having the current collectors with a separator interposed therebetween. On the other hand, the cylindrical battery electrode group is formed by winding a positive and negative electrode plate having the current collecting portion in a spiral shape with a separator interposed therebetween. Therefore, in any electrode group, a plurality of positive / negative current collectors having connection lead portions bonded to both ends are formed over the entire circumference, so by connecting a current collector plate to the connection lead portions on both ends. It is possible to collect current from each electrode plate individually or from the entire circumference of the spiral shape, thereby improving the overall current collection efficiency. In addition, since the current collector is in a state suitable for welding the connection lead portion with the metal core material exposed, the current collector is collected by a tabless method in which a current collector plate or the like is joined to the connection lead portion by welding. The electrical characteristics can be remarkably improved, and the above-described demand for improving the high rate discharge characteristics can be met.
[0005]
The battery electrode plate capable of improving the high-rate discharge characteristics as described above is manufactured, for example, through a process as shown in FIG. 9 (see JP 2000-315498 A). First, in the first step shown in FIG. 2A1, a core 1 having a three-dimensional structure such as foam metal is provided with a dent along both sides, and twice the dent in parallel to the dent. A plurality of groove portions having a groove width of 2 mm are formed through a press molding or compression process. Next, the entire core material 1 including the recess and the groove is filled with an active material in the form of a slurry or a paste, and subsequently the active material adhering to the recess and the groove is used with a brush and an air blow, respectively. After the core material 1 is exposed by removing by the above-mentioned means, the active material is dried, thereby forming the active material filling portion 2 and the core material exposed portion 3 at locations corresponding to the recesses and the groove portions. . Next, the core material exposed part 3 corresponding to the groove part is cut along a cutting line indicated by a broken line at the center of the groove width, so that the core material is formed at both end parts along the longitudinal direction of the band-shaped active material filling part 2. An electrode plate hoop 4 having an exposed portion 3 is manufactured.
[0006]
In the second step shown in FIG. 5B, a pair of upper and lower circles are formed on the core exposed portion 3 of the electrode plate hoop 4 that has been compressed by passing between a pair of compression rolls (not shown). A lead hoop 9, which is a strip metal plate, is joined by a seam welding method using the plate electrodes 7 and 8.
[0007]
In the third step shown in FIG. 6C, the lead hoop 9 is formed into the connection lead portion 12 by punching the lead hoop 9 using the trimming punch 10 and the trimming die 11. The electrode plate hoop 4 formed with the connection lead 12 is housed in the battery outer can using the cutting punch 13 and the cutting die 14 while being intermittently fed by a distance corresponding to the electrode plate width of the electrode plate to be manufactured. Cut to standard dimensions when. As a result, as shown in FIG. 7B, a rectangular battery electrode plate 17 having the connection lead portion 12 at one end of the active material filling portion 2 is completed. The electrode plate for the cylindrical battery is manufactured through substantially the same process as described above, and the difference from that for the square battery is that the length of the connection lead portion is longer than the electrode plate width for the square battery. Just cut it off.
[0008]
Further, conventionally, instead of the first step of FIG. 9A1, a step shown in FIG. 9A2 may be employed. In the step (a2), the core material 1 is filled with the active material and then subjected to a rolling process, thereby forming the active material filling portion 2 over the whole, and at the edge of the active material filling portion 2. By applying ultrasonic vibration having a large amplitude from the ultrasonic horn head 18 for the purpose of completely removing the active material at predetermined locations along the surface, the active material is removed while peeling off, thereby exposing the core material. 3 is formed. (See JP 2000-77054 A).
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional manufacturing method, the width D of the core material exposed portion 3 needs to be set large as shown in FIG. 7B for the reason described later, and the large width D of the core material exposed portion 3 is required. There is a problem that the volume of the active material filling portion 2, that is, the amount of the active material per unit volume is reduced by that amount, and the capacity cannot be increased when the battery is configured.
[0010]
That is, when the core material exposed portion 3 is set to a width d as small as possible necessary for joining the lead hoop 9, for example, as shown in FIG. 10 (a), the upper and lower disk electrodes 7, When the lead hoop 9 is joined to the core material exposed portion 3 by the seam welding method according to FIG. 8, a part of the active material in the vicinity of the core material exposed portion 3 in the active material filling portion 2 is between the disc electrodes 7 and 8. There is a risk of getting in. Since the active material entering from the active material filling portion 2 between the disc electrodes 7 and 8 has a large electric resistance, a spark is generated, and the disc electrodes 7 and 8, the lead hoop 9 and the core material exposed portion 3 Any or all of these will melt. As a result, seizure, continuous spark, and the like occur in the welded portion, causing a problem that continuous seam welding cannot be performed. In addition, since the disk electrodes 7 and 8 are consumed by the generated spark, the required life cannot be ensured.
[0011]
Therefore, conventionally, as shown in FIG. 2B, the core material exposed portion 3 is set to a sufficiently large width D so as to surely prevent the occurrence of the above-mentioned seizure or continuous spark. In connection with this, the amount of active material per unit volume of the conventional electrode plate 17 is reduced, which is a factor that hinders the increase in capacity when a battery is configured. The core material exposed portion 3 has a case where a portion to which the lead hoop 9 is to be bonded is compressed in advance prior to the bonding of the lead hoop 9, and as indicated by a two-dot chain line in FIGS. 10 (a) and 10 (b). The lead hoop 9 may be compressed at the same time as the lead hoop 9 is welded by the pair of disc electrodes 7 and 8 when the lead hoop 9 is joined.
[0012]
On the other hand, the process of FIG. 9 (a2) is intended to form a core material exposed portion 3 having a small width while completely removing the active material. If the width is set small, application of ultrasonic vibration becomes unstable, and the active material remains in the formed core material exposed portion 3. Therefore, it is inevitably necessary to peel off a large amount of the active material. Consequently, the formed core material exposed portion 3 becomes wider in the same manner as in the case of using the step (a1), and is the same as described above. Problem arises.
