JP2002339152A - Polyvinyl alcohol-based crimped fiber and method for producing the same - Google Patents

Polyvinyl alcohol-based crimped fiber and method for producing the same

Info

Publication number
JP2002339152A
JP2002339152A JP2001138538A JP2001138538A JP2002339152A JP 2002339152 A JP2002339152 A JP 2002339152A JP 2001138538 A JP2001138538 A JP 2001138538A JP 2001138538 A JP2001138538 A JP 2001138538A JP 2002339152 A JP2002339152 A JP 2002339152A
Authority
JP
Japan
Prior art keywords
fiber
pva
temperature
spinning
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001138538A
Other languages
Japanese (ja)
Inventor
Akio Omori
昭夫 大森
Toshiaki Itaya
利昭 板谷
Shoichi Nishiyama
正一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2001138538A priority Critical patent/JP2002339152A/en
Publication of JP2002339152A publication Critical patent/JP2002339152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyvinyl alcohol (hereinafter referred to as PVA)-based crimped fiber which while maintaining superior hydrophilicity, hygroscopicity, weather resistance, chemical resistance, a high strength, and the like of the PVA-based fiber being strong points of it, has excellent cost performance and an excellent level dyeing property when dyed. SOLUTION: This PVA-based crimped fiber has a uniform structure in the fiber cross-sectional direction and further has a prescribed fine hill-like uneven surface, when the surface is observed with an atomic force microscope at a fusing temperature of >=100 deg.C in water. The fiber is obtained by dissolving the PVA-based polymer in an organic solvent, wet-spinning the prepared spinning rope in a low temperature solidification bath based on an organic solvent having a low water content, drawing the spun fiber in a prescribed ratio, preliminarily heating the drawn fiber at a prescribed temperature and then crimping the fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工業的に生産され
ている安価なポリマーを用い、ポリビニルアルコール
(以下PVAと略記する。)系繊維の特長を維持しなが
ら、独自の微細な丘状凹凸表面を有し、工程通過性に優
れ、均染性に優れた高性能の紡績糸や布地、不織布等を
得ることができるPVA系捲縮繊維及びその製造法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a proprietary fine hill-shaped unevenness using an inexpensive polymer produced industrially and maintaining the characteristics of polyvinyl alcohol (hereinafter abbreviated as PVA) fibers. The present invention relates to a PVA-based crimped fiber having a surface, excellent in process passability, and capable of obtaining a high-performance spun yarn, cloth, nonwoven fabric, or the like having excellent levelness, and a method for producing the same.

【0002】[0002]

【従来の技術】従来PVA系繊維は、ポリアミド、ポリ
エステル、ポリアクリロニトリル系汎用繊維に比べ強
度、弾性率が高く、親水性、吸水性、耐候性、耐薬品性
などに優れ、産業資材用としてはもちろん、衣料用、生
活資材用にも大いに利用されている。
2. Description of the Related Art Conventionally, PVA-based fibers have higher strength and elastic modulus than polyamide, polyester, and polyacrylonitrile-based general-purpose fibers, and are excellent in hydrophilicity, water absorption, weather resistance, chemical resistance, and the like. Of course, it is also widely used for clothing and living materials.

【0003】近年、汎用ポリマーであるポリエチレンに
おいて超高分子量の原料をゲル紡糸することにより超高
強度・高ヤング率の繊維が工業化された。PVA系ポリ
マーに対してもポリエチレンと同様にゲル紡糸による高
強度・高ヤング率繊維の検討がなされ、例えば特開昭5
9−100710号、特開昭59−130314号、特
開昭61−108711号、特開平4-136213号
等の公報において提案され、そして1998年にはPV
A系ポリマーを全有機溶剤系湿式冷却ゲル紡糸法により
製造する技術が“クラロンK−II”という商品名で工業
化された。“クラロンK−II”は、主として、鹸化度9
9.5モル%以下のPVAを用いる水溶性タイプが主に
工程助剤向けに、また鹸化度99.5モル%以上のPV
Aを用いる高強度・高ヤング率で耐水性の高強度タイプ
が主にセメント補強材向けの産業資材用途などに市販さ
れている。
[0003] In recent years, ultrahigh-strength, high-Young's modulus fibers have been industrialized by gel-spinning ultrahigh molecular weight raw materials in polyethylene, which is a general-purpose polymer. As with polyethylene, high strength and high Young's modulus fibers by gel spinning have been studied for PVA-based polymers.
9-100710, JP-A-59-130314, JP-A-61-108711, JP-A-4-136213, and the like.
A technique for producing an A-based polymer by an all-organic solvent-based wet cooling gel spinning method has been industrialized under the trade name "Claron K-II". "Claron K-II" mainly has a saponification degree of 9
A water-soluble type using 9.5 mol% or less of PVA is mainly used for process assistants, and a PV having a saponification degree of 99.5 mol% or more is used.
A high-strength, high Young's modulus and water-resistant high-strength type using A is commercially available mainly for use as an industrial material for cement reinforcement.

【0004】耐水性のある高強度PVA系捲縮繊維とそ
の製造方法に関しては、特開平3−27111号公報で
提案されているが、その技術は、重合度(以下PAと略
記する。)3000以上(実施例はPA3500のみ)
のPVAを用い、乾湿式紡糸し、有効全延伸倍率(T
D)が15倍以上の高延伸を行うものであり、この技術
の場合には、15倍以上の高延伸が行われるため、得ら
れる繊維は、確かに強度の点では11.5cN/dte
x(13g/dr)以上、実施例では18.1cN/d
tex(20.5g/dr)と高い値を有しているが、
紡糸方法が乾湿式紡糸方法でありそのために繊維の表面
構造が異なるためか製品での染色後の均染性に劣る傾向
にある。また特開平3−82836号公報には、同様に
PAの高い(実施例はPA2600のみを使用。)PV
Aを乾湿式紡糸し、高倍率で延伸し、単糸引張強度が1
1.5cN/dtex(13g/dr)以上の捲縮繊維
を用いることにより、耐切創性に優れた紡績糸を得るこ
とが提案されているが、同様に均染性が不良の傾向にあ
る。
A high-strength PVA-based crimped fiber having water resistance and a method for producing the same have been proposed in Japanese Patent Application Laid-Open No. 3-27111. The technique is based on a degree of polymerization of 3000 (hereinafter abbreviated as PA). (Example: PA3500 only)
And dry-wet spinning using an effective total draw ratio (T
D) is a high draw of 15 times or more. In the case of this technique, a high draw of 15 times or more is performed, and thus the obtained fiber is certainly 11.5 cN / dte in terms of strength.
x (13 g / dr) or more, 18.1 cN / d in the embodiment
It has a high value of tex (20.5 g / dr),
The spinning method is a dry-wet spinning method, and the leveling properties after dyeing with products tend to be inferior, probably because the surface structure of the fibers is different. Japanese Patent Application Laid-Open No. 3-82836 discloses a PV having a high PA (only the PA2600 is used in the embodiment).
A is dry-wet spun, stretched at a high magnification, and has a single yarn tensile strength of 1
It has been proposed to obtain a spun yarn having excellent cut wound resistance by using a crimped fiber of 1.5 cN / dtex (13 g / dr) or more, but similarly, the leveling property tends to be poor.

【0005】さらに、特開平4−136213号公報に
は、主としてセメントの補強性向上を目指して、全有機
溶媒系湿式冷却ゲル紡糸し、高倍率で延伸し、強度が1
3.2cN/dtex(15g/dr)以上で、微細な
二重の凸凹表面を有するPVA系合成繊維が提案されて
いるが、染色した際の均染性の点では今一歩の改良が望
まれていた。また、特開2000−343852号公報
には、前記特開平4−136213号公報に提案の繊維
をベースに捲縮を付与し、高強度で高品位の紡績糸と
し、ブランケット基布とすることが提案されているが、
繊維の表面および内部構造は前記発明と本質的に同じで
あり、均染性の点では十分満足できるものではなかっ
た。
Further, Japanese Patent Application Laid-Open No. 4-136213 discloses that all-organic solvent-based wet-cooled gel spinning, stretching at a high magnification, and strength of 1 are mainly aimed at improving the reinforcing property of cement.
A PVA-based synthetic fiber having a fine double uneven surface of 3.2 cN / dtex (15 g / dr) or more has been proposed, but a further improvement in the level of leveling property when dyed is desired. I was Japanese Patent Application Laid-Open No. 2000-343852 discloses that the fiber proposed in Japanese Patent Application Laid-Open No. 4-136213 is crimped to provide a high-strength, high-quality spun yarn and a blanket base fabric. Has been proposed,
The surface and internal structure of the fiber were essentially the same as in the above invention, and were not sufficiently satisfactory in terms of levelness.

【0006】[0006]

【発明が解決しようとする課題】本発明は、汎用繊維と
しては十分に高強度で、親水性、耐候性、耐熱性、耐薬
品性などPVA繊維の優れた特長を維持しつつ、染色時
の均染性に優れ、かつコストパフォーマンスに優れた繊
維を得るものである。
DISCLOSURE OF THE INVENTION The present invention provides a high-strength PVA fiber which is sufficiently high in strength as a general-purpose fiber, and maintains the excellent characteristics of PVA fiber such as hydrophilicity, weather resistance, heat resistance, and chemical resistance while dyeing. It is intended to obtain fibers having excellent levelness and excellent cost performance.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
を追求した結果、所定のPVA系ポリマーを有機溶媒に
溶解した紡糸原液を所定の含水率以下の有機溶媒系低温
固化浴中に湿式紡糸し、所定の倍率で延伸し、所定の温
度で予熱後捲縮して得られるPVA系捲縮繊維が、上記
課題を解決し、そしてその主原因が繊維の内部構造と独
特の表面構造に由来することを見出した。
Means for Solving the Problems As a result of pursuing the above-mentioned objects, the present inventors have prepared a spinning solution obtained by dissolving a predetermined PVA-based polymer in an organic solvent in an organic solvent-based low-temperature solidification bath having a predetermined water content or less. A PVA-based crimped fiber obtained by wet spinning, stretching at a predetermined magnification, preheating at a predetermined temperature and then crimping solves the above-mentioned problems, and the main causes are the internal structure of the fiber and a unique surface structure Was found to be derived from

【0008】すなわち、本発明は、重合度が1200〜
5000のPVAからなり、繊維断面方向に構造が均一
で、水中溶断温度が100℃以上の捲縮繊維であって、
該繊維表面を原子間力顕微鏡装置で観察したときに、繊
維断面方向表面凸凹形状の傾きの最大振幅Aが2.5以
下でかつ該傾きが0になる回数Pが1μmあたり10回
以下であることを特徴とするPVA系捲縮繊維であり、
そして、その好適な製造方法として、重合度1200〜
5000、鹸化度99モル%以上のPVAを有機溶媒に
溶解した紡糸原液をノズルより吐出し、含水率が3%以
下の有機溶媒系低温固化浴中に湿式冷却ゲル紡糸し、抽
出、湿延伸、乾燥して得た紡糸原糸トウを全延伸倍率が
9〜13倍となるよう乾熱延伸し、必要に応じて熱処理
し、さらに延伸・熱処理トウを100℃〜180℃に予
熱後捲縮し、必要に応じて切断する方法を提供するもの
である。
That is, according to the present invention, the degree of polymerization is 1200 to 1200.
It is a crimped fiber made of 5000 PVA, having a uniform structure in the fiber cross-sectional direction, and having an underwater fusing temperature of 100 ° C. or more,
When the fiber surface is observed with an atomic force microscope, the maximum amplitude A of the inclination of the surface unevenness in the fiber cross section direction is 2.5 or less, and the number of times P when the inclination becomes 0 is 10 or less per 1 μm. A PVA-based crimped fiber characterized by the fact that
And as a preferable production method, the degree of polymerization is 1200 to 1200.
5000, a spinning solution in which PVA having a saponification degree of 99 mol% or more is dissolved in an organic solvent is discharged from a nozzle, and wet-cooled gel spinning is performed in an organic solvent-based low-temperature solidifying bath having a water content of 3% or less, and extraction, wet drawing, The spinning tow obtained by drying is stretched by dry heat so that the total draw ratio is 9 to 13 times, and heat-treated if necessary. Further, the drawn and heat-treated tow is crimped after preheating to 100 ° C to 180 ° C. And a method for cutting as necessary.

【0009】本発明繊維は、断面方向に構造が均一で、
従来公知の紡糸方法、例えばPVAを水に溶解した紡糸
原液を乾式紡糸したり、あるいは同紡糸原液を脱水性塩
類(例えば硫酸ナトリウム)および/あるいは強アルカ
リ薬剤(例えば水酸化ナトリウム)水溶液中に湿式紡糸
したりして得られるPVA繊維のように、鋭角的な頂部
を有する大きく粗雑な凹凸を形成した表面形態ではな
く、かつまた従来公知の有機溶媒系乾湿式紡糸や有機溶
剤系湿式紡糸による紡糸原糸を高度に延伸して得られた
高強度PVA繊維の如き超微細な凹凸を数多く有する表
面形態でもない。すなわち、本発明繊維は、比較的起伏
の平坦な丘状の微細な凸凹を有する表面形態を有してい
るところにその特徴を有する。
The fibers of the present invention have a uniform structure in the cross-sectional direction,
A conventionally known spinning method, for example, dry spinning of a spinning solution obtained by dissolving PVA in water, or wet spinning of the spinning solution in an aqueous solution of a dehydrated salt (eg, sodium sulfate) and / or a strong alkali agent (eg, sodium hydroxide) It is not a surface morphology having large and rough irregularities having sharp peaks like PVA fiber obtained by spinning, and is also a conventionally known organic solvent-based dry-wet spinning or organic solvent-based wet spinning. It is not a surface morphology having many ultra-fine irregularities, such as high-strength PVA fiber obtained by highly stretching a raw yarn. In other words, the fiber of the present invention is characterized in that it has a surface morphology having fine undulations in the form of relatively flat hills.

【0010】本発明繊維においては、繊維の微細な表面
状態がポイントであり、表面状態を忠実に再現する正確
な観察法の選択が重要である。表面観察に一般的に使用
されている走査型電子顕微鏡では通常試料表面に0.0
1μm以上の厚みに金属コーティングを施す必要がある
ため、この繊維の特徴である微細凹凸を正確に表現する
ことが出来ない。また、透過型電子顕微鏡では、試料の
プラスチックフィルムレプリカをとり、金属蒸着による
シャドウイング、さらにカーボン蒸着した後、フィルム
レプリカを溶解する2段レプリカ法により得たレプリカ
を観察するが、シャドウイングの影の長さを計測するだ
けでは、凹凸の高さは測定できるが、傾きなどの形状を
正確に表現できない。従って本発明では、後述のように
原子間力顕微鏡(AFM)を用い、試料を直接電顕によ
り観察した。
In the fiber of the present invention, the fine surface state of the fiber is important, and it is important to select an accurate observation method that faithfully reproduces the surface state. In a scanning electron microscope generally used for surface observation, usually 0.0
Since it is necessary to apply a metal coating to a thickness of 1 μm or more, it is not possible to accurately represent the fine irregularities which are the characteristics of this fiber. In addition, with a transmission electron microscope, a plastic film replica of the sample is taken, shadowing is performed by metal evaporation, and after carbon is evaporated, a replica obtained by a two-step replica method of dissolving the film replica is observed. The height of the unevenness can be measured only by measuring the length, but the shape such as the inclination cannot be accurately represented. Therefore, in the present invention, the sample was directly observed by an electron microscope using an atomic force microscope (AFM) as described later.

【0011】本発明による繊維表面をAFM観察し、そ
の観測結果のうち高低データを後述の方法で解析して得
た1次微分曲線の一例を図1に示した。
FIG. 1 shows an example of a first-order differential curve obtained by performing AFM observation on the fiber surface according to the present invention and analyzing elevation data among the observation results by a method described later.

【0012】本発明繊維の表面凸凹の傾きがゼロとなる
回数Pは、従来の有機溶媒系紡糸の高延伸繊維に比べ小
さく、水系紡糸繊維とほぼ同程度のP値を有しながら、
表面凸凹の最大振幅Aは、水系紡糸繊維に比べ小さく、
有機溶媒系紡糸の高延伸繊維と同様の高低差の凸凹のを
有しており、すなわち比較的起伏の平坦な周期の大きい
丘状の微細な凸凹を有する表面形態であるところにその
特徴を有する。表面凸凹の傾きがゼロとなる回数Pが、
有機溶媒系紡糸の高延伸繊維のように1μあたり10回
を越える繊維では凸凹の数が多く頂部が鋭角的になり微
妙な角度の変化でも色目が変化したり、いらついて見え
たり、頂部が削られやすく例えば長期使用時染色物の色
目が変化しやすい問題がある。また、最大振幅Aが水系
紡糸繊維のように2.5を越える凸凹の激しい粗雑な表
面では染色物にいらつきがみられ、均染性に欠ける。A
が2.0以下であると好ましく、1.5以下であるとさ
らに好ましい。
The number of times P at which the inclination of the surface irregularities of the fiber of the present invention becomes zero is smaller than that of a conventional high-stretched fiber of an organic solvent-based spinning fiber, and has a P value substantially the same as that of a water-based fiber.
The maximum amplitude A of the surface unevenness is smaller than that of the water-based spun fiber,
It has the same unevenness as the highly drawn fiber of the organic solvent-based spinning, that is, it has the feature that it is a surface morphology with hill-shaped fine unevenness with a relatively uneven, flat, large period . The number of times P at which the inclination of the surface irregularities becomes zero is
Fibers exceeding 10 times per micron such as organic solvent-based spun fibers have a large number of irregularities, and the top is sharp and the tint changes even if the angle is slightly changed. For example, there is a problem that the tint of a dyed product is liable to change during long-term use. On the other hand, on a rough surface having a large unevenness such as a water-based spun fiber having a maximum amplitude A of more than 2.5, the dyed product is irritated and lacks levelness. A
Is preferably 2.0 or less, more preferably 1.5 or less.

【0013】本発明繊維は、後記の測定法で測定した水
中溶断温度が100℃以上と耐水性が良好である。水中
溶断温度が100℃未満であると、染色などの高温ウェ
ット工程で溶解したり、高温ウェット工程後乾燥時に膠
着し風合いが粗硬になり不都合である。水中溶断温度が
105℃以上であると好ましく、110℃以上であると
さらに好ましい。
The fiber of the present invention has a good water resistance, having an underwater fusing temperature of 100 ° C. or higher as measured by the measurement method described later. If the underwater fusing temperature is lower than 100 ° C., it is inconvenient to be melted in a high-temperature wet process such as dyeing, or to stick to each other during drying after the high-temperature wet process, so that the texture becomes coarse and hard. The underwater fusing temperature is preferably at least 105 ° C, more preferably at least 110 ° C.

【0014】本発明繊維は、後記の光学顕微鏡で繊維断
面を観察した場合、スキンコア構造が見られず繊維軸方
向に直角な面での繊維断面方向に構造が均一であること
が特徴である。PVA水溶液を脱水性塩類水溶液浴中に湿
式紡糸した繊維は、繊維断面方向に構造が不均一でスキ
ンコア構造となり、紡糸ノズルの孔形状が真円でも得ら
れる繊維の断面は繭型となる。一方、本発明繊維はスキ
ンコア構造がなく、紡糸ノズルの孔形状が通常の真円で
あれば繊維断面形状もほぼ真円である。構造が均一であ
ると、繊維物性が優れる傾向にあり、特に染色後のいら
つきがなく均染性に優れるので好ましい。また、本発明
繊維は繊維軸方向にも白化部やボイドなどの光を散乱さ
せる異常構造が皆無であることが好ましい。これらの異
常構造は均染性を悪化させる。
The fiber of the present invention is characterized in that, when the fiber cross section is observed with an optical microscope described later, the skin core structure is not seen and the structure is uniform in the fiber cross section direction on a plane perpendicular to the fiber axis direction. The fiber obtained by wet spinning an aqueous PVA solution into a dehydrated aqueous salt solution bath has a non-uniform structure in the fiber cross-sectional direction and has a skin core structure, and the cross section of the fiber obtained even when the hole shape of the spinning nozzle is a perfect circle is a cocoon shape. On the other hand, the fiber of the present invention does not have a skin core structure, and if the hole shape of the spinning nozzle is a normal perfect circle, the fiber cross-sectional shape is almost perfect. If the structure is uniform, the fiber properties tend to be excellent, and in particular, there is no flicker after dyeing and the leveling property is excellent, which is preferable. Further, the fiber of the present invention preferably has no abnormal structure that scatters light, such as a whitened portion or a void, in the fiber axis direction. These abnormal structures deteriorate levelness.

【0015】本発明に使用するPVAの重合度は120
0〜5000である。重合度が1200未満であると低
強度繊維しか得られず、5000を越えるとPVA自体
が高コストであるばかりでなく紡糸原液のPVA濃度を
下げねばならず溶媒回収にもより多くの費用がかかり、
繊維製造コストが高くなるので不都合である。重合度が
1500〜2500であると、性能と製造コストのバラ
ンスの点で特に好ましい。PVAの鹸化度は、水中溶断
温度100℃以上を確保するため99モル%以上の鹸化
度を有するPVAを用いる。特に99.5モル%以上で
あるのが好ましく、99モル%以上のものを用いると苛
酷な条件で使用される場合にも優れた耐久性及び寸法安
定性が奏される。
The degree of polymerization of the PVA used in the present invention is 120.
0 to 5000. If the degree of polymerization is less than 1200, only low-strength fibers can be obtained. ,
This is inconvenient because the fiber production cost increases. When the degree of polymerization is from 1500 to 2500, it is particularly preferable in terms of the balance between performance and production cost. Regarding the degree of saponification of PVA, PVA having a degree of saponification of 99 mol% or more is used in order to secure a fusing temperature in water of 100 ° C. or more. In particular, the content is preferably 99.5 mol% or more. When the content is 99 mol% or more, excellent durability and dimensional stability are exhibited even when used under severe conditions.

【0016】また本発明の繊維を構成するPVA系ポリ
マーは、ビニルアルコールユニットを主成分とするもの
であれば特に限定されず、他の構成単位を有していても
かまわない。このような構造単位を形成することとなる
コモノマーとして例えば、エチレン、プロピレン、ブチ
レン等のオレフィン類、アクリル酸及びその塩とアクリ
ル酸メチルなどのアクリル酸エステル、メタクリル酸お
よびその塩、メタクリル酸メチル等のメタクリル酸エス
テル類、アクリルアミド、N−メチルアクリルアミド等
のアクリルアミド誘導体、メタクリルアミド、 N−メ
チロールメタクリルアミド等のメタクリルアミド誘導
体、N−ビニルピロリドン、N−ビニルホルムアミド、
N−ビニルアセトアミド等のN−ビニルアミド類、ポリ
アルキレンオキシドを側鎖に有するアリルエーテル類、
メチルビニルエーテル等のビニルエーテル類、アクリロ
ニトリル等のニトリル類、塩化ビニル等のハロゲン化ビ
ニル、マレイン酸およびその塩またはその無水物やその
エステル等がある。このようなコモノマーの導入法は共
重合による方法でも、後反応による導入方法でもよい
The PVA-based polymer constituting the fiber of the present invention is not particularly limited as long as it has a vinyl alcohol unit as a main component, and may have other constituent units. Examples of the comonomer that forms such a structural unit include olefins such as ethylene, propylene and butylene, acrylic acid and its salts and acrylic esters such as methyl acrylate, methacrylic acid and its salts, and methyl methacrylate. Methacrylic acid esters, acrylamide, acrylamide derivatives such as N-methylacrylamide, methacrylamide, methacrylamide derivatives such as N-methylol methacrylamide, N-vinylpyrrolidone, N-vinylformamide,
N-vinylamides such as N-vinylacetamide, allyl ethers having a polyalkylene oxide in a side chain,
Examples include vinyl ethers such as methyl vinyl ether, nitriles such as acrylonitrile, vinyl halides such as vinyl chloride, maleic acid and salts thereof, and anhydrides and esters thereof. The method for introducing such a comonomer may be a method by copolymerization or an introduction method by a post-reaction.

【0017】以下このような本発明繊維を得る製造法の
一例について述べる。上記のPVA系ポリマーを有機溶
媒と混合撹拌してPVAを溶解し紡糸原液を調製する。
本発明に用いる紡糸原液の有機溶媒は、冷却ゲル化によ
り断面方向に均一な真円構造の繊維を得ることができる
溶媒であれば特別な限定はないが、例えばジメチルスル
ホオキサイド(以下DMSOと略記)、ジメチルアセト
アミド、ジメチルホルムアミド、N−メチルピロリドン
などの極性溶媒やグリセリン、エチレングリコールなど
の多価アルコール類、およびこれらとロダン塩、塩化リ
チウム、塩化カルシウム、塩化亜鉛などの膨潤性金属塩
の混合物、更にはこれら有機溶媒の混合物混合物などが
例示される。とりわけDMSOが低温溶解性、低毒性、
低腐食性などの点で最も好ましい。
Hereinafter, an example of a method for producing the fiber of the present invention will be described. The PVA polymer is mixed and stirred with an organic solvent to dissolve PVA to prepare a spinning dope.
The organic solvent of the spinning dope used in the present invention is not particularly limited as long as it is a solvent capable of obtaining a fiber having a perfect circular structure in a cross-sectional direction by cooling gelation, and for example, dimethyl sulfoxide (hereinafter abbreviated as DMSO). ), Polar solvents such as dimethylacetamide, dimethylformamide and N-methylpyrrolidone; polyhydric alcohols such as glycerin and ethylene glycol; and mixtures of these with swelling metal salts such as rhodanate, lithium chloride, calcium chloride and zinc chloride. And a mixture of these organic solvents. In particular, DMSO has low solubility, low toxicity,
Most preferable in terms of low corrosion.

【0018】紡糸原液中のポリマー濃度は、PVA系ポ
リマーの組成や重合度、溶媒によって異なるが、6〜6
0質量%の範囲が一般的である。紡糸原液を調製する場
合、窒素置換後減圧下で所定温度に加熱し撹拌しながら
行うのが、酸化、分解、架橋反応等の防止及び発泡抑制
の点で好ましい。吐出時の紡糸原液の温度は50〜15
0℃の範囲で、原液がゲル化したり分解・着色しない範
囲とすることが好ましい。もちろん、PVA系ポリマー
及び有機溶媒以外に目的に応じて、本発明の効果を損わ
ない範囲であれば、紡糸原液には酸化防止剤、凍結防止
剤、PH調整剤、隠蔽剤、着色剤、油剤などの添加剤な
どが含まれていてもかまわない。ただし、水分を10%
以上含む紡糸原液は、紡糸時固化浴中に水が溶出し固化
浴中の水分を高くするので好ましくない。
The concentration of the polymer in the spinning dope varies depending on the composition of the PVA polymer, the degree of polymerization and the solvent.
A range of 0% by weight is common. When a spinning dope is prepared, it is preferable to perform heating while stirring at a predetermined temperature under reduced pressure after replacing with nitrogen, while preventing oxidation, decomposition, cross-linking reaction and the like and suppressing foaming. The temperature of the spinning stock solution at the time of discharge is 50 to 15
In the range of 0 ° C., it is preferable that the stock solution does not gel, decompose or discolor. Of course, depending on the purpose other than the PVA-based polymer and the organic solvent, as long as the effects of the present invention are not impaired, the spinning dope contains an antioxidant, an antifreezing agent, a pH adjuster, a concealing agent, a coloring agent, An additive such as an oil agent may be included. However, 10% of water
The spinning dope containing the above is not preferable because water elutes into the solidification bath during spinning and increases the water content in the solidification bath.

【0019】かかる紡糸原液をノズルより吐出し、PV
Aに対して固化能を有する固化浴中に湿式紡糸する。用
いるノズルに特別の限定はないが、孔径は、離浴速度を
ノズル部射出速度で割ったバスドラフトが通常0.1〜
1.0の間になるよう選定し、通常0.05〜0.5m
mφを用いる。孔数は本発明が好適に適用される繊維ト
ウでは数100ホ−ルから数10万ホールが好ましく、
数1000〜数万ホールがより好ましい。
The undiluted spinning solution is discharged from a nozzle, and the
The wet spinning is performed in a solidifying bath having a solidifying ability for A. Although there is no particular limitation on the nozzle to be used, the hole diameter is usually in a range of from 0.1 to 0.1 mm when the bath draft is obtained by dividing the bathing speed by the nozzle portion injection speed.
1.0, usually 0.05-0.5m
mφ is used. The number of holes is preferably several hundred holes to several hundred thousand holes in a fiber tow to which the present invention is suitably applied.
Several thousand to several ten thousand holes are more preferable.

【0020】本発明に用いる固化溶媒は、PVAに対し
て固化能を有する有機溶媒を用いる。たとえば、メタノ
ール、エタノール、プロパノール、ブタノールなどのア
ルコール類、アセトン、メチルエチルケトン、メチルイ
ソブチルケトンなどのケトン類、酢酸メチル、酢酸エチ
ルなどの脂肪酸エステル類、ベンゼン、トルエンなどの
芳香族類やこれらの2種以上の混合物などの有機溶媒が
例示される。本発明捲縮繊維においては、繊維構造が均
一でかつ本発明独自の微細な丘状凸凹表面でなければな
らないゆえ、冷却ゲル化による均一マイルド固化した断
面が真円形状でかつ表面構造が所定の固化糸篠を得るこ
とが基本的に重要である。このためには、上記固化溶媒
の中ではメタノール、エタノールのアルコール類や、ア
セトン、メチルエチルケトン、メチルイソブチルケトン
のケトン類が好ましく、さらに固化浴中の水分が低いこ
とが重要である。なぜ固化浴の水分が低いと本発明の微
細な丘状凸凹表面となるかは不明であるが、PVAの溶
媒である水が固化浴中に多量に存在するとPVAが固化
することができず紡糸不能となることを考慮すると比較
的少量の水分でも初期のゲル化状態に影響を与えゲル糸
篠の表面構造を微妙に変化させ、後記の特定の延伸倍率
の場合顕在化すると推定される。固化浴中の水分が3%
を越えると延伸倍率を後記のような特定倍率としても本
発明の微細な丘状凸凹表面が得られない。固化浴中の水
分が2%以下であると好ましく、1.5%以下であると
さらに好ましい。
As the solidifying solvent used in the present invention, an organic solvent having a solidifying ability for PVA is used. For example, alcohols such as methanol, ethanol, propanol and butanol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; fatty acid esters such as methyl acetate and ethyl acetate; aromatics such as benzene and toluene; Organic solvents such as the above mixtures are exemplified. In the crimped fiber of the present invention, the fiber structure must be uniform and the surface of the present invention must be a fine hill-shaped uneven surface. It is fundamentally important to obtain solidified itoshino. For this purpose, among the solidifying solvents, alcohols such as methanol and ethanol, and ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone are preferable, and it is important that the water in the solidifying bath is low. It is not clear why the solidification bath has a low hill-like uneven surface if the water content of the solidification bath is low. However, if a large amount of water, which is a solvent for PVA, is present in the solidification bath, the PVA cannot be solidified and the spinning is performed. Considering that it becomes impossible, it is presumed that even a relatively small amount of water affects the initial gelling state, slightly changes the surface structure of the gel, and becomes apparent in the case of a specific stretching ratio described later. 3% moisture in the solidification bath
If the ratio exceeds the above, the fine hill-shaped uneven surface of the present invention cannot be obtained even when the stretching ratio is set to a specific ratio as described later. The water content in the solidification bath is preferably 2% or less, more preferably 1.5% or less.

【0021】上記メタノールなどの固化溶媒単独の固化
浴や後記のDMSOなどの原液溶媒と固化溶媒を混合し
た固化浴は、通常の大気中に放置すると空気中の水分を
吸収し多湿の夏では7〜10%、低湿の冬でも4〜5%
の水分を含むこととなるため、固化浴中の水分率を3%
以下に維持するためには、固化浴と接触する気体(例え
ば空気や窒素など)の水分を0.5%以下としたり、固
化浴を除湿剤と接触させて除水するなどの特別な工夫を
しなければならない。
A solidification bath containing only a solidification solvent such as methanol or a solidification bath in which a solid solution solvent such as DMSO described later and a solidification solvent are mixed absorbs moisture in the air when left in the normal atmosphere, and is hard to absorb in a humid summer. -10%, 4-5% even in low humidity winter
Water content in the solidification bath is 3%
In order to maintain the water content below, take special measures such as reducing the water content of gas (for example, air or nitrogen) that comes into contact with the solidification bath to 0.5% or less, or contacting the solidification bath with a dehumidifier to remove water. Must.

【0022】原液溶媒がDMSOの場合DMSOとの蒸
留分離性などを考慮すると、メタノールが最も好ましい
固化溶媒である。繊維内部まで均一に十分に固化させる
ために、固化浴は、固化溶媒に原液溶媒を混合したもの
を用いるのが好ましく、固化溶媒/原液溶媒の混合重量
比95/5〜40/60、特に90/10〜50/5
0、さらに85/15〜55/45であると最も好まし
い。また固化浴に原液溶媒を混合することにより、固化
能を調整するとともに原液溶媒と固化溶媒を分離回収す
るためのコストの低下をはかることができる。
When the stock solution solvent is DMSO, methanol is the most preferable solidification solvent in consideration of the distillative separation property from DMSO. In order to uniformly and sufficiently solidify the inside of the fiber, the solidification bath is preferably a mixture of a solidification solvent and a stock solution solvent, and the mixing weight ratio of the solidification solvent / stock solution solvent is 95/5 to 40/60, particularly 90. / 10 to 50/5
0, and most preferably 85/15 to 55/45. Further, by mixing the undiluted solvent with the solidification bath, the solidification ability can be adjusted and the cost for separating and recovering the undiluted solvent and the solidified solvent can be reduced.

【0023】固化浴の温度は、冷却ゲル化による均一固
化糸篠を得るため、低温の−15〜30℃とする。固化
浴の温度が−15℃未満であると得られた固化糸篠はゲ
ル化均一性は良好であるが、微結晶による架橋密度が高
く後工程の延伸での伸びが悪化し高性能の繊維を得るこ
とが困難な傾向にある。一方、固化浴温度が30℃を越
えると、ゲル化より相分離が優勢となり微結晶による架
橋が少なくなり延伸倍率は見かけ上高くなるが、分子鎖
の配向を伴わないので高性能の繊維が得られにくい傾向
にある。紡糸原液が高温に加熱されている場合には、固
化浴温度を低く保つためには、固化浴を冷却するのが好
ましい。均一固化および省エネルギーの点からは、固化
浴温度を−5〜25℃、特に0〜20℃、さらに2〜1
8℃とするのが好ましい。なお、本発明でいう固化と
は、流動性のある紡糸原液が流動性のない固体に変化す
ることをいい、原液組成が変化せずに固化するゲル化と
原液組成が変化して固化する凝固或いは相分離の両方を
包含する。
The temperature of the solidification bath is set to a low temperature of -15 to 30 ° C. in order to obtain a uniform solidified filament by cooling gelation. When the temperature of the solidification bath is lower than -15 ° C, the solidified itoshino obtained has good gelation uniformity, but has a high cross-linking density due to microcrystals and deteriorates elongation in the subsequent step of drawing, resulting in high-performance fibers. Tends to be difficult to obtain. On the other hand, when the solidification bath temperature exceeds 30 ° C., phase separation predominates over gelation, crosslinks due to microcrystals are reduced, and the draw ratio becomes apparently high, but high-performance fibers are obtained without molecular chain orientation. Tend to be difficult to obtain. When the spinning solution is heated to a high temperature, it is preferable to cool the solidifying bath in order to keep the solidifying bath temperature low. From the viewpoint of uniform solidification and energy saving, the solidification bath temperature is set to -5 to 25C, particularly 0 to 20C, and more preferably 2 to 1C.
It is preferably 8 ° C. The solidification referred to in the present invention means that a spinning dope having fluidity changes to a solid having no fluidity.The solidification is performed without changing the composition of the stock solution, and the solidification is performed by changing the composition of the stock solution. Alternatively, it includes both phase separation.

【0024】このようにして得られた固化糸篠を次いで
固化浴から離浴させた後に、固化糸篠中の紡糸原液構成
溶媒等を抽出洗浄除去する。抽出浴としては固化能を有
する有機溶媒が好適に使用される。次いで、抽出工程の
前か途中かあるいは抽出後乾燥工程までのどこかで必要
に応じて湿延伸を施す。繊維の機械的性能、乾燥原糸の
膠着防止、毛羽の発生の点からは2.0〜6.0倍の湿
延伸を施すことが好ましく、繊維の性能に大きな影響を
及ぼす全延伸倍率(湿延伸倍率X乾熱延伸倍率、以降T
Dと略記する。)を大きくするため、また、糸篠の膠着
抑制のため、毛羽の出ない範囲で湿延伸倍率を大きくす
ることが好ましい。湿延伸倍率を大きくするためには、
抽出工程中において2段以上の多段に分けて湿延伸を行
うことも有効である。なお、本発明にいう湿延伸倍率は
乾燥ローラー速度を離浴速度で割った値である。
After the solidified yam obtained as described above is separated from the solidifying bath, the solvent constituting the undiluted spinning solution in the solidified yam is extracted, washed and removed. As the extraction bath, an organic solvent having a solidifying ability is suitably used. Next, wet stretching is performed before or during the extraction step or somewhere before the extraction step and before the drying step, if necessary. From the viewpoint of the mechanical performance of the fiber, the prevention of sticking of the dry yarn, and the generation of fluff, it is preferable to perform the wet stretching at 2.0 to 6.0 times. Stretching magnification X Dry heat stretching magnification, hereinafter T
Abbreviated as D. It is preferable to increase the wet draw ratio within a range that does not cause fluff in order to increase) and to suppress sticking of the shinoshino. To increase the wet draw ratio,
It is also effective to perform wet stretching in two or more stages during the extraction step. The wet stretching ratio in the present invention is a value obtained by dividing the speed of the drying roller by the speed of bathing.

【0025】次いで、乾燥工程へ導く。乾燥する前に必
要に応じて目的に応じた油剤等を付与した後乾燥し、紡
糸原糸を得る。乾燥温度は220℃以下とすることが好
ましく、乾燥初期は160℃以下の熱風で乾燥し、後半
は高温で乾燥する多段乾燥が乾燥膠着防止と高効率乾燥
の両立が可能となり好ましい。
Next, the process is led to a drying step. Prior to drying, an oil agent or the like suitable for the purpose is applied, if necessary, followed by drying to obtain a spun yarn. The drying temperature is preferably 220 ° C. or lower, and multistage drying in which drying is performed with hot air of 160 ° C. or lower in the initial stage of drying, and drying at a high temperature in the latter half is preferable because it is possible to prevent both dry adhesion and high efficiency drying.

【0026】このようにして得た紡糸原糸トウを全延伸
倍率TDが9〜13倍と比較的低い倍率で延伸すること
が本発明繊維の製造法における重要ポイントの1つであ
る。従来の有機溶媒系紡糸繊維は、強度を高くすべく毛
羽や巻付き断糸が出ない範囲で可能な限りTDを大きく
することを標準としている。前記したように、例えば、
本発明と同じ有機溶媒系PVA捲縮繊維が提案されてい
る特開平3−27111号公報の製造方法に関する特許
請求の範囲には、有効全延伸倍率(TD)が15倍以上
と記載されており、20倍の実施例が記載されている。
同様に耐切創性に優れたPVA系紡績糸が提案されてい
る特開平3−82836号公報の発明の詳細な説明の欄
中には紡績糸の原料PVA繊維はTD15倍以上の乾熱
延伸を施すことが記載されている。さらに主としてセメ
ントの補強材分野を狙った特殊な微細凸凹表面を有する
有機溶媒系湿式紡糸繊維が提案されている特開平4-1
36213号公報の発明の詳細な説明の欄には、TD1
6倍以上、実施例では19.2倍〜20.5倍が記載さ
れている。
It is one of the important points in the method for producing the fiber of the present invention that the thus obtained spun yarn tow is drawn at a relatively low draw ratio of 9 to 13 times in total draw ratio TD. The conventional organic solvent-based spun fiber has a standard to increase the TD as much as possible within a range in which fluff and wound yarn are not generated in order to increase strength. As mentioned above, for example,
The claims relating to the production method of JP-A-3-27111, in which the same organic solvent-based PVA crimped fiber as in the present invention is proposed, state that the effective total draw ratio (TD) is 15 times or more. , A 20-fold embodiment is described.
Similarly, Japanese Patent Application Laid-Open No. 3-82836 discloses a PVA-based spun yarn having excellent cut resistance. In the section of the detailed description of the invention, the raw material PVA fiber of the spun yarn is subjected to dry heat drawing of TD 15 times or more. It is described that it is applied. Further, an organic solvent-based wet-spun fiber having a special fine uneven surface mainly aimed at the field of cement reinforcement has been proposed in JP-A-4-14-1.
No. 36213 discloses the TD1
It is described as 6 times or more, and 19.2 times to 20.5 times in the embodiment.

【0027】これに対し本発明は、熱延伸温度は220
〜240℃と従来と同じ温度範囲で延伸するが、TDは
9〜13倍で延伸する。前記の固化浴水分を3%以下と
することとTDを13倍以下とすることにより表面形状
が前記したように独特の微細な丘状凸凹となり、均染性
に優れた繊維が得られることを見出した。TD9倍未満
であると強度と耐水性の点で本発明繊維の目的を達成す
ることが出来ない。TDが13倍を越えると表面の凸凹
形状が本発明の範囲より外れ、染色後にいらつきが見ら
れ均染性が低下する。高TDでは表面の凸凹形状の変化
とともに一部には過延伸による白化(繊維内部にボイド
発生)や毛羽も均染性低下に関連している可能性があ
る。固化浴の水分を3%以下とし、かつTDを13倍以
下にすると何故微細な丘状凸凹表面となるのか不明であ
るが、ゲル糸篠の表面構造と高温で変形を受けたときの
張力に関係していると推定される。また本発明に規定す
る微細な丘状凸凹表面であると何故均染性に優れるかも
不明であるが、最表面が鋭角的であると微妙な角度で光
の吸収・散乱状態が変化したり、使用により最表面が摩
耗し変化するのに対し、最表面が比較的平坦であると光
の吸収・散乱が安定し、さらに使用しても摩耗し難く安
定していると推定される。特にTDを10〜12倍とな
るよう熱延伸することが好ましい。
On the other hand, in the present invention, the hot stretching temperature is 220
The film is stretched in the same temperature range as that of the related art, that is, up to 240 ° C., but the TD is stretched by 9 to 13 times. By setting the water content of the solidification bath to 3% or less and the TD to 13 times or less, the surface shape becomes a unique fine hill-like unevenness as described above, and a fiber excellent in leveling property can be obtained. I found it. If the TD is less than 9 times, the object of the fiber of the present invention cannot be achieved in terms of strength and water resistance. If the TD is more than 13 times, the uneven shape of the surface is out of the range of the present invention, and the dyeing becomes turbid after dyeing, and the leveling property is lowered. At a high TD, whitening due to overdrawing (void generation inside the fiber) and fluff may also be related to a decrease in leveling properties, in addition to a change in the uneven shape of the surface. It is unknown why the solidification bath has a moisture content of 3% or less and a TD of 13 times or less, resulting in a fine hill-like uneven surface. It is presumed to be related. It is also unclear why the fine hill-shaped uneven surface defined in the present invention is excellent in levelness, but the light absorption / scattering state changes at a delicate angle when the outermost surface is acute, While the outermost surface wears and changes with use, it is presumed that if the outermost surface is relatively flat, light absorption and scattering are stable, and furthermore, it is hard to wear and stable even when used. In particular, it is preferable to perform hot stretching so that the TD is 10 to 12 times.

【0028】本発明者等は、当初、低TDでは強度と耐
水性が低下し実用化ができないのではと危惧した。確か
に強度は高TD繊維に比べると低く、補強材向けなどに
は好適とはいえないが、綿やウールなどの天然繊維およ
びポリエステルやナイロンなど他の合成繊維に比べ、十
分高強度であり問題はない。また耐水性も、鹸化度が9
9モル%以上の高鹸化度PVAを用い、220℃〜24
0℃でTD9倍以上の乾熱延伸を施すことにより、PV
A分子鎖が配向結晶化され、水中溶断温度が100℃以
上と良好になり、逆にTDが低いため、延伸ローラーで
の捲き付き断糸が皆無で工程が安定し、ボイド生成によ
る白化部も皆無で繊維軸方向にも斑が無く、毛羽も無い
ため糸質の優れた繊維が得られることがわかった。
The present inventors initially feared that low TD would impair strength and water resistance and would not be practical. Certainly, the strength is lower than that of high TD fiber, and it is not suitable for reinforcing materials. However, it has a sufficiently high strength compared to natural fibers such as cotton and wool and other synthetic fibers such as polyester and nylon. There is no. It also has a water resistance of 9
Using a high saponification degree PVA of 9 mol% or more,
By performing dry heat stretching of TD 9 times or more at 0 ° C., PV
The A molecular chain is oriented and crystallized, and the fusing temperature in water becomes good at 100 ° C. or higher, and on the contrary, the TD is low. It was found that a fiber having excellent yarn quality was obtained because there was no fiber, no unevenness in the fiber axis direction, and no fluff.

【0029】本発明繊維の熱延伸方式は非接触あるいは
接触式のヒーター、熱風炉、輻射炉、オイル浴、スーパ
ースチームなど特に限定はないが、本発明のように、例
えば数万dtex以上の太いトウを延伸する場合にはト
ウをより均一に加熱しうる熱風循環方式が好ましい。ま
た温度を多段に制御することにより2段以上で熱延伸す
ると好ましい場合が多い。この多段延伸の場合延伸炉の
最高温度を220〜240℃とすることが好ましい。
The hot drawing method of the fiber of the present invention is not particularly limited, for example, a non-contact or contact type heater, hot blast stove, radiant stove, oil bath, super steam, etc., but as in the present invention, it is as thick as tens of thousands dtex or more. When the tow is stretched, a hot air circulation system capable of heating the tow more uniformly is preferable. In many cases, it is preferable to perform heat stretching in two or more stages by controlling the temperature in multiple stages. In the case of this multi-stage stretching, the maximum temperature of the stretching furnace is preferably set to 220 to 240 ° C.

【0030】熱延伸後、必要に応じて熱処理を施し、さ
らに必要に応じて水酸基の架橋化などの後処理を施し、
さらに必要に応じて本繊維の用途目的に合った油剤を付
与後乾燥しても構わない。
After the heat stretching, a heat treatment is applied as necessary, and a post-treatment such as crosslinking of a hydroxyl group is applied as needed.
If necessary, an oil agent suitable for the intended purpose of the present fiber may be applied and then dried.

【0031】次いで、得られた熱延伸・熱処理・後処理・
油剤付与した乾燥状態のトウを90〜180℃に予熱
し、通常の捲縮繊維として一般的な捲縮率(例えば4〜
15%)と捲縮度(例えば3〜15山/25mm)とな
るよう、ドライ状態で捲縮することも本発明繊維の製造
方法の大きな特徴の1つである。トウの予熱温度が90
℃未満であるとPVAが十分可塑化されていないため良
好な捲縮が得られないばかりでなく捲縮部が座屈しやす
い。トウの予熱温度が180℃を越えると捲縮時繊維が
高圧で押し付けられた際膠着する。予熱温度が100〜
150℃であるとより好ましい。PVAは水で可塑化さ
れるので、例えば、特開平3-27111号公報では、
40〜70℃に温水予熱後捲縮を付与することが提案さ
れているが、ウェット捲縮は膠着し易く捲縮後乾燥しな
ければならず1工程増える問題がある。本発明の低TD
延伸して独特の微細な丘状凸凹表面を有する繊維では9
0〜180℃に予熱し、機械的押し込み捲縮機で捲縮す
ると、従来の高TD延伸繊維より低ヤング率・高伸度の
ためにスムーズに捲縮でき座屈し難く、座屈部分が無い
ことが均染性に優れる原因の1つと推定される。
Next, the obtained hot stretching, heat treatment, post-treatment,
The dried tow to which the oil agent is applied is preheated to 90 to 180 ° C., and a general crimping ratio (for example, 4 to
One of the great features of the method for producing the fiber of the present invention is that it is crimped in a dry state so as to have a degree of crimp (for example, 3 to 15 peaks / 25 mm). Tow preheat temperature is 90
If the temperature is lower than ℃, PVA is not sufficiently plasticized, so that not only good crimps cannot be obtained, but also the crimped portion tends to buckle. If the preheating temperature of the tow exceeds 180 ° C., the fiber will stick when pressed at high pressure during crimping. Preheating temperature is 100 ~
The temperature is more preferably 150 ° C. Since PVA is plasticized with water, for example, in JP-A-3-27111,
It has been proposed to apply a crimp after preheating to 40 to 70 ° C. with hot water, but there is a problem that the wet crimp is easily adhered and must be dried after the crimp, which increases the number of steps by one. Low TD of the present invention
9 for fibers that have been drawn to have unique fine hills
When preheated to 0 to 180 ° C and crimped with a mechanical indentation crimping machine, it can be crimped smoothly due to lower Young's modulus and higher elongation than conventional high TD drawn fiber, so it does not easily buckle and there is no buckling part This is presumed to be one of the causes of excellent levelness.

【0032】トウを90〜180℃に予熱するため、1
00〜200℃に温度制御された熱媒循環ローラーやヒ
ーター加熱された熱ローラー、ホットプレート、熱風循
環炉等を用いるが、熱伝導の良好な熱ローラーやホット
プレートでトウの両面を加熱することが好ましい。
To preheat the tow to 90-180 ° C.,
Use a heating medium circulation roller whose temperature is controlled to 00 to 200 ° C, a heating roller heated by a heater, a hot plate, a hot air circulation furnace, etc., but heat both sides of the tow with a heat roller or a hot plate with good heat conduction. Is preferred.

【0033】次いで、カードにかけたり紡績するために
必要に応じて、得られた捲縮トウをカッターにより切断
する。捲縮トウのカットに特別の限定は無く、通常用い
られるECカッターなどにより10〜200mmの長さ
に切断する。
Next, the obtained crimped tow is cut by a cutter as required for hanging on a card or spinning. There is no particular limitation on the cut of the crimped tow, and the crimp tow is cut to a length of 10 to 200 mm using a commonly used EC cutter or the like.

【0034】次に本明細書中におけるPVAの重合度と
鹸化度、断面構造、水中溶断温度、原子間力顕微鏡を用
いた表面観察及びそのデータより求めた繊維断面方向表
面凸凹形状の傾きの最大振幅Aおよび該表面凹凸の傾き
がゼロとなる回数P、固化浴中の水分率、繊維強度等の
測定方法を以下に示す。
Next, in this specification, the degree of polymerization and saponification of PVA, cross-sectional structure, fusing temperature in water, surface observation using an atomic force microscope, and the maximum slope of the surface unevenness in the fiber cross-sectional direction obtained from the data. A method for measuring the amplitude A, the number P of times when the inclination of the surface unevenness becomes zero, the moisture content in the solidification bath, the fiber strength, and the like will be described below.

【0035】(1)PVAの重合度 JIS K6726に準拠し、30℃の水溶液の極限粘
度[η]の測定値より算出した。鹸化度も、同じくJI
S K6726に準拠し、サンプルの残存酢酸基を水酸
化ナトリウムで鹸化し、消費された水酸化ナトリウムを
中和滴定で定量し、100から差し引いて鹸化度をモル
%で求める。
(1) Degree of polymerization of PVA Calculated from the measured value of intrinsic viscosity [η] of an aqueous solution at 30 ° C. in accordance with JIS K6726. The saponification degree is also JI
According to SK6726, the remaining acetic acid groups of the sample are saponified with sodium hydroxide, the consumed sodium hydroxide is quantified by neutralization titration, and subtracted from 100 to determine the degree of saponification in mol%.

【0036】(2)断面構造 サンプル繊維をパラフィンに包埋し、ミクロトームで薄
い断面切片を作製し、スライドグラスにのせ、ヨード液
を滴下し、光学顕微鏡で200倍に拡大し、スキンコア
構造の有無を観察し、スキンコア構造がみられなければ
断面構造が均一と判断した。
(2) Cross-sectional structure A sample fiber is embedded in paraffin, a thin section is prepared with a microtome, placed on a slide glass, an iodine solution is dropped, and magnified 200 times with an optical microscope. Was observed, and it was determined that the cross-sectional structure was uniform if no skin core structure was observed.

【0037】(3)水中溶断温度 サンプル繊維5cm(5cmを採取できない場合はでき
るだけ長く採取する。)を20本採取し、引き揃えて、
2.2mg/dtexの荷重を吊り下げ、加圧可能な透
明容器中の水に浸漬し、水温を1℃/minで昇温し、
繊維が切断して荷重が落下する水温を測定する。同じ測
定を5回繰り返して行いその平均値を求めた。
(3) Fusing temperature in water 20 fibers of 5 cm sample fiber (if 5 cm cannot be sampled, sample as long as possible) are sampled and aligned.
A 2.2 mg / dtex load is suspended, immersed in water in a pressurizable transparent container, and the water temperature is raised at 1 ° C./min.
Measure the water temperature at which the fiber is cut and the load falls. The same measurement was repeated five times, and the average value was obtained.

【0038】(4)原子間力顕微鏡観察とデータ解析に
よる繊維断面方向表面凸凹形状傾きの最大振幅Aと該傾
きが0になる回数P サンプル繊維をソックスレー抽出などにより油剤や汚れ
除去し完全に清浄とし、得られた観察用サンプル繊維を
試料台にエポキシ系接着剤で固定した。原子間力顕微鏡
装置はデジタルインスツルメンツ社製DI 3100を
用いた。探針はナノセンサーズ社製単結晶シリコン型番
NCHを使用し、タッピングモード測定を行った。試料
測定に先立ち、ピッチ10μm、段差180nmの参照試
料を測定し、装置の測定誤差が±5%以内であること確
認した。試料の観察領域は5μm角、走査周波数は1H
z、走査角度は90度とした。走査線の数は512本と
した。測定した結果のうち、繊維軸と垂直方向の高低デ
ータを装置に付属のデータ解析ソフトを使用し、ASC
IIデータに変換し、そのデータを市販の波形解析ソフ
ト(IGOR Pro version3.1、Wav
eMetrics社)によって以下のように解析した。
(4) Atomic force microscopy observation and data analysis The maximum amplitude A of the slope of the surface unevenness in the fiber cross-section direction and the number of times the slope becomes 0 P The sample fiber is completely cleaned by removing oil and dirt by Soxhlet extraction or the like. Then, the obtained observation sample fiber was fixed to a sample table with an epoxy adhesive. As an atomic force microscope, DI 3100 manufactured by Digital Instruments was used. The tapping mode was measured by using a single crystal silicon model number NCH manufactured by Nanosensors Co., Ltd. Prior to the sample measurement, a reference sample having a pitch of 10 μm and a step of 180 nm was measured, and it was confirmed that the measurement error of the apparatus was within ± 5%. The observation area of the sample is 5 μm square and the scanning frequency is 1H
z and the scanning angle were 90 degrees. The number of scanning lines was 512. Using the data analysis software attached to the device, the height data in the direction perpendicular to the fiber axis was
II data, and convert the data into commercially available waveform analysis software (IGOR Pro version 3.1, Wav).
eMetrics) was analyzed as follows.

【0039】まず、測定データから細かいノイズを除去
するために、5パスの多項式平滑化アルゴリズムを適用
し(この処理によってサンプリング周波数の20%の周
波数の大きさは半分になる)、そのデータを微分した。
得られた1次微分曲線のうち、比較的平滑な部分と思わ
れる中央2μm幅の部分について、微分値(もとの曲線
の傾き)がゼロになる1μmあたりの回数(P)、およ
びもとの曲線の傾きに相当する振幅の最大値(最大振幅
A)を求めた。同じサンプルについてn=10回繰返し
測定し、PおよびAについて各々の平均値をそのサンプ
ルの値とした。
First, a five-pass polynomial smoothing algorithm is applied to remove fine noise from the measured data (this processing reduces the magnitude of the frequency at 20% of the sampling frequency to half), and differentiates the data. did.
In the obtained first derivative curve, the number of times per 1 μm (P) at which the differential value (the slope of the original curve) becomes zero for a portion having a width of 2 μm at the center which is considered to be a relatively smooth portion, and The maximum value of the amplitude corresponding to the slope of the curve (maximum amplitude A) was determined. The same sample was repeatedly measured n = 10 times, and the average value of each of P and A was taken as the value of the sample.

【0040】(4)固化浴中の水分率 TCD(熱電対検出器)法ガスクロマトグラフにより、
内部標準としてジグライムを用いて次の条件により固化
浴中の水分率を質量%で測定した。 カラム初期温度と保持時間 ;70℃で5分 カラム昇温速度 ;10℃/分 カラム最終温度と保持時間 ;200℃で7分 気化室温度とディテクタ温度;250℃と200℃ リテンションタイム ;水:約6.7分、ジグラ
イム:約14分 固化浴サンプルの水とジグライムのピーク面積比より、
ピーク面積比と浴中水分率(質量%)の関係を予め求め
ていた較正曲線より求めた。
(4) Moisture content in solidification bath According to TCD (thermocouple detector) gas chromatograph,
Using diglyme as an internal standard, the moisture content in the solidification bath was measured in mass% under the following conditions. Column initial temperature and retention time; 70 ° C for 5 minutes Column heating rate; 10 ° C / min Column final temperature and retention time; 200 ° C for 7 minutes Vaporization chamber temperature and detector temperature; 250 ° C and 200 ° C Retention time; Water: About 6.7 minutes, diglyme: about 14 minutes From the peak area ratio of water and diglyme in the solidification bath sample,
The relationship between the peak area ratio and the water content in the bath (% by mass) was determined from a previously determined calibration curve.

【0041】(5)繊維強度 JIS L1013に準拠し、予め調湿された繊維を試
長4cm、変形速度100%/分、初期荷重0.22c
N/dtexの条件で引張破断強度を求め、n=10以
上の平均値を求めた。なおデニールは質量法により求め
た。
(5) Fiber strength According to JIS L1013, fibers conditioned in advance were tested for 4 cm in length, deformed at a rate of 100% / min, and initially loaded at 0.22 c.
Tensile breaking strength was determined under the condition of N / dtex, and an average value of n = 10 or more was determined. Denier was determined by a mass method.

【0042】[0042]

【実施例】以下、実施例により具体的に説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples.

【0043】実施例1 重合度が1750、ケン化度が99.9モル%のPVA
を20質量%となるようDMSOに添加し、95℃にて
窒素雰囲気下で加熱撹拌溶解した。得られた紡糸原液
を、孔径0.08mm、孔数25000のノズルより吐
出して、10℃のメタノール/DMSO/水=65.0
/33.6/1.4よりなる固化浴中に湿式紡糸した。
なお、固化浴と接触する気体部が水分0.1%以下の乾
燥窒素の雰囲気となるようにできるだけ密閉化し中に乾
燥窒素を吹き込み、大気に対し僅かながら陽圧とし固化
浴中の水分を1.4%以下に維持するように工夫した。
得られた固化糸篠をメタノール浴に浸漬し、DMSOを
抽出するとともに、抽出しながら多段で計4.2倍の湿
延伸を施こし、油剤を付与し、初期100℃、後半17
0℃熱風で乾燥した。次いで215℃、230℃の温度
勾配を有する熱風炉中で全延伸倍率TDが11倍となる
よう延伸した。得られた55000dtexの延伸トウ
を160℃に温度制御された2本の加熱ローラーに導糸
し、トウの両面を予熱し押し込み捲縮機で捲縮した。な
お捲縮前の延伸トウ内部の繊維の温度を実測したところ
110℃であった。得られた捲縮トウをを38mmに切
断し、2.2dtex−38mmのステープルファイバ
ーを得た。
Example 1 PVA having a degree of polymerization of 1750 and a degree of saponification of 99.9 mol%
Was added to DMSO so as to have a concentration of 20% by mass, and the mixture was heated and dissolved at 95 ° C. under a nitrogen atmosphere. The obtained spinning stock solution is discharged from a nozzle having a hole diameter of 0.08 mm and a number of holes of 25,000, and methanol / DMSO / water at 10 ° C. = 65.0.
/33.6/1.4 in a solidification bath.
The gas portion in contact with the solidification bath was sealed as much as possible so as to have an atmosphere of dry nitrogen having a water content of 0.1% or less, and dry nitrogen was blown into the inside. 0.4% or less was devised.
The obtained solidified itoshino is immersed in a methanol bath to extract DMSO, and perform wet stretching of a total of 4.2 times in multiple stages while extracting to give an oil agent.
It was dried with hot air at 0 ° C. Next, the film was stretched in a hot air oven having a temperature gradient of 215 ° C. and 230 ° C. so that the total stretching ratio TD became 11 times. The obtained 55000 dtex stretched tow was guided to two heating rollers whose temperature was controlled to 160 ° C., and both sides of the tow were preheated and crimped by a press crimping machine. When the temperature of the fiber inside the drawn tow before crimping was measured, it was 110 ° C. The obtained crimped tow was cut into 38 mm to obtain a staple fiber of 2.2 dtex-38 mm.

【0044】このステープルをメタノール/ベンゼン=
1/1の溶液でソックスレー抽出を16時間行なって脱
オイルし、このサンプルの表面を前記の方法でAFM観
察し、最大振幅Aと回数Pを求めた。Aは1.5、Pは
7回/μmであった。またソックスレー抽出後のサンプ
ルを前記の方法で光学顕微鏡観察したところ、スキンコ
ア構造はみられなかった。さらに本サンプルの水中溶断
温度を前記の方法で測定したところ110℃であった。
なお、このステープルの強度は10.3cN/dte
x、伸度は9.1%であった。
This staple was treated with methanol / benzene =
Soxhlet extraction was performed with a 1/1 solution for 16 hours to remove oil, and the surface of this sample was subjected to AFM observation by the above-described method to determine the maximum amplitude A and the number of times P. A was 1.5 and P was 7 times / μm. When the sample after Soxhlet extraction was observed with an optical microscope by the above method, no skin core structure was observed. Further, the underwater fusing temperature of this sample was 110 ° C. as measured by the method described above.
The strength of this staple is 10.3 cN / dte
x, elongation was 9.1%.

【0045】このステープルを綿紡式紡績をして、20
番手単糸の紡績糸とし、この紡績糸を経X緯の打ち込み
本数が80X65本/インチの規格で平織りして、目付
け190g/mの布地を得た。この布地を糊抜きし、
苛性ソーダ12g/l、ハイドロサルファイト5g/
l、ペリレン系スレン染料のダークブルーBO3%より
なる染浴を用い、浴比1:20、温度70℃,時間45
分の条件で染色した。次いで空気酸化を15分行い、水
洗し、モノゲンパウダー3g/l、炭酸ソーダ2g/l
で90℃x10分間ソーピングし、湯洗、水洗、乾燥し
た。得られた染色布地は染色斑が無く、色のいらつきも
なく、均染性に優れたものであった。
The staple is subjected to cotton spinning, and
The spun yarn was used as a high-count single yarn, and the spun yarn was plain-woven at a standard of 80 × 65 yarns / inch in warp X weft to obtain a fabric having a basis weight of 190 g / m 2 . Desizing this fabric,
Caustic soda 12g / l, hydrosulfite 5g /
1, using a dye bath consisting of 3% of a perylene-based dye, dark blue BO, at a bath ratio of 1:20, at a temperature of 70 ° C. and for a time of 45 hours.
Stained under the conditions of minutes. Next, air oxidation was performed for 15 minutes, followed by washing with water, monogen powder 3 g / l and sodium carbonate 2 g / l.
At 90 ° C. for 10 minutes, washing with hot water, washing with water and drying. The obtained dyed fabric had no unevenness of dye, no color fluctuation, and was excellent in levelness.

【0046】比較例1 TDを15倍とする以外は実施例1と同じ条件でステー
プルを得た。ただし、ステープル繊度が実施例1と同じ
になるよう原液流量を増加させた。実施例1と同様に、
得られたステープルをAFM観察し、Aは1.3、Pは
13回/μmであった。Pが大きく、表面の凸凹が実施
例1のステープルのように平坦な丘状ではなく、鋭角的
であることが窺える。
Comparative Example 1 Staples were obtained under the same conditions as in Example 1 except that the TD was increased by a factor of 15. However, the stock solution flow rate was increased so that the staple fineness was the same as in Example 1. As in Example 1,
AFM observation of the obtained staples revealed that A was 1.3 and P was 13 times / μm. P is large, and it can be seen that the unevenness of the surface is not a flat hill like the staple of the first embodiment but an acute angle.

【0047】また、光学顕微鏡観察したところ、断面方
向にスキンコア構造はみられなかったが、繊維軸方向に
は白化部が一部みられ、毛羽も少しみられた。さらに本
サンプルの水中溶断温度を前記の方法で測定したところ
119℃であった。なお、このステープルの強度は1
4.1cN/dtex、伸度は5.6%であった。この
ステープルを実施例1と同じように、紡績、製織、染色
を行ない、染色布地を得た。この染色布地は染色斑はほ
とんど無かったが、色のいらつきがみられ、実施例1の
布地よりは劣ったものであった。
When observed with an optical microscope, no skin core structure was observed in the cross-sectional direction, but a part of the whitened portion was observed in the fiber axis direction, and a little fluff was also observed. Furthermore, the underwater fusing temperature of this sample was 119 ° C. as measured by the method described above. The strength of this staple is 1
4.1 cN / dtex, elongation was 5.6%. The staple was spun, woven and dyed in the same manner as in Example 1 to obtain a dyed fabric. This dyed fabric had almost no dyed spots, but exhibited color turbulence and was inferior to the fabric of Example 1.

【0048】比較例2 実施例1と同じ重合度1750、ケン化度99.9モル
%のPVAを22質量%となるようDMSOに添加し、
105℃にて窒素雰囲気下で加熱撹拌溶解した。得られ
た紡糸原液を、孔径0.12mm、孔数250のノズル
より吐出し、15mmの空気層を通して0℃のメタノー
ル/DMSO=70/28.7/1.3よりなる固化浴
中に乾湿式紡糸した。
Comparative Example 2 PVA having the same degree of polymerization of 1750 and saponification degree of 99.9 mol% as in Example 1 was added to DMSO so as to be 22% by mass.
The mixture was heated and dissolved under a nitrogen atmosphere at 105 ° C. The obtained spinning dope is discharged from a nozzle having a hole diameter of 0.12 mm and a number of holes of 250, and is passed through a 15 mm air layer into a solidification bath of methanol / DMSO = 70 / 28.7 / 2. Spun.

【0049】得られた固化糸篠をメタノール浴に浸漬
し、DMSOを抽出するとともに、抽出しながら多段で
計3.8倍の湿延伸を施こし、油剤を付与し、初期12
0℃、後半180℃熱風で乾燥した。次いで225℃、
233℃の温度勾配を有する熱風炉中で全延伸倍率TD
が16倍となるよう延伸した。得られた550dtex
のフィラメントヤーンを100本集束し実施例1と同じ
繊度のトウとし、実施例1と同様に160℃に温度制御
された2本の加熱ローラーに導糸し、トウの両面を予熱
し押し込み捲縮機で捲縮した。なお捲縮前の延伸トウ内
部の繊維の温度を実測したところ105℃であった。得
られた捲縮トウをを38mmに切断し、2.2dtex
−38mmのステープルファイバーを得た。
The obtained solidified Ishino was immersed in a methanol bath to extract DMSO and, while extracting, subjected to a total of 3.8 times wet stretching in multiple stages to give an oil agent.
It was dried with hot air at 0 ° C and the latter half at 180 ° C. Then 225 ° C,
Total draw ratio TD in a hot blast stove with a temperature gradient of 233 ° C
Was stretched 16 times. 550 dtex obtained
100 filament yarns are bundled into a tow having the same fineness as in Example 1, and the yarn is guided to two heating rollers whose temperature is controlled to 160 ° C. in the same manner as in Example 1, and both sides of the tow are preheated and crimped. It was crimped with a machine. The temperature of the fiber inside the drawn tow before crimping was measured and found to be 105 ° C. The obtained crimped tow was cut into 38 mm, and 2.2 dtex was cut.
A -38 mm staple fiber was obtained.

【0050】このステープルを実施例1と同様に脱オイ
ルし、このサンプルの表面を前記の方法でAFM観察
し、最大振幅Aと周期Pを求めた。Aは1.4、Pは1
4回/μmであった。またソックスレー抽出後のサンプ
ルを前記の方法で光学顕微鏡観察したところ、繊維の断
面方向にスキンコア構造はみられなかったが、繊維軸方
向にはごく一部白化部がみられた。さらに本サンプルの
水中溶断温度を前記の方法で測定したところ119℃で
あった。なお、このステープルの強度は14.3cN/
dtex、伸度は5.3%であった。
The staple was deoiled in the same manner as in Example 1. The surface of this sample was observed by AFM using the above-described method, and the maximum amplitude A and the period P were determined. A is 1.4, P is 1
4 times / μm. When the sample after Soxhlet extraction was observed with an optical microscope by the above-described method, no skin core structure was observed in the cross-sectional direction of the fiber, but a very whitened portion was observed in the fiber axis direction. Furthermore, the underwater fusing temperature of this sample was 119 ° C. as measured by the method described above. The staple had a strength of 14.3 cN /
dtex and elongation were 5.3%.

【0051】このステープルを、実施例1と同様に、紡
績、製織、染色加工をして、染色布地を得た。この布地
はは、染色斑はほとんど無かったが、比較例1と同じよ
うに色のいらつきがみられ、均染性の点で実施例1より
劣ったものであった。
The staple was spun, woven and dyed in the same manner as in Example 1 to obtain a dyed fabric. This fabric had almost no stained spots, but showed color turbulence as in Comparative Example 1 and was inferior to Example 1 in terms of levelness.

【0052】比較例3 固化浴を通常の大氣と接触させ自由に水分を吸収させる
以外は実施例1と同様に紡糸した。すると固化浴中の水
分は5.8%となり、浴組成はメタノール/DMSO/
水=65.0/29.2/5.8となった。3時間は順
調に紡糸可能であった。得られたゲル糸篠を実施例1と
同様に、抽出、湿延伸、、油剤付与、乾燥、熱延伸、捲
縮、切断を行い、2.2dtex−38mmのステープ
ルファイバーを得た。
Comparative Example 3 Spinning was carried out in the same manner as in Example 1 except that the solidification bath was brought into contact with ordinary atmosphere to freely absorb moisture. Then, the water content in the solidification bath was 5.8%, and the bath composition was methanol / DMSO /
Water = 65.0 / 29.2 / 5.8. The spinning was successfully performed for 3 hours. Extraction, wet drawing, oil application, drying, hot drawing, crimping, and cutting were performed on the obtained gel thread in the same manner as in Example 1 to obtain staple fibers of 2.2 dtex-38 mm.

【0053】このステープルを実施例1と同様に脱オイ
ルし、このサンプルの表面をAFM観察し、最大振幅A
と周期Pを求めた。Aは3.1、Pは12回/μmであ
った。このステープルを、実施例1と同様に、紡績、製
織、染色加工をして、染色布地を得た。この布地は、染
色斑はほとんど無かったが、比較例1と同じように色の
いらつきがみられ、均染性の点で実施例1より劣ったも
のであった。
The staple was deoiled in the same manner as in Example 1, and the surface of the sample was observed by AFM.
And the period P. A was 3.1 and P was 12 times / μm. This staple was spun, woven and dyed in the same manner as in Example 1 to obtain a dyed fabric. This fabric had almost no staining spots, however, as in Comparative Example 1, color flicker was observed, and the fabric was inferior to Example 1 in terms of levelness.

【0054】比較例4〜5 市販の水系湿式紡糸PVAフィラメントである(株)ク
ラレ製T−5501(比較例3)と同じく市販の水系乾
式紡糸PVAフィラメントである(株)クラレ製FO−
1239(比較例4)を脱オイルし、このサンプルの表
面を前記の方法でAFM観察し、最大振幅Aと周期Pを
求めた。T−5501は、Aが3.0、Pが8回/μm
であり、FO−1239は、Aが4.5、Pが5回/μ
mであった。これより、冷却ゲル紡糸法によらない水系
紡糸法のPVAフィラメントは凸凹の高低差の激しい粗
雑な表面であることがわかった。
Comparative Examples 4 and 5 A commercially available water-based dry-spun PVA filament, FO- manufactured by Kuraray Co., Ltd., which is a commercially available water-based dry-spun PVA filament, similarly to T-5501 (Comparative Example 3) manufactured by Kuraray Co., Ltd.
1239 (Comparative Example 4) was deoiled, and the surface of this sample was subjected to AFM observation by the above-described method to determine the maximum amplitude A and the period P. T-5501 has A of 3.0 and P of 8 times / μm.
FO-1239 has A of 4.5 and P of 5 times / μ.
m. From this, it was found that the PVA filament of the water-based spinning method not based on the cooling gel spinning method had a rough surface with a sharp unevenness in height.

【0055】実施例2 重合度が2400、ケン化度が99.8モル%のPVA
を15質量%となるようDMSOに添加し、105℃に
て窒素雰囲気下で加熱撹拌溶解した。得られた紡糸原液
を、孔径0.10mm、孔数5000のノズルより吐出
して、8℃のメタノール/DMSO/水=65.0/3
4.5/0.5よりなる固化浴中に湿式紡糸した。な
お、固化浴を循環する配管途中にモレキュラーシープ4
Aを充填したカラムを設け、固化浴をモレキュラーシー
プと接触させて除水し、固化浴中の水分を0.5%に維
持するように工夫した。得られた固化糸篠をメタノール
浴に浸漬し、DMSOを抽出するとともに、抽出しなが
ら多段で計4.1倍の湿延伸を施こし、油剤を付与し、
初期110℃、後半180℃熱風で乾燥した。次いで2
25℃、235℃の温度勾配を有する熱風炉中で全延伸
倍率TDが12倍となるよう延伸した。得られた110
00dtexの延伸トウを5本集束し、170℃に温度
制御された2本の加熱ローラーに導糸し、トウの両面を
予熱し押し込み捲縮機で捲縮した。なお捲縮前の延伸ト
ウ内部の繊維の温度を実測したところ115℃であっ
た。得られた捲縮トウをを38mmに切断し、2.2d
tex−38mmのステープルファイバーを得た。
Example 2 PVA having a degree of polymerization of 2400 and a degree of saponification of 99.8 mol%
Was added to DMSO so that the concentration became 15% by mass, and the mixture was heated and dissolved at 105 ° C. under a nitrogen atmosphere. The obtained spinning dope is discharged from a nozzle having a hole diameter of 0.10 mm and a number of holes of 5,000, and methanol / DMSO / water at 8 ° C. = 65.0 / 3.
The wet spinning was performed in a solidification bath consisting of 4.5 / 0.5. In addition, molecular sheep 4
A column filled with A was provided, the solidification bath was brought into contact with a molecular sheep to remove water, and the device was devised to maintain the water content in the solidification bath at 0.5%. The obtained solidified Ishino is immersed in a methanol bath to extract DMSO, and perform wet stretching of a total of 4.1 times in multiple stages while extracting to give an oil agent.
Drying was performed with hot air at 110 ° C. in the initial stage and 180 ° C. in the latter half. Then 2
The film was stretched in a hot air oven having a temperature gradient of 25 ° C. and 235 ° C. so that the total stretching ratio TD became 12 times. 110 obtained
Five stretched tows of 00 dtex were bundled and guided to two heating rollers whose temperature was controlled at 170 ° C., and both sides of the tow were preheated and crimped by a press crimping machine. The temperature of the fiber inside the drawn tow before crimping was actually measured and found to be 115 ° C. The resulting crimped tow was cut into 38 mm and 2.2d
A tex-38 mm staple fiber was obtained.

【0056】このステープルをメタノール/ベンゼン=
1/1の溶液でソックスレー抽出を16時間行なって脱
オイルし、このサンプルの表面を前記の方法でAFM観
察し、最大振幅Aと周期Pを求めた。Aは1.4、Pは
6回/μmであった。またソックスレー抽出後のサンプ
ルを前記の方法で光学顕微鏡観察したところ、スキンコ
ア構造はみられなかった。さらに本サンプルの水中溶断
温度を前記の方法で測定したところ116℃であった。
なお、このステープルの強度は12.1cN/dte
x、伸度は7.4%であった。
This staple was treated with methanol / benzene =
Soxhlet extraction was performed with a 1/1 solution for 16 hours to remove oil, and the surface of this sample was subjected to AFM observation by the above-mentioned method to determine the maximum amplitude A and the period P. A was 1.4 and P was 6 times / μm. When the sample after Soxhlet extraction was observed with an optical microscope by the above method, no skin core structure was observed. Further, the underwater fusing temperature of this sample was measured by the above-mentioned method and found to be 116 ° C.
The staple has a strength of 12.1 cN / dte.
x, elongation was 7.4%.

【0057】このステープルを実施例1と同様に、紡
績、製織、ベンザスロン系スレン染料のオリーブグリー
ンBを用いて染色加工をした。得られた布地は、染色斑
が無く、色のいらつきもなく、均染性に優れたものであ
った。
This staple was subjected to spinning, weaving, and dyeing with olive green B, a benzathlon-based slen dye, in the same manner as in Example 1. The obtained fabric had no spots, no color flicker, and was excellent in levelness.

【0058】[0058]

【発明の効果】本発明のPVA系捲縮繊維は、繊維断面
方向の構造が均一で従来のPVA系繊維にはない独特の
微細な丘状凹凸表面を有しており、工程性に優れ品位の
高い製品が得られ、均染性に優れており、親水性、吸湿
性、耐候性、耐薬品性、高強度などのPVA繊維の特長
はそのまま維持しており、衣料分野、産業資材分野、生
活資材分野などに広く有効に用いることができる。
The PVA-based crimped fiber of the present invention has a uniform structure in the cross-sectional direction of the fiber and has a unique fine hill-shaped uneven surface unlike conventional PVA-based fibers, and is excellent in processability and quality. High-quality products, excellent level dyeing, maintaining the characteristics of PVA fiber such as hydrophilicity, moisture absorption, weather resistance, chemical resistance, high strength, etc., as well as clothing, industrial materials, It can be widely and effectively used in the field of living materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得たステープルの表面をAFM観
察し、その観察結果のうち、高低データを本発明の方法
で解析して得た一次微分曲線を示す。
FIG. 1 shows a first derivative curve obtained by performing AFM observation on the surface of a staple obtained in Example 1 and analyzing high and low data among the observation results by the method of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L035 BB03 BB06 BB11 BB15 BB17 BB59 BB66 BB69 BB74 BB79 BB85 BB89 BB91 CC20 DD08 DD19 EE01 EE05 EE08 EE20 FF01 FF10 HH10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4L035 BB03 BB06 BB11 BB15 BB17 BB59 BB66 BB69 BB74 BB79 BB85 BB89 BB91 CC20 DD08 DD19 EE01 EE05 EE08 EE20 FF01 FF10 HH10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重合度が1200〜5000のポリビニ
ルアルコール系ポリマーからなり、繊維断面方向に構造
が均一で、水中溶断温度が100℃以上の捲縮繊維であ
って、該繊維表面を原子間力顕微鏡装置で観察したとき
に、繊維断面方向表面凸凹形状の傾きの最大振幅Aが
2.5以下でかつ該傾きが0になる回数Pが1μmあた
り10回以下であることを特徴とするポリビニルアルコ
ール系捲縮繊維。
1. A crimped fiber comprising a polyvinyl alcohol-based polymer having a degree of polymerization of 1200 to 5000, having a uniform structure in the cross-sectional direction of the fiber, and having a fusing temperature in water of 100 ° C. or higher. A polyvinyl alcohol characterized in that, when observed with a microscope, the maximum amplitude A of the inclination of the surface unevenness in the fiber cross section direction is 2.5 or less and the number of times P at which the inclination becomes 0 is 10 or less per 1 μm. Based crimped fiber.
【請求項2】 重合度1200〜5000、鹸化度99
モル%以上のポリビニルアルコール系ポリマーを有機溶
媒に溶解した紡糸原液をノズルより吐出し、含水率が3
%以下の有機溶媒系低温固化浴中に湿式冷却ゲル紡糸
し、抽出、湿延伸、乾燥して得た紡糸原糸トウを全延伸
倍率が9〜13倍となるよう乾熱延伸し、必要に応じて
熱処理し、さらに延伸・熱処理トウを100℃〜180
℃に予熱後捲縮し、必要に応じて切断することを特徴と
するポリビニルアルコール系捲縮繊維の製造法。
2. A polymerization degree of 1200 to 5000 and a saponification degree of 99.
A spinning solution obtained by dissolving at least mol% of a polyvinyl alcohol-based polymer in an organic solvent is discharged from a nozzle and has a water content of
% Or less in an organic solvent-based low-temperature solidification bath, and then subjected to dry heat drawing so that the total drawing ratio is 9 to 13 times. Heat treatment, and then stretch and heat-treat the tow from 100 ° C to 180 ° C.
A method for producing a polyvinyl alcohol-based crimped fiber, comprising crimping after preheating to a temperature of ° C., and cutting as necessary.
JP2001138538A 2001-05-09 2001-05-09 Polyvinyl alcohol-based crimped fiber and method for producing the same Pending JP2002339152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138538A JP2002339152A (en) 2001-05-09 2001-05-09 Polyvinyl alcohol-based crimped fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138538A JP2002339152A (en) 2001-05-09 2001-05-09 Polyvinyl alcohol-based crimped fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002339152A true JP2002339152A (en) 2002-11-27

Family

ID=18985456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138538A Pending JP2002339152A (en) 2001-05-09 2001-05-09 Polyvinyl alcohol-based crimped fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002339152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020219930A1 (en) * 2019-04-24 2020-10-29 Monosol, Llc Nonwoven water dispersible article for unit dose packaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020219930A1 (en) * 2019-04-24 2020-10-29 Monosol, Llc Nonwoven water dispersible article for unit dose packaging

Similar Documents

Publication Publication Date Title
US10017881B2 (en) Polyacrylonitrile-based copolymer, polyacrylonitrile-based precursor fiber for carbon fiber, carbon fiber bundles, process for producing stabilized fiber bundles, and process for producing carbon fiber bundles
TWI421385B (en) Method producing polyacrylonitrile fiber and method for producing carbon fiber
JPH10110329A (en) Polybenzazole fiber and production thereof
EP0438780B1 (en) High-strength polyvinyl alcohol fiber and process for its production
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
JP2002339152A (en) Polyvinyl alcohol-based crimped fiber and method for producing the same
JP4010568B2 (en) Cellulose fiber of liquid crystal source having high elongation at break and method for producing the same
Bajaj et al. Some recent advances in the production of acrylic fibres for specific end uses
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JPH1181053A (en) High-strength acrylic fiber, its production and production of carbon fiber
JP3423814B2 (en) A method for producing a high-strength, high-modulus polyvinyl alcohol-based monofilament yarn having excellent hot water resistance.
JP3756886B2 (en) High shrinkable acrylic fiber
JP4392099B2 (en) Acrylic fiber manufacturing method
WO2023140212A1 (en) Carbon fiber bundle
JPS6065109A (en) Porous acrylonitrile synthetic fiber
JP2010024581A (en) Flameproof fiber and method for producing the same
JP3466279B2 (en) Polyvinyl alcohol fiber excellent in dimensional stability in wet and dry conditions and method for producing the same
JPH0742605B2 (en) Method for producing acrylic fiber
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
US6740722B2 (en) Low density acrylic fiber
JP2006265768A (en) Coagulated thread for producing acrylic carbon fiber and precursor, method for producing the same and method for measuring amount of absorbed dyestuff
JPS6364528B2 (en)
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JP2001020134A (en) Thick diameter polyvinyl alcohol-based fiber and its production