JP2002336700A - NOx purification catalyst and NOx purification system - Google Patents
NOx purification catalyst and NOx purification systemInfo
- Publication number
- JP2002336700A JP2002336700A JP2002047302A JP2002047302A JP2002336700A JP 2002336700 A JP2002336700 A JP 2002336700A JP 2002047302 A JP2002047302 A JP 2002047302A JP 2002047302 A JP2002047302 A JP 2002047302A JP 2002336700 A JP2002336700 A JP 2002336700A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- nox
- nox purification
- oxide
- purification catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02T10/24—
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
(57)【要約】
【課題】 ストイキ〜リッチ域の運転時でも触媒金属の
硫黄被毒を解除し、効率良くNOxを浄化し得るNOx
浄化触媒及びNOx浄化システムを提供すること。
【解決手段】 リーン域又はストイキ〜リッチ域での排
気ガス浄化処理に用いられ、触媒金属と酸素吸放出材と
を含有し、酸素吸放出材に担持された触媒金属が排気ガ
ス中のSOxを硫酸塩又は亜硫酸塩として吸着するNO
x浄化触媒である。触媒貴金属が白金を含む。白金が5
〜50%の割合で該セリアに担持され、SOxを硫酸塩
又は亜硫酸塩として吸着するNOx浄化触媒である。PROBLEM TO BE SOLVED: To release sulfur poisoning of a catalytic metal even during operation in a stoichiometric to rich range and to efficiently purify NOx.
To provide a purification catalyst and a NOx purification system. SOLUTION: It is used for an exhaust gas purification process in a lean region or a stoichiometric to rich region, and contains a catalytic metal and an oxygen absorbing / releasing material, and the catalytic metal carried on the oxygen absorbing / releasing material reduces SOx in the exhaust gas. NO adsorbed as sulfate or sulfite
x purification catalyst. The catalytic noble metal contains platinum. 5 platinum
This is a NOx purification catalyst that is supported on the ceria at a rate of about 50% and adsorbs SOx as sulfate or sulfite.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、NOx浄化触媒に
係り、更に詳細には、自動車(ガソリン、ディーゼル)
及びボイラーなどの内燃機関から排出される排気ガス中
の炭化水素(HC)、一酸化炭素(CO)及び窒素酸化
物(NOx)を浄化するNOx浄化触媒に関するもので
ある。本発明のNOx浄化触媒は、特にリーン時のNO
x浄化方法及びストイキ〜リッチ時に触媒成分がSOx
を取り込む方法に着目してなされたものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a NOx purification catalyst, and more particularly, to an automobile (gasoline, diesel).
The present invention relates to a NOx purification catalyst for purifying hydrocarbon (HC), carbon monoxide (CO) and nitrogen oxide (NOx) in exhaust gas discharged from an internal combustion engine such as a boiler. The NOx purification catalyst of the present invention is particularly suitable for lean NOx
x purification method and stoichiometric-rich catalyst component is SOx
It is made by paying attention to the method of taking in.
【0002】[0002]
【従来の技術】近年、石油資源の枯渇問題、地球温暖化
問題から、低燃費自動車の要求が高まっており、ガソリ
ン自動車に対しては希薄燃焼自動車の開発が注目されて
いる。希薄燃焼自動車においては、希薄燃焼走行時、排
気ガス雰囲気が理論空燃状態に比べリーンとなるが、リ
ーン域で通常の三元触媒を適用させた場合、過剰な酸素
の影響からNOx浄化作用が不十分となるという問題が
あった。このため、酸素が過剰となってもNOxを浄化
できる触媒の開発が望まれていた。2. Description of the Related Art In recent years, the demand for fuel-efficient vehicles has been increasing due to the problem of depletion of petroleum resources and the problem of global warming, and development of lean-burn vehicles has attracted attention for gasoline vehicles. In lean-burn vehicles, during lean-burn operation, the exhaust gas atmosphere is leaner than in the stoichiometric air-fuel state, but when a normal three-way catalyst is applied in the lean region, the NOx purification effect is reduced due to the influence of excess oxygen. There was a problem that it became insufficient. Therefore, development of a catalyst capable of purifying NOx even when oxygen becomes excessive has been desired.
【0003】[0003]
【発明が解決しようとする課題】このような背景から、
リーン域のNOxを浄化する触媒が種々提案されてお
り、例えば白金(Pt)とランタン(La)を多孔質担
体に担持した触媒(特開平5−168860号公報)に
代表されるように、リーン域でNOxを吸着し、ストイ
キ〜リッチ域でNOxを放出させ浄化する触媒などが提
案されている。From such a background,
Various catalysts for purifying NOx in the lean region have been proposed. For example, as typified by a catalyst in which platinum (Pt) and lanthanum (La) are supported on a porous carrier (JP-A-5-168860), lean catalysts have been proposed. A catalyst that adsorbs NOx in a region and releases and purifies NOx in a stoichiometric to rich region has been proposed.
【0004】しかし、燃料及び潤滑油内には硫黄が含ま
れており、この硫黄が酸化物として排気ガス中に排出さ
れるため、触媒が硫黄による被毒を受け、NOx転化性
能の低下が起こっていた(これを「硫黄被毒」とい
う)。この硫黄被毒は、排気ガス中に硫黄が何らかの形
で含まれている限り避けることができず、触媒中に付着
した硫黄を如何に脱離させるかが重要とな課題となって
いた。これまで、硫黄被毒については触媒中のNOx吸
着材が主に注目され、吸着材の被毒解除を容易に行える
よう複数のNOx吸着材を複合化(特開平7−5154
4号公報)したり、高分散化したり(特開平9−173
839号公報)してきた。[0004] However, fuel and lubricating oil contain sulfur, which is emitted as oxides into exhaust gas, so that the catalyst is poisoned by sulfur and the NOx conversion performance is reduced. (This is called "sulfur poisoning"). This sulfur poisoning cannot be avoided as long as the exhaust gas contains sulfur in some form, and it has been an important issue how to remove sulfur attached to the catalyst. Up to now, attention has been paid mainly to NOx adsorbents in catalysts for sulfur poisoning, and a plurality of NOx adsorbents are combined so that the poisoning of the adsorbents can be easily released (Japanese Patent Laid-Open No. 7-5154).
No. 4) or high dispersion (JP-A-9-173).
No. 839).
【0005】また、本発明者らが上記課題を検討した結
果、NOx吸着材を改良するよりも、活性点である触媒
貴金属の硫黄被毒を解除する方が効果的であることを知
見した。即ち、活性点である触媒貴金属の硫黄被毒が解
除されていないと、NOx吸着材から硫黄を脱離する反
応が十分に起こらないことを知見した。Further, as a result of studying the above problems, the present inventors have found that it is more effective to remove sulfur poisoning of catalytic noble metal, which is an active site, than to improve a NOx adsorbent. That is, it has been found that the reaction for desorbing sulfur from the NOx adsorbent does not sufficiently occur unless the sulfur poisoning of the catalytic noble metal, which is the active point, is not released.
【0006】本発明は、このような従来技術の有する課
題と知見に鑑みてなされたものであり、その目的とする
ところは、硫黄被毒解除がしやすいNOx浄化触媒及び
NOx浄化システムを提供することにある。The present invention has been made in view of such problems and knowledge of the prior art, and an object of the present invention is to provide a NOx purification catalyst and a NOx purification system that can easily release sulfur poisoning. It is in.
【0007】[0007]
【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討を重ねた結果、酸素不足時には
酸素吸放出材が酸素を放出してSO2等の硫化を防止す
ることにより、上記課題が解決されることを見出し、本
発明を完成するに至った。Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems. As a result, when oxygen is insufficient, the oxygen absorbing / releasing material releases oxygen to prevent sulfuration of SO 2 or the like. As a result, the above-mentioned problems have been solved, and the present invention has been completed.
【0008】即ち、本発明のNOx浄化触媒は、リーン
域又はストイキ〜リッチ域で運転される内燃機関又は燃
焼器からの排気ガスの浄化処理に用いられるNOx浄化
触媒であって、触媒貴金属と、この触媒貴金属の少なく
とも一部を担持する酸素吸放出材とを含有し、上記酸素
吸放出材に担持された触媒貴金属が排気ガス中のSOx
を硫酸塩又は亜硫酸塩として吸着することを特徴とす
る。That is, the NOx purifying catalyst of the present invention is a NOx purifying catalyst used for purifying exhaust gas from an internal combustion engine or a combustor that is operated in a lean region or a stoichiometric to rich region. An oxygen absorbing / releasing material that carries at least a part of the catalytic noble metal, wherein the catalytic noble metal carried by the oxygen absorbing / releasing material contains SOx in the exhaust gas.
Is adsorbed as sulfate or sulfite.
【0009】また、本発明のNOx浄化触媒の好適形態
は、上記触媒貴金属が白金を含んで成ることを特徴とす
る。A preferred embodiment of the NOx purifying catalyst according to the present invention is characterized in that the catalytic noble metal contains platinum.
【0010】更に、本発明のNOx浄化触媒の他の好適
形態は、上記触媒がアルカリ金属、アルカリ土類金属及
び希土類金属から成る群より選ばれた少なくとも1種の
金属を含み、空燃比がリーン域のときにNOxを吸着し
ストイキ〜リッチ域のときに吸着したNOxを窒素に還
元することを特徴とする。In another preferred embodiment of the NOx purifying catalyst of the present invention, the catalyst contains at least one metal selected from the group consisting of alkali metals, alkaline earth metals and rare earth metals, and has a lean air-fuel ratio. NOx is adsorbed in the stoichiometric range and the adsorbed NOx is reduced to nitrogen in the stoichiometric to rich range.
【0011】更にまた、本発明のNOx浄化触媒の更に
他の好適形態は、上記触媒貴金属がロジウムを含んで成
ることを特徴とする。Still another preferred embodiment of the NOx purifying catalyst according to the present invention is characterized in that the catalytic noble metal contains rhodium.
【0012】また、本発明のNOx浄化触媒の他の好適
形態は、上記触媒が酸素吸放出材の多い層と酸素吸放出
材の少ない層から成り、かつ酸素吸放出材の少ない層が
酸素吸放出材の多い層の上に積層されて成ることを特徴
とする。In another preferred embodiment of the NOx purifying catalyst of the present invention, the catalyst comprises a layer having a large amount of oxygen absorbing / releasing material and a layer having a small amount of oxygen absorbing / releasing material, and the layer having a small amount of oxygen absorbing / releasing material has an oxygen absorbing / releasing material. It is characterized by being laminated on a layer with a large amount of release material.
【0013】更に、本発明のNOx浄化触媒の更に他の
好適形態は、上記触媒が、バリウム及び/又はマグネシ
ウム、セリア、並びに白金及び/又はロジウムを含有し
て成り、該白金の少なくとも一部が該セリア上に担持さ
れることを特徴とする。Further, in still another preferred embodiment of the NOx purification catalyst of the present invention, the catalyst comprises barium and / or magnesium, ceria, and platinum and / or rhodium, and at least a part of the platinum is contained. It is supported on the ceria.
【0014】更にまた、本発明のNOx浄化触媒の他の
好適形態は、上記耐火性無機担体に更にナトリウム及び
/又はセシウム及び/又はカリウムを担持して成ること
を特徴とする。Still another preferred embodiment of the NOx purification catalyst of the present invention is characterized in that the refractory inorganic carrier further supports sodium and / or cesium and / or potassium.
【0015】また、本発明のNOx浄化触媒の更に他の
好適形態は、上記バリウム及び/又はマグネシウムの少
なくとも一部が複合化され、次の一般式 BaxMgy(CO3)2 (式中のx及びyは各元素の原子比率、x=0.5〜
1.999、y=0.001〜1.5及びx+y=2.
0を示す)で表される炭酸塩を形成していることを特徴
とする。In still another preferred embodiment of the NOx purification catalyst of the present invention, at least a part of the above barium and / or magnesium is compounded, and the following general formula: Ba x Mg y (CO 3 ) 2 (wherein X and y are atomic ratios of each element, x = 0.5 to
1.999, y = 0.001-1.5 and x + y = 2.
0) is formed.
【0016】更に、本発明のNOx浄化触媒は、リーン
域又はストイキ〜リッチ域で運転される内燃機関又は燃
焼器からの排気ガスの浄化処理に用いられるNOx浄化
触媒であって、白金及びセリアを含有し、該白金が全白
金量に対して5〜50%の割合で該セリアに担持され、
この白金が排気ガス中のSOxを硫酸塩又は亜硫酸塩と
して吸着することを特徴とする。Further, the NOx purifying catalyst of the present invention is a NOx purifying catalyst used for purifying exhaust gas from an internal combustion engine or a combustor operated in a lean region or a stoichiometric to rich region, and comprises platinum and ceria. The platinum is supported on the ceria at a ratio of 5 to 50% based on the total amount of platinum,
This platinum is characterized in that SOx in the exhaust gas is adsorbed as sulfate or sulfite.
【0017】更にまた、本発明のNOx浄化システム
は、上記NOx浄化触媒を用いたNOx浄化システムで
あって、リーン域であるときの空燃比(A/F)が15
以上であることを特徴とする。Further, the NOx purifying system of the present invention is a NOx purifying system using the NOx purifying catalyst, wherein the air-fuel ratio (A / F) in the lean region is 15%.
It is characterized by the above.
【0018】また、本発明のNOx浄化システムは、上
記NOx浄化触媒を用いたNOx浄化システムであっ
て、ストイキ〜リッチ域であるときに該NOx浄化触媒
上流側から2次エアを流すことを特徴とする。The NOx purifying system of the present invention is a NOx purifying system using the NOx purifying catalyst, wherein secondary air flows from the upstream side of the NOx purifying catalyst when the engine is in a stoichiometric to rich region. And
【0019】[0019]
【発明の実施の形態】以下、本発明のNOx浄化触媒に
ついて詳細に説明する。なお、本明細書において「%」
は、特記しない限り質量百分率を示す。上述のように、
本発明のNOx浄化触媒は、触媒貴金属と、この触媒貴
金属の少なくとも一部を担持する酸素吸放出材とを含有
して成る。この酸素吸放出材に担持された触媒貴金属は
排気ガス中のSOxを硫酸塩又は亜硫酸塩として吸着す
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the NOx purifying catalyst of the present invention will be described in detail. In this specification, "%"
Indicates mass percentage unless otherwise specified. As mentioned above,
The NOx purification catalyst of the present invention comprises a catalytic noble metal and an oxygen storage / release material that carries at least a part of the catalytic noble metal. The catalytic noble metal supported on the oxygen storage / release material adsorbs SOx in the exhaust gas as sulfate or sulfite.
【0020】ここで、通常、排気ガス中のSO2等(酸
化硫黄)は、リーン時には過剰にある酸素と反応し、触
媒貴金属上で硫酸塩又は亜硫酸塩として取り込まれ、ス
トイキ〜リッチ時には排気ガス中のSO2のほとんどは
触媒貴金属上(主にPt)に解離吸着し硫化物となる。
本発明では触媒貴金属の少なくとも一部を酸素吸放出材
(代表的にはCeO2)に担持させたことにより、上述
のようにリーン時にはSO2を硫酸塩又は亜硫酸塩とし
て触媒貴金属に取り込める他、図1に示すようにストイ
キ〜リッチ時には上記酸素吸放出材から酸素が放出され
るため、この酸素とSO2等が反応し上記酸素吸放出材
に担持された触媒貴金属上で硫酸塩又は亜硫酸塩として
取り込まれ、触媒貴金属の硫化が防止される。なお、本
明細書において、「リーン」とは排気ガス成分中の炭化
水素(HC)、一酸化炭素(CO)及び水素(H2)な
どの還元性ガスが酸素(O2)、窒素酸化物(NOx)
及び硫黄酸化物(SOx)などの酸化性ガスに比べ少な
い状態をいい、「リッチ」とは排気ガス雰囲気が成分中
のHC、CO及びH2などの還元性ガスがO2、NOx
及びSOxなどの酸化性ガスに比べ多い状態をいい、
「ストイキ」とは理論空燃状態をいう。Here, usually, SO 2 or the like (sulfur oxide) in the exhaust gas reacts with excess oxygen at the time of lean, and is taken in as a sulfate or sulfite on the catalytic noble metal. Most of the SO 2 in the catalyst dissociates and adsorbs on the catalytic noble metal (mainly Pt) to form sulfide.
In the present invention, at least a part of the catalytic noble metal is supported on an oxygen absorbing / releasing material (typically CeO 2 ), so that SO 2 can be incorporated into the catalytic noble metal as a sulfate or a sulfite during lean operation as described above. As shown in FIG. 1, at the time of stoichiometric to rich, oxygen is released from the oxygen storage / release material, and this oxygen reacts with SO 2 or the like to form a sulfate or sulfite on the catalytic noble metal supported on the oxygen storage / release material. And the sulfurization of the catalytic noble metal is prevented. In this specification, “lean” means that reducing gas such as hydrocarbon (HC), carbon monoxide (CO), and hydrogen (H 2 ) in an exhaust gas component is oxygen (O 2 ), nitrogen oxide, or the like. (NOx)
"Rich" means that the exhaust gas atmosphere contains O 2 , NOx as reducing gas such as HC, CO and H 2 in the components.
And more states than oxidizing gases such as SOx,
“Stoichi” refers to a stoichiometric air-fuel condition.
【0021】また、上記触媒貴金属として白金(Pt)
を用いることができる。硫化PtとPtの硫酸塩又は亜
硫酸塩とでは、後者の方がPtからの硫黄の脱離が容易
であり、リッチ時にPtの硫酸塩又は亜硫酸塩として保
持されていれば、より低温、短時間でPtの硫黄被毒解
除ができ、逸早く活性点として働けるようになる。な
お、以上の作用は触媒貴金属(Ptなど)が酸素吸放出
材に担持されて初めて起こる現象である。また、触媒貴
金属として、パラジウム(Pd)なども挙げられるが、
Pdは硫黄被毒するとシンタリングしてしまうため、P
tが好適である。Further, platinum (Pt) is used as the catalyst noble metal.
Can be used. Of the sulfurized Pt and the sulfate or sulfite of Pt, the latter is easier to desorb sulfur from Pt. As a result, sulfur poisoning of Pt can be released, and it can work as an active point quickly. The above operation is a phenomenon that occurs only when the catalytic noble metal (such as Pt) is supported on the oxygen absorbing / releasing material. In addition, palladium (Pd) and the like may be mentioned as the catalyst noble metal,
Pd sinters when it is poisoned with sulfur.
t is preferred.
【0022】更に、酸素吸放出材にPtを担持したとき
は、排気ガス中のNOxの一部を吸着させることができ
る。但し、現在の厳しい排気ガス規制を満たすためには
更にNOxの吸着能力を高めることが好ましい。このた
め、上記触媒にアルカリ金属、アルカリ土類金属又は希
土類金属、及びこれらの任意の組合せに係る金属を含有
することができる。これより、リーン域でNOxを吸着
しストイキ〜リッチ域で吸着したNOxを窒素(N2)
に還元することができ、浄化能力を向上できる。通常、
アルカリ金属などの塩基性の強い化合物は硫黄被毒を強
く受けるが、本発明のNOx浄化触媒は、硫黄被毒を受
けたとしても、まず上記酸素吸放出材に担持されたPt
から硫黄の脱離が起こり、次いで回復したPtによって
NOx吸着材の吸着性能が回復されるため、非常に容易
に硫黄被毒解除が可能となる。上記NOx吸着能力を有
する金属としては、例えばバリウム(Ba)及び/又は
マグネシウム(Mg)、ナトリウム(Na)、セシウム
(Cs)、カリウム(K)を使用することができる。こ
れらの金属は触媒の使用温度域で使い分けることができ
る。例えばバリウム、マグネシウムの組み合わせでは2
00℃〜400℃が好適であり、これにナトリウムを追
加した場合250℃〜450℃、バリウム、マグネシウ
ムの組み合わせにセシウムを追加した場合250℃〜5
00℃、バリウム、マグネシウムの組み合わせにカルシ
ウムを追加した場合300℃〜550℃が好適となる。Further, when Pt is carried on the oxygen storage / release material, it is possible to adsorb a part of NOx in the exhaust gas. However, in order to satisfy the current strict exhaust gas regulations, it is preferable to further increase the NOx adsorption capacity. For this reason, the catalyst can contain an alkali metal, an alkaline earth metal or a rare earth metal, and a metal according to any combination thereof. Thus, NOx is adsorbed in the lean region and NOx adsorbed in the stoichiometric to rich region is converted to nitrogen (N 2 ).
And the purification ability can be improved. Normal,
Although strongly basic compounds such as alkali metals are strongly poisoned by sulfur, the NOx purification catalyst of the present invention, even if it is poisoned by sulfur, first uses Pt supported on the oxygen storage / release material.
Since sulfur is desorbed from the Pt and then the recovered Pt restores the adsorption performance of the NOx adsorbent, the sulfur poisoning can be released very easily. As the metal having the NOx adsorption ability, for example, barium (Ba) and / or magnesium (Mg), sodium (Na), cesium (Cs), and potassium (K) can be used. These metals can be selectively used in the operating temperature range of the catalyst. For example, the combination of barium and magnesium is 2
00 ° C to 400 ° C is preferable, and 250 ° C to 450 ° C when sodium is added thereto, and 250 ° C to 5 ° C when cesium is added to the combination of barium and magnesium.
When calcium is added to the combination of 00 ° C, barium and magnesium, 300 ° C to 550 ° C is suitable.
【0023】更にまた、上記触媒貴金属としてロジウム
(Rh)を含有することができ、この場合は、リーン域
で吸着したNOxをストイキ〜リッチ域で浄化するとき
のNOx浄化性能を向上できる。また、酸素吸放出材は
上記のように硫黄被毒解除に非常に有効であるがその量
が多すぎると、吸着したNOxをストイキ〜リッチ時に
還元する際、本来NOxを還元するのに使われる還元材
が酸素吸放出材から放出される酸素と反応してしまいN
Oxの還元浄化能を低下させる恐れがある。そこで、触
媒を2層に分け酸素吸放出材の多い層を排気ガス流れに
対して内側に、酸素吸放出材の少ない層を外側にして還
元材の消費を抑えることが必要となる。こうすることに
より、リッチ時に貴金属上へ排ガス中のSO2を硫酸塩
或は亜硫酸塩として取り込むのに必要な酸素は触媒層内
側から、NOxの浄化は外側の層で行うことができる。
この時NOxを浄化するRhは外側にあればよく、内側
にあってもその効果は十分発揮されず無駄になってしま
う。酸素吸放出材の触媒層内側と外側の比は0.01:
0.99〜1:1であることが望ましく、これ以上内側
を減らすと耐久性が落ちてしまう。(図2)Further, rhodium (Rh) can be contained as the catalytic noble metal, and in this case, NOx purification performance when purifying NOx adsorbed in the lean region in the stoichiometric to rich region can be improved. Further, the oxygen absorbing / releasing material is very effective in releasing sulfur poisoning as described above, but if the amount is too large, it is originally used to reduce NOx when reducing the adsorbed NOx at the time of stoichiometric to rich. The reducing material reacts with the oxygen released from the oxygen absorbing / releasing material, resulting in N
There is a possibility that the reduction purification ability of Ox may be reduced. Therefore, it is necessary to divide the catalyst into two layers and to suppress the consumption of the reducing agent by setting the layer having a large amount of the oxygen absorbing and releasing material inside the exhaust gas flow and the layer having a small amount of the oxygen absorbing and releasing material outside. By doing so, the oxygen required to capture SO 2 in the exhaust gas onto a noble metal as the sulphate or sulphite rich at the time of the inner catalytic layer, purification of NOx can be performed in the outer layer.
At this time, Rh for purifying NOx only needs to be on the outside, and even if it is on the inside, the effect is not sufficiently exhibited, and it is wasted. The ratio of the inside and outside of the catalyst layer of the oxygen storage / release material is 0.01:
The ratio is desirably 0.99 to 1: 1. If the inside is further reduced, the durability is reduced. (Fig. 2)
【0024】また、上記NOx吸着能力を有する金属
(上記BaなどのNOx吸着材)は、SOxも同様に吸
収してしまう。そこで、NOx吸着材とPt及び/又は
Rhとを共存させることが好ましく、例えば、Ptの少
なくとも一部をセリア(CeO2)上に担持して成るP
t/CeO2などが使用できる。この場合、まずPtの
硫黄被毒解除がなされ、続いて回復したPt/CeO2
は水性ガスシフト反応(CO+H2O→CO2+H2)
により生成する水素を使って、NOx吸着材の硫黄被毒
が解除される。ここで、特にPtが全Pt量に対して5
〜50%の割合でCeO2に担持されたNOx浄化触媒
は、この白金が排気ガス中のSOxを硫酸塩又は亜硫酸
塩として吸着するので有効である。このとき、5%より
少ないと硫黄被毒解除できるPtが少なく水性ガスシフ
ト反応が十分に起こらないため、触媒全体の硫黄被毒解
除が困難となる。50%より多くなると硫黄被毒解除で
きるPtは多くなるが、吸着したNOxを還元すべき還
元材(COやHC)がNOx還元前にCeO2から放出
される酸素と反応してしまうためNOx→N2反応が進
まなくなってしまう。なお、上記NOx吸着材は使用さ
れる温度条件で異なるため、選択して使用できる。例え
ば、触媒入口の温度が200℃〜300℃ではMg、2
50℃〜400℃ではBa、300℃〜450℃ではN
a、300℃〜500℃ではCsが有効である。また、
これら複数のNOx吸着材は、1つの耐火性無機担体
(CeO2など)に担持することができ、このときは広
い温度範囲に亘ってNOx吸着機能を維持可能となるの
で有効である。The metal having the NOx adsorbing ability (the NOx adsorbing material such as Ba) absorbs SOx similarly. Therefore, it is preferable that the NOx adsorbent and Pt and / or Rh coexist. For example, Pt formed by supporting at least a part of Pt on ceria (CeO 2 )
t / CeO 2 or the like can be used. In this case, the sulfur poisoning of Pt is first released, and then the recovered Pt / CeO 2
Is a water gas shift reaction (CO + H 2 O → CO 2 + H 2 )
The sulfur poisoning of the NOx adsorbent is released using the hydrogen generated by the above. Here, in particular, Pt is 5
To 50% NOx purifying catalyst supported CeO 2 at a rate of, it is effective because the platinum adsorbs SOx in the exhaust gas as the sulphate or sulphite salt. At this time, if the content is less than 5%, the amount of Pt that can be released from sulfur poisoning is small, and the water gas shift reaction does not sufficiently occur. If it exceeds 50%, the amount of Pt that can release sulfur poisoning increases, but the reducing agent (CO or HC) that should reduce the adsorbed NOx reacts with the oxygen released from CeO 2 before the NOx reduction, so that NOx → N 2 reaction can no longer proceed. The NOx adsorbent varies depending on the temperature conditions used, and can be selectively used. For example, when the temperature at the catalyst inlet is 200 ° C. to 300 ° C., Mg, 2
Ba at 50 ° C to 400 ° C, N at 300 ° C to 450 ° C
a, Cs is effective at 300 ° C. to 500 ° C. Also,
The plurality of NOx adsorbents can be supported on one refractory inorganic carrier (such as CeO2). In this case, the NOx adsorbing function can be maintained over a wide temperature range, which is effective.
【0025】更に、上記CeO2は、触媒容量1L当り
3〜100g/Lの割合で含有することが好適である。
3g/L未満であると十分に硫黄被毒解除を十分にでき
ず、100g/Lを超えると吸着したNOxを還元すべ
き還元材(COやHCなど)がNOxを還元する前にC
eO2から放出される酸素と反応してしまうため、NO
x→N2反応が進まなくなってしまうことがある。Further, it is preferable that CeO 2 is contained at a rate of 3 to 100 g / L per 1 L of the catalyst capacity.
If it is less than 3 g / L, the sulfur poisoning cannot be sufficiently released, and if it exceeds 100 g / L, the reducing agent (CO, HC, etc.) which should reduce the adsorbed NOx has a C value before reducing NOx.
NO reacts with oxygen released from eO 2, resulting in NO
The x → N 2 reaction may not proceed.
【0026】更にまた、上記Pt/又はRhは、触媒容
量1L当り1.4〜4.3g/Lの割合で含有すること
が好適である。1.4g/Lより少ないと触媒性能が満
足せず、4.3g/Lより多いと触媒性能が飽和し、触
媒1個当りのコストが上がることがある。Further, it is preferable that the above-mentioned Pt / Rh is contained at a ratio of 1.4 to 4.3 g / L per 1 L of the catalyst volume. When the amount is less than 1.4 g / L, the catalyst performance is not satisfied. When the amount is more than 4.3 g / L, the catalyst performance is saturated, and the cost per catalyst may increase.
【0027】また、上記CeO2としては、CeO2と
ジルコニウム(Zr)と複合化して成る複合酸化物を用
いることができる。硫黄被毒を解除するためには一定温
度以上の排温などが利用でき(具体的には触媒入口が5
50℃以上であることがよい)、例えばNOx浄化触媒
をより上流側に設置すれば、常に高い排温を利用するこ
とができる。このとき、活性CeO 2の比表面積(代表
的には50m2/g以上)を維持するため、NOx浄化
触媒に熱耐久性能を付与することが好ましい。そのため
には上記CeO2をZrと複合化させることが有効であ
る。The above CeO2As CeO2When
Uses a composite oxide composed of zirconium (Zr)
Can be. Constant temperature to remove sulfur poisoning
Temperature or more can be used (specifically, the catalyst inlet is 5
50 ° C. or higher), for example, a NOx purification catalyst
If it is installed more upstream, it is possible to always use high exhaust temperature.
Can be. At this time, the active CeO 2Specific surface area (representative
Typically 50m2/ G or more) to purify NOx
It is preferable to impart heat durability to the catalyst. for that reason
The above CeO2It is effective to compound
You.
【0028】更に、上記NOx吸着材としては、Ba及
びMgの複合炭酸塩を用いることができ、この場合はよ
り硫黄被毒解除し易い。但し、Ba及びMgの全てが複
合化している必要はなく、少なくとも一部が複合化して
いれば効果はあると考えられる。具体的には、NOx吸
着材として用いるBa及びMgが、次の一般式 BaxMgy(CO3)2 (式中のx及びyは各元素の原子比率、x=0.5〜
1.999、y=0.001〜1.5及びx+y=2.
0を示す)で表される炭酸塩を形成していることが好ま
しい。複合化することで、Ba及びMgが活性な温度域
で効率的にNOxを除去し、硫黄被毒解除性能も向上し
得る。なお、BaMg(CO3)2は単独ではXRDで
検出可能であるが、触媒中に含まれるとピークが見えな
くなり、代わりにBaCO3の単斜晶系のピークが出て
くる(図3)。通常、BaCO3は斜方晶系しか現れな
いので、これよりBaMg(CO3)2が複合化してい
るかどうかの判断は可能であると考えられる。Further, as the NOx adsorbent, a composite carbonate of Ba and Mg can be used, and in this case, sulfur poisoning is more easily released. However, it is not necessary that all of Ba and Mg are compounded, and it is considered that the effect is obtained if at least a part of the compound is compounded. Specifically, Ba and Mg used as the NOx adsorbent are represented by the following general formula: Ba x Mg y (CO 3 ) 2 (where x and y are the atomic ratio of each element, x = 0.5 to
1.999, y = 0.001-1.5 and x + y = 2.
It is preferable to form a carbonate represented by the formula: By compounding, NOx can be efficiently removed in a temperature range where Ba and Mg are active, and the sulfur poisoning release performance can be improved. Although BaMg (CO 3 ) 2 can be detected by XRD alone, if it is contained in the catalyst, the peak disappears, and instead, a monoclinic peak of BaCO 3 appears (FIG. 3). Normally, BaCO 3 appears only in the orthorhombic system, and it can be considered from this that it is possible to determine whether BaMg (CO 3 ) 2 is complexed.
【0029】更にまた、上記Baとしては、酸化バリウ
ム(BaO)を触媒容量1L当り5〜30g/Lの割合
で含有することができる。また、上記Mgとしては、酸
化マグネシウム(MgO)を触媒容量1L当り1〜10
g/Lの割合で含有することができる。更に、上記Na
としては、酸化ナトリウム(Na2O)を触媒容量1L
当り0.5〜20.0g/Lの割合で含有することがで
きる。更にまた、上記Csとしては酸化セシウム(Cs
2O)を触媒容量1L当り5〜30g/Lの割合で含有
することができる。更にまた、上記Kとしては酸化カリ
ウム(K2O)を触媒容量1L当り0.5〜30g/L
の割合で含有することができる。これらNOx吸着材成
分の含有量が上記範囲より少ないと、NOx吸着能力が
不十分となり易く、上記範囲より多いと、NOx吸着能
力は飽和し、余分なアルカリ金属やアルカリ土類金属が
硫黄被毒を助長するだけでなく貴金属(PtやRh)の
熱耐久性を低下させてしまうことがある。Further, as the above-mentioned Ba, barium oxide (BaO) can be contained at a ratio of 5 to 30 g / L per liter of the catalyst capacity. As the Mg, magnesium oxide (MgO) is used in an amount of 1 to 10 per liter of catalyst capacity.
g / L. Further, the above Na
The catalyst volume is 1 L with sodium oxide (Na 2 O).
0.5 to 20.0 g / L. Further, as the Cs, cesium oxide (Cs
2 O) a it can be contained in a proportion of catalyst volume per 1L 5 to 30 g / L. Further, as the K, potassium oxide (K 2 O) is 0.5 to 30 g / L per 1 L of the catalyst capacity.
At a ratio of If the content of these NOx adsorbent components is less than the above range, the NOx adsorption capacity tends to be insufficient. If the content is more than the above range, the NOx adsorption capacity is saturated, and the excess alkali metal or alkaline earth metal becomes sulfur-poisoned. Not only promotes the heat resistance but also lowers the thermal durability of the noble metal (Pt or Rh).
【0030】なお、本発明のNOx浄化触媒では、内燃
機関又は燃焼器がリーン域で運転されるときは、空燃比
を15.0以上とすることが望ましい。このときは酸素
吸放出材(主にCeO2)に酸素を吸着させ易くなる。
また、上記内燃機関等がストイキ〜リッチ域で運転され
るときは、上記NOx浄化触媒へ流通する排気ガス中の
酸素比率を2次エアにより高めることが望ましい。この
ときは上記酸素吸放出材からの放出酸素に加えて、更に
酸素濃度を増大できるので硫黄被毒を解除し易くなる。
更に、作動空燃比が15〜50(リーン域)及び10.
0〜14.6(リッチ域)であるとNOxを効率良く浄
化できる。また、NOx吸着材として含有できる上記B
a、Mg、Na、Cs及びKは、上記形態に限定されず
炭酸塩、酸化物及び水酸化物などの形態で使用できる。
更に、本発明のNOx浄化触媒は各種形状で使用でき、
例えばコーディエライトやステンレス等で構成されるハ
ニカム構造体に触媒成分を担持させて使用できる。この
とき、触媒成分を多層構造に担持させることもできる。In the NOx purifying catalyst of the present invention, when the internal combustion engine or the combustor is operated in a lean region, it is desirable that the air-fuel ratio be 15.0 or more. In this case, it becomes easy to adsorb oxygen to the oxygen absorbing / releasing material (mainly CeO 2 ).
When the internal combustion engine or the like is operated in the stoichiometric to rich range, it is desirable to increase the oxygen ratio in the exhaust gas flowing to the NOx purification catalyst by means of secondary air. At this time, in addition to the oxygen released from the oxygen storage / release material, the oxygen concentration can be further increased, so that sulfur poisoning can be easily released.
Further, the working air-fuel ratio is 15 to 50 (lean range) and 10.
When it is 0 to 14.6 (rich range), NOx can be efficiently purified. The above B which can be contained as a NOx adsorbent
a, Mg, Na, Cs and K are not limited to the above-mentioned forms, and can be used in the form of carbonates, oxides and hydroxides.
Further, the NOx purification catalyst of the present invention can be used in various shapes,
For example, it can be used by supporting a catalyst component on a honeycomb structure made of cordierite, stainless steel, or the like. At this time, the catalyst component can be supported on the multilayer structure.
【0031】[0031]
【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。なお、実施例及び比較例における全ての
実験はガソリン車で行ったが、ディーゼル車でも同様の
効果が得られることは言うまでもない。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Note that all the experiments in the examples and comparative examples were performed on gasoline-powered vehicles, but it goes without saying that similar effects can be obtained on diesel vehicles.
【0032】(実施例1)比表面積が180m2の活性
アルミナにジニトロジアミン白金溶液を含浸し、乾燥後
空気中400℃で1時間焼成して、粉末Aを得た。この
粉末のPt濃度は1.5%であった。比表面積が60m
2の活性セリアにジニトロジアミン白金溶液を含浸し、
乾燥後空気中400℃で1時間焼成して、粉末Bを得
た。この粉末のPt濃度は1.5%であった。粉末Aを
463.7g、粉末Bを100.8g、活性アルミナを
127.4g、アルミナゾルを28.8g及び水108
0gを磁性ボールミルに投入し、混合粉砕してスラリ液
を得た。このスラリ液をコーデェライト質モノリス担体
(1.7L、400セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、コート層200g/Lの触媒
を得た。この触媒を酢酸バリウムと酢酸マグネシウムの
混合水溶液中に浸漬し、触媒中にバリウムとマグネシウ
ムを含浸し、本例のNOx浄化触媒を得た。表1に示す
ように、このNOx浄化触媒には、Pt=2.35g/
L 、Ba=酸化物換算で20g/L、Mg=酸化物換
算で5g/Lが担持されていた。また、CeO2は触媒
中に28g/L、CeO2上のPtは全Pt量の18%
であった。Example 1 Activated alumina having a specific surface area of 180 m 2 was impregnated with a dinitrodiamine platinum solution, dried and calcined at 400 ° C. for 1 hour in the air to obtain a powder A. The Pt concentration of this powder was 1.5%. Specific surface area is 60m
The second active ceria was impregnated with dinitroamine platinum solution,
After drying, the powder was calcined at 400 ° C. for 1 hour in the air to obtain a powder B. The Pt concentration of this powder was 1.5%. 463.7 g of powder A, 100.8 g of powder B, 127.4 g of activated alumina, 28.8 g of alumina sol and 108 of water
0 g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was adhered to a cordierite-based monolithic carrier (1.7 L, 400 cells), excess slurry in the cells was removed by an air stream, and dried at 130 ° C.
It was baked at 400 ° C. for 1 hour to obtain a catalyst having a coat layer of 200 g / L. This catalyst was immersed in a mixed aqueous solution of barium acetate and magnesium acetate, and the catalyst was impregnated with barium and magnesium to obtain a NOx purification catalyst of this example. As shown in Table 1, this NOx purification catalyst had Pt = 2.35 g /
L and Ba = 20 g / L in terms of oxide and Mg = 5 g / L in terms of oxide. Also, CeO 2 was 28 g / L in the catalyst, and Pt on CeO 2 was 18% of the total Pt amount.
Met.
【0033】(実施例2)比表面積が180m2の活性
アルミナに硝酸Rh溶液を含浸し、乾燥後空気中400
℃で1時間焼成して、粉末Cを得た。この粉末のRh濃
度は1%であった。粉末Aを370.7g、粉末Bを8
0.6g、粉末Cを135.9g、活性アルミナを10
9.7g、アルミナゾルを23g及び水1080gを磁
性ボールミルに投入し、混合粉砕してスラリ液を得た。
このスラリ液をコーデェライト質モノリス担体(1.7
L、400セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、コート層250g/Lの触媒を得た。
この触媒を酢酸バリウムと酢酸マグネシウムの混合水溶
液中に浸漬し、触媒中にバリウムとマグネシウムを含浸
し、本例のNOx浄化触媒を得た。表1に示すように、
このNOx浄化触媒には、Pt=2.35g/L、Rh
=0.47g/L、Ba=酸化物換算で20g/L、M
g=酸化物換算で5g/Lが担持されていた。また、P
t/Rh=5/1(合計2.82g/L)、CeO 2は
触媒中に28g/L、CeO2上のPtは全Pt量の1
8%であった。Example 2 Specific surface area is 180 m2Activity
Alumina is impregnated with Rh nitrate solution, dried and
Calcination was carried out at 1 ° C. for 1 hour to obtain powder C. Rh concentration of this powder
The degree was 1%. 370.7 g of powder A and 8 of powder B
0.6 g, 135.9 g of powder C and 10 activated alumina
9.7 g, 23 g of alumina sol and 1080 g of water
The mixture was charged into a ball mill and mixed and pulverized to obtain a slurry liquid.
This slurry solution was added to a cordierite monolithic carrier (1.7).
L, 400 cells) and surplus in the cells by air flow
After removing the slurry and drying at 130 ° C, 400 ° C
For 1 hour to obtain a catalyst having a coat layer of 250 g / L.
This catalyst is mixed with barium acetate and magnesium acetate
Immerse in liquid and impregnate barium and magnesium in catalyst
Then, the NOx purification catalyst of this example was obtained. As shown in Table 1,
This NOx purification catalyst has Pt = 2.35 g / L, Rh
= 0.47 g / L, Ba = 20 g / L in terms of oxide, M
g = 5 g / L in terms of oxide was carried. Also, P
t / Rh = 5/1 (total 2.82 g / L), CeO 2Is
28 g / L in catalyst, CeO2The upper Pt is 1 of the total Pt amount
8%.
【0034】(実施例3)比表面積が180m2の活性
アルミナにジニトロジアミン白金溶液を含浸し、乾燥後
空気中400℃で1時間焼成して、粉末Dを得た。この
粉末のPt濃度は0.6%であった。粉末Dを579.
6g、粉末Bを51.1g、活性アルミナを57.6
g、アルミナゾルを32.4g及び水1080gを磁性
ボールミルに投入し、混合粉砕してスラリ液を得た。こ
のスラリ液をコーデェライト質モノリス担体(1.7
L、400セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、コート層200g/Lの触媒層1を得
た。粉末Aを308.9g、粉末Bを67.7g、粉末
Cを226.8g、活性アルミナを92.9g、アルミ
ナゾルを23.8g、水1080gを磁性ボールミルに
投入し、混合粉砕してスラリ液を得た。このスラリ液を
触媒層1上に付着させ、空気流にてセル内の余剰のスラ
リを取り除いて130℃で乾燥した後、400℃で1時
間焼成し、コート層150g/Lの触媒層2を得た。こ
の2層構造の触媒を酢酸バリウムと酢酸マグネシウムの
混合水溶液中に浸漬し、触媒中にバリウムとマグネシウ
ムを含浸し、本例のNOx浄化触媒を得た。表1に示す
ように、このNOx浄化触媒には、Pt=2.35g/
L、Rh=0.47g/L、Ba=酸化物換算で20g
/L、Mg=酸化物換算で5g/Lが担持されていた。
また、Pt/Rh=5/1(合計2.82g/L)、C
eO 2は触媒中に28.2g/L、CeO2上のPtは
全Pt量の18%であった。また、触媒層1に含まれる
CeO2と触媒層2に含まれるCeO2の量比は1:1
であった。Example 3 Specific surface area is 180 m2Activity
After impregnating alumina with dinitrodiamine platinum solution and drying
The powder was fired at 400 ° C. for 1 hour in the air to obtain a powder D. this
The Pt concentration of the powder was 0.6%. 579.
6 g, powder B 51.1 g, activated alumina 57.6
g, 32.4 g alumina sol and 1080 g water
The mixture was put into a ball mill and mixed and pulverized to obtain a slurry liquid. This
Of the slurry solution of cordierite monolithic carrier (1.7
L, 400 cells) and surplus in the cells by air flow
After removing the slurry and drying at 130 ° C, 400 ° C
For 1 hour to obtain a catalyst layer 1 having a coat layer of 200 g / L.
Was. 308.9 g of powder A, 67.7 g of powder B, powder
226.8 g of C, 92.9 g of activated alumina, aluminum
23.8 g of Nasol and 1080 g of water in a magnetic ball mill
It was charged and mixed and pulverized to obtain a slurry liquid. This slurry liquid
The excess slurry in the cell is attached to the catalyst layer 1 by air flow.
After drying at 130 ° C, remove at 400 ° C for 1 hour
Then, the catalyst layer 2 having a coat layer of 150 g / L was obtained. This
The two-layer catalyst of barium acetate and magnesium acetate
Immerse in a mixed aqueous solution and add barium and magnesium to the catalyst.
The NOx purification catalyst of this example was obtained. See Table 1
Thus, this NOx purification catalyst has Pt = 2.35 g /
L, Rh = 0.47 g / L, Ba = 20 g in terms of oxide
/ L, Mg = 5 g / L in terms of oxide.
Further, Pt / Rh = 5/1 (total 2.82 g / L), C
eO 2Is 28.2 g / L in the catalyst, CeO2The above Pt is
It was 18% of the total Pt amount. Also, contained in the catalyst layer 1
CeO2And CeO contained in the catalyst layer 22Is 1: 1
Met.
【0035】(実施例4)粉末Dを579.6g、粉末
Bを97.9g、活性アルミナを10.1g、アルミナ
ゾルを32.4g及び水1080gを磁性ボールミルに
投入し、混合粉砕してスラリ液を得た。このスラリ液を
コーデェライト質モノリス担体(1.7L、400セ
ル)に付着させ、空気流にてセル内の余剰のスラリを取
り除いて130℃で乾燥した後、400℃で1時間焼成
し、コート層200g/Lの触媒層1を得た。粉末Aを
308.9g、粉末Bを7.2g、粉末Cを226.8
g、活性アルミナを153.3g、アルミナゾルを2
3.8g、水1080gを磁性ボールミルに投入し、混
合粉砕してスラリ液を得た。このスラリ液を触媒層1上
に付着させ、空気流にてセル内の余剰のスラリを取り除
いて130℃で乾燥した後、400℃で1時間焼成し、
コート層150g/Lの触媒層2を得た。この2層構造
の触媒を酢酸バリウムと酢酸マグネシウムの混合水溶液
中に浸漬し、触媒中にバリウムとマグネシウムを含浸
し、本例のNOx浄化触媒を得た。表1に示すように、
このNOx浄化触媒には、Pt=2.35g/L、Rh
=0.47g/L、Ba=酸化物換算で20g/L、M
g=酸化物換算で5g/Lが担持されていた。また、P
t/Rh=5/1(合計2.82g/L)、CeO2は
触媒中に28.2g/L、CeO2上のPtは全Pt量
の18%であった。また、触媒層1に含まれるCeO2
と触媒層2に含まれるCeO2の量比は0.97:0.
