JP2002340433A - Solar-heat utilizing equipment - Google Patents

Solar-heat utilizing equipment

Info

Publication number
JP2002340433A
JP2002340433A JP2001144374A JP2001144374A JP2002340433A JP 2002340433 A JP2002340433 A JP 2002340433A JP 2001144374 A JP2001144374 A JP 2001144374A JP 2001144374 A JP2001144374 A JP 2001144374A JP 2002340433 A JP2002340433 A JP 2002340433A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
solar heat
air
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001144374A
Other languages
Japanese (ja)
Other versions
JP4639521B2 (en
Inventor
Satoshi Imabayashi
敏 今林
Takeji Watanabe
竹司 渡辺
Ryuta Kondo
龍太 近藤
Yoshitsugu Nishiyama
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001144374A priority Critical patent/JP4639521B2/en
Publication of JP2002340433A publication Critical patent/JP2002340433A/en
Application granted granted Critical
Publication of JP4639521B2 publication Critical patent/JP4639521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently operate solar-heat utilizing equipment for heating by securing necessary heating power without being influenced by the quantity of solar radiation nor the outside air temperature. SOLUTION: This solar-heat utilizing equipment is provided with a solar heat collecting panel 24, a blowing means 25, a heat pump circuit 19 having a variable capacity compressor 20. This equipment is also provided with the evaporator 23 of the circuit 19 which makes heat exchange with the air passed through the panel 24 and a control means 32 which changes the capacity of the compressor 20. Therefore, the evaporative temperature of this equipment can be raised significantly by performing necessary adjustment on the heating power of a heat pump correspondingly to the quantity of solar radiation and outside air temperature and, when the supply temperature to the evaporator 23 becomes higher due to a large quantity of solar radiation, by reducing, for example, the number of revolutions of the compressor 20. Consequently, this equipment can be operated efficiently by leaps and bounds by securing the heating power of the heat pump.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、晴天時は太陽熱
を、天気の悪いときは外気熱を熱源にして運転されるヒ
ートポンプによる給湯、あるいは暖房を行う装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supplying hot water or heating with a heat pump operated by using solar heat when the weather is fine and by using outside heat when the weather is bad.

【0002】[0002]

【従来の技術】従来、この種の太陽熱利用装置として
は、例えば、特開昭59−107150号公報、あるい
は、実開昭61−7768号公報に記載されているよう
な太陽熱利用装置があった。図10、図11は、前記公
報に記載された従来の太陽熱利用した太陽熱温水器を示
すものである。
2. Description of the Related Art Conventionally, as this type of solar heat utilizing apparatus, there has been a solar heat utilizing apparatus described in, for example, JP-A-59-107150 or JP-A-61-7768. . FIGS. 10 and 11 show a conventional solar water heater using solar heat described in the above publication.

【0003】図10において、1は貯水タンク、2はヒ
ートポンプ回路、3は圧縮機、4は貯水タンク1の下部
に配置された凝縮器、5は絞り、6は蒸発器で集熱フィ
ン7を有する、8集熱熱交換器部で、この集熱熱交換器
部8は、閉構造となる集熱室9を有し、その太陽側をガ
ラス板10で封止し、集熱室9内には蒸発器6と送風機
11を配置し、ダンパー12、13で外気と開閉できる
構成としている。また、図11において、集熱熱交換器
部8は、外箱14の太陽光受光面にガラス板10、外箱
14内を表側と裏側に仕切るように配置した集熱板1
5、集熱板15の表面側の手前に開口した空気導入口1
6、空気導入口16に対し反対側の空気のリターン口1
7、空気導入口16近傍の外箱14の裏面に開口した排
気口18、排気口18の内側に送風機12とヒートポン
プ装置の蒸発器6を配した構成としている。
In FIG. 10, 1 is a water storage tank, 2 is a heat pump circuit, 3 is a compressor, 4 is a condenser disposed below the water storage tank 1, 5 is a throttle, and 6 is an evaporator. The heat collecting heat exchanger section 8 includes a heat collecting chamber 9 having a closed structure, the sun side of which is sealed with a glass plate 10, and the inside of the heat collecting chamber 9. Is provided with an evaporator 6 and a blower 11, and dampers 12 and 13 can open and close with outside air. In FIG. 11, the heat collecting heat exchanger unit 8 includes a glass plate 10 on the sunlight receiving surface of the outer box 14, and a heat collecting plate 1 arranged to partition the inside of the outer box 14 into a front side and a back side.
5. Air inlet 1 opened in front of the front side of heat collecting plate 15
6. Air return port 1 on the opposite side to air inlet 16
7, an exhaust port 18 opened on the back surface of the outer box 14 near the air inlet 16, and the blower 12 and the evaporator 6 of the heat pump device are arranged inside the exhaust port 18.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記図
10に示す従来の構成では、ヒートポンプの蒸発器6の
全面で太陽熱を受ける構成であり、必要な集熱面積全体
に蒸発器6を広げて配置する必要があるために、蒸発器
6が大きくなり、冷媒封入量が増大するばかりでなく、
空気熱源のみの場合の必要風量が通常のヒートポンプの
場合に比べ数倍になり、送風機の駆動動力が増大すると
いった課題を有していた。
However, in the conventional structure shown in FIG. 10, the entire surface of the evaporator 6 of the heat pump receives the solar heat, and the evaporator 6 is arranged so as to spread over the required heat collecting area. Therefore, not only does the evaporator 6 become large and the amount of refrigerant charged increases,
The required amount of air in the case of using only the air heat source is several times as large as that of a normal heat pump, and there is a problem that the driving power of the blower increases.

【0005】また、前記図11に示す従来の構成では、
集熱板15で太陽熱により空気を加熱して、その加熱昇
温した空気をヒートポンプの蒸発器6に送る構成のた
め、蒸発器6は通常のヒートポンプの場合と同等の大き
さで良いといった利点はあるが、日射量が多くなると必
要以上に加熱能力が増大するといった課題を有してい
た。
[0005] In the conventional configuration shown in FIG.
Since the air is heated by the solar heat with the heat collecting plate 15 and the heated and heated air is sent to the evaporator 6 of the heat pump, there is an advantage that the evaporator 6 may have the same size as that of a normal heat pump. However, there was a problem that the heating capacity was increased more than necessary when the amount of solar radiation increased.

【0006】本発明は、前記従来の課題を解決するもの
で、太陽熱を受け取る蒸発器を小さくし、太陽の日射量
に関係なく必要な加熱能力を確保してかつ、効率の良い
加熱運転のできる太陽熱利用装置を提供することを目的
とする。
The present invention solves the above-mentioned conventional problems, and makes it possible to reduce the size of an evaporator that receives solar heat, secure a necessary heating capacity irrespective of the amount of solar radiation, and perform efficient heating operation. An object is to provide a solar heat utilization device.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、太陽熱集熱パネルと、空気を前記太陽熱集
熱パネルに通風させるための送風手段と、能力可変圧縮
機を有したヒートポンプ回路と、前記太陽熱集熱パネル
を通過した空気と熱交換する前記ヒートポンプ回路の蒸
発器と、圧縮機能力可変制御手段を備えた太陽熱利用装
置としたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a heat pump having a solar heat collecting panel, air blowing means for passing air through the solar heat collecting panel, and a variable capacity compressor. A solar heat utilizing apparatus comprising a circuit, an evaporator of the heat pump circuit for exchanging heat with air passing through the solar heat collecting panel, and a compression function force variable control means.

【0008】これによって、ヒートポンプの蒸発器で直
接日射を受ける必要がないために、通常のヒートポンプ
と同等の大きさに小さくできる。また、圧縮機能力可変
制御手段を設けることにより、日射量、外気温度に対応
して必要な加熱能力調節をおこなうことで、必要な加熱
能力を確保でき、また、日射量が多く蒸発器への供給温
度が高くなるときには、例えば、圧縮機の回転数を小さ
くすることで、蒸発温度が高くなり、ヒートポンプの加
熱能力を確保してかつ、効率の良い加熱運転ができる。
[0008] Thus, since it is not necessary to receive direct solar radiation from the evaporator of the heat pump, the size can be reduced to the same size as a normal heat pump. In addition, by providing the compression function force variable control means, it is possible to secure the necessary heating capacity by performing the necessary heating capacity adjustment in accordance with the amount of solar radiation and the outside air temperature. When the supply temperature becomes high, for example, by reducing the number of revolutions of the compressor, the evaporation temperature becomes high, and the heating capacity of the heat pump can be ensured, and efficient heating operation can be performed.

【0009】[0009]

【発明の実施の形態】請求項1に記載の発明は、太陽熱
集熱パネルと、空気を前記太陽熱集熱パネルに通風させ
るための送風手段と、能力可変圧縮機を有したヒートポ
ンプ回路と、前記太陽熱集熱パネルを通過した空気と熱
交換する前記ヒートポンプ回路の蒸発器と、圧縮機能力
可変制御手段を備えた構成とすることにより、ヒートポ
ンプの蒸発器で直接日射を受ける必要がないために、通
常のヒートポンプと同等の大きさに小さくできる。ま
た、圧縮機能力可変制御手段を設けることにより、日射
量、外気温度に対応して必要な加熱能力調節をおこなう
ことで、必要な加熱能力を確保でき、また、日射量が多
く蒸発器への供給温度が高くなるときには、例えば、圧
縮機の回転数を小さくすることで、蒸発温度が高くな
り、ヒートポンプの加熱能力を確保してかつ、効率の良
い加熱運転ができる。
The invention according to claim 1 is a heat pump circuit having a solar heat collecting panel, air blowing means for passing air through the solar heat collecting panel, and a variable capacity compressor. The evaporator of the heat pump circuit that exchanges heat with the air that has passed through the solar heat collecting panel, and the configuration including the compression function force variable control means, because it is not necessary to receive direct solar radiation in the evaporator of the heat pump, It can be reduced to the same size as a normal heat pump. In addition, by providing the compression function force variable control means, it is possible to secure the necessary heating capacity by performing the necessary heating capacity adjustment in accordance with the amount of solar radiation and the outside air temperature. When the supply temperature becomes high, for example, by reducing the number of revolutions of the compressor, the evaporation temperature becomes high, and the heating capacity of the heat pump can be ensured, and efficient heating operation can be performed.

【0010】請求項2に記載の発明は、圧縮機能力制御
手段を、前記蒸発器の入口空気温度を検知する蒸発器入
口空気温度センサーを備えて、前記蒸発器入口空気温度
センサーの検知する温度を基に設定される所定の回転数
で前記圧縮機を運転制御する構成とすることにより、ヒ
ートポンプの加熱能力と効率(COP)が蒸発器入口空
気温度と圧縮機回転数で決まる特性を利用して、予め計
測されたデーターに基づいて、蒸発器入口空気温度を基
に、必要な加熱能力、効率の良い最適な状態における圧
縮機の回転数を設定して運転させることができるため、
ヒートポンプの加熱能力を確保してかつ、効率の良い加
熱運転ができる。
According to a second aspect of the present invention, the compression function force control means includes an evaporator inlet air temperature sensor for detecting the inlet air temperature of the evaporator, and the temperature detected by the evaporator inlet air temperature sensor. By controlling the operation of the compressor at a predetermined number of revolutions set based on the following formula, the heating capacity and efficiency (COP) of the heat pump are determined by the temperature determined by the evaporator inlet air temperature and the number of revolutions of the compressor. Therefore, based on the data measured in advance, based on the evaporator inlet air temperature, the required heating capacity, it is possible to set the number of rotations of the compressor in an optimal state with good efficiency, and to operate.
The heating capacity of the heat pump is ensured, and efficient heating operation can be performed.

【0011】請求項3に記載の発明は、圧縮機能力制御
手段を、前記蒸発器の入口空気温度を検知する蒸発器入
口空気温度センサーと、前記蒸発器の出口空気温度を検
知する蒸発器出口空気温度センサーを備えて、前記蒸発
器入口空気温度センサーの検知する温度T1と前記蒸発
器出口空気温度センサーの検知する温度T2との温度差
T1−T2が予め設定された所定の温度差となるごとく
前記圧縮機回転数を制御する構成とすることにより、蒸
発器の出入口空気温度差と風量で蒸発器の熱交換量、即
ち、ヒートポンプの加熱能力が決まる特性を利用し、所
定の蒸発器出入口空気温度差を必要な加熱量を得るため
の値に設定しておくことで、外気温度、日射量に関係な
く、必要な加熱能力が得られる。また、日射量が多くな
り、蒸発器入口空気温度が高温度となると、所定の温度
差とするために、圧縮機の回転数を落とすことになり、
蒸発温度が上昇して、ヒートポンプの成績係数(効率)
が高くなる。したがって、ヒートポンプの加熱能力を確
保してかつ、効率の良い加熱運転ができる。
According to a third aspect of the present invention, there is provided an evaporator inlet air temperature sensor for detecting an inlet air temperature of the evaporator, and an evaporator outlet for detecting an outlet air temperature of the evaporator. An air temperature sensor is provided, and a temperature difference T1-T2 between a temperature T1 detected by the evaporator inlet air temperature sensor and a temperature T2 detected by the evaporator outlet air temperature sensor is a predetermined temperature difference set in advance. By controlling the compressor rotation speed as described above, the heat exchange amount of the evaporator is determined by the difference between the air temperature at the inlet and the outlet of the evaporator and the air flow, that is, the characteristic that the heating capacity of the heat pump is determined. By setting the air temperature difference to a value for obtaining a required heating amount, a required heating capacity can be obtained regardless of the outside air temperature and the amount of solar radiation. Further, when the amount of solar radiation increases and the evaporator inlet air temperature becomes high, the rotational speed of the compressor is reduced in order to obtain a predetermined temperature difference,
Evaporation temperature rises, heat pump coefficient of performance (efficiency)
Will be higher. Therefore, an efficient heating operation can be performed while securing the heating capacity of the heat pump.

【0012】請求項4に記載の発明は、圧縮機能力制御
手段を、前記蒸発器の入口空気温度を検知する蒸発器入
口空気温度センサーと、前記蒸発器の入口冷媒温度を検
知する蒸発器入口冷媒温度センサーを備えて、前記蒸発
器入口空気温度センサーの検知する温度T3と前記蒸発
器入口冷媒温度センサーの検知する温度T4との温度差
T3−T4が予め設定された所定の温度差となるごとく
前記圧縮機回転数を制御する構成とすることにより、蒸
発器の入口空気温度と蒸発器入口冷媒温度との温度差で
蒸発器の熱交換量、即ち、ヒートポンプの加熱能力が決
まる特性を利用し、前記予め設定された所定の温度差を
必要な加熱量を得るための値に設定しておくことで、外
気温度、日射量に関係なく、必要な加熱能力が得られ
る。また、日射量が多くなり、蒸発器入口空気温度が高
温度となると、前記所定の温度差とするために、圧縮機
の回転数を落とすことになり、蒸発温度が上昇して、ヒ
ートポンプの成績係数(効率)が高くなる。したがっ
て、ヒートポンプの加熱能力を確保してかつ、効率の良
い加熱運転ができる。
According to a fourth aspect of the present invention, there is provided an evaporator inlet air temperature sensor for detecting an inlet air temperature of the evaporator, and an evaporator inlet for detecting an inlet refrigerant temperature of the evaporator. A refrigerant temperature sensor is provided, and a temperature difference T3-T4 between a temperature T3 detected by the evaporator inlet air temperature sensor and a temperature T4 detected by the evaporator inlet refrigerant temperature sensor becomes a predetermined temperature difference. As described above, by controlling the compressor rotation speed, the heat exchange amount of the evaporator is determined by the temperature difference between the evaporator inlet air temperature and the evaporator inlet refrigerant temperature, that is, the characteristic that the heating capacity of the heat pump is determined. By setting the predetermined temperature difference to a value for obtaining a required heating amount, a required heating capacity can be obtained regardless of the outside air temperature and the amount of solar radiation. Further, when the amount of solar radiation increases and the temperature of the air at the evaporator inlet becomes high, the rotation speed of the compressor is reduced in order to obtain the predetermined temperature difference, and the evaporating temperature rises, resulting in the performance of the heat pump. The coefficient (efficiency) increases. Therefore, an efficient heating operation can be performed while securing the heating capacity of the heat pump.

【0013】請求項5に記載の発明は、圧縮機能力制御
手段を、前記太陽熱集熱パネルの温度を検知する集熱パ
ネル温度センサーと、前記蒸発器の冷媒入口温度を検知
する蒸発器入口温度センサーを備えて、蒸発器入口冷媒
温度センサーの検知温度T5が、集熱パネル温度センサ
ーの検知温度T6を基に予め設定された所定の温度T7
となるように前記圧縮機回転数を制御する構成とするこ
とにより、集熱パネルの温度と集熱パネル出口空気温
度、即ち、蒸発器の入口空気温度とは相関があり、蒸発
器の入口空気温度と蒸発器入口冷媒温度との温度差で蒸
発器の熱交換量、即ち、ヒートポンプの加熱能力が決ま
る特性を利用し、前記予め設定された所定の温度T7を
必要な加熱量を得るための値に設定しておくことで、外
気温度、日射量に関係なく、必要な加熱能力が得られ
る。また、日射量が多くなり、集熱パネルの温度が高温
となり、蒸発器入口空気温度が高温度となると、前記所
定の温度T7とするために、圧縮機の回転数を落とすこ
とになり、蒸発温度が上昇して、ヒートポンプの成績係
数(効率)が高くなる。したがって、ヒートポンプの加
熱能力を確保してかつ、効率の良い加熱運転ができる。
According to a fifth aspect of the present invention, the compression function force control means includes a heat collecting panel temperature sensor for detecting a temperature of the solar heat collecting panel, and an evaporator inlet temperature for detecting a refrigerant inlet temperature of the evaporator. A temperature T5 detected by the evaporator inlet refrigerant temperature sensor is set to a predetermined temperature T7 based on a temperature T6 detected by the heat collecting panel temperature sensor.
By controlling the compressor rotation speed such that the temperature of the heat collecting panel and the temperature of the heat collecting panel outlet air, that is, the inlet air temperature of the evaporator, are correlated, The heat exchange amount of the evaporator is determined by the temperature difference between the temperature and the refrigerant temperature at the inlet of the evaporator, that is, the characteristic that determines the heating capacity of the heat pump is used to obtain the required heat amount at the predetermined temperature T7. By setting to a value, a required heating capacity can be obtained regardless of the outside air temperature and the amount of solar radiation. Further, when the amount of solar radiation increases, the temperature of the heat collecting panel becomes high, and the temperature of the air at the evaporator inlet becomes high, the rotation speed of the compressor is reduced in order to reach the predetermined temperature T7, and the evaporation rate is reduced. As the temperature rises, the coefficient of performance (efficiency) of the heat pump increases. Therefore, an efficient heating operation can be performed while securing the heating capacity of the heat pump.

【0014】請求項6に記載の発明は、太陽熱集熱パネ
ルと蒸発器は隣接する構成とすることにより、太陽熱集
熱パネルから蒸発器までの熱損失、通風抵抗が無くな
り、熱交換効率の向上と送風機の動力低減による省エネ
ルギー効果がある。
According to a sixth aspect of the present invention, since the solar heat collecting panel and the evaporator are adjacent to each other, heat loss and ventilation resistance from the solar heat collecting panel to the evaporator are eliminated, and the heat exchange efficiency is improved. And there is an energy saving effect by reducing the power of the blower.

【0015】請求項7に記載の発明は、前記蒸発器の空
気入口に、外気を吸入するための開閉が可能な開閉手段
と、前記開閉手段の開閉を制御する開閉制御手段を備え
た構成とすることにより、必要に応じて、太陽熱集熱パ
ネルをバイパスし、通風抵抗を低減して送風手段の省電
力化を実現する。従って、太陽熱集熱パネルの大面積
化、あるいは太陽熱集熱パネル面を流れる空気流路長を
長くして太陽熱を多量に集熱する設計において、送風手
段の小型化、省電力化を実現する。特に、日射量が少な
い場合に蒸発器の通過風量を確保してヒートポンプ運転
の効率向上をはかれる。
According to a seventh aspect of the present invention, the air inlet of the evaporator is provided with an opening / closing means for opening / closing for sucking outside air, and an opening / closing control means for controlling the opening / closing of the opening / closing means. By doing so, if necessary, the solar heat collecting panel is bypassed, ventilation resistance is reduced, and power saving of the blowing means is realized. Therefore, in a design for increasing the area of the solar heat collecting panel or increasing the length of the air flow path flowing through the surface of the solar heat collecting panel to collect a large amount of solar heat, downsizing of the blowing means and power saving are realized. In particular, when the amount of solar radiation is small, the amount of air passing through the evaporator is secured to improve the efficiency of the heat pump operation.

【0016】請求項8に記載の発明は、空気が、前記送
風手段、前記太陽熱集熱パネル、前記蒸発器の順に通過
するように、前記送風手段と前記太陽熱集熱パネルと前
記蒸発器を設置した構成とすることにより、送風手段の
放熱を集熱パネルから蒸発器へ送られる空気へ受熱させ
て蒸発器で熱交換させるので送風手段に必要な電力を冷
媒の加熱に有効に利用する太陽熱利用装置とすることが
できる。
According to the present invention, the air blowing means, the solar heat collecting panel, and the evaporator are installed so that air passes through the blowing means, the solar heat collecting panel, and the evaporator in this order. With this configuration, the heat radiation of the air blowing means is received by the air sent from the heat collecting panel to the evaporator and the heat is exchanged in the evaporator, so that the power required for the air blowing means is effectively used for heating the refrigerant. It can be a device.

【0017】[0017]

【実施例】以下、本発明の実施例について図面を参照し
ながら説明する。なお、従来例および各実施例におい
て、同じ構成、同じ動作をするものについては同一符号
を付し、一部説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the conventional example and the respective embodiments, the same reference numerals are given to components having the same configuration and the same operation, and a part of the description is omitted.

【0018】(実施例1)図1は、本発明の実施例1に
おける太陽熱利用装置の構成図を示すものである。
(Embodiment 1) FIG. 1 shows a configuration diagram of a solar heat utilization apparatus according to Embodiment 1 of the present invention.

【0019】図1において、19はヒートポンプ回路
で、能力可変圧縮機20、凝縮器21、絞り22、蒸発
器23により構成される。24は蒸発器の風上側に配し
た太陽熱集熱パネル、25は太陽熱集熱パネル24から
蒸発器23へと空気を搬送する送風手段、26は送風手
段を駆動するモーター、27は貯水タンク、28は貯水
タンク27の水を凝縮器21へ循環する水回路、29は
水回路28に配した循環ポンプ、30、31は貯水タン
ク27へ水を供給、あるいは搬出する供給搬出配管、3
2は能力可変圧縮機20の圧縮機能力を可変制御する圧
縮機能力可変手段である。
In FIG. 1, reference numeral 19 denotes a heat pump circuit comprising a variable capacity compressor 20, a condenser 21, a throttle 22, and an evaporator 23. 24 is a solar heat collecting panel arranged on the windward side of the evaporator, 25 is a blowing means for conveying air from the solar heat collecting panel 24 to the evaporator 23, 26 is a motor for driving the blowing means, 27 is a water storage tank, 28 Is a water circuit for circulating the water in the water storage tank 27 to the condenser 21, 29 is a circulation pump disposed in the water circuit 28, and 30 and 31 are supply and discharge pipes for supplying or discharging water to and from the water storage tank 27.
Reference numeral 2 denotes a compression function force varying unit that variably controls the compression function force of the variable capacity compressor 20.

【0020】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilizing apparatus having the above-described configuration will be described below.

【0021】まず、送風手段26を作動させて外部から
空気を吸引し、太陽熱集熱パネル24、蒸発器23の順
に通過させる。太陽熱集熱パネル24で昇温された空気
は、蒸発器23を通過する際に、冷媒に熱を与え、蒸発
器23で熱を受けた冷媒は、能力可変圧縮機20で加圧
昇温され、凝縮器21において冷媒を凝縮させることに
よって、貯水タンク27から循環ポンプ29で循環され
た循環水を加熱して、貯水タンク27に温水を蓄えるこ
とができる。この温水を供給搬出配管30、31より取
り出して給湯、あるいは、暖房を行うことができる。
First, the air blowing means 26 is operated to suck air from the outside, and the air is passed through the solar heat collecting panel 24 and the evaporator 23 in this order. The air heated by the solar heat collecting panel 24 gives heat to the refrigerant when passing through the evaporator 23, and the refrigerant heated by the evaporator 23 is pressurized and heated by the variable capacity compressor 20. By condensing the refrigerant in the condenser 21, the circulating water circulated from the water storage tank 27 by the circulation pump 29 can be heated and hot water can be stored in the water storage tank 27. This hot water can be taken out from the supply and discharge pipes 30 and 31 for hot water supply or heating.

【0022】ここで、外気温度が低く日射のない場合
は、太陽熱集熱パネル24から蒸発器23への空気温度
は低いままであるため、圧縮機能力可変手段32は能力
可変圧縮機20の回転数を大きくするように制御するこ
とで、ヒートポンプの必要な加熱能力を確保する。一
方、日射の大きい場合は、蒸発器23への空気温度は太
陽熱集熱パネル24で高くなっているため、圧縮機能力
可変手段32は能力可変圧縮機20の回転数を必要な加
熱能力が確保できるところまで小さくするように制御す
ることにより、ヒートポンプの効率(COP)を飛躍的
に大きくできる。
Here, when the outside air temperature is low and there is no solar radiation, the air temperature from the solar heat collecting panel 24 to the evaporator 23 remains low. By controlling to increase the number, the necessary heating capacity of the heat pump is secured. On the other hand, when the solar radiation is large, the temperature of the air to the evaporator 23 is high in the solar heat collecting panel 24, so that the variable compression function force means 32 secures the heating capacity necessary for the rotation speed of the variable capacity compressor 20. By controlling the heat pump to be as small as possible, the efficiency (COP) of the heat pump can be dramatically increased.

【0023】以上のように、本実施例においては、太陽
熱集熱パネル24と、空気を太陽熱集熱パネル24に通
風させるための送風手段25と、能力可変圧縮機20を
有したヒートポンプ回路19と、太陽熱集熱パネル24
を通過した空気と熱交換するヒートポンプ回路19の蒸
発器23と、圧縮機能力可変制御手段32を備えた構成
とすることにより、ヒートポンプの蒸発器23で直接日
射を受ける必要がないために、通常のヒートポンプと同
等の大きさに小さくできる。
As described above, in the present embodiment, the solar heat collecting panel 24, the blowing means 25 for passing air through the solar heat collecting panel 24, and the heat pump circuit 19 having the variable capacity compressor 20 are provided. , Solar heat collecting panel 24
Since the evaporator 23 of the heat pump circuit 19 that exchanges heat with the air that has passed through the heat pump and the variable compression function force control means 32 do not need to be directly insolated by the evaporator 23 of the heat pump, Can be reduced to a size equivalent to that of a heat pump.

【0024】また、圧縮機能力可変制御手段32を設け
ることにより、日射量、外気温度に対応して必要な加熱
能力調節をおこなうことで、必要な加熱能力を確保で
き、また、日射量が多く蒸発器23への供給温度が高く
なるときには、例えば、圧縮機20の回転数を小さくす
ることで、蒸発温度が高くなり、ヒートポンプの加熱能
力を確保してかつ、効率の良い加熱運転ができる。
Further, by providing the variable compression function force control means 32, necessary heating capacity can be adjusted in accordance with the amount of solar radiation and the outside air temperature, so that the necessary heating capacity can be ensured. When the supply temperature to the evaporator 23 becomes high, for example, by reducing the rotation speed of the compressor 20, the evaporation temperature becomes high, and the heating performance of the heat pump can be ensured and the efficient heating operation can be performed.

【0025】(実施例2)図2は、本発明の実施例2に
おける太陽熱利用装置の構成図、図3は、能力可変圧縮
機を用いたヒートポンプの一般的な特性を説明する特性
図である。
(Embodiment 2) FIG. 2 is a configuration diagram of a solar heat utilization apparatus according to Embodiment 2 of the present invention, and FIG. 3 is a characteristic diagram for explaining general characteristics of a heat pump using a variable capacity compressor. .

【0026】図2において、33は蒸発器23の入口の
空気温度を検知するための蒸発器入口空気温度センサ
ー、34は圧縮機能力制御手段32内部の回転数設定部
であり、予め計測されたデーターに基づいて、蒸発器入
口空気温度センサー33の検知した温度を基に、必要な
加熱能力、効率の良い最適な状態における圧縮機の回転
数を設定する。
In FIG. 2, reference numeral 33 denotes an evaporator inlet air temperature sensor for detecting the air temperature at the inlet of the evaporator 23, and reference numeral 34 denotes a rotational speed setting unit in the compression function force control means 32, which is measured in advance. Based on the data, based on the temperature detected by the evaporator inlet air temperature sensor 33, the necessary heating capacity and the number of revolutions of the compressor in an optimum state with high efficiency are set.

【0027】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilization apparatus having the above-described configuration will be described below.

【0028】運転が開始されると、回転数設定部34
で、蒸発器入口温度センサー33の検知した温度を基に
予め設定された回転数を割り出して、能力可変圧縮機2
0を運転制御する。ヒートポンプの一般特性として、図
3に示すように、蒸発器入口空気温度が高くなると加熱
能力、効率(COP)ともに大きくなり、また、圧縮機
の回転数が大きくなると、加熱能力は大きくなるが、効
率は小さくなる特性を有している。たとえば、必要加熱
能力が一定であると設定した場合、図3に示すように、
蒸発器入口空気温度が低い時には圧縮機の回転数を大き
くし、蒸発器入口空気温度が高い時は圧縮機の回転数を
小さく設定することにより、日射が多く集熱パネル24
での空気の昇温が大きい場合は蒸発器入口空気温度が高
くなり、効率を飛躍的に大きくできる効果がある。
When the operation is started, the rotational speed setting unit 34
Then, a preset number of rotations is calculated based on the temperature detected by the evaporator inlet temperature sensor 33, and the variable capacity compressor 2
0 is operation-controlled. As a general characteristic of the heat pump, as shown in FIG. 3, as the evaporator inlet air temperature increases, the heating capacity and efficiency (COP) both increase, and as the rotation speed of the compressor increases, the heating capacity increases. Efficiency has the characteristic of decreasing. For example, if the required heating capacity is set to be constant, as shown in FIG.
When the evaporator inlet air temperature is low, the number of rotations of the compressor is increased, and when the evaporator inlet air temperature is high, the number of rotations of the compressor is set low.
When the temperature rise of the air in the evaporator is large, the air temperature at the evaporator inlet becomes high, and there is an effect that the efficiency can be greatly increased.

【0029】以上のように、本実施例においては、圧縮
機能力制御手段34を、蒸発器23の入口空気温度を検
知する蒸発器入口空気温度センサー33を備えて、蒸発
器入口空気温度センサー33の検知する温度を基に設定
される所定の回転数で能力可変圧縮機20を運転制御す
る構成とすることにより、ヒートポンプの加熱能力と効
率(COP)が蒸発器入口空気温度と圧縮機回転数で決
まる特性を利用して、予め計測されたデーターに基づい
て、蒸発器入口空気温度を基に、必要な加熱能力、効率
の良い最適な状態における圧縮機の回転数を設定して運
転させることができるため、ヒートポンプの加熱能力を
確保してかつ、効率の良い加熱運転ができる。
As described above, in the present embodiment, the compression function force control means 34 is provided with the evaporator inlet air temperature sensor 33 for detecting the inlet air temperature of the evaporator 23. The heating capacity and efficiency (COP) of the heat pump are controlled by the operation of the variable capacity compressor 20 at a predetermined rotational speed set based on the temperature detected by the evaporator and the compressor rotational speed. Using the characteristics determined by the above, based on the data measured in advance, based on the evaporator inlet air temperature, set the required heating capacity and the number of revolutions of the compressor in an optimal state with high efficiency and operation. Therefore, the heating performance of the heat pump can be ensured and the heating operation can be performed efficiently.

【0030】(実施例3)図4は、本発明の実施例3に
おける太陽熱利用装置の構成図を示すものである。
(Embodiment 3) FIG. 4 shows a configuration diagram of a solar heat utilization apparatus according to Embodiment 3 of the present invention.

【0031】図4において、35は蒸発器出口空気温度
センサー、36は蒸発器入口空気温度センサー33の検
知する温度T1と蒸発器出口空気温度センサー35の検
知する温度T2との温度差T1−T2を予め設定された
所定の温度差と比較する温度差比較部、37は温度差T
1−T2を所定の温度差となるごとく圧縮機の回転数を
制御する回転数設定部である。
In FIG. 4, 35 is an evaporator outlet air temperature sensor, and 36 is a temperature difference T1-T2 between a temperature T1 detected by the evaporator inlet air temperature sensor 33 and a temperature T2 detected by the evaporator outlet air temperature sensor 35. Is compared with a predetermined temperature difference set in advance, 37 is a temperature difference T
1-T2 is a rotation speed setting unit that controls the rotation speed of the compressor so that a predetermined temperature difference is obtained.

【0032】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilization apparatus configured as described above will be described below.

【0033】温度差比較部36において、蒸発器入口空
気温度センサー33の検知する温度T1と蒸発器出口空
気温度センサー35の検知する温度T2との温度差T1
−T2を予め設定された所定の温度差と比較して、温度
差T1−T2が所定の温度差よりも大きい場合には、回
転数設定部37で圧縮機の回転数を小さい方向へ移行さ
せ、温度差T1−T2が所定の温度差よりも小さい場合
には、回転数設定部37で圧縮機の回転数を大きいほう
へ移行させることで、温度差T1−T2を所定の温度差
となるごとく圧縮機の回転数を制御する。
In the temperature difference comparing section 36, the temperature difference T1 between the temperature T1 detected by the evaporator inlet air temperature sensor 33 and the temperature T2 detected by the evaporator outlet air temperature sensor 35.
-T2 is compared with a predetermined temperature difference set in advance, and if the temperature difference T1-T2 is larger than the predetermined temperature difference, the rotation speed setting unit 37 shifts the rotation speed of the compressor to a smaller direction. If the temperature difference T1-T2 is smaller than the predetermined temperature difference, the rotation speed setting unit 37 shifts the rotation speed of the compressor to the larger one, so that the temperature difference T1-T2 becomes the predetermined temperature difference. Control the rotation speed of the compressor.

【0034】風量が一定であり、蒸発器23の出入口空
気温度差が一定であれば、蒸発器23での熱交換量が一
定であり、即ち、ヒートポンプの加熱能力も一定となる
もので、たとえば、必要加熱量に応じた蒸発器23の出
入口温度差を所定の温度差として予め設定しておけば、
温度差T1−T2を所定の温度差となるごとく圧縮機の
回転数を制御することで、常に、必要加熱量が得られ
る。
If the air volume is constant and the difference between the inlet and outlet air temperatures of the evaporator 23 is constant, the amount of heat exchange in the evaporator 23 is constant, that is, the heating capacity of the heat pump is also constant. If the temperature difference between the inlet and the outlet of the evaporator 23 according to the required heating amount is set in advance as a predetermined temperature difference,
By controlling the number of rotations of the compressor so that the temperature difference T1-T2 becomes a predetermined temperature difference, the required heating amount can always be obtained.

【0035】なお、風量が変わる場合は、その風量に応
じた温度差を所定の温度差として設定すればよい。
When the air volume changes, a temperature difference corresponding to the air volume may be set as a predetermined temperature difference.

【0036】以上のように、本実施例においては、圧縮
機能力制御手段32を、蒸発器23の入口空気温度を検
知する蒸発器入口空気温度センサー33と、蒸発器23
の出口空気温度を検知する蒸発器出口空気温度センサー
35を備えて、蒸発器入口空気温度センサー33の検知
する温度T1と蒸発器出口空気温度センサー35の検知
する温度T2との温度差T1−T2が予め設定された所
定の温度差となるごとく圧縮機回転数を制御する構成と
することにより、蒸発器23の出入口空気温度差と風量
で蒸発器の熱交換量、即ち、ヒートポンプの加熱能力が
決まる特性を利用し、所定の蒸発器出入口空気温度差を
必要な加熱量を得るための値に設定しておくことで、外
気温度、日射量に関係なく、必要な加熱能力が得られ
る。また、日射量が多くなり、蒸発器23の入口空気温
度が高温度となると、温度差T1−T2を所定の温度差
とするために、圧縮機20の回転数を落とすことにな
り、蒸発温度が大幅に上昇して、ヒートポンプの成績係
数(効率)が飛躍的に高くなる。したがって、ヒートポ
ンプの加熱能力を確保してかつ、効率の良い加熱運転が
できる。
As described above, in the present embodiment, the compression function force control means 32 includes the evaporator inlet air temperature sensor 33 for detecting the inlet air temperature of the evaporator 23, and the evaporator 23.
The temperature difference T1-T2 between the temperature T1 detected by the evaporator inlet air temperature sensor 33 and the temperature T2 detected by the evaporator outlet air temperature sensor 35 is provided. By controlling the compressor rotation speed so that a predetermined temperature difference is set in advance, the heat exchange amount of the evaporator, that is, the heating capacity of the heat pump is determined by the difference between the inlet and outlet air temperature of the evaporator 23 and the air flow. By utilizing the determined characteristics and setting a predetermined evaporator inlet / outlet air temperature difference to a value for obtaining a required heating amount, a required heating capacity can be obtained regardless of the outside air temperature and the amount of solar radiation. Further, when the amount of solar radiation increases and the inlet air temperature of the evaporator 23 becomes high, the rotation speed of the compressor 20 is reduced in order to make the temperature difference T1-T2 a predetermined temperature difference, and the evaporation temperature Greatly increases, and the coefficient of performance (efficiency) of the heat pump increases dramatically. Therefore, an efficient heating operation can be performed while securing the heating capacity of the heat pump.

【0037】(実施例4)図5は、本発明の実施例4に
おける太陽熱利用装置の構成図を示すものである。
(Embodiment 4) FIG. 5 shows a configuration diagram of a solar heat utilization apparatus according to Embodiment 4 of the present invention.

【0038】図5において、38は蒸発器23の入口冷
媒温度を検知する蒸発器入口冷媒温度センサー、39は
蒸発器入口空気温度センサー33の検知する温度T3と
蒸発器入口冷媒温度センサー38の検知する温度T4と
の温度差T3−T4を予め設定された所定の温度差と比
較する温度差比較部、40は温度差T3−T4を所定の
温度差となるごとく圧縮機の回転数を制御する回転数設
定部である。
In FIG. 5, reference numeral 38 denotes an evaporator inlet refrigerant temperature sensor for detecting the inlet refrigerant temperature of the evaporator 23, and 39 denotes a temperature T3 detected by the evaporator inlet air temperature sensor 33 and a detection by the evaporator inlet refrigerant temperature sensor 38. A temperature difference comparing unit for comparing a temperature difference T3-T4 with the temperature T4 to be set to a predetermined temperature difference set in advance, and controls the number of rotations of the compressor so that the temperature difference T3-T4 becomes a predetermined temperature difference. This is a rotation speed setting unit.

【0039】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilization apparatus configured as described above will be described below.

【0040】温度差比較部39において、蒸発器入口空
気温度センサー33の検知する温度T3と蒸発器入口冷
媒温度センサー38の検知する温度T4との温度差T3
−T4を予め設定された所定の温度差と比較して、温度
差T3−T4が所定の温度差よりも大きい場合には、回
転数設定部40で圧縮機の回転数を小さい方向へ移行さ
せ、温度差T3−T4が所定の温度差よりも小さい場合
には、回転数設定部40で圧縮機の回転数を大きいほう
へ移行させることで、温度差T3−T4を所定の温度差
となるごとく圧縮機の回転数を制御する。
In the temperature difference comparing section 39, the temperature difference T3 between the temperature T3 detected by the evaporator inlet air temperature sensor 33 and the temperature T4 detected by the evaporator inlet refrigerant temperature sensor 38.
-T4 is compared with a predetermined temperature difference set in advance, and if the temperature difference T3-T4 is larger than the predetermined temperature difference, the rotation speed setting unit 40 shifts the rotation speed of the compressor to a smaller direction. If the temperature difference T3-T4 is smaller than the predetermined temperature difference, the rotation speed setting unit 40 shifts the rotation speed of the compressor to the larger one, so that the temperature difference T3-T4 becomes the predetermined temperature difference. Control the rotation speed of the compressor.

【0041】蒸発器23の外側の温度(蒸発器入口空気
温度)と蒸発器23の内側の温度(蒸発器入口冷媒温
度)との差が一定であれば、蒸発器23での熱交換量が
一定であり、即ち、ヒートポンプの加熱能力も一定とな
るもので、たとえば、必要加熱量に応じた蒸発器域口空
気温度と蒸発器入口冷媒温度との温度差を所定の温度差
として予め設定しておけば、温度差T3−T4を所定の
温度差となるごとく圧縮機の回転数を制御することで、
常に、必要加熱量が得られる。
If the difference between the temperature outside the evaporator 23 (air temperature at the inlet of the evaporator) and the temperature inside the evaporator 23 (the temperature of the refrigerant at the evaporator inlet) is constant, the amount of heat exchange in the evaporator 23 is reduced. It is constant, that is, the heating capacity of the heat pump is also constant.For example, the temperature difference between the evaporator area opening air temperature and the evaporator inlet refrigerant temperature according to the required heating amount is set in advance as a predetermined temperature difference. By setting the temperature difference T3-T4 to a predetermined temperature difference, the rotation speed of the compressor is controlled,
The required amount of heating is always obtained.

【0042】以上のように、本実施例においては、圧縮
機能力制御手段32を、蒸発器23の入口空気温度を検
知する蒸発器入口空気温度センサー33と、蒸発器23
の入口冷媒温度を検知する蒸発器入口冷媒温度センサー
38を備えて、蒸発器入口空気温度センサー33の検知
する温度T3と蒸発器入口冷媒温度センサー38の検知
する温度T4との温度差T3−T4が予め設定された所
定の温度差となるごとく能力可変圧縮機20の回転数を
制御する構成とすることにより、蒸発器23の入口空気
温度と蒸発器23の入口冷媒温度との温度差で蒸発器2
3の熱交換量、即ち、ヒートポンプの加熱能力が決まる
特性を利用し、前記予め設定された所定の温度差を必要
な加熱量を得るための値に設定しておくことで、外気温
度、日射量に関係なく、必要な加熱能力が得られる。ま
た、日射量が多くなり、蒸発器入口空気温度が高温度と
なると、前記所定の温度差とするために、圧縮機の回転
数を落とすことになり、蒸発温度が大幅に上昇して、ヒ
ートポンプの成績係数(効率)が飛躍的に高くなる。し
たがって、ヒートポンプの加熱能力を確保してかつ、効
率の良い加熱運転ができる。
As described above, in the present embodiment, the compression function force control means 32 includes the evaporator inlet air temperature sensor 33 for detecting the inlet air temperature of the evaporator 23, and the evaporator 23.
And a temperature difference T3-T4 between a temperature T3 detected by the evaporator inlet air temperature sensor 33 and a temperature T4 detected by the evaporator inlet refrigerant temperature sensor 38. Is controlled so that the rotation speed of the variable capacity compressor 20 becomes equal to a predetermined temperature difference set in advance, so that the temperature difference between the inlet air temperature of the evaporator 23 and the refrigerant temperature of the inlet of the evaporator 23 evaporates. Vessel 2
By using the heat exchange amount of No. 3, that is, the characteristic that determines the heating capacity of the heat pump, and setting the predetermined temperature difference to a value for obtaining a necessary heating amount, the outside air temperature and the solar radiation Regardless of the volume, the required heating capacity is obtained. Further, when the amount of solar radiation increases and the temperature of the evaporator inlet air becomes high, the rotation speed of the compressor is reduced in order to obtain the predetermined temperature difference, and the evaporation temperature is significantly increased, and the heat pump Significantly increases the coefficient of performance (efficiency). Therefore, an efficient heating operation can be performed while securing the heating capacity of the heat pump.

【0043】(実施例5)図6は、本発明の実施例5に
おける太陽熱利用装置の構成図を示すものである。
(Embodiment 5) FIG. 6 shows a configuration diagram of a solar heat utilizing apparatus according to Embodiment 5 of the present invention.

【0044】図6において、41は太陽熱集熱パネル2
4の温度を検知する集熱パネル温度センサー、42は蒸
発器入口冷媒温度センサー38の検知温度T5と、集熱
パネル温度センサー41の検知温度T6を基に予め設定
された所定の温度T7とを比較する温度比較部、43は
蒸発器入口冷媒温度センサー38の検知温度T5が、集
熱パネル温度センサー41の検知温度T6を基に予め設
定された所定の温度T7となるように前記圧縮機回転数
を設定する回転数設定部である。
In FIG. 6, reference numeral 41 denotes the solar heat collecting panel 2
The heat collecting panel temperature sensor 42 for detecting the temperature of the temperature sensor 4 detects the detected temperature T5 of the evaporator inlet refrigerant temperature sensor 38 and the predetermined temperature T7 set in advance based on the detected temperature T6 of the heat collecting panel temperature sensor 41. The temperature comparison unit 43 for comparison is configured to rotate the compressor so that the detected temperature T5 of the evaporator inlet refrigerant temperature sensor 38 becomes a predetermined temperature T7 set in advance based on the detected temperature T6 of the heat collecting panel temperature sensor 41. This is a rotation number setting unit for setting the number.

【0045】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilization apparatus having the above-described configuration will be described below.

【0046】温度比較部42において、蒸発器入口冷媒
温度センサー38の検知温度T5と、集熱パネル温度セ
ンサー41の検知温度T6を基に予め設定された所定の
温度T7とを比較して、T5>T7の場合は回転数設定
部43で圧縮機の回転数を小さい方向へ移行させ、T5
<T7場合は回転数設定部43で圧縮機の回転数を大き
いほうへ移行させることで、蒸発器入口冷媒温度センサ
ー38の検知温度T5を所定の温度T7となるごとく圧
縮機の回転数を制御する。
The temperature comparing section 42 compares the detected temperature T5 of the evaporator inlet refrigerant temperature sensor 38 with a predetermined temperature T7 set in advance based on the detected temperature T6 of the heat collecting panel temperature sensor 41. > T7, the rotation speed of the compressor is shifted to a smaller direction by the rotation speed setting unit 43, and T5
In the case of <T7, the number of rotations of the compressor is shifted to the larger one by the number of rotations setting unit 43, so that the number of rotations of the compressor is controlled so that the detected temperature T5 of the evaporator inlet refrigerant temperature sensor 38 becomes the predetermined temperature T7. I do.

【0047】また、本装置を動作させていないとき、太
陽の日射がある場合は、空気が太陽熱集熱パネル24を
通過しないので、太陽熱集熱パネル24の表面温度は高
温となる。太陽熱集熱パネル24の表面が高温となる状
態が長く続くと、太陽熱集熱パネル24が劣化、破損す
る場合が生じる。そこで、ヒートポンプ回路19の蒸発
器23による集熱運転をしていないときでも、集熱パネ
ル温度センサー41で検知する太陽熱パネル24の温度
が高温となったとき、送風手段25を作動させ、空気を
太陽熱集熱パネル24と熱交換させると、高温の太陽熱
集熱パネル24を冷却することができる。従って、装置
の耐久性を向上させることができる。
When the present apparatus is not operated, when the solar radiation is present, the surface temperature of the solar heat collecting panel 24 becomes high because the air does not pass through the solar heat collecting panel 24. If the state where the surface of the solar heat collecting panel 24 is at a high temperature continues for a long time, the solar heat collecting panel 24 may be deteriorated or damaged. Therefore, even when the heat collecting operation by the evaporator 23 of the heat pump circuit 19 is not performed, when the temperature of the solar heat panel 24 detected by the heat collecting panel temperature sensor 41 becomes high, the air blowing means 25 is operated and the air is blown. When heat is exchanged with the solar heat collecting panel 24, the high-temperature solar heat collecting panel 24 can be cooled. Therefore, the durability of the device can be improved.

【0048】以上のように、本実施例においては、圧縮
機能力制御手段32を、太陽熱集熱パネル24の温度を
検知する集熱パネル温度センサー41と、蒸発器23の
冷媒入口温度を検知する蒸発器入口温度センサー38を
備えて、蒸発器入口冷媒温度センサー38の検知温度T
5が、集熱パネル温度センサー41の検知温度T6を基
に予め設定された所定の温度T7となるように前記圧縮
機回転数を制御する構成とすることにより、集熱パネル
24の温度と集熱パネル出口空気温度、即ち、蒸発器の
入口空気温度とは相関があり、蒸発器23の入口空気温
度と蒸発器入口冷媒温度との温度差で蒸発器の熱交換
量、即ち、ヒートポンプの加熱能力が決まる特性を利用
し、前記予め設定された所定の温度T7を必要な加熱量
を得るための値に設定しておくことで、外気温度、日射
量に関係なく、必要な加熱能力が得られる。また、日射
量が多くなり、集熱パネルの温度が高温となり、蒸発器
入口空気温度が高温度となると、前記所定の温度T7と
するために、圧縮機20の回転数を落とすことになり、
蒸発温度が大幅に上昇して、ヒートポンプの成績係数
(効率)が飛躍的に高くなる。したがって、ヒートポン
プの加熱能力を確保してかつ、効率の良い加熱運転がで
きる。
As described above, in the present embodiment, the compression function force control means 32 controls the heat collecting panel temperature sensor 41 for detecting the temperature of the solar heat collecting panel 24 and the refrigerant inlet temperature of the evaporator 23. An evaporator inlet temperature sensor 38 is provided, and the detected temperature T of the evaporator inlet refrigerant temperature sensor 38 is detected.
5 is configured to control the compressor rotation speed so as to be a predetermined temperature T7 set in advance based on the detection temperature T6 of the heat collection panel temperature sensor 41. There is a correlation between the heat panel outlet air temperature, that is, the inlet air temperature of the evaporator, and the difference between the inlet air temperature of the evaporator 23 and the evaporator inlet refrigerant temperature indicates the heat exchange amount of the evaporator, that is, the heat pump heating. By using the characteristic that determines the capacity and setting the predetermined temperature T7 to a value for obtaining the required amount of heating, the required heating capacity can be obtained regardless of the outside air temperature and the amount of solar radiation. Can be In addition, when the amount of solar radiation increases, the temperature of the heat collecting panel becomes high, and the temperature of the evaporator inlet air becomes high, the rotation speed of the compressor 20 is reduced to achieve the predetermined temperature T7,
The evaporating temperature rises significantly and the coefficient of performance (efficiency) of the heat pump rises dramatically. Therefore, an efficient heating operation can be performed while securing the heating capacity of the heat pump.

【0049】(実施例6)図7は、本発明の実施例6に
おける太陽熱利用装置の構成図を示すものである。
(Embodiment 6) FIG. 7 is a diagram showing a configuration of a solar heat utilization apparatus according to Embodiment 6 of the present invention.

【0050】図7において、太陽熱集熱パネル24と蒸
発器23は隣接するように設置した構成としている。
In FIG. 7, the solar heat collecting panel 24 and the evaporator 23 are arranged so as to be adjacent to each other.

【0051】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilization apparatus having the above-described configuration will be described below.

【0052】太陽熱集熱パネル24と蒸発器23は隣接
することで、太陽熱集熱パネル24と蒸発器23の接続
部が短くなり、接続部での熱損失、通風抵抗が無くな
る。
Since the solar heat collecting panel 24 and the evaporator 23 are adjacent to each other, the connecting portion between the solar heat collecting panel 24 and the evaporator 23 is shortened, and the heat loss and ventilation resistance at the connecting portion are eliminated.

【0053】以上のように、本実施例においては、太陽
熱集熱パネル28と集熱熱交換器29を隣接するように
設置した構成としたことにより、太陽熱集熱パネル24
から蒸発器23までの熱損失、通風抵抗が無くなり、熱
交換効率の向上と送風機25の動力低減による省エネル
ギー効果がある。
As described above, in the present embodiment, the solar heat collecting panel 24 and the heat collecting heat exchanger 29 are arranged so as to be adjacent to each other.
There is no heat loss and ventilation resistance from the air to the evaporator 23, and there is an energy saving effect by improving the heat exchange efficiency and reducing the power of the blower 25.

【0054】また、太陽熱集熱パネル24と蒸発器23
を一体化構成とすると、装置の小型軽量化を図ることが
できるばかりでなく、空気を蒸発器へ導く通路が不要と
なるため、装置の低コスト化と施工性を向上させること
ができる。
The solar heat collecting panel 24 and the evaporator 23
When the is integrated, not only the size and weight of the device can be reduced, but also the passage for guiding the air to the evaporator becomes unnecessary, so that the cost of the device can be reduced and the workability can be improved.

【0055】(実施例7)図8は、本発明の実施例7に
おける太陽熱利用装置の構成図を示すものである。
(Embodiment 7) FIG. 8 shows a configuration diagram of a solar heat utilization apparatus according to Embodiment 7 of the present invention.

【0056】図8において、44は蒸発器23の空気入
口に設けられたバイパス吸込み部、45はバイパス吸込
み部44の開閉を行う開閉手段、46は開閉手段45の
開閉を制御する開閉制御手段である。
In FIG. 8, reference numeral 44 denotes a bypass suction portion provided at the air inlet of the evaporator 23; 45, an opening and closing means for opening and closing the bypass suction portion 44; 46, an opening and closing control means for controlling the opening and closing of the opening and closing means 45. is there.

【0057】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilization apparatus having the above-described configuration will be described below.

【0058】最初に、太陽日射量が多い場合には開閉制
御手段46が開閉手段45を開放から閉鎖へ切換えて、
開閉手段45がバイパス吸込み部44を閉鎖する。その
ため、外気は唯一集熱パネル24へ流入する。集熱パネ
ル24へ流入した外気の空気は外気温より大幅な高温空
気に加熱されて蒸発器23へ流れ、蒸発器23内部を流
れるヒートポンプ回路19の冷媒を蒸発ガス化させる。
First, when the amount of solar radiation is large, the opening / closing control means 46 switches the opening / closing means 45 from open to closed.
The opening / closing means 45 closes the bypass suction part 44. Therefore, only outside air flows into the heat collecting panel 24. The outside air that has flowed into the heat collection panel 24 is heated by the high-temperature air that is significantly higher than the outside air temperature, flows to the evaporator 23, and evaporates the refrigerant of the heat pump circuit 19 flowing inside the evaporator 23 to evaporate gas.

【0059】次に、太陽日射量が少ない曇天日、あるい
は雨天日の場合にはバイパス吸込み部44が開放し、送
風手段25の吸引力によって、バイパス吸込み部44か
ら多量の外気が蒸発器23へ吸引される。そして、集熱
パネル24から流入した空気と合流して蒸発器23へ流
れる。この場合、太陽日射量が少ないため、集熱パネル
24を通過する空気の温度上昇は少なく、合流して蒸発
器23へ流れる空気温度は外気温度とほとんど同じであ
る。そして、蒸発器23の空気入口近傍のバイパス吸込
み部44から外気を導入するため、通風抵抗が少なく、
蒸発器23の通過風量が増加してヒートポンプの運転効
率が高くなる。
Next, on a cloudy day or a rainy day when the amount of solar radiation is small, the bypass suction section 44 is opened, and a large amount of outside air is supplied from the bypass suction section 44 to the evaporator 23 by the suction force of the blowing means 25. It is sucked. Then, the air merges with the air flowing from the heat collecting panel 24 and flows to the evaporator 23. In this case, since the amount of solar radiation is small, the temperature of the air passing through the heat collecting panel 24 rises little, and the temperature of the air that merges and flows to the evaporator 23 is almost the same as the outside air temperature. And since outside air is introduced from the bypass suction part 44 near the air inlet of the evaporator 23, the ventilation resistance is small,
The amount of air passing through the evaporator 23 increases, and the operation efficiency of the heat pump increases.

【0060】従って、太陽日射量が多い場合には、高温
空気をそのまま小風量で空気熱交換器に流して高効率化
をはかり、太陽日射量が少ない曇天日、あるいは雨天日
の場合には、集熱ユニットのバイパス吸込み部から大風
量を空気熱交換器へ流して高効率化をはかる。また、太
陽日射量が多い場合にバイパス吸込み部を閉鎖するた
め、外気風速が大きい時にバイパス吸込み部から自然風
が集熱ユニット内へ流入することがないため、太陽熱で
温めた高温空気の温度低下を防止する。
Accordingly, when the amount of solar radiation is large, high efficiency air is directly passed through the air heat exchanger with a small amount of air to achieve high efficiency. On a cloudy day or a rainy day where the amount of solar radiation is small, A large amount of air flows from the bypass suction section of the heat collection unit to the air heat exchanger to achieve high efficiency. In addition, since the bypass suction section is closed when the amount of solar radiation is large, natural wind does not flow into the heat collection unit from the bypass suction section when the outside air velocity is high, so the temperature of the high-temperature air heated by solar heat decreases. To prevent

【0061】以上のように、本実施例においては、蒸発
器23の空気入口に、外気を吸入するための開閉が可能
な開閉手段45と、開閉手段45の開閉を制御する開閉
制御手段46を備えた構成とすることにより、必要に応
じて、太陽熱集熱パネル24をバイパスし、通風抵抗を
低減して送風手段25の省電力化を実現する。従って、
太陽熱集熱パネル24の大面積化、あるいは太陽熱集熱
パネル24面を流れる空気流路長を長くして太陽熱を多
量に集熱する設計において、送風手段25の小型化、省
電力化を実現する。特に、日射量が少ない場合に蒸発器
23の通過風量を確保してヒートポンプ運転の効率向上
をはかれる。
As described above, in the present embodiment, the opening / closing means 45 for opening / closing the outside air and the opening / closing control means 46 for controlling the opening / closing of the opening / closing means 45 are provided at the air inlet of the evaporator 23. With this configuration, the solar heat collecting panel 24 is bypassed as necessary, and the ventilation resistance is reduced, thereby realizing power saving of the blowing unit 25. Therefore,
In a design for increasing the area of the solar heat collecting panel 24 or increasing the length of the air flow path flowing through the surface of the solar heat collecting panel 24 to collect a large amount of solar heat, the blower 25 is reduced in size and power is saved. . In particular, when the amount of solar radiation is small, the amount of air passing through the evaporator 23 is secured to improve the efficiency of the heat pump operation.

【0062】(実施例8)図9は、本発明の実施例8に
おける太陽熱利用装置の構成図を示すものである。
(Eighth Embodiment) FIG. 9 is a diagram showing a configuration of a solar heat utilization apparatus according to an eighth embodiment of the present invention.

【0063】図8において、送風手段25、太陽熱集熱
パネル24、蒸発器23の順に空気が流れるように、こ
れらを配した構成となる。
FIG. 8 shows a configuration in which air is supplied such that air flows in the order of the blowing means 25, the solar heat collecting panel 24, and the evaporator 23.

【0064】以上のように構成された太陽熱利用装置に
ついて、以下その動作、作用を説明する。
The operation and operation of the solar heat utilization apparatus having the above-described configuration will be described below.

【0065】送風手段25を駆動するモーター26は電
力を消費するため、モーター本体が発熱し高温となる。
しかし、モーター26は送風手段25によって送風され
る空気に曝されているので、モーター26が消費した電
力は熱となって空気へ伝熱される。モーター26の熱を
受熱した空気は蒸発器23で冷媒と熱交換するので、本
実施例の構成により、モーター26で消費した電力を冷
媒の加熱に利用することができる。
Since the motor 26 for driving the blowing means 25 consumes electric power, the motor body generates heat and becomes high temperature.
However, since the motor 26 is exposed to the air blown by the blowing means 25, the power consumed by the motor 26 becomes heat and is transferred to the air. Since the air that has received the heat of the motor 26 exchanges heat with the refrigerant in the evaporator 23, the configuration of this embodiment allows the electric power consumed by the motor 26 to be used for heating the refrigerant.

【0066】以上のように、本実施例においては、空気
が、送風手段25、太陽熱集熱パネル24、蒸発器23
の順に通過するように設置した構成とすることにより、
送風手段26の放熱を集熱パネル24から蒸発器23へ
送られる空気へ受熱させて蒸発器23で熱交換させるの
で送風手段25に必要な電力を冷媒の加熱に有効に利用
して効率の高い装置とすることができる。
As described above, in the present embodiment, the air is supplied from the blowing means 25, the solar heat collecting panel 24, and the evaporator 23.
By setting it to pass in the order of
Since the heat radiation of the air blowing means 26 is received from the heat collecting panel 24 to the air sent to the evaporator 23 and the heat is exchanged in the evaporator 23, the electric power required for the air blowing means 25 is effectively used for heating the refrigerant and the efficiency is high. It can be a device.

【0067】[0067]

【発明の効果】以上のように、請求項1〜8に記載の発
明によれば、日射量、外気温度に影響されずに必要な加
熱能力を確保してかつ、効率の良い加熱運転ができる。
As described above, according to the first to eighth aspects of the present invention, a necessary heating capacity can be secured without being affected by the amount of solar radiation and the outside air temperature, and an efficient heating operation can be performed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における太陽熱利用装置の構
成図
FIG. 1 is a configuration diagram of a solar heat utilization device according to a first embodiment of the present invention.

【図2】本発明の実施例2における太陽熱利用装置の構
成図
FIG. 2 is a configuration diagram of a solar heat utilization device according to a second embodiment of the present invention.

【図3】ヒートポンプの一般的な特性を説明する特性図FIG. 3 is a characteristic diagram illustrating general characteristics of a heat pump.

【図4】本発明の実施例3における太陽熱利用装置の構
成図
FIG. 4 is a configuration diagram of a solar heat utilization device according to a third embodiment of the present invention.

【図5】本発明の実施例4における太陽熱利用装置の構
成図
FIG. 5 is a configuration diagram of a solar heat utilization device according to a fourth embodiment of the present invention.

【図6】本発明の実施例5における太陽熱利用装置の構
成図
FIG. 6 is a configuration diagram of a solar heat utilization device according to a fifth embodiment of the present invention.

【図7】本発明の実施例6における太陽熱利用装置の構
成図
FIG. 7 is a configuration diagram of a solar heat utilization device according to a sixth embodiment of the present invention.

【図8】本発明の実施例7における太陽熱利用装置の構
成図
FIG. 8 is a configuration diagram of a solar heat utilization device according to a seventh embodiment of the present invention.

【図9】本発明の実施例8における太陽熱利用装置の構
成図
FIG. 9 is a configuration diagram of a solar heat utilization device according to an eighth embodiment of the present invention.

【図10】従来の太陽熱利用装置の構成図FIG. 10 is a configuration diagram of a conventional solar heat utilization device.

【図11】従来の太陽熱利用装置の構成図FIG. 11 is a configuration diagram of a conventional solar heat utilization device.

【符号の説明】[Explanation of symbols]

24 太陽熱集熱パネル 23 蒸発器 25 送風手段 19 ヒートポンプ回路 20 能力可変圧縮機 32 圧縮機能力可変制御手段 33 蒸発器入口空気温度センサー 35 蒸発器出口空気温度センサー 38 蒸発器入口冷媒温度センサー 41 集熱パネル温度センサー 45 開閉手段 46 開閉制御手段 Reference Signs List 24 solar heat collecting panel 23 evaporator 25 blowing means 19 heat pump circuit 20 variable capacity compressor 32 variable compression function force controlling means 33 evaporator inlet air temperature sensor 35 evaporator outlet air temperature sensor 38 evaporator inlet refrigerant temperature sensor 41 heat collecting Panel temperature sensor 45 Opening / closing means 46 Opening / closing control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 30/02 F25B 30/02 J // F24H 1/00 611 F24H 1/00 611S 621 621G (72)発明者 近藤 龍太 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西山 吉継 大阪府門真市大字門真1006番地 松下電器 産業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F25B 30/02 F25B 30/02 J // F24H 1/00 611 F24H 1/00 611S 621 621G (72) Invention Person Ryuta Kondo 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshitsugu Nishiyama 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 太陽熱を集熱する太陽熱集熱パネルと、
空気を前記太陽熱集熱パネルに通風させるための送風手
段と、能力可変圧縮機を有したヒートポンプ回路と、前
記太陽熱集熱パネルを通過した空気と熱交換する前記ヒ
ートポンプ回路の蒸発器と、圧縮機能力可変制御手段を
備えたことを特徴とする太陽熱利用装置。
1. A solar heat collecting panel for collecting solar heat,
Blower means for passing air through the solar heat collecting panel, a heat pump circuit having a variable capacity compressor, an evaporator of the heat pump circuit for exchanging heat with air passing through the solar heat collecting panel, and a compression function. A solar heat utilization device comprising variable force control means.
【請求項2】 圧縮機能力制御手段は、蒸発器の入口空
気温度を検知する蒸発器入口空気温度センサーを備え
て、前記蒸発器入口空気温度センサーの検知する温度を
基に設定される所定の回転数で前記圧縮機を運転制御す
ることを特徴とする請求項1記載の太陽熱利用装置。
2. The compression function force control means includes an evaporator inlet air temperature sensor for detecting an evaporator inlet air temperature, and a predetermined pressure set based on the temperature detected by the evaporator inlet air temperature sensor. The solar heat utilization device according to claim 1, wherein the operation of the compressor is controlled by a rotation speed.
【請求項3】 圧縮機能力制御手段は、蒸発器の入口空
気温度を検知する蒸発器入口空気温度センサーと、前記
蒸発器の出口空気温度を検知する蒸発器出口空気温度セ
ンサーを備えて、前記蒸発器入口空気温度センサーの検
知する温度T1と前記蒸発器出口空気温度センサーの検
知する温度T2との温度差T1−T2が予め設定された
所定の温度差となるごとく前記圧縮機回転数を制御する
ことを特徴とする請求項1記載の太陽熱利用装置。
3. An evaporator inlet air temperature sensor for detecting an inlet air temperature of an evaporator, and an evaporator outlet air temperature sensor for detecting an outlet air temperature of the evaporator. The compressor rotation speed is controlled so that a temperature difference T1-T2 between a temperature T1 detected by the evaporator inlet air temperature sensor and a temperature T2 detected by the evaporator outlet air temperature sensor becomes a predetermined temperature difference. The solar heat utilization device according to claim 1, wherein
【請求項4】 圧縮機能力制御手段は、蒸発器の入口空
気温度を検知する蒸発器入口空気温度センサーと、前記
蒸発器の入口冷媒温度を検知する蒸発器入口冷媒温度セ
ンサーを備えて、前記蒸発器入口空気温度センサーの検
知する温度T3と前記蒸発器入口冷媒温度センサーの検
知する温度T4との温度差T3−T4が予め設定された
所定の温度差となるごとく前記圧縮機回転数を制御する
ことを特徴とする請求項1記載の太陽熱利用装置
4. The compression function force control means includes an evaporator inlet air temperature sensor for detecting an inlet air temperature of an evaporator, and an evaporator inlet refrigerant temperature sensor for detecting an inlet refrigerant temperature of the evaporator. The compressor speed is controlled so that a temperature difference T3-T4 between a temperature T3 detected by the evaporator inlet air temperature sensor and a temperature T4 detected by the evaporator inlet refrigerant temperature sensor becomes a predetermined temperature difference. The solar heat utilization device according to claim 1, wherein
【請求項5】 圧縮機能力制御手段は、太陽熱集熱パネ
ルの温度を検知する集熱パネル温度センサーと、前記蒸
発器の冷媒入口温度を検知する蒸発器入口温度センサー
を備えて、蒸発器入口冷媒温度センサーの検知温度T5
が、集熱パネル温度センサーの検知温度T6を基に予め
設定された所定の温度T7となるように前記熱圧縮機回
転数を制御することを特徴とする請求項1記載の太陽熱
利用装置。
5. The compression function force control means includes a heat collecting panel temperature sensor for detecting a temperature of a solar heat collecting panel, and an evaporator inlet temperature sensor for detecting a refrigerant inlet temperature of the evaporator. Refrigerant temperature sensor detection temperature T5
The solar heat utilization device according to claim 1, wherein the controller controls the number of revolutions of the heat compressor so as to be a predetermined temperature T7 set in advance based on a detection temperature T6 of the heat collection panel temperature sensor.
【請求項6】 太陽熱集熱パネルと蒸発器は隣接する構
成であることを特徴とする請求項1〜5のいずれか1項
に記載の太陽熱利用装置。
6. The solar heat utilizing apparatus according to claim 1, wherein the solar heat collecting panel and the evaporator are adjacent to each other.
【請求項7】 蒸発器の空気入口に、外気を吸入するた
めの開閉が可能な開閉手段と、前記開閉手段の開閉を制
御する開閉制御手段を備えたことを特徴とする請求項1
〜6のいずれか1項に記載の太陽熱利用装置。
7. An air inlet of an evaporator, comprising: an opening / closing means capable of opening / closing for sucking outside air; and an opening / closing control means for controlling the opening / closing of the opening / closing means.
The solar heat utilization device according to any one of claims 6 to 6.
【請求項8】 空気が、送風手段、太陽熱集熱パネル、
蒸発器の順に通過するように、前記送風手段と前記太陽
熱集熱パネルと前記蒸発器を設置したことを特徴とする
請求項1〜7のいずれか1項に記載の太陽熱利用装置。
8. The method according to claim 8, wherein the air is a blowing means, a solar heat collecting panel,
The solar heat utilization device according to any one of claims 1 to 7, wherein the blower, the solar heat collecting panel, and the evaporator are installed so as to pass in order of the evaporator.
JP2001144374A 2001-05-15 2001-05-15 Solar thermal equipment Expired - Fee Related JP4639521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144374A JP4639521B2 (en) 2001-05-15 2001-05-15 Solar thermal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144374A JP4639521B2 (en) 2001-05-15 2001-05-15 Solar thermal equipment

Publications (2)

Publication Number Publication Date
JP2002340433A true JP2002340433A (en) 2002-11-27
JP4639521B2 JP4639521B2 (en) 2011-02-23

Family

ID=18990333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144374A Expired - Fee Related JP4639521B2 (en) 2001-05-15 2001-05-15 Solar thermal equipment

Country Status (1)

Country Link
JP (1) JP4639521B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286323A (en) * 2001-03-27 2002-10-03 Matsushita Electric Ind Co Ltd Device utilizing solar heat
JP2002286322A (en) * 2001-03-27 2002-10-03 Matsushita Electric Ind Co Ltd Device utilizing solar heat
AT504762B1 (en) * 2007-01-18 2009-03-15 Welker Heinrich HEAT PUMP
JP2012184858A (en) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp Heat pump water heater
CN105758019A (en) * 2014-12-15 2016-07-13 广西吉宽太阳能设备有限公司 Solar energy heat pump water heater
CN109812975A (en) * 2018-12-25 2019-05-28 广西赫阳能源科技有限公司 A kind of photovoltaic air source heat pump hot water system
JP2021179306A (en) * 2015-06-03 2021-11-18 キャッスル ヨーロピアン リミテッド Turbine system and method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163568U (en) * 1981-04-08 1982-10-15
JPS58217160A (en) * 1982-06-10 1983-12-17 松下電器産業株式会社 Heat-pump water heater
JPS59107150A (en) * 1982-12-08 1984-06-21 株式会社 システム・ホ−ムズ Hot-water supply device
JPS6057155A (en) * 1983-08-19 1985-04-02 Syst Hoomuzu:Kk Water heater unified solar and heat pump
JPS6069466A (en) * 1984-07-30 1985-04-20 株式会社日立製作所 Heat pump type heating apparatus
JPS617768U (en) * 1984-06-20 1986-01-17 三菱電機株式会社 solar collector
JPH024166A (en) * 1988-06-21 1990-01-09 Daikin Ind Ltd Temperature control device for liquid cooler
JPH09133391A (en) * 1995-11-10 1997-05-20 Daikin Ind Ltd Air conditioner
JPH11118247A (en) * 1997-10-21 1999-04-30 Matsushita Electric Ind Co Ltd Heat pump type solar hot water supply system
JPH11218349A (en) * 1997-11-28 1999-08-10 Daikin Ind Ltd Operation control device of air conditioning system
JP2000039220A (en) * 1998-05-19 2000-02-08 Mitsubishi Electric Corp Apparatus and method for controlling refrigerating cycle
JP2001041574A (en) * 1999-08-03 2001-02-16 Matsushita Electric Ind Co Ltd Hot-water supplier

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163568U (en) * 1981-04-08 1982-10-15
JPS58217160A (en) * 1982-06-10 1983-12-17 松下電器産業株式会社 Heat-pump water heater
JPS59107150A (en) * 1982-12-08 1984-06-21 株式会社 システム・ホ−ムズ Hot-water supply device
JPS6057155A (en) * 1983-08-19 1985-04-02 Syst Hoomuzu:Kk Water heater unified solar and heat pump
JPS617768U (en) * 1984-06-20 1986-01-17 三菱電機株式会社 solar collector
JPS6069466A (en) * 1984-07-30 1985-04-20 株式会社日立製作所 Heat pump type heating apparatus
JPH024166A (en) * 1988-06-21 1990-01-09 Daikin Ind Ltd Temperature control device for liquid cooler
JPH09133391A (en) * 1995-11-10 1997-05-20 Daikin Ind Ltd Air conditioner
JPH11118247A (en) * 1997-10-21 1999-04-30 Matsushita Electric Ind Co Ltd Heat pump type solar hot water supply system
JPH11218349A (en) * 1997-11-28 1999-08-10 Daikin Ind Ltd Operation control device of air conditioning system
JP2000039220A (en) * 1998-05-19 2000-02-08 Mitsubishi Electric Corp Apparatus and method for controlling refrigerating cycle
JP2001041574A (en) * 1999-08-03 2001-02-16 Matsushita Electric Ind Co Ltd Hot-water supplier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286323A (en) * 2001-03-27 2002-10-03 Matsushita Electric Ind Co Ltd Device utilizing solar heat
JP2002286322A (en) * 2001-03-27 2002-10-03 Matsushita Electric Ind Co Ltd Device utilizing solar heat
JP4649755B2 (en) * 2001-03-27 2011-03-16 パナソニック株式会社 Solar thermal equipment
JP4649754B2 (en) * 2001-03-27 2011-03-16 パナソニック株式会社 Solar thermal equipment
AT504762B1 (en) * 2007-01-18 2009-03-15 Welker Heinrich HEAT PUMP
JP2012184858A (en) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp Heat pump water heater
CN105758019A (en) * 2014-12-15 2016-07-13 广西吉宽太阳能设备有限公司 Solar energy heat pump water heater
JP2021179306A (en) * 2015-06-03 2021-11-18 キャッスル ヨーロピアン リミテッド Turbine system and method
CN109812975A (en) * 2018-12-25 2019-05-28 广西赫阳能源科技有限公司 A kind of photovoltaic air source heat pump hot water system

Also Published As

Publication number Publication date
JP4639521B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
CN111615464B (en) Air conditioner for vehicle
CN101113852B (en) Co-generation unit and control method of the same
KR101270614B1 (en) Co-generation
KR100638223B1 (en) Electric generation air condition system
KR101283592B1 (en) Heat pump system for vehicle
CN109378550B (en) Automobile air conditioner and new energy automobile
CN212538209U (en) Heat pump system, heat pump air conditioner comprising same and heat pump water heater
CN206579445U (en) Heat pump type air conditioning system and electric automobile
CN110748964A (en) Air conditioner system, air conditioner and control method of air conditioner
JP2001041503A (en) Case cooling system for communication base station
JP2002340433A (en) Solar-heat utilizing equipment
US20210008962A1 (en) Heat exchange system for vehicle and air conditioning system for vehicle
JP2003050056A (en) Solar equipment
CN116061763A (en) Battery thermal management system and control method thereof
CN114110884B (en) New fan, control method thereof and computer readable storage medium
KR20070018420A (en) Air conditioner and Control method of the same
CN111707058B (en) Multi-heat source self-adaptive material drying system and material drying room
KR100946381B1 (en) Hybrid heat pump type cooling and heating apparatus
JP4649754B2 (en) Solar thermal equipment
JP4649755B2 (en) Solar thermal equipment
CN219346786U (en) Hot water unit for inhibiting frosting
CN218523763U (en) Photovoltaic heat pump water heater
JP3997560B2 (en) Engine heat pump type air conditioner
JP2020122593A (en) Air-conditioning system with solar panel cooling function
CN215723753U (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees