JP2002340549A - Settlement measuring instrument - Google Patents

Settlement measuring instrument

Info

Publication number
JP2002340549A
JP2002340549A JP2001149415A JP2001149415A JP2002340549A JP 2002340549 A JP2002340549 A JP 2002340549A JP 2001149415 A JP2001149415 A JP 2001149415A JP 2001149415 A JP2001149415 A JP 2001149415A JP 2002340549 A JP2002340549 A JP 2002340549A
Authority
JP
Japan
Prior art keywords
pipe
measuring
closed container
pressure
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001149415A
Other languages
Japanese (ja)
Inventor
Masaki Miyazaki
正樹 宮崎
Takahiro Kondo
高弘 近藤
Hiromichi Miyazaki
裕道 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Central Japan Railway Co
Original Assignee
Taisei Corp
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Central Japan Railway Co filed Critical Taisei Corp
Priority to JP2001149415A priority Critical patent/JP2002340549A/en
Publication of JP2002340549A publication Critical patent/JP2002340549A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a settlement measuring instrument, capable of more accurately measuring settled quantity, as compared with a conventional method by relaxing fluctuations in atmospheric pressure, even if receiving sudden fluctuations in atmospheric pressure generated accompanied by the passage of a train in a tunnel. SOLUTION: The settlement measuring instrument has a reference water tank 1 for keeping the water level in a hermetically closed container constant, one or more measurement pipes, a communication pipe for allowing the reference water tank and the measuring pipe to communicate with each other under the surface of the water and an air pipe allowing the hermetically closed container and the measuring pipe to communicate with each other, above the surface of the water and measures the subsidence quantity of the arranging place of the measuring pipe, on the basis of the water level of the measuring pipe. Furthermore, this apparatus has a venting means for allowing the atmosphere to freely flow between the inside of the hermetically closed container and the outside and gently relaxing the atmospheric pressure difference, between the inside and outside of the hermetically closed container by the inflow of the atmosphere into the hermetically closed container or the outflow of the atmosphere from the hermetically closed container.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、構造物等の沈下量
を計測するための沈下計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a settlement measuring device for measuring the amount of settlement of a structure or the like.

【0002】[0002]

【従来の技術】図3を用いて、従来用いられてきた沈下
計測装置について説明する。沈下計測装置は、水位を一
定とした基準水槽101と、水位の変動により沈下量を
測定するための測定管102,103と、水中において
この基準水槽101と測定管とを連通する連通管104
とからなる。
2. Description of the Related Art With reference to FIG. 3, a conventional settlement measuring apparatus will be described. The squat measurement device includes a reference water tank 101 having a constant water level, measurement pipes 102 and 103 for measuring the amount of squat due to fluctuations in the water level, and a communication pipe 104 for communicating the reference water tank 101 and the measurement pipe in water.
Consists of

【0003】また、基準水槽101と測定管102,1
03の気圧が等しくなければ正確な測定ができないこと
から、基準水槽101を大気に開放した状態で設置する
とともに、各測定管102,103を端部が大気に開放
されたエアー管105により連通し、各測定管102,
103及び基準水槽101を大気圧下とすることで両者
に掛かる気圧を等しくしている。
A reference water tank 101 and measuring tubes 102, 1
Since the accurate measurement cannot be performed unless the air pressures at 03 are equal, the reference water tank 101 is installed with the air open to the atmosphere, and the measuring pipes 102 and 103 are connected to each other by an air pipe 105 whose end is open to the atmosphere. , Each measuring tube 102,
By setting the reference pressure 103 and the reference water tank 101 under atmospheric pressure, the pressure applied to both is equalized.

【0004】このように、沈下計測装置は構造が簡単で
あるにもかかわらず、比較的精度良く沈下量の評価がで
きるために、建造物、トンネル等の沈下量を計測するた
めに良く用いられている。
[0004] As described above, the squat measurement device can be used for measuring the squat amount of a building, a tunnel or the like because the squat amount can be evaluated relatively accurately despite its simple structure. ing.

【0005】沈下計測装置においては、基準水槽101
において水位を常に一定とすることが何にも増して重要
である。基準水槽101の水の蒸発や測定管102,1
03の沈下又は隆起等の影響により基準水槽101の水
位が変化することを防ぎ、水位を一定とするために、予
備水槽107からポンプ106等の手段により水を僅か
ずつ基準水槽101に供給し続け、基準水槽101が常
にオーバーフローして一定水位を保つようにしている。
In the settlement measuring device, a reference water tank 101 is used.
It is above all important to keep the water level constant. Evaporation of water in the reference water tank 101 and measurement tubes 102, 1
In order to prevent the water level of the reference water tank 101 from changing due to the influence of the subsidence or uplift of the water tank 03, and to keep the water level constant, water is continuously supplied from the auxiliary water tank 107 to the reference water tank 101 little by little by means of a pump 106 or the like. The reference water tank 101 always overflows to maintain a constant water level.

【0006】測定管102,103は沈下量を評価した
い任意の場所に設置される。もしも、その場所が沈下し
た場合には、測定管102,103中の水面は沈下量に
応じて見かけ上水位が上昇する。また、その場所が隆起
した場合には、測定管102,103中の水面は隆起量
に応じて見かけ上水位が下降する。このようにして、測
定管102,103の見かけ水位の変動より基準水槽1
01に対して測定管102,103を設置した場所が相
対的に沈下したのか、隆起したのかを判断することが可
能となる。
[0006] The measuring tubes 102 and 103 are installed at an arbitrary place where the amount of settlement is to be evaluated. If the place sinks, the water level in the measuring pipes 102 and 103 apparently rises according to the sinking amount. In addition, when the place is raised, the water level in the measurement pipes 102 and 103 apparently drops in water level according to the amount of protrusion. In this way, the reference tank 1
It is possible to judge whether the place where the measuring tubes 102 and 103 are installed relative to 01 is settled or raised.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来の沈下計
測装置は列車用トンネル内部では安定した測定を行うこ
とが難しかった。それは、列車が通過に伴い、急激に気
圧が変動するためである。より具体的に言うと、トンネ
ル内の任意の場所を測定点として気圧の測定を行うと、
列車の接近に伴い測定点における気圧は急激に増加し、
大気圧よりも高くなり、列車が測定点を通過した後は、
測定点における気圧は急激に減少して大気圧よりも低く
なる。例えば、新幹線が走行するトンネルの場合、新幹
線の通過に伴いトンネル内の気圧は「大気圧+0.2k
g/cm2」程度まで上昇し、その後直ちに「大気圧−
0.2kg/cm2」程度まで下降する。この気圧の急
激な変動は、沈下計測装置の大気に開放された基準水槽
水面(以下基準水面と言う)及びエアー管開口部を通し
て各水面に圧力を及ぼし、その結果、水位の変動をもた
らしていた。つまり、気圧が上昇すると水面は圧力を受
け水位が下降し、気圧が減少すると水面に印加された圧
力が取り除かれ水位は上昇する。
However, it has been difficult for the conventional settlement measuring apparatus to perform stable measurement inside the train tunnel. This is because the air pressure fluctuates rapidly as the train passes. More specifically, when measuring the atmospheric pressure with an arbitrary point in the tunnel as a measurement point,
As the train approaches, the air pressure at the measurement point increases rapidly,
After it is higher than the atmospheric pressure and the train has passed the measurement point,
The pressure at the measurement point decreases rapidly and becomes lower than the atmospheric pressure. For example, in the case of a tunnel in which a Shinkansen runs, the air pressure in the tunnel is "atmospheric pressure + 0.2 k
g / cm 2 ”, and immediately thereafter,“ atmospheric pressure-
It falls to about 0.2 kg / cm 2 ". This rapid change in air pressure exerted pressure on each water surface through a reference water tank surface (hereinafter referred to as a reference water surface) and an air pipe opening opened to the atmosphere of the sinking measurement device, and as a result, the water level fluctuated. . That is, when the atmospheric pressure rises, the water surface receives pressure and the water level falls, and when the atmospheric pressure decreases, the pressure applied to the water surface is removed and the water level rises.

【0008】特に、基準水面は大気に曝された水面の面
積が大きく、水面全体で列車通過時の気圧変動の影響を
受けるため、列車が通過するたびに基準水面が上昇下降
を繰り返していた。この基準水面の水位の振動は波とな
り連通管を通して緩やかに測定管の水位を振動させるた
めに、正確な沈下量を測定することができなかった。
In particular, the reference water surface has a large surface area exposed to the atmosphere, and the entire water surface is affected by atmospheric pressure fluctuations when a train passes. Therefore, the reference water surface repeatedly rises and falls every time a train passes. The vibration of the water level of the reference water surface became a wave, and the water level of the measurement pipe was gently vibrated through the communication pipe, so that the accurate settlement amount could not be measured.

【0009】また、列車の通過量が多いトンネルにおい
ては、基準水面の振動が収まらない内に次の列車が通過
してしまい、最悪の場合、水面の振動が重畳され基準水
面の振動が収まらないどころか増幅してしまい、沈下量
の評価を行うことが不可能となる場合もあった。
In a tunnel where a large amount of trains pass, the next train passes before the vibration of the reference water surface stops, and in the worst case, the vibration of the water surface is superimposed and the vibration of the reference water surface does not stop. In some cases, it was amplified, making it impossible to evaluate the amount of settlement.

【0010】本発明は、このような問題点に鑑み、トン
ネル内での列車通過に伴い発生する気圧の急激な変動を
受けても、その気圧変動を緩和して従来法以上に正確に
沈下量を測定することが可能な沈下計測装置を提供する
ことを課題とする。
[0010] In view of the above problems, the present invention reduces the pressure fluctuation even if it receives a sudden change in the pressure caused by the train passing through the tunnel, and makes it more accurate than the conventional method. It is an object to provide a subsidence measuring device capable of measuring the subsidence.

【0011】[0011]

【課題を解決するための手段】本発明は上述の課題を解
決するために以下のように構成した。本発明は、密閉容
器内に収められた水位を一定に保った基準水槽と、1個
以上の測定管と、この基準水槽と測定管とを水面下で連
通する連通管と、水面よりも上部において前記密閉容器
と前記測定管とを連通するエアー管と、を有し、前記測
定管の水位によって、測定管の設置個所の沈下量を測定
する沈下計測装置であって、前記密閉容器内部と外部と
の間で大気を自在に流通するとともに、前記密閉容器の
内外の気圧差を前記密閉容器への大気の流入又は前記密
閉容器からの大気の流出により緩やかに緩和するための
通気手段を有することを特徴とする沈下計測装置という
構成を有する。
Means for Solving the Problems The present invention is constituted as follows in order to solve the above-mentioned problems. The present invention provides a reference water tank having a constant water level contained in a closed container, one or more measurement pipes, a communication pipe connecting the reference water tank and the measurement pipe below the water surface, and an upper part above the water surface. An air pipe communicating the closed vessel and the measuring pipe, and a sink measuring device for measuring a settling amount at a place where the measuring pipe is installed, by a water level of the measuring pipe, wherein the inside of the closed vessel and It has ventilation means for freely circulating the atmosphere between the outside and the outside, and for moderately reducing the pressure difference between the inside and outside of the closed container by inflow of the air into the closed container or outflow of the atmosphere from the closed container. It has a configuration of a settlement measuring device.

【0012】本発明はこのように構成し、基準水槽を密
閉容器中に収納して、この密閉容器と密閉容器の外部
(以下「外界」と言う)とを通気するための手段を通気
手段のみに限定した。
According to the present invention, the reference water tank is housed in an airtight container, and the means for ventilating the airtight container and the outside of the airtight container (hereinafter referred to as "outside world") is only a ventilation means. Limited to.

【0013】本発明のように基準水槽を密閉容器に収納
した場合に外界で急激な気圧変動が発生すると、それに
伴って密閉容器の内外において気圧差が生まれる。この
気圧差を解消するために、密閉容器内部と外界で大気の
移動(大気の流入又は流出)が生じる。
When the reference water tank is housed in a closed container as in the present invention, if a sudden change in air pressure occurs in the outside world, a pressure difference is generated inside and outside the closed container. In order to eliminate this pressure difference, air movement (inflow or outflow of air) occurs inside and outside of the closed vessel.

【0014】ところが、本発明では、上述のように密閉
容器と外界との大気のやり取りを通気手段のみに制限し
ているので、この圧力差を解消するためには通気手段を
通して大気が移動するしか方法がない。
However, in the present invention, as described above, the exchange of the atmosphere between the sealed container and the outside world is restricted to only the ventilation means. Therefore, the only way to eliminate this pressure difference is to move the atmosphere through the ventilation means. There is no way.

【0015】ところで、この通気手段を通じた大気の移
動が完了するためにはある程度の時間が必要であるの
で、本発明のように構成すると、外界で急激な気圧変動
が発生した場合に、密閉容器内部の気圧変動は外界の気
圧変動よりも緩やかなものとなる。これによって、密閉
容器内部に収められた基準水槽は外部の急激な気圧変動
の影響を直接被ることが避けられ、外界で急激な気圧変
動が生じた際の基準水面の振動を従来法以上に抑制する
ことが可能となる。
By the way, since it takes a certain amount of time to complete the movement of the atmosphere through the ventilation means, the structure according to the present invention enables the closed container to be used when a sudden change in air pressure occurs in the outside world. The internal pressure fluctuation is more gradual than the external pressure fluctuation. As a result, the reference water tank housed in the sealed container is not directly affected by sudden external pressure fluctuations, and the vibration of the reference water surface when sudden pressure fluctuations occur in the outside world is suppressed more than conventional methods It is possible to do.

【0016】また、この通気手段を通して密閉容器と外
界とは常に大気の流通を行っているので、外界で急激な
気圧変動が発生していない時には、密閉容器内部は大気
圧に保たれる。つまり、通気手段により、密閉容器に収
められた基準水槽及び基準水槽とエアー管により連通さ
れた測定管は常に大気圧下に存在することとなるので、
沈下量測定の正確さが保証される。
Further, since the atmosphere between the closed container and the outside is always circulated through the ventilation means, the inside of the closed container is kept at the atmospheric pressure when no sudden change in the atmospheric pressure occurs in the outside. In other words, because of the ventilation means, the reference water tank contained in the closed container and the measurement pipe communicated with the reference water tank and the air pipe always exist under the atmospheric pressure.
The accuracy of the settlement measurement is guaranteed.

【0017】ここで、「緩やかに緩和する」とは、密閉
容器の外部で、例えば列車等の通過により急激な気圧変
動が生じた場合の気圧変動の変動速度よりも密閉容器内
部の気圧変動速度を小さくするとの意味である。
Here, "gradual relaxation" means that the pressure fluctuation speed inside the sealed container is higher than the fluctuation speed of the pressure fluctuation outside the sealed container, for example, when a sudden pressure change occurs due to the passage of a train or the like. This means that is reduced.

【0018】また、本発明は、前記通気手段が、前記密
閉容器に開けられた小径の通気孔であることを特徴とす
る請求項1記載の沈下計測装置という構成を有する。
Further, the present invention has the construction of a settlement measuring apparatus according to claim 1, wherein the ventilation means is a small-diameter ventilation hole opened in the closed container.

【0019】本発明はこのように構成し、通気手段を密
閉容器に設けた小径の通気孔とした。これにより、外界
での急激な気圧変動により密閉容器の内外で気圧差が発
生した場合に、密閉容器においてはこの小径の通気孔を
通してのみ大気の移動がなされ、外界での急激な気圧変
動は、緩和された形で基準水面に伝達されるので、基準
水面の振動を従来以上に抑制することが可能となる。
The present invention is configured as described above, and the ventilation means is a small-diameter ventilation hole provided in a closed container. Thereby, when a pressure difference occurs inside and outside the sealed container due to a sudden pressure change in the outside world, the atmosphere moves only through this small-diameter vent in the closed container, and the sudden pressure change in the outside world is Since the vibrations are transmitted to the reference water surface in a relaxed form, the vibration of the reference water surface can be suppressed more than before.

【0020】また、本発明は、前記通気手段が、前記密
閉容器に設けられた小径の通気管であることを特徴とす
る請求項1記載の沈下計測装置という構成を有する。
Further, the present invention has the construction of a settlement measuring apparatus according to claim 1, wherein the ventilation means is a small-diameter ventilation pipe provided in the closed container.

【0021】本発明はこのように構成し、通気手段を小
径の通気管とした。これにより、通気管内の大気が抵抗
の役目を果たし、外界での急激な気圧変動により密閉容
器の内外で気圧差が発生した場合に、前記の通気孔以上
に、外界での気圧変動が緩和された形で基準水面に伝達
されるので、基準水面の振動をより抑制することが可能
となる。
The present invention is constructed as described above, and the ventilation means is a small-diameter ventilation pipe. Thereby, the atmosphere in the ventilation pipe plays the role of resistance, and when a pressure difference occurs inside and outside the closed container due to a sudden pressure change in the outside, the pressure change in the outside is reduced more than the above-mentioned vent. Since the vibrations are transmitted to the reference water surface in a bent form, the vibration of the reference water surface can be further suppressed.

【0022】[0022]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態の説明を行う。図1に本発明の沈下計測装置の模
式図を、図2に外界の気圧変動と密閉容器内の気圧変動
の差異を描いた模式図を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of the settlement measuring apparatus of the present invention, and FIG. 2 is a schematic diagram illustrating the difference between the atmospheric pressure fluctuation in the outside world and the air pressure fluctuation in the closed vessel.

【0023】図1に本発明の沈下計測装置の模式図を示
す。沈下計測装置は、密閉容器2内に収められた水位を
一定に保った基準水槽1と、測定管9,10と、この基
準水槽1と測定管9,10とを水面下で連通する連通管
8と、水面よりも上部において前記密閉容器2と前記測
定管9,10とを連通するエアー管12と、密閉容器2
に設けられた通気管13とから構成されている。
FIG. 1 is a schematic view of a settlement measuring apparatus according to the present invention. The squat measurement device includes a reference water tank 1 in which the level of water contained in a closed container 2 is kept constant, measurement pipes 9 and 10, and a communication pipe connecting the reference water tank 1 and the measurement pipes 9 and 10 below the water surface. 8, an air pipe 12 communicating the closed vessel 2 and the measuring pipes 9 and 10 above the water surface, and a closed vessel 2
And the ventilation pipe 13 provided in the first section.

【0024】本発明において、沈下計測装置は装置全体
(基準水槽及び測定管)が、列車用トンネル等の急激な
気圧変動が発生する場所に設置されることを想定してい
る。
In the present invention, it is assumed that the entire settlement apparatus (the reference water tank and the measuring pipe) is installed in a place where a sudden change in air pressure occurs, such as a train tunnel.

【0025】基準水槽1は密閉容器2の中に収納されて
いる。基準水槽1は、内部が2槽に分割されており、測
定の基準となる基準水面3を得るための本水槽4と、こ
の本水槽4に絶えず水を供給するための予備水槽5とか
らなる。予備水槽5には、揚水ポンプ6が設けられてお
り、供給管7を通して、常に僅かずつ本水槽4に水を供
給し続けるような構造となっている。基準水槽1はこの
ように構成されているので、本水槽4は絶えずオーバー
フローしている状態に保たれ、これにより、基準水面3
は常に一定水位を保持している。また、オーバーフロー
した水は、再び予備水槽5に流入し再利用される。
The reference water tank 1 is housed in a closed container 2. The reference water tank 1 is internally divided into two tanks, and includes a main water tank 4 for obtaining a reference water surface 3 serving as a measurement reference, and a spare water tank 5 for constantly supplying water to the main water tank 4. . The reserve water tank 5 is provided with a water pump 6 and has a structure such that water is always supplied to the main water tank 4 little by little through a supply pipe 7. Since the reference water tank 1 is configured in this way, the main water tank 4 is kept in a state of constantly overflowing, whereby the reference water surface 3
Always maintains a constant water level. Further, the overflowed water flows into the spare water tank 5 again and is reused.

【0026】この基準水槽1は、沈下量測定の基準高さ
を与えるものであるので、地盤の高さ変動が生じないよ
うな堅固な場所に設置することが望ましい。基準水槽1
の本水槽4には、水面下において連通管8が設置されて
いる。この連通管8は、密閉容器2の密閉性を破らない
ようにして密閉容器2の外に導かれ、測定管9,10の
底部と連通している。本発明で用いる密閉容器2は、外
界と密閉容器2内部の気圧差によっても変形しない堅牢
な構造である。
Since the reference tank 1 provides a reference height for measuring the amount of settlement, it is desirable to install the reference tank 1 in a solid place where the height of the ground does not fluctuate. Reference tank 1
A communication pipe 8 is installed in the main water tank 4 below the water surface. The communication pipe 8 is led out of the closed vessel 2 without breaking the tightness of the closed vessel 2, and communicates with the bottoms of the measurement pipes 9 and 10. The sealed container 2 used in the present invention has a robust structure that is not deformed even by a pressure difference between the outside and the inside of the sealed container 2.

【0027】測定管9,10は、沈下量を評価したい任
意の場所に設置される。もしも、測定管9,10の設置
場所の高さが変化した場合、測定管中の水面はその地盤
の沈下量に応じて水位が変化する。この測定管の水位の
変化より、基準水面に対する地盤の変化量(隆起、沈
下)を評価することが可能となる。
The measuring tubes 9 and 10 are installed at an arbitrary place where the amount of settlement is to be evaluated. If the height of the installation place of the measurement pipes 9 and 10 changes, the water level in the measurement pipes changes according to the amount of subsidence of the ground. From the change in the water level of the measuring pipe, it is possible to evaluate the amount of change (uplift, settlement) of the ground relative to the reference water surface.

【0028】本実施の形態においては測定管を2個用い
ているが、測定の必要に応じて設置個数は自由に変更可
能である。
Although two measuring tubes are used in the present embodiment, the number of the measuring tubes can be freely changed as required for the measurement.

【0029】また、測定管9,10には、水位を測定す
るためのメジャー11が設置されており、測定管内の水
位を測定し易いようになっている。水位の変化を評価す
るための手段は、メジャー11に限らず、例えば、測定
管底部に取り付けた水圧計等の公知の手段を用いること
が可能である。
The measuring pipes 9 and 10 are provided with a measure 11 for measuring the water level, so that the water level in the measuring pipes can be easily measured. The means for evaluating the change in the water level is not limited to the measure 11, and for example, a known means such as a water pressure gauge attached to the bottom of the measurement tube can be used.

【0030】さらに、測定管9,10はエアー管12に
より密閉容器2と連通されている。このエアー管12に
より、基準水面3と測定管9,10内部の水面にかかる
気圧を等しくすることができるので、正確な沈下量の測
定を行うことが可能となる。
Further, the measuring tubes 9 and 10 are communicated with the closed container 2 by an air tube 12. The air pipe 12 makes it possible to equalize the air pressure applied to the reference water surface 3 and the water surface inside the measurement pipes 9 and 10, so that it is possible to accurately measure the amount of settlement.

【0031】密閉容器2には、この密閉容器2を大気圧
に保つとともに、外界で発生する急激な気圧変動を緩和
するための通気手段としての通気管13が設けられてい
る。この通気管13は本発明の最大の特徴点であり、流
体力学的に絞り機能を有し、密閉容器2外部で発生した
急激な気圧変動の緩衝機構として作用する。
The closed vessel 2 is provided with a ventilation pipe 13 as a ventilation means for keeping the closed vessel 2 at atmospheric pressure and for reducing sudden pressure fluctuations occurring in the outside world. The ventilation pipe 13 is the most significant feature of the present invention, and has a throttling function in terms of hydrodynamics, and acts as a buffer mechanism for a sudden change in atmospheric pressure generated outside the closed vessel 2.

【0032】この通気管13の果たす役割を図2により
説明する。図2は縦軸が、大気圧を基準とした気圧(任
意単位)を表し、横軸が時間(任意単位)を表してい
る。図2中の実線は、トンネル内部での列車通過に伴い
発生する外界の気圧を模式的に表している。図2中の破
線は、この気圧変化に対応した通気管13を有する密閉
容器2内の気圧を表している。
The role of the ventilation pipe 13 will be described with reference to FIG. In FIG. 2, the vertical axis represents the atmospheric pressure (arbitrary unit) with reference to the atmospheric pressure, and the horizontal axis represents time (arbitrary unit). The solid line in FIG. 2 schematically represents the outside air pressure generated when the train passes inside the tunnel. The broken line in FIG. 2 represents the air pressure in the closed container 2 having the ventilation pipe 13 corresponding to the change in the air pressure.

【0033】外界の気圧(実線)は、列車の通過に伴
い、大気圧から急激に増加し(図2a)、最大値(図2
b)となった後に急激に減少し(図2 c)、大気圧
を下回り、最小値(図2 d)となった後に再び増加し
(図2 e)大気圧に復帰する。外界でこのような気圧
変動が生じると、通気管13を有する密閉容器2では以
下のような変化が生じる。
The atmospheric pressure (solid line) in the outside world rapidly increases from the atmospheric pressure (FIG. 2a) as the train passes, and reaches a maximum value (FIG. 2).
After b), the pressure rapidly decreases (FIG. 2C), falls below the atmospheric pressure, increases again after reaching the minimum value (FIG. 2D) (FIG. 2E), and returns to the atmospheric pressure. When such a pressure fluctuation occurs in the outside world, the following changes occur in the closed container 2 having the ventilation pipe 13.

【0034】まず、外界の気圧上昇により、外界と密閉
容器2内で気圧差(外界>密閉容器2内)が発生する。
この気圧差を解消するために、通気管13を通して外界
から密閉容器2内に大気が流入する。ここで通気管13
が充分に小径であれば、通気管13は流体力学的な絞り
として機能して、外界から密閉容器2に単位時間あたり
に流入する大気量が抑制されるので、密閉容器2内部の
気圧は、外界の気圧増加に比べて緩やかに増加する(図
2 a’)。
First, a pressure difference between the outside and the inside of the closed container 2 (outside> the inside of the closed container 2) occurs due to the rise in the outside pressure.
In order to eliminate this pressure difference, the air flows into the closed casing 2 from the outside through the ventilation pipe 13. Here the ventilation pipe 13
Is sufficiently small, the ventilation pipe 13 functions as a hydrodynamic throttle, and the amount of air flowing into the sealed container 2 from the outside world per unit time is suppressed. It increases slowly compared to the increase in atmospheric pressure (Fig. 2a ').

【0035】また、密閉容器2内部の気圧の上昇開始点
(図2 z)は外界の気圧上昇開始点(図2 y)より
も遅れるが、これは、通気管13がある程度の長さを有
しているために、通気管13中を大気が移動して密閉容
器2内部の気圧を実際に増加させるまでにある程度の時
間を要するからである。また、通気管13が有限の長さ
を有することで、大気が通気管13内を通過するときの
管内抵抗により密閉容器2内部の気圧変動を緩やかにす
る副次的効果が生まれる。
The pressure rise start point (FIG. 2z) inside the closed vessel 2 is later than the atmospheric pressure rise start point (y in FIG. 2) because the vent pipe 13 has a certain length. This is because it takes a certain amount of time for the atmosphere to move inside the ventilation pipe 13 and actually increase the air pressure inside the sealed container 2. In addition, since the ventilation pipe 13 has a finite length, a secondary effect of easing the pressure fluctuation inside the sealed container 2 due to the resistance in the pipe when the air passes through the ventilation pipe 13 is produced.

【0036】その後、密閉容器2内部の気圧は徐々に増
加していき、やがて密閉容器2内の圧力が外界の気圧と
等しくなったところで最大値(図2 b’)となる。た
だし、上述したように、通気管13中を大気が移動して
密閉容器2内部の気圧を変化させるための遅れ時間が存
在するので、密閉容器2内の気圧が最大となるのは、外
界の気圧と密閉容器2の気圧が等しくなる点xから少し
遅れた点b’においてである。
Thereafter, the pressure inside the sealed container 2 gradually increases, and reaches a maximum value (FIG. 2B ') when the pressure inside the sealed container 2 becomes equal to the atmospheric pressure in the outside world. However, as described above, there is a delay time for the air to move through the ventilation pipe 13 to change the air pressure inside the sealed container 2. This is at a point b 'which is slightly delayed from a point x at which the atmospheric pressure and the atmospheric pressure of the closed container 2 become equal.

【0037】点b’以降においては、密閉容器2内部の
気圧が外界よりも大きい状態となるので、密閉容器2か
ら外界への大気の流出が生じ、密閉容器2内の気圧は緩
やかに減少し(図2 c’)、やがて密閉容器2内の圧
力が外界の気圧と等しくなったところで最小値(図2
d’)となる。その後は、密閉容器2内の気圧が外界よ
りも小さい状態となるので、外界から大気が通気管13
を通して緩やかに流入し、密閉容器2内の気圧は徐々に
増加し(図2 e’)やがて大気圧に復帰する。
After the point b ', the air pressure inside the sealed container 2 becomes larger than the outside world, so that the atmosphere flows out from the sealed container 2 to the outside world, and the air pressure inside the sealed container 2 gradually decreases. (FIG. 2 c ′), when the pressure inside the sealed container 2 becomes equal to the atmospheric pressure, the minimum value (FIG. 2 c) is reached.
d '). Thereafter, the air pressure in the sealed container 2 becomes smaller than the outside atmosphere, so that the atmosphere is supplied from the outside to the ventilation pipe 13.
, And the air pressure in the closed container 2 gradually increases (FIG. 2e '), and then returns to the atmospheric pressure.

【0038】ここで注目すべきは、密閉容器2内の気
圧の最大値(図2 b’)と最小値(図2 d’)との
幅が、外界の気圧の変動幅(図2の点bと点dの差)よ
りも小さく抑えられたこと、密閉容器2内部の気圧変
動が外界の気圧変動に比べてなだらかであること、の2
点である。これが、密閉容器2に通気管13を設けた効
果である。本発明のように、密閉容器2に通気管13を
設けることで、外界の気圧変動に比べて密閉容器2内部
の気圧変動が上述のように緩和されるので、密閉容器2
内部の基準水面3の振動が従来以上に抑制され、より正
確な沈下量の測定を行うことが可能となる。
It should be noted here that the range between the maximum value (FIG. 2b ') and the minimum value (FIG. 2d') of the atmospheric pressure in the sealed container 2 is determined by the fluctuation range of the atmospheric pressure (point in FIG. 2). (difference between b and point d), and that the pressure fluctuation inside the sealed container 2 is gentler than the pressure fluctuation in the outside world.
Is a point. This is the effect of providing the closed container 2 with the ventilation tube 13. By providing the ventilation pipe 13 in the closed vessel 2 as in the present invention, the pressure fluctuation inside the closed vessel 2 is reduced as described above as compared with the atmospheric pressure fluctuation.
The vibration of the internal reference water surface 3 is suppressed more than before, and more accurate measurement of the settlement amount can be performed.

【0039】通気管13は、開口面積が大きすぎると、
外界で発生する急激な気圧変動を緩衝する効果が薄れ
る。つまり、図2で言うと、密閉容器2内部の気圧変動
曲線(点線)が急峻となり、外界の気圧変動曲線(実
線)に近づくので好ましくない。また、通気管13の開
口面積が小さすぎると、外界で急激な気圧変動が発生し
ていない状況において外界と密閉容器2内の大気の流通
を阻害し密閉容器2内部の気圧を大気圧に保つことが難
しくなるので好ましくない。
If the opening area of the ventilation pipe 13 is too large,
The effect of buffering sudden pressure fluctuations occurring in the outside world is diminished. In other words, referring to FIG. 2, the pressure fluctuation curve (dotted line) inside the closed container 2 becomes steep and approaches the pressure fluctuation curve (solid line) of the outside world, which is not preferable. Further, if the opening area of the ventilation pipe 13 is too small, the flow of the atmosphere between the outside and the inside of the sealed container 2 is obstructed and the pressure inside the sealed container 2 is maintained at the atmospheric pressure in a situation where no sudden change in the atmospheric pressure occurs in the outside. It is not preferable because it becomes difficult.

【0040】外界での圧力変動を有効に緩和するために
要求される通気管13の開口面積の具体的な数値は、用
いる沈下計測装置の容積、トンネル内で発生する気圧変
動の大きさ等に依存するために一概に決定することは難
しく、実際に沈下計測装置を使用する状況下で通気管1
3の開口面積を種々に変化させた予備実験により最適値
を決定することが望ましい。実際に用いている沈下計測
装置の一例を挙げると、通気管13の開口部が円形の場
合、直径が0.5〜2mmの時に、列車通過の際の気圧
変動に左右されない沈下量測定を好適に実施することが
できる。
The specific numerical value of the opening area of the ventilation pipe 13 required to effectively mitigate the pressure fluctuation in the outside world depends on the volume of the subsidence measuring device to be used, the magnitude of the pressure fluctuation generated in the tunnel, and the like. It is difficult to make a general decision because of the dependence on the ventilation pipe 1
It is desirable to determine the optimum value by a preliminary experiment in which the opening area of No. 3 is variously changed. To give an example of an actually used squat measurement device, when the opening of the ventilation pipe 13 is circular, when the diameter is 0.5 to 2 mm, it is preferable to measure the squat amount which is not affected by the atmospheric pressure fluctuation when passing through the train. Can be implemented.

【0041】また、通気管13の長さは、外界で急激な
気圧変動が生じた場合、長ければ長いほど大気が通気管
13を通過する際に管内抵抗が増大するので、より、密
閉容器2内に伝達する気圧変動を緩衝することが可能と
なる。
In the case where a sudden change in atmospheric pressure occurs in the outside world, the longer the ventilation pipe 13 is, the longer the resistance of the atmosphere when the air passes through the ventilation pipe 13 becomes, the more the sealed vessel 2 is closed. It is possible to buffer pressure fluctuations transmitted to the inside.

【0042】[0042]

【発明の効果】本発明は上記のように構成したので次に
示す顕著な効果を奏する。 (1)基準水槽を密閉容器内部に収納し、密閉容器内部
と外界との大気の流通を通気手段にのみ限定したので、
外界で発生する急激な気圧変動が、この通気手段により
緩和される。これにより、密閉容器内部の基準水面にか
かる気圧変動を外界よりも緩和することを可能とした。
よって、基準水面の振動を抑制することが可能となり、
外界の気圧変動が激しい場所(列車用トンネル内部等)
においても従来以上に沈下量の測定を正確に行うことが
可能となった(請求項1)。また、通気手段を通して密
閉容器内部は常に大気圧となっているので、沈下量測定
の精度が保証される(請求項1)。
Since the present invention is constructed as described above, the following remarkable effects can be obtained. (1) Since the reference water tank is housed inside the sealed container and the circulation of the atmosphere between the inside of the sealed container and the outside world is limited only to the ventilation means,
Sudden pressure fluctuations occurring in the outside world are mitigated by the ventilation means. This makes it possible to reduce pressure fluctuations applied to the reference water surface inside the sealed container more than the outside world.
Therefore, it becomes possible to suppress the vibration of the reference water surface,
A place where the atmospheric pressure fluctuates greatly (such as inside a train tunnel)
It has become possible to measure the amount of settlement more accurately than before (claim 1). Further, since the inside of the closed container is always kept at the atmospheric pressure through the ventilation means, the accuracy of the measurement of the settlement amount is guaranteed (claim 1).

【0043】(2)本発明は、通気手段を密閉容器に開
けた小径の通気孔又は、通気管としたので、外界での急
激な気圧変動が緩和されて基準水面に伝達されるので、
基準水面の振動が従来以上に抑制されるので、外界の気
圧変動が激しい場所においても従来法以上に沈下量の正
確な測定を行うことが可能となる(請求項2,3)。
(2) According to the present invention, since the ventilation means is a small-diameter ventilation hole or a ventilation pipe opened in a closed container, abrupt atmospheric pressure fluctuations in the outside are mitigated and transmitted to the reference water surface.
Since the vibration of the reference water surface is suppressed more than before, it is possible to measure the amount of settlement more accurately than in the conventional method even in a place where the atmospheric pressure fluctuates greatly (claims 2 and 3).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水盛式沈下形の模式図を示す。FIG. 1 is a schematic view of a submerged sinking type according to the present invention.

【図2】 外界の気圧変動と密閉容器内の気圧変動の差
異を描いた模式図を示す。
FIG. 2 is a schematic diagram illustrating a difference between the atmospheric pressure fluctuation in the outside world and the air pressure fluctuation in a closed container.

【図3】 従来の沈下計測装置の模式図を示す。FIG. 3 shows a schematic view of a conventional settlement measurement device.

【符号の説明】[Explanation of symbols]

1 基準水槽 2 密閉容器 3 基準水面 4 本水槽 5 予備水槽 6 揚水ポンプ 7 供給管 8 連通管 9,10 測定管 11 メジャー 12 エアー管 13 通気管 DESCRIPTION OF SYMBOLS 1 Reference water tank 2 Closed container 3 Reference water surface 4 Main water tank 5 Spare water tank 6 Pumping pump 7 Supply pipe 8 Communication pipe 9,10 Measurement pipe 11 Measure 12 Air pipe 13 Ventilation pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 高弘 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 (72)発明者 宮崎 裕道 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 Fターム(参考) 2D046 DA23 DA25 2F076 BA01 BB09 BE01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takahiro Kondo 1-25-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Taisei Construction Co., Ltd. (72) Inventor Hiromichi Miyazaki 1-25-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Taisei Corporation F term (reference) 2D046 DA23 DA25 2F076 BA01 BB09 BE01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に収められた水位を一定に保
った基準水槽と、1個以上の測定管と、この基準水槽と
測定管とを水面下で連通する連通管と、水面よりも上部
において前記密閉容器と前記測定管とを連通するエアー
管と、を有し、前記測定管の水位によって、測定管の設
置個所の沈下量を測定する沈下計測装置であって、 前記密閉容器内部と外部との間で大気を自在に流通する
とともに、前記密閉容器の内外の気圧差を前記密閉容器
への大気の流入又は前記密閉容器からの大気の流出によ
り緩やかに緩和するための通気手段を有することを特徴
とする沈下計測装置。
1. A reference water tank having a constant water level contained in an airtight container, at least one measurement pipe, a communication pipe connecting the reference water tank and the measurement pipe below the water surface, An air pipe communicating with the closed vessel and the measuring pipe at an upper part, and a sinking measuring device for measuring a settling amount of a place where the measuring pipe is installed by a water level of the measuring pipe, wherein the inside of the closed vessel is And a ventilation means for gently mitigating the pressure difference between the inside and outside of the closed vessel by inflow of air into or out of air from the closed vessel. A subsidence measuring device comprising:
【請求項2】 前記通気手段が、前記密閉容器に開けら
れた小径の通気孔であることを特徴とする請求項1記載
の沈下計測装置。
2. The settlement measuring apparatus according to claim 1, wherein the ventilation means is a small-diameter ventilation hole opened in the closed container.
【請求項3】 前記通気手段が、前記密閉容器に設けら
れた小径の通気管であることを特徴とする請求項1記載
の沈下計測装置。
3. The settlement measuring apparatus according to claim 1, wherein the ventilation means is a small-diameter ventilation pipe provided in the closed container.
JP2001149415A 2001-05-18 2001-05-18 Settlement measuring instrument Pending JP2002340549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001149415A JP2002340549A (en) 2001-05-18 2001-05-18 Settlement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001149415A JP2002340549A (en) 2001-05-18 2001-05-18 Settlement measuring instrument

Publications (1)

Publication Number Publication Date
JP2002340549A true JP2002340549A (en) 2002-11-27

Family

ID=18994591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001149415A Pending JP2002340549A (en) 2001-05-18 2001-05-18 Settlement measuring instrument

Country Status (1)

Country Link
JP (1) JP2002340549A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926368A (en) * 2012-10-31 2013-02-13 西安理工大学 Device and method for monitoring differential settlement of roadbed of road
CN106223376A (en) * 2016-09-28 2016-12-14 中铁大桥科学研究院有限公司 A kind of pile bearing capacity test displacement tester and method
CN106643649A (en) * 2016-12-19 2017-05-10 杭州久智自动化技术有限公司 Method and device for measuring deep soil settlement and pore water pressure
CN110044330A (en) * 2019-04-26 2019-07-23 中铁十六局集团地铁工程有限公司 A kind of tunnel roof surrounding rock displacement measuring device and method
CN112325844A (en) * 2020-10-30 2021-02-05 苏州理欧电子科技有限公司 Liquid sedimentation detection device
CN114964144A (en) * 2022-03-31 2022-08-30 中国一冶集团有限公司 Underground pipe group disaster monitoring and early warning structure and control method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926368A (en) * 2012-10-31 2013-02-13 西安理工大学 Device and method for monitoring differential settlement of roadbed of road
CN102926368B (en) * 2012-10-31 2015-06-24 西安理工大学 Device and method for monitoring differential settlement of roadbed of road
CN106223376A (en) * 2016-09-28 2016-12-14 中铁大桥科学研究院有限公司 A kind of pile bearing capacity test displacement tester and method
CN106643649A (en) * 2016-12-19 2017-05-10 杭州久智自动化技术有限公司 Method and device for measuring deep soil settlement and pore water pressure
CN106643649B (en) * 2016-12-19 2022-08-12 杭州久智自动化技术有限公司 Device and method for measuring deep settlement and pore water pressure of soil body
CN110044330A (en) * 2019-04-26 2019-07-23 中铁十六局集团地铁工程有限公司 A kind of tunnel roof surrounding rock displacement measuring device and method
CN112325844A (en) * 2020-10-30 2021-02-05 苏州理欧电子科技有限公司 Liquid sedimentation detection device
CN114964144A (en) * 2022-03-31 2022-08-30 中国一冶集团有限公司 Underground pipe group disaster monitoring and early warning structure and control method
CN114964144B (en) * 2022-03-31 2023-05-16 中国一冶集团有限公司 Underground pipe cluster disaster monitoring and early warning structure and control method

Similar Documents

Publication Publication Date Title
RU2416090C2 (en) Procedure and device for measuring surface tension of liquids
JP2002340549A (en) Settlement measuring instrument
US6142017A (en) Hydrostatic pressure equalizer apparatus and system
US10036662B2 (en) Flow rate calculation system and flow rate calculation method
JP4923957B2 (en) Leak inspection device
US20200398950A1 (en) U-Tank Active Roll Dampening System for and Method for Active Roll Dampening of a Vessel
US4799388A (en) Apparatus and technique for metering liquid flow
KR102642990B1 (en) Substrate processing apparatus and substrate processing method
JP2015148530A (en) Gas flowmeter
WO2019127688A1 (en) High-viscosity liquid supply and discharge device
CN209796381U (en) Liquid seal device and storage device
JPWO2018147354A1 (en) Flow rate measuring method and flow rate measuring device
CN209800749U (en) Air valve for eliminating hammer
JP2015136903A (en) Liquid storage device, liquid storage method, and ink jet recorder
US20150053272A1 (en) Pressure stabilization method
JP2004108993A (en) Subsidence measuring method, subsidence measuring system, subsidence measuring device, and wave damping block for subsidence measuring device
CN209979019U (en) Transformer oil level on-line monitoring system with temperature compensation
KR101370524B1 (en) Fpso
JP2013141691A (en) Method for calculating volume of air chamber in furnace, casting method, device for calculating volume of air chamber in furnace and program for calculating volume of air chamber in furnace
KR102044264B1 (en) Suction pot level control apparatus of high pressure pump for vessel and method for operating the apparatus
JP2000346736A (en) Semiconductor-type pressure sensor
JP4533699B2 (en) Hydraulic control device
JP2018184798A (en) Water leakage detection device
KR102093736B1 (en) Method for sensing water hammer, and water hammer preventing system using the same
JPS6232319A (en) Detector for liquid level