03であった。(Example 4) 579.6 g of powder D, 97.9 g of powder B, 10.1 g of activated alumina, 32.4 g of alumina sol and 1080 g of water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. I got This slurry solution was adhered to a cordierite-based monolithic carrier (1.7 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., and baked at 400 ° C. for 1 hour. 200 g / L of catalyst layer 1 was obtained. 308.9 g of powder A, 7.2 g of powder B and 226.8 of powder C
g, activated alumina 153.3 g, alumina sol 2
3.8 g and 1080 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid is adhered on the catalyst layer 1, the excess slurry in the cell is removed by an air flow, dried at 130 ° C., and baked at 400 ° C. for 1 hour,
A catalyst layer 2 having a coat layer of 150 g / L was obtained. The two-layer catalyst was immersed in a mixed aqueous solution of barium acetate and magnesium acetate, and the catalyst was impregnated with barium and magnesium to obtain a NOx purification catalyst of this example. As shown in Table 1,
This NOx purification catalyst has Pt = 2.35 g / L, Rh
= 0.47 g / L, Ba = 20 g / L in terms of oxide, M
g = 5 g / L in terms of oxide was carried. Also, P
t / Rh = 5/1 (total 2.82g / L), CeO2 is 28.2 g / L, Pt on CeO 2 was 18% of the total amount of Pt in the catalyst. Also, CeO 2 contained in the catalyst layer 1
And the amount ratio of CeO 2 contained in the catalyst layer 2 is 0.97: 0.
03.
【0036】(実施例5)実施例3の触媒コート層1、
2を付着させた後、この触媒を酢酸バリウムと酢酸マグ
ネシウムと酢酸ナトリウムの混合水溶液中に浸漬し、触
媒中にバリウムとマグネシウムとナトリウムを含浸し、
本例のNOx浄化触媒を得た。表1に示すように、この
NOx浄化触媒には、Pt=2.35g/L、Rh=
0.47g/L、Ba=酸化物換算で20g/L、Mg
=酸化物換算で5g/L、Na=酸化物換算で10g/
Lが担持されていた。また、Pt/Rh=5/1(合計
2.82g/L)、CeO2は触媒中に28.2g/
L、CeO2上のPtは全Pt量の18%であった。ま
た、触媒層1に含まれるCeO2と触媒層2に含まれる
CeO2の量比は1:1であった。Example 5 The catalyst coat layer 1 of Example 3
After attaching 2, the catalyst was immersed in a mixed aqueous solution of barium acetate, magnesium acetate and sodium acetate, and impregnated with barium, magnesium and sodium in the catalyst,
The NOx purification catalyst of this example was obtained. As shown in Table 1, this NOx purification catalyst has Pt = 2.35 g / L and Rh =
0.47 g / L, Ba = 20 g / L in terms of oxide, Mg
= 5 g / L in terms of oxide, Na = 10 g / L in terms of oxide
L was carried. Pt / Rh = 5/1 (total 2.82 g / L), and CeO 2 was 28.2 g / L in the catalyst.
Pt on L, CeO 2 was 18% of the total Pt amount. The amount ratio of CeO 2 contained in the CeO2 and a catalyst layer 2 contained in the catalyst layer 1 was 1: 1.
【0037】(実施例6)実施例3の触媒コート層1、
2を付着させた後、この触媒を酢酸バリウムと酢酸マグ
ネシウムと酢酸セシウムの混合水溶液中に浸漬し、触媒
中にバリウムとマグネシウムとセシウムを含浸し、本例
のNOx浄化触媒を得た。表1に示すように、このNO
x浄化触媒には、Pt=2.35g/L、Rh=0.4
7g/L、Ba=酸化物換算で10g/L、Mg=酸化
物換算で5g/L、Cs=酸化物換算で20g/Lが担
持されていた。また、Pt/Rh=5/1(合計2.8
2g/L)、CeO2は触媒中に28.2g/L、Ce
O2上のPtは全Pt量の18%であった。また、触媒
層1に含まれるCeO2と触媒層2に含まれるCeO2
の量比は1:1であった。Example 6 The catalyst coat layer 1 of Example 3
After adhering No. 2, the catalyst was immersed in a mixed aqueous solution of barium acetate, magnesium acetate and cesium acetate, and impregnated with barium, magnesium and cesium to obtain a NOx purification catalyst of this example. As shown in Table 1, this NO
x Purification catalyst: Pt = 2.35 g / L, Rh = 0.4
7 g / L, Ba = 10 g / L in terms of oxide, Mg = 5 g / L in terms of oxide, and Cs = 20 g / L in terms of oxide. Pt / Rh = 5/1 (total 2.8)
2g / L), CeO 2 is 28.2 g / L in the catalyst, CeO
Pt on O 2 was 18% of the total amount of Pt. Also, CeO 2 contained in the catalyst layer 1 and CeO 2 contained in the catalyst layer 2
Was 1: 1.
【0038】(実施例7)実施例3の触媒コート層1、
2を付着させた後、この触媒を酢酸バリウムと酢酸マグ
ネシウムと酢酸カリウムの混合水溶液中に浸漬し、触媒
中にバリウムとマグネシウムとカリウムを含浸し、本例
のNOx浄化触媒を得た。表1に示すように、このNO
x浄化触媒には、Pt=2.35g/L、Rh=0.4
7g/L、Ba=酸化物換算で20g/L、Mg=酸化
物換算で5g/L、Cs=酸化物換算で20g/Lが担
持されていた。また、Pt/Rh=5/1(合計2.8
2g/L)、CeO2は触媒中に28.2g/L、Ce
O2上のPtは全Pt量の18%であった。また、触媒
層1に含まれるCeO2と触媒層2に含まれるCeO2
の量比は1:1であった。Example 7 The catalyst coat layer 1 of Example 3
After adhering No. 2, this catalyst was immersed in a mixed aqueous solution of barium acetate, magnesium acetate and potassium acetate, and impregnated with barium, magnesium and potassium to obtain a NOx purification catalyst of this example. As shown in Table 1, this NO
x Purification catalyst: Pt = 2.35 g / L, Rh = 0.4
7 g / L, Ba = 20 g / L in terms of oxide, Mg = 5 g / L in terms of oxide, and Cs = 20 g / L in terms of oxide. Pt / Rh = 5/1 (total 2.8)
2g / L), CeO2 is 28.2g / L in the catalyst, CeO2
Pt on O 2 was 18% of the total amount of Pt. Also, CeO 2 contained in the catalyst layer 1 and CeO 2 contained in the catalyst layer 2
Was 1: 1.
【0039】(実施例8)実施例3の触媒コート層1、
2を付着させた後、この触媒を酢酸バリウムと酢酸マグ
ネシウムと酢酸ナトリウムと酢酸セシウムの混合水溶液
中に浸漬し、触媒中にバリウムとマグネシウムとナトリ
ウムとセシウムを含浸し、本例のNOx浄化触媒を得
た。表1に示すように、このNOx浄化触媒には、Pt
=2.35g/L、Rh=0.47g/L、Ba=酸化
物換算で10g/L、Mg=酸化物換算で5g/L、N
a=酸化物換算で5g/L、Cs=酸化物換算で20g
/Lが担持されていた。また、Pt/Rh=5/1(合
計2.82g/L)、CeO2は触媒中に28.2g/
L、CeO2上のPtは全Pt量の18%であった。ま
た、触媒層1に含まれるCeO2と触媒層2に含まれる
CeO2の量比は1:1であった。Example 8 The catalyst coat layer 1 of Example 3
Then, the catalyst was immersed in a mixed aqueous solution of barium acetate, magnesium acetate, sodium acetate and cesium acetate, and impregnated with barium, magnesium, sodium and cesium in the catalyst. Obtained. As shown in Table 1, this NOx purification catalyst has Pt
= 2.35 g / L, Rh = 0.47 g / L, Ba = 10 g / L in terms of oxide, Mg = 5 g / L in terms of oxide, N
a = 5 g / L in terms of oxide, Cs = 20 g in terms of oxide
/ L was carried. Pt / Rh = 5/1 (total 2.82 g / L), and CeO 2 was 28.2 g / L in the catalyst.
Pt on L, CeO 2 was 18% of the total Pt amount. Further, the quantitative ratio of CeO 2 contained in the catalyst layer 1 to CeO 2 contained in the catalyst layer 2 was 1: 1.
【0040】(実施例9)実施例3の触媒コート層1、
2を付着させた後、この触媒を酢酸バリウムと酢酸マグ
ネシウムと酢酸ナトリウムと酢酸カリウムの混合水溶液
中に浸漬し、触媒中にバリウムとマグネシウムとナトリ
ウムとカリウムを含浸し、本例のNOx浄化触媒を得
た。表1に示すように、このNOx浄化触媒には、Pt
=2.35g/L、Rh=0.47g/L、Ba=酸化
物換算で20g/L、Mg=酸化物換算で5g/L、N
a=酸化物換算で5g/L、K=酸化物換算で20g/
Lが担持されていた。また、Pt/Rh=5/1(合計
2.82g/L)、CeO2は触媒中に28.2g/
L、CeO2上のPtは全Pt量の18%であった。ま
た、触媒層1に含まれるCeO2と触媒層2に含まれる
CeO2の量比は1:1であった。Example 9 The catalyst coat layer 1 of Example 3
After adhering No. 2, this catalyst was immersed in a mixed aqueous solution of barium acetate, magnesium acetate, sodium acetate, and potassium acetate, and impregnated with barium, magnesium, sodium, and potassium in the catalyst. Obtained. As shown in Table 1, this NOx purification catalyst has Pt
= 2.35 g / L, Rh = 0.47 g / L, Ba = 20 g / L in terms of oxide, Mg = 5 g / L in terms of oxide, N
a = 5 g / L in terms of oxide, K = 20 g / L in terms of oxide
L was carried. Pt / Rh = 5/1 (total 2.82 g / L), and CeO 2 was 28.2 g / L in the catalyst.
Pt on L, CeO 2 was 18% of the total Pt amount. Further, the quantitative ratio of CeO 2 contained in the catalyst layer 1 to CeO 2 contained in the catalyst layer 2 was 1: 1.
【0041】(実施例10)実施例3の触媒コート層
1、2を付着させた後、この触媒を酢酸バリウムと酢酸
マグネシウムと酢酸セシウムと酢酸カリウムの混合水溶
液中に浸漬し、触媒中にバリウムとマグネシウムとセシ
ウムとカリウムを含浸し、本例のNOx浄化触媒を得
た。表1に示すように、このNOx浄化触媒には、Pt
=2.35g/L、Rh=0.47g/L、Ba=酸化
物換算で10g/L、Mg=酸化物換算で5g/L、C
s=酸化物換算で10g/L、K=酸化物換算で10g
/Lが担持されていた。また、Pt/Rh=5/1(合
計2.82g/L)、CeO2は触媒中に28.2g/
L、CeO2上のPtは全Pt量の18%であった。ま
た、触媒層1に含まれるCeO2と触媒層2に含まれる
CeO2の量比は1:1であった。Example 10 After the catalyst coating layers 1 and 2 of Example 3 were applied, this catalyst was immersed in a mixed aqueous solution of barium acetate, magnesium acetate, cesium acetate, and potassium acetate, and barium was added to the catalyst. , Magnesium, cesium, and potassium were impregnated to obtain a NOx purification catalyst of this example. As shown in Table 1, this NOx purification catalyst has Pt
= 2.35 g / L, Rh = 0.47 g / L, Ba = 10 g / L in terms of oxide, Mg = 5 g / L in terms of oxide, C
s = 10 g / L in terms of oxide, K = 10 g in terms of oxide
/ L was carried. Pt / Rh = 5/1 (total 2.82 g / L), and CeO 2 was 28.2 g / L in the catalyst.
Pt on L, CeO 2 was 18% of the total Pt amount. Further, the quantitative ratio of CeO 2 contained in the catalyst layer 1 to CeO 2 contained in the catalyst layer 2 was 1: 1.
【0042】(実施例11)実施例3の触媒コート層
1、2を付着させた後、この触媒を酢酸バリウムと酢酸
マグネシウムと酢酸ナトリウムと酢酸セシウムと酢酸カ
リウムの混合水溶液中に浸漬し、触媒中にバリウムとマ
グネシウムとナトリウムとセシウムとカリウムを含浸
し、本例のNOx浄化触媒を得た。表1に示すように、
このNOx浄化触媒には、Pt=2.35g/L、Rh
=0.47g/L、Ba=酸化物換算で10g/L、M
g=酸化物換算で5g/L、Na=酸化物換算で5g/
L、Cs=酸化物換算で10g/L、K=酸化物換算で
10g/Lが担持されていた。また、Pt/Rh=5/
1(合計2.82g/L)、CeO2は触媒中に28.
2g/L、CeO2上のPtは全Pt量の18%であっ
た。また、触媒層1に含まれるCeO2と触媒層2に含
まれるCeO 2の量比は1:1であった。(Example 11) Catalyst coating layer of Example 3
After depositing 1, 2 the catalyst was replaced with barium acetate and acetic acid.
Magnesium, sodium acetate, cesium acetate and potassium acetate
Immersed in a mixed aqueous solution of barium and barium and magnesium in the catalyst.
Impregnated with gnesium, sodium, cesium and potassium
Then, the NOx purification catalyst of this example was obtained. As shown in Table 1,
This NOx purification catalyst has Pt = 2.35 g / L, Rh
= 0.47 g / L, Ba = 10 g / L in terms of oxide, M
g = 5 g / L in terms of oxide, Na = 5 g / L in terms of oxide
L, Cs = 10 g / L in terms of oxide, K = in terms of oxide
10 g / L was carried. Also, Pt / Rh = 5 /
1 (total 2.82 g / L), CeO2In the catalyst.
2g / L, CeO2The upper Pt is 18% of the total Pt amount.
Was. In addition, CeO contained in the catalyst layer 12And catalyst layer 2
CeO 2Was 1: 1.
【0043】(実施例12)実施例3の粉末Bの活性セ
リアを、ZrO2を25%複合化させたCe−Zr複合
酸化物とした以外は実施例3と同様の操作を繰り返し
て、本例のNOx浄化触媒を得た。Example 12 The same operation as in Example 3 was repeated except that the activated ceria of the powder B in Example 3 was a Ce-Zr composite oxide in which ZrO 2 was compounded by 25%. Example NOx purification catalysts were obtained.
【0044】(実施例13)実施例4の粉末Bの活性セ
リアを、全複合酸化物の25%をZrO2(複合化し
た)が占めるCe−Zr複合酸化物とした以外は実施例
4と同様の操作を繰り返して、本例のNOx浄化触媒を
得た。Example 13 Example 4 was repeated except that the activated ceria of the powder B of Example 4 was a Ce—Zr composite oxide in which 25% of the total composite oxide was occupied by ZrO 2 (composite). By repeating the same operation, the NOx purification catalyst of this example was obtained.
【0045】(実施例14)実施例5の粉末Bの活性セ
リアを、ZrO2を25%複合化させたCe−Zr複合
酸化物とした以外は実施例5と同様の操作を繰り返し
て、本例のNOx浄化触媒を得た。表1に本触媒の構成
を示す。Example 14 The same operation as in Example 5 was repeated, except that the activated ceria of the powder B in Example 5 was a Ce-Zr composite oxide in which ZrO 2 was compounded by 25%, to thereby obtain a powder. Example NOx purification catalysts were obtained. Table 1 shows the structure of the present catalyst.
【0046】(実施例15)実施例6の粉末Bの活性セ
リアを、ZrO2を25%複合化させたCe−Zr複合
酸化物とした以外は実施例6と同様の操作を繰り返し
て、本例のNOx浄化触媒を得た。表1に本触媒の構成
を示す。Example 15 The same operation as in Example 6 was repeated, except that the activated ceria of the powder B in Example 6 was a Ce-Zr composite oxide in which ZrO 2 was compounded by 25%. Example NOx purification catalysts were obtained. Table 1 shows the structure of the present catalyst.
【0047】(実施例16)実施例7の粉末Bの活性セ
リアを、ZrO2を25%複合化させたCe−Zr複合
酸化物とした以外は実施例7と同様の操作を繰り返し
て、本例のNOx浄化触媒を得た。表1に本触媒の構成
を示す。Example 16 The same operation as in Example 7 was repeated, except that the activated ceria of the powder B in Example 7 was a Ce-Zr composite oxide in which ZrO 2 was compounded by 25%. Example NOx purification catalysts were obtained. Table 1 shows the structure of the present catalyst.
【0048】(実施例17)実施例8の粉末Bの活性セ
リアを、ZrO2を25%複合化させたCe−Zr複合
酸化物とした以外は実施例8と同様の操作を繰り返し
て、本例のNOx浄化触媒を得た。表1に本触媒の構成
を示す。Example 17 The same operation as in Example 8 was repeated, except that the activated ceria of the powder B in Example 8 was a Ce-Zr composite oxide in which ZrO 2 was compounded by 25%. Example NOx purification catalysts were obtained. Table 1 shows the structure of the present catalyst.
【0049】(実施例18)実施例9の粉末Bの活性セ
リアを、ZrO2を25%複合化させたCe−Zr複合
酸化物とした以外は実施例9と同様の操作を繰り返し
て、本例のNOx浄化触媒を得た。表1に本触媒の構成
を示す。Example 18 The same operation as in Example 9 was repeated except that the activated ceria of the powder B in Example 9 was a Ce-Zr composite oxide in which 25% of ZrO 2 was composited, and Example NOx purification catalysts were obtained. Table 1 shows the structure of the present catalyst.
【0050】(実施例19)実施例10の粉末Bの活性
セリアを、ZrO2を25%複合化させたCe−Zr複
合酸化物とした以外は実施例10と同様の操作を繰り返
して、本例のNOx浄化触媒を得た。表1に本触媒の構
成を示す。Example 19 The same operation as in Example 10 was repeated, except that the activated ceria of the powder B of Example 10 was a Ce-Zr composite oxide in which ZrO 2 was compounded by 25%. Example NOx purification catalysts were obtained. Table 1 shows the structure of the present catalyst.
【0051】(実施例20)実施例11の粉末Bの活性
セリアを、ZrO2を25%複合化させたCe−Zr複
合酸化物とした以外は実施例11と同様の操作を繰り返
して、本例のNOx浄化触媒を得た。表1に本触媒の構
成を示す。Example 20 The same operation as in Example 11 was repeated, except that the activated ceria of the powder B of Example 11 was a Ce-Zr composite oxide in which 25% of ZrO 2 was composited. Example NOx purification catalysts were obtained. Table 1 shows the structure of the present catalyst.
【0052】[0052]
【表1】 [Table 1]
【0053】(比較例1)比表面積が180m2の活性
アルミナに硝酸パラジウム溶液を含浸し、乾燥後空気中
400℃で1時間焼成して、粉末Eを得た。この粉末の
Pd濃度は1.5%であった。比表面積が180m2の
活性アルミナに硝酸パラジウム溶液を含浸し、乾燥後空
気中400℃で1時間焼成して、粉末Fを得た。この粉
末のPd濃度は0.6%であった。比表面積が60m2
の活性セリアに硝酸パラジウム溶液を含浸し、乾燥後空
気中400℃で1時間焼成して、粉末Gを得た。この粉
末のPd濃度は1.5%であった。粉末Fを579.6
g、粉末Gを51.1g、活性アルミナを57.6g、
アルミナゾルを32.4g及び水1080gを磁性ボー
ルミルに投入し、混合粉砕してスラリ液を得た。このス
ラリ液をコーデェライト質モノリス担体(1.7L、4
00セル)に付着させ、空気流にてセル内の余剰のスラ
リを取り除いて130℃で乾燥した後、400℃で1時
間焼成し、コート層200g/Lの触媒層1を得た。粉
末Eを308.9g、粉末Gを67.7g、粉末Cを2
26.8g、活性アルミナを92.9g、アルミナゾル
を23.8g及び水1080gを磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液を触媒
層1上に付着させ、空気流にてセル内の余剰のスラリを
取り除いて130℃で乾燥した後、400℃で1時間焼
成し、コート層150g/Lの触媒層2を得た。この2
層構造の触媒を酢酸バリウムと酢酸マグネシウムの混合
水溶液中に浸漬し、触媒中にバリウムとマグネシウムを
含浸し、本例のNOx浄化触媒を得た。表2に示すよう
に、このNOx浄化触媒には、Pd=2.35g/L、
Rh=0.47g/L、Ba=酸化物換算で20g/
L、Mg=酸化物換算で5g/Lが担持されていた。ま
た、Pd/Rh=5/1(合計2.82g/L)、Ce
O 2は触媒中に28.2g/L、CeO2上のPdは全
Pd量の18%であった。(Comparative Example 1) The specific surface area is 180 m2Activity
After impregnating the alumina with the palladium nitrate solution, dry it in air
The powder was fired at 400 ° C. for 1 hour to obtain a powder E. Of this powder
The Pd concentration was 1.5%. Specific surface area is 180m2of
Activated alumina is impregnated with a palladium nitrate solution, dried and emptied.
The powder was fired at 400 ° C. for 1 hour in the air to obtain a powder F. This powder
The final Pd concentration was 0.6%. Specific surface area is 60m2
Activated ceria is impregnated with a palladium nitrate solution, dried and emptied.
The powder was fired at 400 ° C. for 1 hour in the air to obtain a powder G. This powder
The powdery Pd concentration was 1.5%. 579.6 powder F
g, 51.1 g of powder G, 57.6 g of activated alumina,
Add 32.4 g of alumina sol and 1080 g of water to a magnetic bowl.
And mixed and pulverized to obtain a slurry liquid. This
The lary liquor was transferred to a cordierite monolithic carrier (1.7 L, 4 L).
00 cell) and the excess slurry in the cell
After drying at 130 ° C, remove at 400 ° C for 1 hour
During the firing, a catalyst layer 1 having a coat layer of 200 g / L was obtained. powder
Powder E: 308.9 g, Powder G: 67.7 g, Powder C: 2
26.8 g, activated alumina 92.9 g, alumina sol
23.8 g and 1080 g of water into a magnetic ball mill
Then, they were mixed and pulverized to obtain a slurry liquid. This slurry solution is used as a catalyst
The excess slurry in the cell is deposited on the layer 1 by air flow.
After removing and drying at 130 ° C, baking at 400 ° C for 1 hour
Thus, a catalyst layer 2 having a coat layer of 150 g / L was obtained. This 2
Mixing layered catalyst with barium acetate and magnesium acetate
Barium and magnesium in the catalyst
Impregnation was performed to obtain a NOx purification catalyst of this example. As shown in Table 2
In this NOx purification catalyst, Pd = 2.35 g / L,
Rh = 0.47 g / L, Ba = 20 g / oxide equivalent
L, Mg = 5 g / L in oxide conversion was carried. Ma
Pd / Rh = 5/1 (total 2.82 g / L), Ce
O 2Is 28.2 g / L in the catalyst, CeO2Pd above is all
It was 18% of the Pd amount.
【0054】(比較例2)比表面積が180m2の活性
アルミナにジニトロジアミン白金溶液を含浸し、乾燥後
空気中400℃で1時間焼成して、粉末Hを得た。この
粉末のPt濃度は1.75%であった。比表面積が18
0m2の活性アルミナにジニトロジアミン白金溶液を含
浸し、乾燥後空気中400℃で1時間焼成して、粉末I
を得た。この粉末のPt濃度は0.7%であった。比表
面積が60m2の活性セリアにジニトロジアミン白金溶
液を含浸し、乾燥後空気中400℃で1時間焼成して、
粉末Jを得た。この粉末のPt濃度は0.33%であっ
た。粉末Iを579.6g、粉末Jを51.1g、活性
アルミナを57.6g、アルミナゾルを32.4g及び
水1080gを磁性ボールミルに投入し、混合粉砕して
スラリ液を得た。このスラリ液をコーデェライト質モノ
リス担体(1.7L、400セル)に付着させ、空気流
にてセル内の余剰のスラリを取り除いて130℃で乾燥
した後、400℃で1時間焼成し、コート層200g/
Lの触媒層1を得た。粉末Hを308.9g、粉末Jを
67.7g、粉末Cを226.8g、活性アルミナを9
2.9g、アルミナゾルを23.8g及び水1080g
を磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液を触媒層1上に付着させ、空気流にて
セル内の余剰のスラリを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、コート層150g/Lの
触媒層2を得た。この2層構造の触媒を酢酸バリウムと
酢酸マグネシウムの混合水溶液中に浸漬し、触媒中にバ
リウムとマグネシウムを含浸し、本例のNOx浄化触媒
を得た。表2に示すように、このNOx浄化触媒には、
Pt=2.35g/L、Rh=0.47g/L、Ba=
酸化物換算で20g/L、Mg=酸化物換算で5g/L
が担持されていた。また、Pt/Rh=5/1(合計
2.82g/L)、CeO 2は触媒中に28.2g/
L、CeO2上のPtは全Pt量の4%であった。(Comparative Example 2) The specific surface area is 180 m2Activity
After impregnating alumina with dinitrodiamine platinum solution and drying
The powder was fired at 400 ° C. for 1 hour in the air to obtain a powder H. this
The Pt concentration of the powder was 1.75%. Specific surface area is 18
0m2Of activated alumina containing dinitrodiamine platinum solution
After immersion, drying and baking in air at 400 ° C. for 1 hour, powder I
I got The Pt concentration of this powder was 0.7%. Ratio table
Area is 60m2Of dinitrodiamine platinum in activated ceria
Impregnated with the liquid, dried and fired in air at 400 ° C. for 1 hour,
Powder J was obtained. The Pt concentration of this powder was 0.33%.
Was. 579.6 g of powder I, 51.1 g of powder J, activity
57.6 g of alumina, 32.4 g of alumina sol and
Charge 1080g of water into a magnetic ball mill, mix and pulverize
A slurry was obtained. This slurry solution is used for cordierite
Attached to a squirrel carrier (1.7 L, 400 cells), air flow
Remove excess slurry in the cell at and dry at 130 ° C
Then, it is baked at 400 ° C. for 1 hour, and the coating layer 200 g /
Thus, L catalyst layer 1 was obtained. 308.9 g of powder H and powder J
67.7 g, powder C: 226.8 g, activated alumina: 9
2.9 g, 23.8 g of alumina sol and 1080 g of water
Into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid.
Was. This slurry liquid is adhered on the catalyst layer 1 and is air-flowed.
Excess slurry in the cell was removed and dried at 130 ° C
After that, it is baked at 400 ° C. for 1 hour to obtain a coat layer of 150 g / L.
Catalyst layer 2 was obtained. This two-layer catalyst is called barium acetate.
Immerse in a mixed aqueous solution of magnesium acetate, and
NOx purification catalyst of this example impregnated with lithium and magnesium
I got As shown in Table 2, this NOx purification catalyst includes:
Pt = 2.35 g / L, Rh = 0.47 g / L, Ba =
20 g / L in terms of oxide, Mg = 5 g / L in terms of oxide
Was carried. Also, Pt / Rh = 5/1 (total
2.82 g / L), CeO 2Is 28.2 g /
L, CeO2The upper Pt was 4% of the total Pt amount.
【0055】(比較例3)比表面積が180m2の活性
アルミナにジニトロジアミン白金溶液を含浸し、乾燥後
空気中400℃で1時間焼成して、粉末Kを得た。この
粉末のPt濃度は0.89%であった。比表面積が18
0m2の活性アルミナにジニトロジアミン白金溶液を含
浸し、乾燥後空気中400℃で1時間焼成して、粉末L
を得た。この粉末のPt濃度は0.36%であった。比
表面積が60m2の活性セリアにジニトロジアミン白金
溶液を含浸し、乾燥後空気中400℃で1時間焼成し
て、粉末Mを得た。この粉末のPt濃度は4.3%であ
った。粉末Lを579.6g、粉末Mを51.1g、活
性アルミナを57.6g、アルミナゾルを32.4g及
び水1080gを磁性ボールミルに投入し、混合粉砕し
てスラリ液を得た。このスラリ液をコーデェライト質モ
ノリス担体(1.7L、400セル)に付着させ、空気
流にてセル内の余剰のスラリを取り除いて130℃で乾
燥した後、400℃で1時間焼成し、コート層200g
/Lの触媒層1を得た。粉末Kを308.9g、粉末M
を67.7g、粉末Cを226.8g、活性アルミナを
92.9g、アルミナゾルを23.8g及び水1080
gを磁性ボールミルに投入し、混合粉砕してスラリ液を
得た。このスラリ液を触媒層1上に付着させ、空気流に
てセル内の余剰のスラリを取り除いて130℃で乾燥し
た後、400℃で1時間焼成し、コート層150g/L
の触媒層2を得た。この2層構造の触媒を酢酸バリウム
と酢酸マグネシウムの混合水溶液中に浸漬し、触媒中に
バリウムとマグネシウムを含浸し、本例のNOx浄化触
媒を得た。表2に示すように、このNOx浄化触媒に
は、Pt=2.35g/L、Rh=0.47g/L、B
a=酸化物換算で20g/L、Mg=酸化物換算で5g
/Lが担持されていた。また、Pt/Rh=5/1(合
計2.82g/L)、CeO 2は触媒中に28.2g/
L、CeO2上のPtは全Pt量の51%であった。(Comparative Example 3) The specific surface area is 180 m2Activity
After impregnating alumina with dinitrodiamine platinum solution and drying
The powder was fired at 400 ° C. for 1 hour in the air to obtain a powder K. this
The Pt concentration of the powder was 0.89%. Specific surface area is 18
0m2Of activated alumina containing dinitrodiamine platinum solution
After immersion, drying and firing in air at 400 ° C. for 1 hour, powder L
I got The Pt concentration of this powder was 0.36%. ratio
Surface area is 60m2Activated ceria on dinitrodiamine platinum
Impregnated with the solution, dried and fired in air at 400 ° C for 1 hour
Thus, powder M was obtained. The Pt concentration of this powder was 4.3%.
Was. 579.6 g of powder L, 51.1 g of powder M,
57.6 g of reactive alumina and 32.4 g of alumina sol
And 1080 g of water into a magnetic ball mill,
To obtain a slurry. This slurry solution is
Attached to Norris carrier (1.7L, 400 cells), air
Remove excess slurry in the cell by flow and dry at 130 ° C.
After drying, baking at 400 ° C for 1 hour, 200 g of coating layer
/ L of catalyst layer 1 was obtained. 308.9 g of powder K, powder M
67.7 g, powder C 226.8 g, activated alumina
92.9 g, 23.8 g of alumina sol and 1080 of water
g into a magnetic ball mill, mix and pulverize
Obtained. This slurry liquid is deposited on the catalyst layer 1 and is converted into an air stream.
To remove excess slurry from the cell and dry at 130 ° C.
After that, it is baked at 400 ° C. for 1 hour, and the coating layer is 150 g / L.
Was obtained. This two-layer catalyst is barium acetate
Immersed in a mixed aqueous solution of
Impregnated with barium and magnesium, NOx purification catalyst of this example
A medium was obtained. As shown in Table 2, this NOx purification catalyst
Is Pt = 2.35 g / L, Rh = 0.47 g / L, B
a = 20 g / L in terms of oxide, Mg = 5 g in terms of oxide
/ L was carried. Also, Pt / Rh = 5/1 (total
2.82 g / L), CeO 2Is 28.2 g /
L, CeO2The upper Pt was 51% of the total Pt amount.
【0056】(比較例4)比表面積が60m2の活性セ
リアにジニトロジアミン白金溶液を含浸し、乾燥後空気
中400℃で1時間焼成して、粉末Nを得た。この粉末
のPt濃度は11.8%であった。粉末Dを634.7
g、粉末Nを3.6g、活性アルミナを49.7g、ア
ルミナゾルを32.4g及び水1080gを磁性ボール
ミルに投入し、混合粉砕してスラリ液を得た。このスラ
リ液をコーデェライト質モノリス担体(1.7L、40
0セル)に付着させ、空気流にてセル内の余剰のスラリ
を取り除いて130℃で乾燥した後、400℃で1時間
焼成し、コート層200g/Lの触媒層1を得た。粉末
Aを338.4g、粉末Nを4.8g、粉末Cを22
6.8g、活性アルミナを150.2g、アルミナゾル
を23.8g及び水1080gを磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液を触媒
層1上に付着させ、空気流にてセル内の余剰のスラリを
取り除いて130℃で乾燥した後、400℃で1時間焼
成し、コート層150g/Lの触媒層2を得た。この2
層構造の触媒を酢酸バリウムと酢酸マグネシウムの混合
水溶液中に浸漬し、触媒中にバリウムとマグネシウムを
含浸し、本例のNOx浄化触媒を得た。表2に示すよう
に、このNOx浄化触媒には、Pt=2.35g/L、
Rh=0.47g/L、Ba=酸化物換算で20g/
L、Mg=酸化物換算で5g/Lが担持されていた。ま
た、Pt/Rh=5/1(合計2.82g/L)、Ce
O 2は触媒中に2g/L、CeO2上のPtは全Pt量
の10%であった。(Comparative Example 4) The specific surface area is 60 m2Activated
After impregnating the rear with a dinitrodiamine platinum solution and drying, air
The powder was calcined at 400 ° C. for 1 hour to obtain powder N. This powder
Was 11.8%. 634.7 powder D
g, powder N: 3.6 g, activated alumina: 49.7 g,
32.4 g of luminazol and 1080 g of water in magnetic balls
It was put into a mill and mixed and pulverized to obtain a slurry liquid. This sla
The solution was converted to a cordierite monolithic carrier (1.7 L, 40
0 cell) and the excess slurry in the cell by air flow.
Removed and dried at 130 ° C, then at 400 ° C for 1 hour
By calcining, a catalyst layer 1 having a coat layer of 200 g / L was obtained. Powder
338.4 g of A, 4.8 g of powder N, and 22 of powder C
6.8 g, activated alumina 150.2 g, alumina sol
23.8 g and 1080 g of water into a magnetic ball mill
Then, they were mixed and pulverized to obtain a slurry liquid. This slurry solution is used as a catalyst
The excess slurry in the cell is deposited on the layer 1 by air flow.
After removing and drying at 130 ° C, baking at 400 ° C for 1 hour
Thus, a catalyst layer 2 having a coat layer of 150 g / L was obtained. This 2
Mixing layered catalyst with barium acetate and magnesium acetate
Barium and magnesium in the catalyst
Impregnation was performed to obtain a NOx purification catalyst of this example. As shown in Table 2
In this NOx purification catalyst, Pt = 2.35 g / L,
Rh = 0.47 g / L, Ba = 20 g / oxide equivalent
L, Mg = 5 g / L in oxide conversion was carried. Ma
Pt / Rh = 5/1 (total 2.82 g / L), Ce
O 2Is 2 g / L in the catalyst, CeO2The upper Pt is the total Pt amount
Was 10%.
【0057】(比較例5)比表面積が180m2の活性
アルミナにジニトロジアミン白金溶液を含浸し、乾燥後
空気中400℃で1時間焼成して、粉末Oを得た。この
粉末のPt濃度は2.0%であった。比表面積が60m
2の活性セリアにジニトロジアミン白金溶液を含浸し、
乾燥後空気中400℃で1時間焼成して、粉末Pを得
た。この粉末のPt濃度は0.47%であった。粉末I
を483.5g、粉末Pを181.8g、活性アルミナ
を22.7g、アルミナゾルを32.4g及び水108
0gを磁性ボールミルに投入し、混合粉砕してスラリ液
を得た。このスラリ液をコーデェライト質モノリス担体
(1.7L、400セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、コート層200g/Lの触媒
層1を得た。粉末Oを225.6g、粉末Pを242.
4g、粉末Cを226.8g、活性アルミナを1.4
g、アルミナゾルを23.8g及び水1080gを磁性
ボールミルに投入し、混合粉砕してスラリ液を得た。こ
のスラリ液を触媒層1上に付着させ、空気流にてセル内
の余剰のスラリを取り除いて130℃で乾燥した後、4
00℃で1時間焼成し、コート層150g/Lの触媒層
2を得た。この2層構造の触媒を酢酸バリウムと酢酸マ
グネシウムの混合水溶液中に浸漬し、触媒中にバリウム
とマグネシウムを含浸し、本例のNOx浄化触媒を得
た。表2に示すように、このNOx浄化触媒には、Pt
=2.35g/L、Rh=0.47g/L、Ba=酸化
物換算で20g/L、Mg=酸化物換算で5g/Lが担
持されていた。また、Pt/Rh=5/1(合計2.8
2g/L)、CeO 2は触媒中に101g/L、CeO
2上のPtは全Pt量の20%であった。(Comparative Example 5) The specific surface area is 180 m2Activity
After impregnating alumina with dinitrodiamine platinum solution and drying
The powder was fired at 400 ° C. for 1 hour in the air to obtain powder O. this
The Pt concentration of the powder was 2.0%. Specific surface area is 60m
2The active ceria is impregnated with a dinitrodiamine platinum solution,
After drying, the powder is fired in air at 400 ° C. for 1 hour to obtain a powder P.
Was. The Pt concentration of this powder was 0.47%. Powder I
483.5 g, powder P 181.8 g, activated alumina
22.7 g, alumina sol 32.4 g and water 108
0g into a magnetic ball mill, mix and pulverize,
I got This slurry solution is transferred to a cordierite monolithic carrier.
(1.7L, 400 cells)
After removing excess slurry inside and drying at 130 ° C,
Baking at 400 ° C for 1 hour, 200 g / L of coating layer catalyst
Layer 1 was obtained. 225.6 g of powder O and 242.
4g, 226.8g of powder C, and 1.4 of activated alumina
g, 23.8 g of alumina sol and 1080 g of water magnetically
The mixture was put into a ball mill and mixed and pulverized to obtain a slurry liquid. This
Of the slurry liquid is deposited on the catalyst layer 1, and the inside of the cell is
After removing excess slurry and drying at 130 ° C, 4
Bake at 00 ° C for 1 hour, coat layer 150g / L catalyst layer
2 was obtained. This two-layer catalyst is formed by using barium acetate and
Immerse in a mixed aqueous solution of gnesium and add barium to the catalyst.
And magnesium to obtain a NOx purification catalyst of this example
Was. As shown in Table 2, this NOx purification catalyst has Pt
= 2.35 g / L, Rh = 0.47 g / L, Ba = oxidized
20g / L in material conversion, 5g / L in Mg = oxide conversion
Was held. Pt / Rh = 5/1 (total 2.8)
2g / L), CeO 2Is 101 g / L in the catalyst, CeO
2The upper Pt was 20% of the total Pt amount.
【0058】(比較例6)比表面積が180m2の活性
アルミナにジニトロジアミン白金溶液を含浸し、乾燥後
空気中400℃で1時間焼成して、粉末Qを得た。この
粉末のPt濃度は0.69%であった。比表面積が18
0m2の活性アルミナにジニトロジアミン白金溶液を含
浸し、乾燥後空気中400℃で1時間焼成して、粉末R
を得た。この粉末のPt濃度は0.27%であった。比
表面積が60m2の活性セリアにジニトロジアミン白金
溶液を含浸し、乾燥後空気中400℃で1時間焼成し
て、粉末Sを得た。この粉末のPt濃度は0.69%で
あった。比表面積が180m2の活性アルミナに硝酸R
h溶液を含浸し、乾燥後空気中400℃で1時間焼成し
て、粉末Tを得た。この粉末のRh濃度は0.47%で
あった。粉末Rを579.6g、粉末Sを51.1g、
活性アルミナを57.6g、アルミナゾルを32.4g
及び水1080gを磁性ボールミルに投入し、混合粉砕
してスラリ液を得た。このスラリ液をコーデェライト質
モノリス担体(1.7L、400セル)に付着させ、空
気流にてセル内の余剰のスラリを取り除いて130℃で
乾燥した後、400℃で1時間焼成し、コート層200
g/Lの触媒層1を得た。粉末Qを308.9g、粉末
Sを67.7g、粉末Tを226.8g、活性アルミナ
を92.9g、アルミナゾルを23.8g及び水108
0gを磁性ボールミルに投入し、混合粉砕してスラリ液
を得た。このスラリ液を触媒層1上に付着させ、空気流
にてセル内の余剰のスラリを取り除いて130℃で乾燥
した後、400℃で1時間焼成し、コート層150g/
Lの触媒層2を得た。この2層構造の触媒を酢酸バリウ
ムと酢酸マグネシウムの混合水溶液中に浸漬し、触媒中
にバリウムとマグネシウムを含浸し、本例のNOx浄化
触媒を得た。表2に示すように、このNOx浄化触媒に
は、Pt=1.08g/L、Rh=0.22g/L、B
a=酸化物換算で20g/L、Mg=酸化物換算で5g
/Lが担持されていた。また、Pt/Rh=5/1(合
計1.3g/L)、CeO2は触媒中に28.2g/
L、CeO2上のPtは全Pt量の18%であった。Comparative Example 6 A powder of dinitrodiamine platinum was impregnated into activated alumina having a specific surface area of 180 m 2 , dried and calcined at 400 ° C. for 1 hour in the air to obtain a powder Q. The Pt concentration of this powder was 0.69%. Specific surface area is 18
0 m 2 of activated alumina was impregnated with a dinitrodiamine platinum solution, dried and calcined at 400 ° C. for 1 hour in air to obtain a powder R.
I got The Pt concentration of this powder was 0.27%. Activated ceria having a specific surface area of 60 m 2 was impregnated with a dinitrodiamine platinum solution, dried and calcined at 400 ° C. for 1 hour in the air to obtain a powder S. The Pt concentration of this powder was 0.69%. Activated alumina with a specific surface area of 180 m 2
h, impregnated with the solution, dried and calcined at 400 ° C. for 1 hour in the air to obtain a powder T. The Rh concentration of this powder was 0.47%. 579.6 g of powder R, 51.1 g of powder S,
57.6 g of activated alumina and 32.4 g of alumina sol
And 1080 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was adhered to a cordierite-based monolithic carrier (1.7 L, 400 cells), excess slurry in the cells was removed by an air stream, dried at 130 ° C., and baked at 400 ° C. for 1 hour. Layer 200
g / L of the catalyst layer 1 was obtained. 308.9 g of powder Q, 67.7 g of powder S, 226.8 g of powder T, 92.9 g of activated alumina, 23.8 g of alumina sol and water 108
0 g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered on the catalyst layer 1, the excess slurry in the cell was removed by an air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and baked at 150 g / coat layer.
Thus, L catalyst layer 2 was obtained. The two-layer catalyst was immersed in a mixed aqueous solution of barium acetate and magnesium acetate, and the catalyst was impregnated with barium and magnesium to obtain a NOx purification catalyst of this example. As shown in Table 2, this NOx purification catalyst has Pt = 1.08 g / L, Rh = 0.22 g / L, B
a = 20 g / L in terms of oxide, Mg = 5 g in terms of oxide
/ L was carried. Pt / Rh = 5/1 (total 1.3 g / L), CeO 2 was 28.2 g / L in the catalyst.
Pt on L, CeO 2 was 18% of the total Pt amount.
【0059】(比較例7)粉末Dを579.6g、粉末
Bを43.9g、活性アルミナを64.1g、アルミナ
ゾルを32.4g及び水1080gを磁性ボールミルに
投入し、混合粉砕してスラリ液を得た。このスラリ液を
コーデェライト質モノリス担体(1.7L、400セ
ル)に付着させ、空気流にてセル内の余剰のスラリを取
り除いて130℃で乾燥した後、400℃で1時間焼成
し、コート層200g/Lの触媒層1を得た。粉末Aを
308.9g、粉末Bを76.8g、粉末Cを83.7
g、活性アルミナを153.3g、アルミナゾルを2
3.8g、水1080gを磁性ボールミルに投入し、混
合粉砕してスラリ液を得た。このスラリ液を触媒層1上
に付着させ、空気流にてセル内の余剰のスラリを取り除
いて130℃で乾燥した後、400℃で1時間焼成し、
コート層150g/Lの触媒層2を得た。この2層構造
の触媒を酢酸バリウムと酢酸マグネシウムの混合水溶液
中に浸漬し、触媒中にバリウムとマグネシウムを含浸
し、本例のNOx浄化触媒を得た。表1に示すように、
このNOx浄化触媒には、Pt=2.35g/L、Rh
=0.47g/L、Ba=酸化物換算で20g/L、M
g=酸化物換算で5g/Lが担持されていた。また、P
t/Rh=5/1(合計2.82g/L)、CeO 2は
触媒中に28.2g/L、CeO2上のPtは全Pt量
の18%であった。また、触媒層1に含まれるCeO2
と触媒層2に含まれるCeO2の量比は1:1.3であ
った。Comparative Example 7 579.6 g of powder D, powder
B: 43.9 g, activated alumina: 64.1 g, alumina
32.4 g of sol and 1080 g of water in a magnetic ball mill
It was charged and mixed and pulverized to obtain a slurry liquid. This slurry liquid
Cordierite monolithic carrier (1.7 L, 400 cells)
To remove excess slurry in the cell by airflow.
After drying at 130 ° C, baking at 400 ° C for 1 hour
Thus, a catalyst layer 1 having a coat layer of 200 g / L was obtained. Powder A
308.9 g, powder B 76.8 g, powder C 83.7
g, activated alumina 153.3 g, alumina sol 2
3.8 g and 1080 g of water are put into a magnetic ball mill and mixed.
The mixture was ground to obtain a slurry. This slurry solution is applied on the catalyst layer 1
To remove excess slurry in the cell by air flow
And dried at 130 ° C., baked at 400 ° C. for 1 hour,
A catalyst layer 2 having a coat layer of 150 g / L was obtained. This two-layer structure
Mixed aqueous solution of barium acetate and magnesium acetate
Barium and magnesium in the catalyst
Then, the NOx purification catalyst of this example was obtained. As shown in Table 1,
This NOx purification catalyst has Pt = 2.35 g / L, Rh
= 0.47 g / L, Ba = 20 g / L in terms of oxide, M
g = 5 g / L in terms of oxide was carried. Also, P
t / Rh = 5/1 (total 2.82 g / L), CeO 2Is
28.2 g / L in catalyst, CeO2The upper Pt is the total Pt amount
18%. In addition, CeO contained in the catalyst layer 12
And CeO contained in the catalyst layer 22Is 1: 1.3.
Was.
【0060】(比較例8)含浸するBa量を酸化物換算
で4g/L、Mg量を酸化物換算で0.9g/Lとした
以外は実施例3と同様の操作を繰り返して、本例のNO
x浄化触媒を得た。表2に本触媒の構成を示す。Comparative Example 8 The same operation as in Example 3 was repeated except that the amount of Ba to be impregnated was changed to 4 g / L in terms of oxide and the amount of Mg was changed to 0.9 g / L in terms of oxide. NO
x purification catalyst was obtained. Table 2 shows the structure of the catalyst.
【0061】(比較例9)含浸するBa量を酸化物換算
で31g/L、Mg量を酸化物換算で11g/Lとした
以外は実施例3と同様の操作を繰り返して、本例のNO
x浄化触媒を得た。表2に本触媒の構成を示す。Comparative Example 9 The same operation as in Example 3 was repeated except that the amount of Ba to be impregnated was 31 g / L in terms of oxide and the amount of Mg was 11 g / L in terms of oxide.
x purification catalyst was obtained. Table 2 shows the structure of the catalyst.
【0062】(比較例10)含浸するBa量を酸化物換
算で4g/L、Mg量を酸化物換算で0.9g/L、N
a量を酸化物換算で0.4g/Lとした以外は実施例5
と同様の操作を繰り返して、本例のNOx浄化触媒を得
た。表2に本触媒の構成を示す。Comparative Example 10 The amount of Ba to be impregnated was 4 g / L in terms of oxide, the amount of Mg was 0.9 g / L in terms of oxide, and N
Example 5 except that the amount of a was 0.4 g / L in terms of oxide.
By repeating the same operation as described above, the NOx purification catalyst of this example was obtained. Table 2 shows the structure of the catalyst.
【0063】(比較例11)含浸するBa量を酸化物換
算で31g/L、Mg量を酸化物換算で11g/L、N
a量を酸化物換算で21g/L とした以外は実施例5
と同様の操作を繰り返して、本例のNOx浄化触媒を得
た。表2に本触媒の構成を示す。(Comparative Example 11) The amount of Ba to be impregnated was 31 g / L in terms of oxide, the amount of Mg was 11 g / L in terms of oxide, and N
Example 5 except that the amount of a was 21 g / L in terms of oxide.
By repeating the same operation as described above, the NOx purification catalyst of this example was obtained. Table 2 shows the structure of the catalyst.
【0064】(比較例12)含浸するBa量を酸化物換
算で4g/L、Mg量を酸化物換算で0.9g/L、C
s量を酸化物換算で4g/Lとした以外は実施例6と同
様の操作を繰り返して、本例のNOx浄化触媒を得た。
表2に本触媒の構成を示す。Comparative Example 12 The amount of Ba to be impregnated was 4 g / L in terms of oxide, the amount of Mg was 0.9 g / L in terms of oxide, and
The same operation as in Example 6 was repeated, except that the amount of s was 4 g / L in terms of oxide, to obtain a NOx purification catalyst of this example.
Table 2 shows the structure of the catalyst.
【0065】(比較例13)含浸するBa量を酸化物換
算で31g/L、Mg量を酸化物換算で11g/L、C
s量を酸化物換算で31g/Lとした以外は実施例6と
同様の操作を繰り返して、本例のNOx浄化触媒を得
た。表2に本触媒の構成を示す。Comparative Example 13 The amount of Ba to be impregnated was 31 g / L in terms of oxide, the amount of Mg was 11 g / L in terms of oxide, and C
The same operation as in Example 6 was repeated, except that the amount of s was changed to 31 g / L in terms of oxide, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0066】(比較例14)含浸するBa量を酸化物換
算で4g/L、Mg量を酸化物換算で0.9g/L、K
量を酸化物換算で0.4g/Lとした以外は実施例7と
同様の操作を繰り返して、本例のNOx浄化触媒を得
た。表2に本触媒の構成を示す。Comparative Example 14 The amount of Ba to be impregnated was 4 g / L in terms of oxide, the amount of Mg was 0.9 g / L in terms of oxide, and K
The same operation as in Example 7 was repeated, except that the amount was 0.4 g / L in terms of oxide, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0067】(比較例15)含浸するBa量を酸化物換
算で31g/L、Mg量を酸化物換算で11g/L、K
量を酸化物換算で31g/Lとした以外は実施例7と同
様の操作を繰り返して、本例のNOx浄化触媒を得た。
表2に本触媒の構成を示す。(Comparative Example 15) The amount of Ba to be impregnated was 31 g / L in terms of oxide, the amount of Mg was 11 g / L in terms of oxide, and K
The same operation as in Example 7 was repeated, except that the amount was 31 g / L in terms of oxide, to obtain a NOx purification catalyst of this example.
Table 2 shows the structure of the catalyst.
【0068】(比較例16)含浸するBa量を酸化物換
算で4g/L、Mg量を酸化物換算で0.9g/L、N
a量を酸化物換算で0.4g/L、Cs量を酸化物換算
で4g/Lとした以外は実施例8と同様の操作を繰り返
して、本例のNOx浄化触媒を得た。表2に本触媒の構
成を示す。Comparative Example 16 The amount of Ba to be impregnated was 4 g / L in terms of oxide, the amount of Mg was 0.9 g / L in terms of oxide, and N
The same operation as in Example 8 was repeated, except that the amount a was changed to 0.4 g / L in terms of oxide and the amount of Cs was changed to 4 g / L in terms of oxide, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0069】(比較例17)含浸するBa量を酸化物換
算で31g/L、Mg量を酸化物換算で11g/L、N
a量を酸化物換算で21g/L、Cs量を酸化物換算で
31g/Lとした以外は実施例8と同様の操作を繰り返
して、本例のNOx浄化触媒を得た。表2に本触媒の構
成を示す。Comparative Example 17 The amount of Ba to be impregnated was 31 g / L in terms of oxide, the amount of Mg was 11 g / L in terms of oxide, and N
The same operation as in Example 8 was repeated, except that the amount of a was 21 g / L in terms of oxide and the amount of Cs was 31 g / L in terms of oxide, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0070】(比較例18)含浸するBa量を酸化物換
算で4g/L、Mg量を酸化物換算で0.9g/L、N
a量を酸化物換算で0.4g/L、K量を酸化物換算で
0.4g/Lとした以外は実施例9と同様の操作を繰り
返して、本例のNOx浄化触媒を得た。表2に本触媒の
構成を示す。Comparative Example 18 The amount of Ba to be impregnated was 4 g / L in terms of oxide, the amount of Mg was 0.9 g / L in terms of oxide, and N
The same operation as in Example 9 was repeated, except that the amount a was 0.4 g / L in terms of oxide and the amount of K was 0.4 g / L in terms of oxide, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0071】(比較例19)含浸するBa量を酸化物換
算で31g/L、Mg量を酸化物換算で11g/L、
Na量を酸化物換算で21g/L、K量を酸化物換算で
31g/Lとした以外は実施例9と同様の操作を繰り返
して、本例のNOx浄化触媒を得た。表2に本触媒の構
成を示す。(Comparative Example 19) The amount of Ba to be impregnated was 31 g / L in terms of oxide, and the amount of Mg was 11 g / L in terms of oxide.
The same operation as in Example 9 was repeated, except that the Na amount was 21 g / L in terms of oxide and the K amount was 31 g / L in terms of oxide, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0072】(比較例20)含浸するBa量を酸化物換
算で4g/L、Mg量を酸化物換算で0.9g/L、C
s量を酸化物換算で4g/L、K量を酸化物換算で0.
4g/Lとした以外は実施例10と同様の操作を繰り返
して、本例のNOx浄化触媒を得た。表2に本触媒の構
成を示す。Comparative Example 20 The amount of Ba to be impregnated was 4 g / L in terms of oxide, the amount of Mg was 0.9 g / L in terms of oxide, and
The amount of s is 4 g / L in terms of oxide, and the amount of K is in the range of 0.
The same operation as in Example 10 was repeated except that the amount was set to 4 g / L, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0073】(比較例21)含浸するBa量を酸化物換
算で31g/L、Mg量を酸化物換算で11g/L、C
s量を酸化物換算で31g/L、K量を酸化物換算で3
1g/Lとした以外は実施例10と同様の操作を繰り返
して、本例のNOx浄化触媒を得た。表2に本触媒の構
成を示す。(Comparative Example 21) The amount of Ba to be impregnated was 31 g / L in terms of oxide, the amount of Mg was 11 g / L in terms of oxide, and C
The amount of s was 31 g / L in terms of oxide, and the amount of K was 3 in terms of oxide.
The same operation as in Example 10 was repeated except that the amount was 1 g / L, to obtain a NOx purification catalyst of this example. Table 2 shows the structure of the catalyst.
【0074】(比較例22)含浸するBa量を酸化物換
算で4g/L、Mg量を酸化物換算で0.9g/L、N
a量を酸化物換算で0.4g/L、Cs量を酸化物換算
で4g/L、K量を酸化物換算で0.4g/Lとした以
外は実施例11と同様の操作を繰り返して、本例のNO
x浄化触媒を得た。表2に本触媒の構成を示す。Comparative Example 22 The amount of Ba impregnated was 4 g / L in terms of oxide, the amount of Mg was 0.9 g / L in terms of oxide, and N
The same operation as in Example 11 was repeated except that the amount of a was 0.4 g / L in terms of oxide, the amount of Cs was 4 g / L in terms of oxide, and the amount of K was 0.4 g / L in terms of oxide. , NO in this example
x purification catalyst was obtained. Table 2 shows the structure of the catalyst.
【0075】(比較例23)含浸するBa量を酸化物換
算で31g/L、Mg量を酸化物換算で11g/L、N
a量を酸化物換算で21g/L、Cs量を酸化物換算で
31g/L、K量を酸化物換算で31g/Lとした以外
は実施例11と同様の操作を繰り返して、本例のNOx
浄化触媒を得た。表2に本触媒の構成を示す。(Comparative Example 23) The amount of Ba to be impregnated was 31 g / L in terms of oxide, the amount of Mg was 11 g / L in terms of oxide, and N
The same operation as in Example 11 was repeated except that the amount of a was 21 g / L in terms of oxide, the amount of Cs was 31 g / L in terms of oxide, and the amount of K was 31 g / L in terms of oxide. NOx
A purification catalyst was obtained. Table 2 shows the structure of the catalyst.
【0076】[0076]
【表2】 [Table 2]
【0077】[評価試験] ・耐久方法 排気量4400ccのエンジンの排気系に触媒を装着
し、国内レギュラーガソリンを使用し、触媒入口温度を
700℃とし、50時間運転した。その後、排気量20
00ccのエンジンの排気系に触媒を装着し、S被毒処
理(S濃度300ppmガソリンを使用し、触媒入口温
度を350℃とし、10hr運転)を行った後、S脱離
処理(国内レギュラーガソリンを使用し、触媒入口温度
を650℃とし、5分間運転、A/F=14.2)を行
った。 ・評価方法 排気量2000ccのエンジンの排気系に触媒を装着し
て、700℃の50時間耐久後、S被毒処理後、S脱離
処理後の各時点で、10−15モードを走行し、モード
の転化率を求めた。なお、表3及び表4に記載する回復
率は、以下の式 回復率(%)=(S脱離処理後のNOx転化率/耐久後
のNOx転化率)×100 より求めた。また、モード中、定常走行時はリーン(A
/F=25)、減速時は燃料カット、加速時は、リッチ
(A/F=11.0)→ストイキ(A/F=14.7)
という運転を行った。ここで「10−15モード」は、
国土交通省の定める新型自動車試験方法(TRIAS:
Traffic satety andnuisanc
e Research Institute’s au
tomobile type Approval te
st Standard)に規定されている方式であ
る。なお、触媒入口温度は300℃であった。[Evaluation Test] Endurance Method A catalyst was attached to the exhaust system of a 4400 cc displacement engine, regular domestic gasoline was used, the catalyst inlet temperature was set to 700 ° C., and operation was performed for 50 hours. After that, the displacement 20
After installing a catalyst in the exhaust system of a 00cc engine and performing S poisoning (using 300 ppm gasoline with S concentration, setting the catalyst inlet temperature to 350 ° C and operating for 10 hours), desorbing S (using regular domestic gasoline) Used, the catalyst inlet temperature was set to 650 ° C., and the operation was performed for 5 minutes, A / F = 14.2).・ Evaluation method A catalyst was mounted on the exhaust system of an engine with a displacement of 2000 cc. After endurance for 50 hours at 700 ° C., after S poisoning, and after S desorption, the vehicle traveled in the 10-15 mode. The mode conversion was determined. The recovery rates shown in Tables 3 and 4 were determined by the following formula: recovery rate (%) = (NOx conversion rate after S desorption treatment / NOx conversion rate after endurance) × 100. In the mode, when the vehicle is running steadily, lean (A
/ F = 25), fuel cut during deceleration, rich during acceleration (A / F = 11.0) → stoichiometric (A / F = 14.7)
Driving. Here, "10-15 mode"
New vehicle test method specified by the Ministry of Land, Infrastructure, Transport and Tourism (TRIAS:
Traffic satellite andnuisanc
e Research Institute's au
mobile type Approval te
st Standard). The catalyst inlet temperature was 300 ° C.
【0078】[0078]
【表3】 [Table 3]
【0079】[0079]
【表4】 [Table 4]
【0080】表1〜4に示すように、実施例3と比較例
1の結果から、触媒貴金属としてPtを含むことが好適
であることがわかる。Pdは硫黄被毒によって、シンタ
リングするため被毒解除がしづらく、回復率が極端に悪
くなってしまう。また、実施例3、比較例2及び比較例
3の結果から、触媒中の全Pt量に占めるCeO2上の
Ptの割合が少な過ぎると回復率が悪く、多過ぎると回
復率は良いが耐久後の性能が悪化してしまう。同様のこ
とが、実施例3、比較例4及び比較例5の結果からもわ
かる。CeO2が少な過ぎると回復率が悪く、多過ぎる
と回復率は良いが耐久後の性能が悪化してしまう。ま
た、実施例3と実施例4、比較例7の結果から、触媒層
内側にCeO2が多く、外側に少ない方がNOxの転化
率が良くなることが分かる。実施例3及び比較例6の結
果から、Pt及び/又はPdの担持量が少ないと全てに
おいて性能が悪化してしまうことがわかる。実施例3と
比較例8〜23の結果から、NOx吸着材が多過ぎると
耐久後の性能は良いが回復率が悪く、少な過ぎると回復
率は良いが耐久後の性能が悪いことがわかる。As shown in Tables 1 to 4, the results of Example 3 and Comparative Example 1 show that it is preferable to include Pt as a catalytic noble metal. Since Pd is sintered by sulfur poisoning, it is difficult to release the poisoning, and the recovery rate becomes extremely poor. Also, from the results of Example 3, Comparative Example 2 and Comparative Example 3, the recovery rate is poor when the proportion of Pt on CeO 2 in the total Pt amount in the catalyst is too small, and the recovery rate is good when the proportion is too large, but the durability is high. Later performance will deteriorate. The same can be seen from the results of Example 3, Comparative Example 4, and Comparative Example 5. If the content of CeO 2 is too small, the recovery rate is poor, and if the content is too large, the recovery rate is good, but the performance after durability deteriorates. Also, from the results of Example 3, Example 4, and Comparative Example 7, it can be seen that the conversion ratio of NOx is better when the amount of CeO 2 is larger inside the catalyst layer and smaller outside the catalyst layer. From the results of Example 3 and Comparative Example 6, it can be seen that if the amount of Pt and / or Pd carried is small, the performance deteriorates in all cases. From the results of Example 3 and Comparative Examples 8 to 23, it can be seen that if the amount of NOx adsorbent is too large, the performance after durability is good but the recovery rate is poor. If the amount is too small, the recovery rate is good but the performance after durability is poor.
【0081】[0081]
【発明の効果】以上説明してきたように、本発明によれ
ば、酸素不足時には酸素吸放出材が酸素を放出してSO
2等の硫化を防止することとしたため、硫黄被毒解除が
しやすいNOx浄化触媒及びNOx浄化システムを提供
することができる。As described above, according to the present invention, when oxygen is insufficient, the oxygen absorbing / releasing material releases oxygen to release SO2.
Since the sulfurization such as 2 is prevented, it is possible to provide a NOx purification catalyst and a NOx purification system that can easily release sulfur poisoning.
【図1】硫酸塩における赤外線吸収スペクトルのピーク
を示すグラフある。FIG. 1 is a graph showing a peak of an infrared absorption spectrum of a sulfate.
【図2】触媒層内側と外側の酸素吸放出材(CeO2)
の量比とNOx転化率の関係を示すグラフである。FIG. 2 Oxygen absorbing / releasing material (CeO 2 ) inside and outside the catalyst layer
4 is a graph showing the relationship between the amount ratio of NO and the NOx conversion rate.
【図3】炭酸バリウムにおけるXRDのピークを示すグ
ラフである。FIG. 3 is a graph showing an XRD peak of barium carbonate.
【図4】NOx浄化触媒の一例を示す概略図である。FIG. 4 is a schematic view showing an example of a NOx purification catalyst.
【図5】NOx浄化触媒の他の例を示す概略図である。FIG. 5 is a schematic view showing another example of the NOx purification catalyst.
【図6】NOx浄化システムの一例を示す概略図であ
る。FIG. 6 is a schematic diagram illustrating an example of a NOx purification system.
【図7】NOx浄化システムの他の例を示す概略図であ
る。FIG. 7 is a schematic view showing another example of the NOx purification system.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 104A ZAB 102H Fターム(参考) 3G091 AB02 AB05 AB06 BA11 BA14 BA39 FB10 FB11 FB12 GB02W GB03W GB04W GB05W GB16X GB17X HA02 4D048 AA06 AA13 AA18 AB05 AB07 AC06 BA01X BA02Y BA08X BA14X BA15X BA18Y BA19X BA30X BA33X BA41X BA42Y BA45X BB02 BB16 BC01 DA03 DA20 EA04 4G069 AA03 BA01A BA01B BA05A BA05B BA13B BB02A BB02B BB04A BB04B BB06A BB06B BB16A BB16B BC01A BC02A BC02B BC03A BC03B BC06A BC08A BC10A BC10B BC13A BC13B BC38A BC43A BC43B BC51A BC51B BC69A BC71A BC71B BC75A BC75B CA02 CA03 CA09 EA19 EB12Y EC19 FC08 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F01N 3/28 301 B01D 53/36 104A ZAB 102H F term (reference) 3G091 AB02 AB05 AB06 BA11 BA14 BA39 FB10 FB11 FB12 GB02W GB03W GB04W GB05W GB16X GB17X HA02 4D048 AA06 AA13 AA18 AB05 AB07 AC06 BA01X BA02Y BA08X BA14X BA15X BA18Y BA19X BA30X BA33X BA41X BA42Y BA45X BB02 BB16 BC01 DA03 DA20 EA04 4G069 AA03 BA01A BA01B BA05A BA05B BA13B BB02A BB02B BB04A BB04B BB06A BB06B BB16A BB16B BC01A BC02A BC02B BC03A BC03B BC06A BC08A BC10A BC10B BC13A BC13B BC38A BC43A BC43B BC51A BC51B BC69A BC71A BC71B BC75A BC75B CA02 CA03 CA09 EA19 EB12Y EC19 FC08
Claims (20)
される内燃機関又は燃焼器からの排気ガスの浄化処理に
用いられるNOx浄化触媒であって、 触媒貴金属と、この触媒貴金属の少なくとも一部を担持
する酸素吸放出材とを含有し、上記酸素吸放出材に担持
された触媒貴金属が排気ガス中のSOxを硫酸塩又は亜
硫酸塩として吸着することを特徴とするNOx浄化触
媒。1. A NOx purifying catalyst used for purifying exhaust gas from an internal combustion engine or a combustor operated in a lean region or a stoichiometric to rich region, comprising: a catalytic noble metal; and at least a part of the catalytic noble metal. A NOx purification catalyst, comprising a supported oxygen storage / release material, wherein the catalytic noble metal supported by the oxygen storage / release material adsorbs SOx in exhaust gas as sulfate or sulfite.
を特徴とする請求項1記載のNOx浄化触媒。2. The NOx purifying catalyst according to claim 1, wherein said catalytic noble metal comprises platinum.
金属及び希土類金属から成る群より選ばれた少なくとも
1種の金属を含み、空燃比がリーン域のときにNOxを
吸着しストイキ〜リッチ域のときに吸着したNOxを窒
素に還元することを特徴とする請求項1又は2記載のN
Ox浄化触媒。3. The catalyst contains at least one metal selected from the group consisting of an alkali metal, an alkaline earth metal and a rare earth metal, adsorbs NOx when the air-fuel ratio is in a lean range, and absorbs NOx in a stoichiometric to rich range. 3. The N according to claim 1, wherein the NOx that has been adsorbed is reduced to nitrogen.
Ox purification catalyst.
ことを特徴とする請求項1〜3のいずれか1つの項に記
載のNOx浄化触媒。4. The NOx purifying catalyst according to claim 1, wherein said catalytic noble metal comprises rhodium.
吸放出材の少ない層から成り、かつ酸素吸放出材の少な
い層が酸素吸放出材の多い層の上に積層されて成ること
を特徴とする請求項1〜4のいずれか1つの項に記載の
NOx浄化触媒。5. The catalyst according to claim 1, wherein the catalyst comprises a layer having a large amount of oxygen absorbing / releasing material and a layer having a small amount of oxygen absorbing / releasing material, and the layer having a small amount of oxygen absorbing / releasing material is laminated on the layer having a large amount of oxygen absorbing / releasing material. The NOx purification catalyst according to any one of claims 1 to 4, characterized in that:
素吸放出材の多い層の比が0.01:0.99〜1:1
であることを特徴とする請求項1〜5のいずれか1つの
項に記載のNOx浄化触媒。6. The catalyst according to claim 1, wherein the ratio of the layer having a small amount of oxygen absorbing / releasing material to the layer having a large amount of oxygen absorbing / releasing material is 0.01: 0.99 to 1: 1.
The NOx purification catalyst according to any one of claims 1 to 5, wherein
みロジウムを含んで成ることを特徴とする請求項1〜6
のいずれか1つの項に記載のNOx浄化触媒。7. The catalyst according to claim 1, wherein only a layer of the catalyst having a small amount of oxygen absorbing / releasing material contains rhodium.
NOx purification catalyst according to any one of the above.
シウム、セリア、並びに白金及び/又はロジウムを含有
して成り、該白金の少なくとも一部が該セリア上に担持
されることを特徴とする請求項1〜7のいずれか1つの
項に記載のNOx浄化触媒。8. The catalyst according to claim 1, wherein the catalyst comprises barium and / or magnesium, ceria, and platinum and / or rhodium, and at least a part of the platinum is supported on the ceria. The NOx purification catalyst according to any one of Items 1 to 7.
セシウム及びカリウムから成る群より選ばれた少なくと
も1種のものを担持して成ることを特徴とする請求項8
記載のNOx浄化触媒。9. The refractory inorganic carrier further comprises sodium,
9. A carrier carrying at least one member selected from the group consisting of cesium and potassium.
The NOx purification catalyst according to the above.
00g/Lの割合で含有することを特徴とする請求項8
又は9記載のNOx浄化触媒。10. The method according to claim 1, wherein the ceria is used in an amount of 3 to 1 per liter of the catalyst.
9. The composition according to claim 8, wherein the content is 00 g / L.
Or a NOx purification catalyst according to 9.
量1L当り1.4〜4.3g/Lの割合で含有すること
を特徴とする請求項8〜10のいずれか1つの項に記載
のNOx浄化触媒。11. The NOx according to claim 8, wherein the platinum and / or rhodium is contained at a ratio of 1.4 to 4.3 g / L per 1 L of the catalyst volume. Purification catalyst.
れて成ることを特徴とする請求項8〜11のいずれか1
つの項に記載のNOx浄化触媒。12. The method according to claim 8, wherein said ceria is compounded with zirconium.
NOx purification catalyst according to any one of the first to third aspects.
の少なくとも一部が複合化され、次の一般式 BaxMgy(CO3)2 (式中のx及びyは各元素の原子比率、x=0.5〜
1.999、y=0.001〜1.5及びx+y=2.
0を示す)で表される炭酸塩を形成していることを特徴
とする請求項8〜12のいずれか1つの項に記載のNO
x浄化触媒。13. At least a part of the barium and / or magnesium is complexed, and the following general formula: Ba x Mg y (CO 3 ) 2 (where x and y are atomic ratios of each element, x = 0 .5-
1.999, y = 0.001-1.5 and x + y = 2.
NO is represented by the following formula (1):
x purification catalyst.
媒容量1L当り5〜30g/Lの割合で含有し、上記マ
グネシウムとして酸化マグネシウムを触媒容量1L当り
1〜10g/Lの割合で含有することを特徴とする請求
項8〜13のいずれか1つの項に記載のNOx浄化触
媒。14. A method according to claim 1, wherein said barium contains barium oxide at a rate of 5 to 30 g / L per 1 L of catalyst capacity, and said magnesium contains magnesium oxide at a rate of 1 to 10 g / L per 1 L of catalyst capacity. The NOx purification catalyst according to any one of claims 8 to 13.
を触媒容量1L当り0.5〜20.0g/Lの割合で含
有することを特徴とする請求項9〜14のいずれか1つ
の項に記載のNOx浄化触媒。15. The NOx purifying apparatus according to claim 9, wherein sodium oxide is contained as the sodium at a rate of 0.5 to 20.0 g / L per 1 L of a catalyst capacity. catalyst.
媒容量1L当り5〜30g/Lの割合で含有することを
特徴とする請求項9〜15のいずれか1つの項に記載の
NOx浄化触媒。16. The NOx purification catalyst according to claim 9, wherein cesium oxide is contained as the cesium at a rate of 5 to 30 g / L per 1 L of a catalyst capacity.
媒容量1L当り0.5〜30g/Lの割合で含有するこ
とを特徴とする請求項9〜16のいずれか1つの項に記
載のNOx浄化触媒。17. The NOx purifying catalyst according to claim 9, wherein potassium oxide is contained as the potassium at a rate of 0.5 to 30 g / L per 1 L of a catalyst capacity.
転される内燃機関又は燃焼器からの排気ガスの浄化処理
に用いられるNOx浄化触媒であって、白金及びセリア
を含有し、該白金が全白金量に対して5〜50%の割合
で該セリアに担持され、この白金が排気ガス中のSOx
を硫酸塩又は亜硫酸塩として吸着することを特徴とする
NOx浄化触媒。18. A NOx purifying catalyst used for purifying exhaust gas from an internal combustion engine or a combustor operated in a lean region or a stoichiometric to rich region, wherein the NOx purifying catalyst contains platinum and ceria. The platinum is supported on the ceria at a rate of 5 to 50% based on the amount of SOx in the exhaust gas.
NOx purification catalyst characterized by adsorbing NO as sulfate or sulfite.
記載のNOx浄化触媒を用いたNOx浄化システムであ
って、リーン域であるときの空燃比(A/F)が15以
上であることを特徴とするNOx浄化システム。19. A NOx purification system using the NOx purification catalyst according to any one of claims 1 to 18, wherein an air-fuel ratio (A / F) in a lean region is 15 or more. A NOx purification system characterized by the above-mentioned.
記載のNOx浄化触媒を用いたNOx浄化システムであ
って、ストイキ〜リッチ域であるときに該NOx浄化触
媒上流側から2次エアを流すことを特徴とするNOx浄
化システム。20. A NOx purification system using the NOx purification catalyst according to any one of claims 1 to 18, wherein the secondary air is supplied from the upstream side of the NOx purification catalyst when the engine is in a stoichiometric to rich region. A NOx purification system characterized by flowing air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002047302A JP4019351B2 (en) | 2001-03-12 | 2002-02-25 | NOx purification catalyst and NOx purification system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001069384 | 2001-03-12 | ||
JP2001-69384 | 2001-03-12 | ||
JP2002047302A JP4019351B2 (en) | 2001-03-12 | 2002-02-25 | NOx purification catalyst and NOx purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002336700A true JP2002336700A (en) | 2002-11-26 |
JP4019351B2 JP4019351B2 (en) | 2007-12-12 |
Family
ID=26611098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002047302A Expired - Fee Related JP4019351B2 (en) | 2001-03-12 | 2002-02-25 | NOx purification catalyst and NOx purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4019351B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007123205A1 (en) * | 2006-04-21 | 2007-11-01 | Cataler Corporation | Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification |
WO2008004390A1 (en) * | 2006-07-05 | 2008-01-10 | Cataler Corporation | Catalyst for purifying exhaust gas and process for producing the same |
EP2145672A2 (en) | 2008-07-14 | 2010-01-20 | Toyota Jidosha Kabusiki Kaisha | NOx storage catalyst |
-
2002
- 2002-02-25 JP JP2002047302A patent/JP4019351B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007123205A1 (en) * | 2006-04-21 | 2007-11-01 | Cataler Corporation | Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification |
JP2007289812A (en) * | 2006-04-21 | 2007-11-08 | Cataler Corp | Exhaust gas cleaning catalyst, regenerating method of the same, and exhaust gas cleaning catalyst system |
US8071498B2 (en) | 2006-04-21 | 2011-12-06 | Cataler Corporation | Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification |
CN101421037B (en) * | 2006-04-21 | 2012-06-06 | 株式会社卡特勒 | Catalyst for purifying exhaust gas, method for regenerating catalyst for purifying exhaust gas, and catalyst system for purifying exhaust gas |
WO2008004390A1 (en) * | 2006-07-05 | 2008-01-10 | Cataler Corporation | Catalyst for purifying exhaust gas and process for producing the same |
JP5196656B2 (en) * | 2006-07-05 | 2013-05-15 | 株式会社キャタラー | Exhaust gas purification catalyst and method for producing the same |
US9073048B2 (en) | 2006-07-05 | 2015-07-07 | Cataler Corporation | Exhaust gas-purifying catalyst and method of manufacturing the same |
EP2145672A2 (en) | 2008-07-14 | 2010-01-20 | Toyota Jidosha Kabusiki Kaisha | NOx storage catalyst |
JP2010017693A (en) * | 2008-07-14 | 2010-01-28 | Toyota Motor Corp | NOx STORAGE CATALYST |
Also Published As
Publication number | Publication date |
---|---|
JP4019351B2 (en) | 2007-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100196245B1 (en) | Catalyst for purifying exhaust gases | |
JP4330202B2 (en) | Operation method of exhaust gas purification device for internal combustion engine | |
US6729125B2 (en) | Exhaust gas purifying system | |
JP3758601B2 (en) | NOx storage reduction catalyst | |
US6557342B2 (en) | Exhaust gas purifying system | |
JP2003320252A (en) | Exhaust gas treatment catalyst and production of the same | |
US20030039597A1 (en) | Close coupled catalyst with a SOx trap and methods of making and using the same | |
JP3965676B2 (en) | Exhaust gas purification catalyst and exhaust gas purification system | |
JP2002079106A (en) | Catalyst and apparatus for cleaning exhaust gas | |
JP2013176774A (en) | Catalytic trap | |
EP1241329A2 (en) | Nox reduction catalyst and nox reduction system | |
JP4573993B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP3704701B2 (en) | Exhaust gas purification catalyst | |
US5950421A (en) | Tungsten-modified platinum NOx traps for automotive emission reduction | |
JP2003245523A (en) | Exhaust gas purification system | |
JP2013072334A (en) | Exhaust gas purifying device and exhaust gas purifying catalyst unit | |
JP3965793B2 (en) | Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
JP2002168117A (en) | Exhaust gas purification system | |
JP4019351B2 (en) | NOx purification catalyst and NOx purification system | |
JP3622893B2 (en) | NOx absorbent and exhaust gas purification catalyst using the same | |
JP2001070790A (en) | Exhaust gas purification catalyst | |
JP2000157867A (en) | Exhaust gas purification catalyst | |
JP2006329018A (en) | Sulfur content absorber and exhaust purification system | |
JP2003326164A (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification device | |
JP2001046835A (en) | NOx absorption purification material and exhaust gas purification catalyst using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070913 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |