JP2002335033A - Apparatus and method of adjusting laser diode unit and optical unit manufacturing method - Google Patents

Apparatus and method of adjusting laser diode unit and optical unit manufacturing method

Info

Publication number
JP2002335033A
JP2002335033A JP2001138136A JP2001138136A JP2002335033A JP 2002335033 A JP2002335033 A JP 2002335033A JP 2001138136 A JP2001138136 A JP 2001138136A JP 2001138136 A JP2001138136 A JP 2001138136A JP 2002335033 A JP2002335033 A JP 2002335033A
Authority
JP
Japan
Prior art keywords
light
laser diode
diode unit
optical
collimator lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001138136A
Other languages
Japanese (ja)
Inventor
Koji Fukui
厚司 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001138136A priority Critical patent/JP2002335033A/en
Publication of JP2002335033A publication Critical patent/JP2002335033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, in the conventional collimation adjustment with parallel light, the collimator lens is shifted back and forth on the optical axis to find a collimation point, taking much time for the collimation, and if the beam diameter is less than the pixel size of a CCD, the size cannot be measured resulting in reduction of the collimation precision of the light. SOLUTION: The apparatus is composed of an image forming lens 3 which takes an incident light emitted from a collimator lens 2, a multilayer reflection mirror 10 which takes an incident light emitted from the lens 3 and a CCD camera 5 which takes a light reflected from the mirror 10. The emission light of the collimator lens 2 is collimated, based on the intersection of two reflected lights tangent to the beam envelope from the mirror 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスク方式の
情報記憶媒体、例えばDVD(DigitalVers
atile Disk)に情報を読み書きする光ピック
アップにおいて、半導体レーザと受光部からなるレーザ
ダイオードユニットの調整装置及び方法、光学ユニット
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information storage medium of an optical disk system, for example, a DVD (Digital Vers).
The present invention relates to an apparatus and a method for adjusting a laser diode unit including a semiconductor laser and a light-receiving unit, and a method for manufacturing an optical unit in an optical pickup for reading and writing information from and to an optical disk.

【0002】[0002]

【従来の技術】従来、光ピックアップの組み立ては、半
導体レーザ、ミラー、レンズ、受光部を1つの光学基台
の中に組み込み、光軸測定、放射分布測定をおこない、
レーザ、ミラー、レンズの調整を行い、そして信号再生
しながら、受光部調整を行なっていた。
2. Description of the Related Art Conventionally, in assembling an optical pickup, a semiconductor laser, a mirror, a lens, and a light receiving unit are incorporated in one optical base, and an optical axis measurement and a radiation distribution measurement are performed.
The adjustment of the laser, the mirror, and the lens, and the adjustment of the light-receiving section were performed while reproducing the signal.

【0003】しかしながら、上記の方法では、各々の調
整工程ごとに調整器を切り替えなければならず、タクト
の増加、調整器への基台の取り付けによる誤差が入りや
すかった。
However, in the above-described method, the adjuster must be switched for each adjustment step, which increases the tact time and easily causes an error due to the mounting of the base to the adjuster.

【0004】そこで、光ピックアップの組み立て調整タ
クトの短縮、調整精度の向上を図るため、半導体レーザ
と受光部を1つのユニットとし、あらかじめ光学調整す
ることが提案されている。
In order to shorten the tact time for assembling and adjusting the optical pickup and improve the accuracy of the adjustment, it has been proposed to make the semiconductor laser and the light receiving unit as one unit and to perform optical adjustment in advance.

【0005】この光学調整では、半導体レーザからの射
出光を平行光化し、放射分布方位測定、レーザ発光点位
置測定、受光部位置測定を行なっているが、それぞれの
測定を精度よく、短時間で行なうためには、半導体レー
ザからの射出光の平行光化も精度良く、短時間で行なう
必要がある。
In this optical adjustment, the emitted light from the semiconductor laser is collimated, and the radiation distribution azimuth measurement, the laser light emitting point position measurement, and the light receiving portion position measurement are performed. In order to perform this, it is necessary to accurately convert the emitted light from the semiconductor laser into parallel light in a short time.

【0006】図4を用いて、従来の光学ユニットの調整
方法を説明する。1は半導体レーザ、2はコリメータレ
ンズ、3は結像レンズ、4はCCDカメラでありコリメ
ータレンズ3の焦点位置に配置される。5はモニターT
Vである。
Referring to FIG. 4, a conventional method for adjusting an optical unit will be described. 1 is a semiconductor laser, 2 is a collimator lens, 3 is an imaging lens, 4 is a CCD camera, which is arranged at the focal position of the collimator lens 3. 5 is monitor T
V.

【0007】半導体レーザ1の射出光をコリメータ2で
平行光化するために、コリメータ2の射出光を結像レン
ズ3で集光する。ビーム形状は、CCD4で撮像し、モ
ニタTV5に映し出される。コリメータレンズ2の射出
光が平行光でないとき、CCD4でのビーム形状は、8
で示すような像になり、コリメータレンズ2の射出光が
平行のとき、ビーム形状は、7で示すような像となり、
ビーム径は最小となる。従って、コリメータレンズ2を
光軸方向に移動させ、モニタTV5でのビーム径が最小
となるコリメータレンズ2の位置を探すことで、コリメ
ータレンズ2の射出光を平行光化できる。
In order to make the light emitted from the semiconductor laser 1 parallel by the collimator 2, the light emitted from the collimator 2 is condensed by the imaging lens 3. The beam shape is imaged by the CCD 4 and displayed on the monitor TV 5. When the light emitted from the collimator lens 2 is not parallel light, the beam shape at the CCD 4 is 8
When the light emitted from the collimator lens 2 is parallel, the beam shape becomes an image as shown by 7, and
The beam diameter is minimized. Therefore, by moving the collimator lens 2 in the optical axis direction and searching for the position of the collimator lens 2 where the beam diameter on the monitor TV 5 is minimized, the light emitted from the collimator lens 2 can be made into parallel light.

【0008】[0008]

【発明が解決しようとする課題】しかし、この方法で
は、コリメータレンズの射出光が平行光でないとき、コ
リメータレンズをどちらの方向に動かして良いかわから
ないため、コリメータレンズの位置を光軸方向に前後し
て平行光となる位置を探さなければならず、調整に時間
がかかった。また、ビーム径がCCDの画素以下となる
と大きさを計測できなくなるので、平行光の調整精度が
低下するという課題があった。
However, in this method, when the light emitted from the collimator lens is not parallel light, it is not possible to determine in which direction the collimator lens can be moved. Therefore, it was necessary to search for a position where the light became parallel light, and it took a long time for adjustment. In addition, when the beam diameter is smaller than the pixel of the CCD, the size cannot be measured, so that there is a problem that the adjustment accuracy of the parallel light is reduced.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明は、被測定光を集光させ、この集光された被測
定光を分岐させ、焦点位置を異ならせてそれぞれ同じ方
向に光を向け、このそれぞれの光を観測し、光の外形に
接する2本の接線の交点位置を測定し、この交点位置か
らレーザダイオードユニットを構成する光学部品の位置
ずれ量を求め、この位置ずれ量に応じて前記光学部品の
位置を移動させるものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention condenses a light to be measured, divides the converged light to be measured, and changes the focal position in the same direction. Aim the light, observe each light, measure the position of the intersection of the two tangents in contact with the outer shape of the light, determine the amount of displacement of the optical components that make up the laser diode unit from this intersection, and The position of the optical component is moved according to the amount.

【0010】[0010]

【発明の実施の形態】以下、本発明の第1の実施の形態
について、図1を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIG.

【0011】1は半導体レーザ、2は半導体レーザ1の
射出光を平行光化するコリメータレンズ、3はコリメー
タレンズ2の射出光を集光する結像レンズ、10は内部
に複数の反射部を有し、各反射部は互いに平行で等間隔
で配置された多層反射ミラーである。多層反射ミラー1
0は、コリメータレンズ2、結像レンズ3の中心を通る
直線に対してほぼ45°に配置される。ここでは、表
面、中央、裏面の3つの反射面として説明する。4は多
層反射ミラー10の射出光を入射光とするCCDカメラ
であり、5はモニターTVである。
1 is a semiconductor laser, 2 is a collimator lens for collimating the light emitted from the semiconductor laser 1, 3 is an imaging lens for condensing the light emitted from the collimator lens 2, and 10 has a plurality of reflecting portions inside. Each of the reflecting portions is a multilayer reflecting mirror which is parallel to each other and arranged at equal intervals. Multilayer reflection mirror 1
0 is disposed at approximately 45 ° with respect to a straight line passing through the centers of the collimator lens 2 and the imaging lens 3. Here, a description will be given as three reflection surfaces, namely, a front surface, a center, and a back surface. Reference numeral 4 denotes a CCD camera that uses light emitted from the multilayer reflection mirror 10 as incident light, and reference numeral 5 denotes a monitor TV.

【0012】半導体レーザ1の射出光は、コリメータレ
ンズ2を通り、結像レンズ3に入射する。結像レンズ3
の射出光は、多層反射ミラー10の各反射面で反射し、
CCD4に入射する。11は多層反射ミラー10の表面
反射光、12は中央部での反射光、13は裏面反射光で
ある。
The light emitted from the semiconductor laser 1 passes through the collimator lens 2 and enters the imaging lens 3. Imaging lens 3
Is reflected by each reflection surface of the multilayer reflection mirror 10,
The light enters the CCD 4. Numeral 11 denotes the surface reflected light of the multilayer reflecting mirror 10, 12 denotes the reflected light at the center, and 13 denotes the back surface reflected light.

【0013】光線11、12、13は、CCD4上に、
図1の左側から11、12、13の順に光線の中心が等
間隔で、CCD4に入射する。
Light beams 11, 12, and 13 are projected onto CCD 4
The centers of the light beams enter the CCD 4 at equal intervals in the order of 11, 12, and 13 from the left side of FIG.

【0014】図2に、モニターTVの画像を示す。コリ
メータレンズ2の射出光が平行光のとき、ビーム11、
ビーム13がほぼ同じ直径で、ビーム3が最小径となる
ように、予めCCDカメラ4の位置を調整しておく。ビ
ーム11、12、13の外形に接する2本の直線を引
き、その交点位置を原点とする。コリメータレンズ2の
射出光が発散光となるとビーム11、12の直径が大き
くなり、ビーム13の直径が小さくなる。ビーム11、
12、13の外形に接する2本の直線を引き、その交点
を求めると、原点からずれた位置となる。収束光では、
発散光の場合と逆方向に交点がずれる。このズレ量は、
ほぼ、コリメータレンズ2の移動量に比例する。従っ
て、この交点を原点に合わせるようにコリメータレンズ
2の光軸方向の位置を調整することでコリメータレンズ
2の射出光を平行光化できる。
FIG. 2 shows an image on the monitor TV. When the light emitted from the collimator lens 2 is parallel light, the beam 11,
The position of the CCD camera 4 is adjusted in advance so that the beam 13 has substantially the same diameter and the beam 3 has the minimum diameter. Two straight lines in contact with the outer shapes of the beams 11, 12, and 13 are drawn, and the position of the intersection is defined as the origin. When the light emitted from the collimator lens 2 becomes divergent light, the diameters of the beams 11 and 12 increase, and the diameter of the beam 13 decreases. Beam 11,
When two straight lines in contact with the outer shapes of 12 and 13 are drawn and their intersection is found, the position is shifted from the origin. In convergent light,
The intersection is shifted in the opposite direction to the case of the divergent light. This shift amount is
It is almost proportional to the amount of movement of the collimator lens 2. Therefore, by adjusting the position of the collimator lens 2 in the direction of the optical axis so that this intersection point is aligned with the origin, the light emitted from the collimator lens 2 can be made parallel.

【0015】また、基準となる半導体レーザおよび、コ
リメータレンズを用い、ビーム11、12、13の外形
に接する2本の直線の交点位置と、コリメータレンズの
焦点位置からのずれ量との関係をあらかじめ測定してお
くことで、コリメータレンズの移動量、移動方向を精度
良く求めることができ、1度の調整で、コリメータレン
ズの平行光調整ができる。
Using a semiconductor laser as a reference and a collimator lens, the relationship between the intersection point of two straight lines contacting the outer shapes of the beams 11, 12, and 13 and the amount of deviation from the focal position of the collimator lens is determined in advance. By measuring, the amount of movement and the direction of movement of the collimator lens can be accurately obtained, and the parallel light adjustment of the collimator lens can be performed with one adjustment.

【0016】なお、この実施の形態では、多層反射ミラ
ーを表面、中央、裏面の3面反射としたが、4面以上の
反射面を有しても良い。また、表面、裏面反射を用い
ず、内部に多層反射層を形成してもよい。
In this embodiment, the multi-layer reflecting mirror is a three-surface reflecting surface, center, and back surface, but may have four or more reflecting surfaces. Further, a multilayer reflective layer may be formed inside without using front and rear surface reflection.

【0017】また、反射面は、等間隔でなくても、既知
の間隔であってもよい。
The reflecting surfaces may not be at equal intervals but may be at known intervals.

【0018】さらに、多層ミラーにより、3個以上のビ
ームがある場合、各ビーム外形からの距離の和が、最も
小さくなるような直線を引くことで、ビームの強度バラ
ツキ、ゴミによる誤差の影響を受けにくくすることがで
きる。
Further, when there are three or more beams by the multi-layer mirror, by drawing a straight line such that the sum of the distances from the outer shapes of the respective beams becomes the smallest, the influence of errors due to beam intensity variation and dust can be reduced. It can be hard to receive.

【0019】図3は、光ディスクドライブの模式図であ
る。21は、本発明におけるレーザダイオードユニット
調整装置で調整したレーザユニットであり、22は、そ
のレーザダイオードや、対物レンズ、立ち上げミラーな
ど組み込んだ、光学ユニットであり、23は光ディスク
である。24は、光ディスク23の信号を光学ユニット
22で読み取る光ディスクドライブである。光ディスク
ドライブは、CD−ROM、CD−RW、あるいは、D
VD−ROM、DVD−RAMのいずれでもよい。
FIG. 3 is a schematic diagram of an optical disk drive. Reference numeral 21 denotes a laser unit adjusted by the laser diode unit adjusting device according to the present invention, reference numeral 22 denotes an optical unit incorporating the laser diode, an objective lens, a rising mirror, and the like, and reference numeral 23 denotes an optical disk. Reference numeral 24 denotes an optical disk drive that reads signals from the optical disk 23 with the optical unit 22. The optical disk drive is a CD-ROM, CD-RW, or D-ROM.
Any of a VD-ROM and a DVD-RAM may be used.

【0020】本発明のレーザダイオード調整装置でレー
ザ射出光の平行光調整したレーザダイオードユニットを
用いることにより、高精度な平行光をえることができる
ので光学ユニットの対物レンズにより集光されるスポッ
トのひずみが少なくなり、光ディスクからの信号読取精
度を向上させることができる。また、対物レンズのフォ
ーカス調整時のオフセットが小さくなるため、フォーカ
ス調整コイル駆動電流を減らすことができ省電力化がで
きる。
By using a laser diode unit in which laser light is adjusted in parallel by the laser diode adjusting apparatus of the present invention, highly accurate parallel light can be obtained. The distortion is reduced, and the signal reading accuracy from the optical disk can be improved. Further, since the offset at the time of the focus adjustment of the objective lens is reduced, the drive current for the focus adjustment coil can be reduced, and power saving can be achieved.

【0021】[0021]

【発明の効果】以上のように本発明によれば、被測定光
を集光させ、この集光された被測定光を分岐させ、焦点
位置を異ならせてそれぞれ同じ方向に光を向け、このそ
れぞれの光を観測し、光の外形に接する2本の接線の交
点位置を測定し、この交点位置からレーザダイオードユ
ニットを構成する光学部品の位置ずれ量を求め、この位
置ずれ量に応じて前記光学部品の位置を移動させること
で、コリメータレンズを動かす方向と量が求まるため、
平行光の調整を1回のコリメータレンズの移動で行なう
ことができ、調整時間を短縮できる。さらに、ビーム外
形に接する2本の接線の交点で焦点位置を求めるため、
CCDの画素サイズの制限を受けにくいため、精度の高
い平行光の調整ができる。
As described above, according to the present invention, the light to be measured is condensed, the collected light to be measured is branched, and the light is directed in the same direction with different focal positions. Observing each light, measuring the position of the intersection of two tangents tangent to the outer shape of the light, obtaining the amount of displacement of the optical components constituting the laser diode unit from the position of the intersection, and according to this amount of displacement, By moving the position of the optical component, the direction and amount of moving the collimator lens can be determined,
The adjustment of the parallel light can be performed by one movement of the collimator lens, and the adjustment time can be reduced. Furthermore, since the focal position is determined at the intersection of two tangents tangent to the beam outline,
Since it is hard to be limited by the pixel size of the CCD, highly accurate parallel light adjustment can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るレーザダイオードユ
ニットの調整を示す模式図
FIG. 1 is a schematic view showing adjustment of a laser diode unit according to an embodiment of the present invention.

【図2】焦点ずれのときのビーム形状を示す図FIG. 2 is a diagram showing a beam shape at the time of defocus;

【図3】光ディスクドライブの模式図FIG. 3 is a schematic diagram of an optical disk drive.

【図4】従来のレーザダイオードユニットの調整を示す
模式図
FIG. 4 is a schematic view showing adjustment of a conventional laser diode unit.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 コリメータレンズ 3 結像レンズ 4 CCDカメラ 10 多層反射ミラー DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Collimator lens 3 Imaging lens 4 CCD camera 10 Multilayer reflection mirror

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定光を入射光とする結像レンズと、
この結像レンズの射出光を入射光とし、射出光の光軸に
対して傾けて配置した多層反射ミラーと、この多層反射
ミラーの反射光を入射光とするCCDカメラと、この入
射したそれぞれの光から前記被測定光の光学部品のズレ
量を求める手段と、このズレ量に応じて前記被測定光の
光学部品を調整する手段とを有したことを特徴とするレ
ーザダイオードユニットの調整装置。
An imaging lens that uses light to be measured as incident light;
A multi-layer reflecting mirror arranged so that the light emitted from the imaging lens is incident light and inclined with respect to the optical axis of the emitted light, a CCD camera that uses the reflected light of the multi-layer reflecting mirror as incident light, An apparatus for adjusting a laser diode unit, comprising: means for obtaining a shift amount of an optical component of the measured light from light; and means for adjusting the optical component of the measured light according to the shift amount.
【請求項2】 多層反射ミラーは、等間隔に配置された
反射面を有したことを特徴とする請求項1に記載のレー
ザダイオードユニットの調整装置。
2. The adjustment device for a laser diode unit according to claim 1, wherein the multilayer reflection mirror has reflection surfaces arranged at equal intervals.
【請求項3】 被測定光を集光させる工程と、この集光
された被測定光を分岐させ、焦点位置を異ならせてそれ
ぞれ同じ方向に光を向ける工程と、このそれぞれの光を
観測し、光の外形に接する2本の接線の交点位置を測定
する工程と、この交点位置からレーザダイオードユニッ
トを構成する光学部品の位置ずれ量を求める工程と、こ
の位置ずれ量に応じて前記光学部品の位置を移動させる
工程とを有することを特徴とするレーザダイオードユニ
ットの調整方法。
3. A step of condensing the light to be measured, a step of branching the condensed light to be measured, and directing the light in the same direction with different focal positions, and observing each light. Measuring the position of the intersection of two tangents that are in contact with the outer shape of the light, determining the amount of displacement of the optical components constituting the laser diode unit from the position of the intersection, and determining the position of the optical component according to the amount of displacement. Moving the position of the laser diode unit.
【請求項4】 焦点位置を異ならせる工程では、焦点位
置を等間隔にしたことを特徴とする請求項3に記載のレ
ーザダイオードユニットの調整方法。
4. The method for adjusting a laser diode unit according to claim 3, wherein, in the step of changing the focal position, the focal positions are set at equal intervals.
【請求項5】 請求項3、4のいずれかに記載の方法で
レーザダイオードユニットを調整する工程と、このレー
ザダイオードユニットを光学ユニットに組み込む工程と
を有することを特徴とする光学ユニットの製造方法。
5. A method for manufacturing an optical unit, comprising: adjusting a laser diode unit by the method according to claim 3; and incorporating the laser diode unit into an optical unit. .
JP2001138136A 2001-05-09 2001-05-09 Apparatus and method of adjusting laser diode unit and optical unit manufacturing method Pending JP2002335033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138136A JP2002335033A (en) 2001-05-09 2001-05-09 Apparatus and method of adjusting laser diode unit and optical unit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138136A JP2002335033A (en) 2001-05-09 2001-05-09 Apparatus and method of adjusting laser diode unit and optical unit manufacturing method

Publications (1)

Publication Number Publication Date
JP2002335033A true JP2002335033A (en) 2002-11-22

Family

ID=18985120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138136A Pending JP2002335033A (en) 2001-05-09 2001-05-09 Apparatus and method of adjusting laser diode unit and optical unit manufacturing method

Country Status (1)

Country Link
JP (1) JP2002335033A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275386A (en) * 2007-04-26 2008-11-13 Hamamatsu Photonics Kk Light wave range finder
CN104345469A (en) * 2014-11-03 2015-02-11 南京中科神光科技有限公司 Automatic calibration device and automatic calibration method of laser module collimating lens
CN110673354A (en) * 2019-10-16 2020-01-10 中国航空工业集团公司洛阳电光设备研究所 Method and system for adjusting position degree of spherical optical window relative to two azimuth pitching scanning axes
CN111247403A (en) * 2018-03-08 2020-06-05 普雷茨特两合公司 Device for determining the focal position of a laser beam in a laser processing system, laser processing system having such a device, and method for determining the focal position of a laser beam in a laser processing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275386A (en) * 2007-04-26 2008-11-13 Hamamatsu Photonics Kk Light wave range finder
CN104345469A (en) * 2014-11-03 2015-02-11 南京中科神光科技有限公司 Automatic calibration device and automatic calibration method of laser module collimating lens
CN111247403A (en) * 2018-03-08 2020-06-05 普雷茨特两合公司 Device for determining the focal position of a laser beam in a laser processing system, laser processing system having such a device, and method for determining the focal position of a laser beam in a laser processing system
CN111247403B (en) * 2018-03-08 2023-04-18 普雷茨特两合公司 Device and method for determining the focal position of a laser beam in a laser processing system, and laser processing system having such a device
CN110673354A (en) * 2019-10-16 2020-01-10 中国航空工业集团公司洛阳电光设备研究所 Method and system for adjusting position degree of spherical optical window relative to two azimuth pitching scanning axes

Similar Documents

Publication Publication Date Title
KR20100119526A (en) Method and apparatus for measuring relative positions of a specular reflection surface
US20040136008A1 (en) Optical characteristic measurement device and optical type displacement meter
JP2002335033A (en) Apparatus and method of adjusting laser diode unit and optical unit manufacturing method
JPS5979104A (en) Optical device
JP2001318302A (en) Focus detecting device and autofocusing microscope
JPS6161178B2 (en)
CN115655110A (en) Optical probe measuring head precision self-calibration method based on point self-focusing principle
US20020180959A1 (en) Optical system for detecting surface defects and disk tester and disk testing method utilizing the same optical system
JP2824074B2 (en) Optical head manufacturing method
JP2003329408A (en) Laser length-measurement device
JP2007033098A (en) Lens measuring method and lens measuring instrument
JP2002116361A (en) Method and device for manufacturing laser diode unit
JPH08261734A (en) Shape measuring apparatus
JPH07182666A (en) Light pickup system
JP2000113489A (en) Optical parts and optical pickup device as well as optical axis inclination regulating method and optical axis inclination regulating device
JP2001324314A (en) Measuring instrument
JP2618868B2 (en) Optical head unit
JPH07182665A (en) Light pickup system
JP2004227657A (en) Optical pickup device and optical disk device
JP2001091211A (en) Height-measuring device
JPH05332735A (en) Three-dimensional form measuring device, and measuring method of three-dimensional form using same
JP2513589B2 (en) Optical disc tilt detector
JP2815345B2 (en) Objective tilt measuring device for optical pickup
JP2808713B2 (en) Optical micro displacement measuring device
JP2002216388A (en) Optical system