[0013]
Therefore, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a manufacturing method capable of manufacturing a battery electrode plate having a large amount of active material per unit volume without any problem.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing a battery electrode plate according to a first aspect of the present invention includes an active material filling step of filling an active material into a whole thin plate-like core material having a porous structure, and the active material comprises: An active material removing step of forming a strip-shaped core material exposed portion from which the active material has been removed along the active material filling portion by applying ultrasonic vibration along the edge portion of the filled active material filling portion; A lead hoop joining step in which a lead hoop is joined by welding to a predetermined location along a peripheral edge portion in the core material exposed portion, and a location where the lead hoop is not joined in the core material exposed portion is the active material filling portion. A width-compressing step for compressing while pressing toward a minimum width, and a cutting step for cutting the active material filling portion and the lead hoop into a predetermined size and dividing them into individual battery electrode plates. It is characterized by that.
[0015]
In this method of manufacturing an electrode plate for a battery, the active material filling portion can be set in advance to a large volume in anticipation of a very small width by compressing the core material exposed portion in a subsequent process. Increases considerably. In addition, after the lead hoop is joined by welding to the part of the required width of the core exposed part that has a sufficiently large width, the core exposed part is compressed to a small width, so seizure and continuous sparking occur during welding. Can be reliably prevented, and the life of electrodes and the like used for welding can be extended. Furthermore, since the width-shifting compression process is merely interposed in a series of continuous manufacturing processes, productivity is not reduced. In addition, dimensional variations caused by misalignment of the lead hoop in a state where the lead hoop is joined can be corrected when the width of the exposed portion of the core material is reduced in the width-shifting compression process, so that high dimensional accuracy can be obtained. it can.
[0016]
According to a second aspect of the present invention, there is provided a method of manufacturing a battery electrode plate comprising: an active material filling step of filling an active material into a whole thin plate-like core material having a porous structure; and an active material filling portion filled with the active material. An active material removing step of forming a strip-shaped core material exposed portion from which the active material has been removed by applying ultrasonic vibration along the edge portion along the active material filling portion; and a side in the core material exposed portion. A lead hoop joining process in which a lead hoop is joined to a predetermined location along the edge by welding, and the active material filling portion, the core material exposed portion, and the lead hoop are cut into specified dimensions and divided into individual electrode plate bodies. Each electrode plate element is compressed to a minimum width while pressing a portion where the lead hoop of the core material exposed portion of each electrode plate element body is not joined to the active material filling portion in the cutting step. Alignment compression with body as electrode plate It is characterized in that it has and.
[0017]
In this battery electrode plate manufacturing method, as in the first aspect of the invention, the active material filling portion is set in advance to a large volume in anticipation of an extremely small width by compressing the core material exposed portion in a subsequent process. The amount of active material increases considerably. Also, since the core material exposed part is compressed after joining the lead hoop to the current collector part where the required width part of the core material exposed part having a sufficiently large width is compressed, seizure and continuous It is possible to reliably prevent the occurrence of sparks and extend the life of electrodes used for welding. Furthermore, since the width-shifting compression process is merely interposed in a series of continuous manufacturing processes, productivity is not reduced. In addition, dimensional variations caused by misalignment of the lead hoop in a state where the lead hoop is joined can be corrected when the width of the exposed portion of the core material is reduced in the width-shifting compression process, so that high dimensional accuracy can be obtained. it can.
[0018]
In the width-shifting compression step according to the second aspect of the invention, the positive-side or negative-side electrode plate element and the negative-side or positive-side electrode plate are overlapped with a separator interposed between them. After fixing to the inside of the tool or the battery case, the portion where the lead hoop of the core material exposed portion of the electrode plate body is not joined may be compressed to a minimum width while being pressed toward the active material filling portion. it can.
[0019]
Thereby, the electrode plate body can be formed into an electrode plate having a required shape by compressing and reducing the width of the exposed portion of the core material, and at the same time, an electrode group for a prismatic battery or a cylindrical battery can be configured. Therefore, it is possible to further improve the productivity of the battery.
[0020]
In each of the above inventions, a lead hoop is welded to a predetermined location along the edge portion of the core material exposed portion formed through the active material removing step, and the lead hoop of the core material exposed portion is bonded. By compressing the joining location before or during joining to a current collecting part, and applying a pressing force applied to the lead hoop to the remaining core exposed part in the width-shifting compression process via the current collecting part, It is preferable that the core exposed portion is pressed and compressed closer to the active material filling portion.
[0021]
As a result, the current collecting part to which the lead hoop is joined has a higher mechanical strength and density than the remaining exposed part of the core material. The remaining core exposed portion can be easily and reliably compressed by moving integrally with the lead hoop.
[0022]
In the width-shifting compression process as described above, the active material filling portion is placed on the support base in an arrangement in which a predetermined length of the lead hoop protrudes outward, and two regulations protruding in two stages in the electrode plate presser With the surface facing the lead hoop and the active material filling portion and the core material exposed portion with a small gap, after pushing the protruding portion from the support base in the lead hoop closer to the support base, It is preferable that the electrode plate holder is moved closer to the support base by the gap.
[0023]
As a result, the lead hoop has a small clearance with respect to the regulating surface of the electrode plate holder, and thus slides and moves smoothly while being prevented from being bent and deformed on the regulating surface. On the other hand, the core material exposed portion has a small clearance with respect to the regulating surface of the electrode plate holder, and is thus compressed smoothly while slightly swollen. After that, when the electrode plate presser moves closer to the support base by the gap, the bulging part at the time of compression in the core material exposed part is pressurized so that the core material exposed part is flush with the active material filling part. It can be corrected as follows.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view sequentially illustrating manufacturing steps embodying a method for manufacturing a battery electrode plate according to a first embodiment of the present invention. In this embodiment, a case where a laminated electrode group is configured to manufacture a battery electrode plate used for a rectangular battery is illustrated.
[0026]
First, the active material filling portion 22 is formed by filling the entire core material 21 made of a rectangular or belt-shaped three-dimensional foam metal having a predetermined size shown in (a), as shown in (b). When the active material filling portion 22 is formed, the active material is filled into the core material 21 that is not pressed and has no unevenness, so that the entire material can be filled with a uniform filling density and there is no unevenness, that is, no difference in height. Therefore, the filled active material is held inside without flowing and dried while maintaining a uniform packing density. On the other hand, in the process of FIG. 9A1 according to the conventional manufacturing method, the active material is filled into the core material 1 in which the dents and the grooves are formed in advance through the press molding or rolling process. As a result, the packing density of the active material varies.
[0027]
Next, as shown in (c), the core material 21 in which the active material filling portion 22 having a uniform filling density as described above is formed on all portions except the portion that becomes the core material exposed portion in the subsequent process. By being pressed, it is compressed to approximately ½, and the portion that becomes the core material exposed portion in the subsequent process remains as two parallel rail-shaped remaining ridges 23. Although not shown in the drawing, the basic structure is the same as that of the stripe roll press shown in FIG. 2 in Japanese Patent Application No. 2000-261471 filed by the applicant of the present application. A stripe roll press provided in an arrangement is used.
[0028]
Subsequently, in the active material removing step shown in (d), the two remaining ridge portions 23 are removed from the active material filling portion 22 filled therein, thereby the two core material exposed portions 24. It is said. In this active material removing step, an active material removing device (not shown) having the same configuration as that of the active material removing device including the ultrasonic vibrator shown in FIG. 4 in Japanese Patent Application No. 2000-261471 described above is used. Processed. The width D of the core material exposed portion 24 here is set to be larger than a predetermined width necessary for joining the lead hoops in a later process. As a result, the ultrasonic vibrator can be applied with ultrasonic vibration set to a sufficiently large amplitude, and the core is completely removed without remaining the active material regardless of the degree of binding of the active material. The material exposed portion 24 can be formed.
[0029]
Next, as shown in (e), the portion of the predetermined width d necessary for joining the lead hoops in each core material exposed portion 24 is compressed by a press roll (not shown) and remains. The current collector 27 is one step lower than the original core exposed portion 24. Subsequently, as shown in (f), the lead hoop 9 is joined to the current collector 27 by a seam welding method using a pair of disk electrodes 7 and 8 similar to those shown in FIG. This lead hoop 9 is seam welded to a current collecting portion 27 formed by compressing a part of the core material exposed portion 24 set to a sufficiently large width D and from which the active material is completely removed, and a pair of discs Since the core material exposed portion 24 where no active material remains is present on the inner side of the electrodes 7 and 8, there is no possibility that the active material is interposed between the pair of disk electrodes 7 and 8, and seizure or continuous sparking occurs. Etc. will not occur.
[0030]
Therefore, the disk electrodes 7 and 8 can ensure the required long life. According to the measurement result, as shown in FIG. 10A, when the core material exposed portion 3 is set to the smallest possible width necessary for joining the lead hoop 9, the disk electrodes 7 and 8 Whereas the lifetime was 72 hours, when the process of this embodiment was adopted, the lifetime of the disk electrodes 7 and 8 was greatly extended to 1200 hours.
[0031]
After joining the lead hoop 9 described above, the core material exposed portion 24 that has not been compressed is compressed by being compressed toward the active material filling portion 22 in the width-shifting compression step shown in FIG. A small width. Details of this width-compressing compression step will be described later. Finally, by punching and cutting along each cutting line indicated by a one-dot chain line in (h), an electrode plate 28 for a rectangular battery as shown in (i) and FIG. 7 (a) is obtained. The battery electrode plate 28 includes an active material filling portion 28a, a current collecting portion 28b compressed after the active material is removed, and a connection lead portion 28c joined to the current collecting portion 28b. The core material exposed portion 28d compressed in the width direction has an extremely small width that is almost negligible.
[0032]
In the punching process in (h), the lead hoop 9 is punched out using the trimming punch 10 and the trimming die 11 shown in FIG. 9C, thereby forming the lead hoop 9 into the connection lead portion 28c. In the cutting process, the cutting punch 13 and the cutting die 14 similarly shown in FIG. 9C are used to cut to the standard dimensions when housed in the battery case.
[0033]
2 (a) to 2 (d) are longitudinal sectional views sequentially showing the processing steps in the width-shifting compression step of FIG. 1 (g). First, in the first step shown in (a), the lead hoop 9 is joined to the pair of current collectors 27 in a state where the electrode plate retainer 29 is retracted upward and the pair of pushers 31 are retracted sideways. The workpiece is intermittently fed by a predetermined length toward the near side of the figure and set at a predetermined position on the support base 30. At this time, the pair of lead hoops 9 on both sides are set to project outward by the same predetermined length from the width adjusting jig 26 including the electrode plate holder 29 and the support base 30. That is, the protruding length of the lead hoop 9 is set slightly smaller than the width of the core material exposed portion 24.
[0034]
Next, in the second stroke shown in (b), the electrode plate holder 29 is lowered to a predetermined position. At this time, the gap G1 between the lower regulation surface 29a of the electrode plate holder 29 and the lead hoop 9 and the gap G2 between the interruption regulation surface 29b of the electrode plate holder 29 and the core material exposed portion 24 and the active material filling portion 22 are both 0.05. It is set in the range of less than 0.10mm.
[0035]
Subsequently, in the third step shown in FIG. 3C, the pair of pushers 31 moves to a position where they come into contact with the width adjusting jig 26, and the pair of lead hoops 9 protruding outward are respectively subjected to the width adjusting treatment. Push into tool 26. At this time, the current collecting portion 27 to which the lead hoop 9 is joined has a higher mechanical strength and density than the core exposed portion 24 by being compressed in the step of FIG. While compressing the core material exposed portion 24, it is pushed into the inner side of the width adjusting jig 26 integrally with the lead hoop 9. As a result, the core material exposed portion 24 that remains high in porosity (about 90%) without being compressed in the step of FIG. 1E is compressed to an extremely small width.
[0036]
At this time, since the pushers 31 on both sides simultaneously press the corresponding lead hoops 9 with the same force for the same distance, the core material exposed portions 24 on both sides are also automatically centered by the central active material filling portion 22, Compressed almost equally. Since the lead hoop 9 has a gap of 0.05 to 0.10 mm with respect to the lower regulation surface 29a of the electrode plate retainer 29 as described above, the lead hoop 9 slides while being prevented from being bent and deformed to the lower regulation surface 29a. And move smoothly. On the other hand, since the core material exposed portion 24 has a gap of 0.05 to 0.10 mm with respect to the middle regulation surface 29b of the electrode plate retainer 29, it is smoothly compressed while slightly swollen. Finally, in the fourth step shown in (d), the electrode plate presser 29 is lowered by an amount corresponding to the gap (0.05 to 0.10 mm) described above, and an upward bulging portion at the time of compression in the core material exposed portion 24 is removed. The core material exposed portion 24 is corrected to be flush with the active material filling portion 22 by applying pressure.
[0037]
The battery electrode plate 28 of FIG. 7A obtained through the manufacturing process of FIG. 1 is compared with the battery electrode plate 17 of the conventional manufacturing process shown in FIG. Can be set to a large volume in advance by allowing the core material exposed portion 28d to be compressed to an extremely small width, so that the amount of the active material is considerably increased and the battery is configured accordingly. High capacity can be achieved.
[0038]
Specifically, the electrode plate 28 having a standard value with an electrode plate width (horizontal dimension in FIG. 7) of 15 mm, an electrode plate length (vertical dimension in FIG. 7) of 31 mm, and a thickness of 0.8 mm is shown. , 17 in the conventional electrode plate 17, the width (vertical dimension in FIG. 7) of the core material exposed portion 3 is 1.5 mm, whereas in the electrode plate 28 that has undergone the manufacturing process of the embodiment, the core material is obtained. The width of the exposed portion 28d was 0.5 mm. Thereby, in the electrode plate 28 obtained through the manufacturing process of the above embodiment, the length (vertical dimension) of the active material filling portion 28a is increased by 1 mm, and the amount of the active material is compared with the conventional electrode plate 17. About 3%. Moreover, since the core material exposed portion 24 is compressed after the lead hoop 9 is joined by the seam welding method to the current collecting portion 28b in which the required width portion of the core material exposed portion 24 having a sufficiently large width is compressed, It is possible to reliably prevent seizure and continuous sparking during seam welding.
[0039]
Further, in the manufacturing process of FIG. 1, since the width-shifting compression process is merely interposed in a series of continuous processes, productivity is not reduced. High electrode plate 28 can be obtained. This high dimensional accuracy can be obtained when the core material 21 and the press roll (not shown) are misaligned during the pressing process in the step of FIG. 1C, and in the lead hoop 9 in the step of FIG. Of the lead hoop 9 and the supply position of the core material 21 in the step (f) are likely to occur in the width W1 in the state in which the current collector 27 is bonded to the current collector 27, and about ± 0.3 mm. However, in the width shifting compression process of FIG. 2G, the outer side ends of the pair of lead hoops 9 are pushed by the pusher 31 so as to coincide with the outer end face of the width shifting jig 26 of FIG. This is because the width W2 after the width-shifting compression process is suppressed to a dimensional variation of ± 0.05 mm.
[0040]
By the way, in the conventional battery electrode plate 17 manufactured through the manufacturing process of FIG. 9, it is difficult to remove the active material while managing the accurate width. Variations in the width of the material exposed portion 3 are likely to occur, and the active material weight in the active material filling portion 2 varies accordingly. Therefore, when configuring the laminated electrode group, a complicated process is required in which the battery electrode plate 17 after manufacture is subjected to weight selection, and the battery electrode plates 17 having substantially the same weight are combined and laminated.
[0041]
On the other hand, in the battery electrode plate 28 obtained in the first embodiment, the active material can be uniformly filled in the entire core material 21 having no irregularities in the step of FIG. In the width-shifting compression process of g), the core material exposed portions 24 on both sides are compressed in a state in which the core is automatically aligned by the central active material filling portion 22, thereby correcting variations in the joining position of the lead hoop 9. Then, as described above, the width W2 after the width-shifting compression process is suppressed to dimensional variation of ± 0.05 mm, and the center portion of the width W2 is cut into two parts and then cut into the specified dimensions. The obtained electrode plate 28 has a great advantage that the variation in the amount of active material is extremely small, and the conventional weight selection process can be reduced.
[0042]
In the manufacturing process of FIG. 1, prior to joining the lead hoop 9, the part of the predetermined width d necessary for joining the lead hoop in the core material exposed portion 24 is compressed in the process (e). Although the current collector 27 is formed, the step (e) may be omitted. In this case, in the step (f), the lead hoop 9 is directly welded and joined to a predetermined portion of the core material exposed portion 24 formed in the step (d). As described above, when the lead hoop 9 is welded, a portion of the core material exposed portion 24 where the lead hoop 9 is welded is compressed simultaneously with the welding by the pair of disk electrodes 7 and 8, thereby forming the current collector 27. This is because that.
[0043]
1 (g), the machining steps shown in FIGS. 3 (e) to (f) are provided after the machining steps of FIGS. 2 (a) to (d) are completed. Also good. In FIG. 3, the electrode plate holder 29 has a portion on the rear side of the portion shown in FIG. 2, that is, an active material filling portion 22 in which the lead hoop 9 is joined to the current collecting portion 27 with a predetermined length from the position in FIG. The lower stage restricting surface 29c having a width longer than the lower stage restricting surface 29a shown in FIG. 2 and the width of the lower stage restricting surface 29c are increased in the rear side portion corresponding to the intermittently fed position. An intermediate regulation surface 29d having a width shorter than that of the regulation surface 29b is provided. The lower regulation surface 29c is set to have a large width extending to a location corresponding to the inner end of the lead hoop 9 pushed inward in the process of FIG.
[0044]
Since the support 30 and the electrode plate retainer 29 shown in FIGS. 2 and 3 are a single body, the strokes of FIGS. 3E to 3H and the strokes of FIGS. These show the same corresponding operating state. If each step of FIG. 3 (e) to (h) is provided, as shown in FIG. 3 (e), after finishing each step of FIG. Even if the protruding portion 24a is formed, the protruding portion 24a is pressed on the inner end surface of the lead hoop 9 by the lower regulating surface 29c when the electrode plate holder 29 is lowered in the process (f). In the process of (h), when the electrode plate holder 29 is further lowered to the position where it contacts the lead hoop 9, it is pushed back to the inner side, and a small part is thinly spread on the lead hoop 9. Thereby, the remaining core material exposed portion 24 can be reliably shaped into a required shape.
[0045]
FIG. 4 is a perspective view sequentially illustrating manufacturing steps embodying the manufacturing method of the battery electrode plate according to the second embodiment of the present invention. Also in this embodiment, a case where a laminated electrode group is configured to manufacture a battery electrode plate used for a rectangular battery is illustrated, and each step (a) to (f) is the same as FIG. Therefore, the description is omitted. In the step (g), the core material exposed portion 24 is punched and cut along each cutting line indicated by a one-dot chain line in a state where the core material exposed portion 24 is not stretched and compressed, and as shown in FIG. The electrode plate body 32 is divided into individual electrode plates.
[0046]
Since the electrode plate body 32 includes the active material filling portion 28a, the current collecting portion 28b, and the connection lead portion 28c similar to the battery electrode plate 28 obtained in the first embodiment, In order to make the relationship with the plate 28 clear and easy to understand, the same reference numerals are given, and only the core exposed portion 24 remains as it is without being compressed. Therefore, each electrode plate element 32 is formed into a core material exposed portion 28d having a very small width by subjecting each core material exposed portion 24 to a width-compressing compression process in the step (i). The battery electrode plate 28 is the same as that of the first embodiment. In the process of FIG. 4, the fact that the process (e) is deleted does not cause any problem as described in the process of FIG.
[0047]
FIGS. 5A to 5D are longitudinal cross-sectional views sequentially showing the processing steps in the width-shifting compression step of FIG. 4I. The width adjusting jig 33 used in this width adjusting compression process includes a support base 34 having a stopper wall surface portion 37 on one end side, and an electrode plate presser 38 having a single lower stage regulating surface 38a and a pair of middle stage regulating surfaces 38b. It has. First, in the first step shown in FIG. 5A, a predetermined number of electrode plate bodies 32 are sent to the front side of the figure in a state where the electrode plate retainer 38 is moved upward and the pusher 31 is retracted sideways. Then, the end surface of each active material filling portion 28a is set at a predetermined position on the support base 34 in a state where the end surface is in contact with the stopper wall surface portion 37. At this time, the lead hoop 9 protrudes outward from the support base 34 by a predetermined length.
[0048]
Next, in the second stroke shown in (b), the electrode plate presser 38 is lowered to a predetermined position. At this time, as in the first embodiment, the gap between the lower regulation surface 38a of the electrode plate retainer 38 and the lead hoop 9 and the gap between the interruption regulation surface 38b of the electrode plate retainer 38 and the core material exposed portion 24 are as follows. Both are set in the range of 0.05 to 0.10 mm.
[0049]
Subsequently, in the third step shown in FIG. 3C, the pusher 31 moves to a position where it comes into contact with the width adjusting jig 33 and pushes the lead hoop 9 protruding outward into the width adjusting jig 33. . At this time, the current collecting portion 27 to which the lead hoop 9 is joined has a higher mechanical strength and density than the core exposed portion 24 by being compressed in the step of FIG. The core material exposed portion 24 is pressed into the inner side of the width adjusting jig 33 integrally with the lead hoop 9 while being compressed. As a result, the core material exposed portion 24 that is not compressed in the step of FIG. 1E and remains high in porosity (about 90%) is compressed into a core material exposed portion 28d having an extremely small width. At this time, since the lead hoop 9 has a gap of 0.05 to 0.10 mm with respect to the lower regulation surface 38a of the electrode plate retainer 38 as described above, the lead hoop 9 is slid while being prevented from being bent and deformed to the lower regulation surface 38a. Move and move smoothly. On the other hand, since the core material exposed portion 28d has a gap of 0.05 to 0.10 mm with respect to the middle regulation surface 38b of the electrode plate presser 38, it is smoothly compressed while slightly swollen.
[0050]
Finally, in the 4th process shown in (d), electrode plate holder 38 descends by the above-mentioned gap (0.05-0.10 mm), and the bulge part to the upper part at the time of compression in core material exposure part 28d is carried out. The core material exposed portion 28d is corrected to be flush with the active material filling portion 28a by applying pressure. Thereby, the battery electrode plate 28 similar to that of the first embodiment is completed. The electrode plate 28 is taken out after the electrode plate retainer 38 is retracted upward and the pusher 31 is retracted laterally. Thereafter, the same processing operation as described above is repeated. Therefore, the manufacturing method of this embodiment only replaces some of the steps with respect to the manufacturing method of the first embodiment, and reliably obtains the same effects as described in the first embodiment. In addition, a battery electrode plate 28 similar to that of the first embodiment can be obtained.
[0051]
4 (i), the processing corresponding to the processing steps shown in FIGS. 3 (e) to 3 (f) is performed after the processing steps of FIGS. 5 (a) to 5 (d) are completed. It is more preferable to perform the process so as to shape the shape of the core exposed portion 28d.
[0052]
In the first and second embodiments, the production of the electrode plate 28 for the square battery has been described. However, the production method of the present invention can also be used to produce the electrode plate for the spiral electrode group used for the cylindrical battery. Can be applied. For example, after passing through the steps (a) to (e) in FIG. 1, lead hoops 9 having the same width are seam welded on the current collecting portions 27 on both sides, and a two-dot chain line in FIG. The active material filling portion 22 is divided into two by cutting along the cutting line shown in FIG. 8 to obtain a shape as shown in FIG. Next, after compressing the core material exposed portion 24 to have a very small width using a width adjusting jig substantially the same as the width adjusting jig 33 of FIG. An electrode plate 39 for a cylindrical battery as shown in FIG. 8B can be obtained. After the lead hoop 9 is seam welded, the core material exposed portion 24 is preliminarily pressed and compressed using a width adjusting jig similar to the width adjusting jig 26 shown in FIG. 2, and then cut. Of course, it may be.
[0053]
The electrode plate 39 for the spiral electrode group of the cylindrical battery can set the volume of the active material filling portion 22 as large as possible by compressing the core material exposed portion 24 so as to have a very small width. The capacity can be increased when the battery is configured as the amount increases. In addition, the electrode plate 39 can compress the core material exposed portion 24 to an extremely small width, thereby greatly reducing variations in the width of the electrode plate and obtaining high dimensional accuracy. Since the active material is uniformly filled in the whole and cut into the prescribed dimensions after a required process, the variation in the amount of the active material is extremely reduced.
[0054]
FIG. 6 is a longitudinal sectional view showing a part of a manufacturing process embodying the manufacturing method of the battery electrode plate according to the third embodiment of the present invention. In this embodiment, a case where a laminated electrode group is formed to produce a battery electrode plate for use in a rectangular battery is illustrated, and the positive electrode is subjected to the same steps as in FIGS. 4A to 4H. The electrode plate body 32 is formed. Next, as shown in FIG. 6 (a), the number of electrode plate base bodies 32 and the negative electrode plate 41 required to form a stacked electrode group are stacked with a separator 40 interposed therebetween. In addition, the laminated state is placed on the support base 43 of the width adjusting jig 42, and sandwiched and fixed by a pair of electrode plate holders 44 from both sides.
[0055]
Subsequently, as shown in FIG. 4B, each connection lead portion 28c of each electrode plate element 32 is pressed downward by a pusher 31 that moves close to the width adjusting jig 42 side. As a result, the core material exposed portion 24 is compressed by receiving the pressing force from the connection lead portion 28c via the current collecting portion 28b as in the above embodiments, and is reduced to a very small width. As a result, the electrode plate element 32 is formed into the required shape of the positive electrode plate 28, and at the same time, the positive electrode plate 28 and the negative electrode plate 41 are laminated with the separator 40 interposed therebetween. The electrode group 47 for a square battery is completed. Therefore, since this electrode group 47 can be accommodated in the battery case for a rectangular battery as it is, the productivity of the rectangular battery can be improved.
[0056]
It should be noted that, instead of the width adjusting jig 42, the electrode plate body 32, the negative electrode plate 41 and the separator 40 in the laminated state shown in FIG. 6A are directly inserted into the battery case, and the same condition is maintained. As shown in FIG. 2B, the core material exposed portion 24 can be compressed by pressing each connection lead portion 28c with the pusher 31, and in this case, the productivity of the rectangular battery can be further improved. .
[0057]
Further, the manufacturing process similar to that shown in FIG. 6 can be used in manufacturing the electrode plate 39 for the cylindrical battery shown in FIG. That is, the state shown in FIG. 8A is cut into a predetermined electrode plate length (length in the left-right direction in the figure) to form an electrode plate element, and the positive electrode plate element and the negative electrode side The electrode plate is wound in a spiral shape with a separator interposed therebetween, and is inserted into a width adjusting jig or a cylindrical battery case in the wound state. After that, if the lead hoop and the current collector are pressed by the pusher to compress the core exposed portion, the electrode group for the cylindrical battery can be formed simultaneously with the formation of the electrode plate 39 on the positive electrode side.
[0058]
【The invention's effect】
As described above, according to the method for manufacturing a battery electrode plate of the present invention, the active material filling portion is set to a large volume in advance in anticipation of an extremely small width by compressing the core material exposed portion in a subsequent process. The amount of active material increases considerably. Also, since the core material exposed part is compressed after joining the lead hoop to the current collector part where the required width part of the core material exposed part having a sufficiently large width is compressed, seizure and continuous It is possible to reliably prevent the occurrence of sparks and extend the life of electrodes used for welding. Furthermore, since the width-shifting compression process is merely interposed in a series of continuous manufacturing processes, productivity is not reduced. In addition, dimensional variations caused by misalignment of the lead hoop in a state where the lead hoop is joined can be corrected when the width of the exposed portion of the core material is reduced in the width-shifting compression process, so that high dimensional accuracy can be obtained. it can.
[0059]
Further, according to the battery electrode plate of the present invention, the amount of the active material can be increased by the amount that the width of the exposed portion of the core material can be reduced, so that the capacity can be increased when the battery is configured.
[Brief description of the drawings]
FIGS. 1A to 1I are perspective views sequentially illustrating manufacturing steps embodying a method for manufacturing a battery electrode plate according to a first embodiment of the present invention.
FIGS. 2A to 2D are longitudinal sectional views sequentially showing the first half of the processing step in the width-shifting compression step of FIG.
FIGS. 3E to 3H are longitudinal cross-sectional views sequentially showing the latter processing steps in the width-shifting compression step of FIG.
FIGS. 4A to 4I are perspective views sequentially illustrating manufacturing steps embodying a method for manufacturing a battery electrode plate according to a second embodiment of the present invention. FIGS.
FIGS. 5A to 5D are longitudinal sectional views sequentially showing processing steps in the width-shifting compression step of FIG. 4I.
FIGS. 6A and 6B are longitudinal sectional views showing a part of the manufacturing process embodying the manufacturing method of the battery electrode plate according to the third embodiment of the present invention. FIGS.
7A is a perspective view showing a battery electrode plate manufactured by the above manufacturing method, and FIG. 7B is a perspective view of a battery electrode plate by a conventional manufacturing method shown for comparison.
8A is a perspective view of a manufacturing process when the manufacturing method of the present invention is applied to an electrode plate for a cylindrical battery, and FIG. 8B is a perspective view of an electrode plate that has been manufactured.
9 (a1), (a2), (b), and (c) are perspective views showing manufacturing steps according to a conventional method of manufacturing a battery electrode plate in order of steps.
FIGS. 10A and 10B are cross-sectional views of one process for explaining problems in the manufacturing method according to the embodiment.
[Explanation of symbols]
9 Lead Hoop
21 Core
22 Active material filling section
24 Core exposed part
26, 33, 42 Alignment jig
27 Current collector
28,39 Battery electrode plate (positive electrode plate)
29, 38, 44 Polar plate presser
29a-29d, 38a, 38b Regulatory surface
30, 34, 43 Support stand
32 Electrode plate body
40 separator
41 Negative electrode plate

Claims (5)

多孔質を有する薄板状の芯材の全体に活物質を充填する活物質充填工程と、前記活物質が充填済みの活物質充填部の辺縁部に沿って超音波振動を付与することにより、活物質を除去した帯状の芯材露出部を前記活物質充填部に沿って形成する活物質除去工程と、前記芯材露出部における辺縁部に沿った所定箇所にリードフープを溶接により接合するリードフープ接合工程と、前記芯材露出部における前記リードフープが接合されていない箇所を前記活物質充填部に向け加圧しながら圧縮して極小幅とする幅寄せ圧縮工程と、前記活物質充填部およびリードフープを規定寸法に裁断して個々の電池用電極板に分割する裁断工程とを有していることを特徴とする電池用電極板の製造方法。  An active material filling step of filling the entire thin plate-like core material having a porous material with an active material, and applying ultrasonic vibration along a peripheral portion of the active material filling portion filled with the active material, An active material removing step of forming a strip-shaped core material exposed portion from which the active material has been removed along the active material filling portion, and a lead hoop is joined to a predetermined location along the edge portion of the core material exposed portion by welding. A lead hoop joining step, a width-compressing compression step in which a portion where the lead hoop in the core material exposed portion is not joined is compressed toward the active material filling portion and compressed to a minimum width, and the active material filling portion And a cutting step of cutting the lead hoop into a predetermined size and dividing the lead hoop into individual battery electrode plates. 多孔質を有する薄板状の芯材の全体に活物質を充填する活物質充填工程と、前記活物質が充填済みの活物質充填部の辺縁部に沿って超音波振動を付与することにより、活物質を除去した帯状の芯材露出部を前記活物質充填部に沿って形成する活物質除去工程と、前記芯材露出部における辺縁部に沿った所定箇所にリードフープを溶接により接合するリードフープ接合工程と、前記活物質充填部、芯材露出部およびリードフープを規定寸法に切断して個々の電極板素体に分割する切断工程と、前記各電極板素体における前記芯材露出部の前記リードフープが接合されていない箇所を前記活物質充填部に向け加圧しながら極小幅に圧縮することにより、前記各電極板素体を電極板とする幅寄せ圧縮工程とを有していることを特徴とする電池用電極板の製造方法。  An active material filling step of filling the entire thin plate-like core material having a porous material with an active material, and applying ultrasonic vibration along a peripheral portion of the active material filling portion filled with the active material, An active material removing step of forming a strip-shaped core material exposed portion from which the active material has been removed along the active material filling portion, and a lead hoop is joined to a predetermined location along the edge portion of the core material exposed portion by welding. A lead hoop joining step, a cutting step of cutting the active material filling portion, the core material exposed portion, and the lead hoop into predetermined electrode plates and dividing them into individual electrode plate bodies; and the core material exposure in each of the electrode plate bodies And compressing to a minimum width while pressing the part where the lead hoop of the part is not joined toward the active material filling part, and a width-compressing compression step using the electrode plate bodies as electrode plates Battery electrode characterized in that The method of production. 幅寄せ圧縮工程において、正極側または負極側の電極板素体と負極側または正極側の電極板とをこれらの間にセパレータを介在して重ね合わせた状態で幅寄せ治具の内部または電池ケースの内部に固定したのち、前記電極板素体における芯材露出部のリードフープが接合されていない箇所を前記活物質充填部に向け加圧しながら極小幅に圧縮するようにした請求項2に記載の電池用電極板の製造方法。  In the width-shifting compression process, the positive electrode-side or negative-electrode side electrode plate body and the negative-electrode-side or positive-electrode side electrode plate are overlapped with a separator interposed therebetween, or inside the width-shifting jig or battery case 3. After being fixed inside, the portion where the lead hoop of the core material exposed portion of the electrode plate body is not joined is pressed toward the active material filling portion and compressed to a minimum width. Of manufacturing a battery electrode plate. 活物質除去工程を経て形成された芯材露出部のうちの辺縁部に沿った所定箇所にリードフープを溶接により接合し、前記芯材露出部のうちの前記リードフープの接合箇所を、接合前または接合時に圧縮して集電部とし、幅寄せ圧縮工程において、残存する芯材露出部に、リードフープに加えた押圧力を前記集電部を介し付与することにより、前記芯材露出部を活物質充填部寄りに加圧して圧縮するようにした請求項1ないし3の何れかに記載の電池用電極板の製造方法。  A lead hoop is welded to a predetermined location along the edge portion of the core material exposed portion formed through the active material removing step, and the joint location of the lead hoop in the core material exposed portion is joined. The core material exposed portion is formed by applying a pressing force applied to the lead hoop to the remaining core material exposed portion through the current collector portion in the width-shifting compression process by compressing before or during joining. 4. The method for producing a battery electrode plate according to claim 1, wherein the pressure is compressed near the active material filling portion. 幅寄せ圧縮工程において、リードフープのうちの所定長さを外方に突出させた配置で活物質充填部を支持台上に載置し、極板押えにおける2段階に突出した2つの規制面を前記リードフープと前記活物質充填部および芯材露出部とに対し少許の間隙で対向させた状態で、前記リードフープにおける前記支持台からの突出部分を前記支持台寄りに押し込んだのち、前記極板押えを前記間隙分だけ前記支持台側に近接移動させるようにした請求項4に記載の電池用電極板の製造方法  In the width-shifting compression process, the active material filling portion is placed on the support base in an arrangement in which a predetermined length of the lead hoop protrudes outward, and two restriction surfaces protruding in two stages in the electrode plate holder are provided. In a state where the lead hoop is opposed to the active material filling portion and the core material exposed portion with a small clearance, the protruding portion from the support base in the lead hoop is pushed closer to the support base, and then the electrode The manufacturing method of the battery electrode plate according to claim 4, wherein the plate presser is moved close to the support base by the gap.
JP2001148777A 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate Expired - Fee Related JP4754094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148777A JP4754094B2 (en) 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148777A JP4754094B2 (en) 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate

Publications (2)

Publication Number Publication Date
JP2002343345A JP2002343345A (en) 2002-11-29
JP4754094B2 true JP4754094B2 (en) 2011-08-24

Family

ID=18994031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148777A Expired - Fee Related JP4754094B2 (en) 2001-05-18 2001-05-18 Manufacturing method of battery electrode plate

Country Status (1)

Country Link
JP (1) JP4754094B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770127B2 (en) * 2004-04-21 2011-09-14 株式会社Ihi Battery electrode plate and method of manufacturing battery electrode plate
JP4794184B2 (en) * 2005-03-08 2011-10-19 古河電池株式会社 Method for producing electrode plate for alkaline storage battery
JP5217723B2 (en) * 2008-07-22 2013-06-19 株式会社村田製作所 Battery manufacturing method
JP5768219B2 (en) * 2012-03-30 2015-08-26 パナソニックIpマネジメント株式会社 battery
CN103855356B (en) * 2012-11-28 2016-12-28 朴力美电动车辆活力株式会社 The manufacture method of electrode for cell and manufacture device
KR101520345B1 (en) * 2013-12-03 2015-05-15 (주)오렌지파워 Three dimensional electrode assembly and manufacturing method of the same
WO2016114426A1 (en) * 2015-01-15 2016-07-21 (주)오렌지파워 Three-dimensional electrode assembly and method for manufacturing same
CN217788446U (en) * 2022-05-16 2022-11-11 宁德时代新能源科技股份有限公司 Mark making device and pole piece production system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770311B2 (en) * 1985-12-10 1995-07-31 松下電器産業株式会社 Battery electrode manufacturing method
JPS6340253A (en) * 1986-08-04 1988-02-20 Sanyo Electric Co Ltd Manufacture of electrode for battery
JP2000106169A (en) * 1998-07-29 2000-04-11 Japan Storage Battery Co Ltd Electrode manufacturing method and battery

Also Published As

Publication number Publication date
JP2002343345A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
KR100438262B1 (en) Method and device for manufacturing electrode plate for cell, and cell using the electrode plate
US10411227B2 (en) Energy storage device, energy storage apparatus and method of manufacturing energy storage device
JP2006310254A (en) Manufacturing method of battery
JP4754094B2 (en) Manufacturing method of battery electrode plate
US5025551A (en) Method for the assembly of lead-acid batteries and associated apparatus
CN112349949A (en) Battery welded without electrode lug and preparation method
JP3089351B2 (en) Tab welding apparatus for battery electrode plate and method for manufacturing battery electrode plate using the same
US6864014B2 (en) Connecting structure of conductive connecting tab of battery
JP2002270148A (en) Manufacturing method of cylinder sealing type lithium secondary battery and lithium secondary battery
JPH10125348A (en) Battery
KR102023301B1 (en) Method for manufacturing bus bar of battery
JP3829080B2 (en) Method for manufacturing prismatic battery and electrode group thereof
CN216502930U (en) Multilayer utmost point ear welded fastening device
JPH0770311B2 (en) Battery electrode manufacturing method
JP5196824B2 (en) Cylindrical battery and manufacturing method thereof
US4973335A (en) Method for the assembly of lead-acid batteries and associated apparatus
JP3500863B2 (en) Electrode material cutting equipment
JPH10228908A (en) Alkaline storage battery
JP2762517B2 (en) Method of manufacturing spiral electrode group for alkaline battery
CN117497965A (en) Method for mounting current collecting disc of full-tab battery
JP3262421B2 (en) Method for manufacturing electrode plate for prismatic battery
JP2708123B2 (en) Manufacturing method of paste electrode
JP2001043844A (en) Long electrode plate for cylindrical storage battery
JPS6125172Y2 (en)
US3785869A (en) Method of manufacturing electrode groups of alkaline accumulators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees