JP2002334854A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device

Info

Publication number
JP2002334854A
JP2002334854A JP2001140045A JP2001140045A JP2002334854A JP 2002334854 A JP2002334854 A JP 2002334854A JP 2001140045 A JP2001140045 A JP 2001140045A JP 2001140045 A JP2001140045 A JP 2001140045A JP 2002334854 A JP2002334854 A JP 2002334854A
Authority
JP
Japan
Prior art keywords
wafer
grinding
work
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001140045A
Other languages
Japanese (ja)
Inventor
Takenao Saito
剛直 齋藤
Takafumi Tsuchiya
尚文 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001140045A priority Critical patent/JP2002334854A/en
Publication of JP2002334854A publication Critical patent/JP2002334854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize streamlining of manufacturing processes in terms of cost and time by omitting a mirror polishing process by a chemical-mechanical polishing(CMP) method for a product, such as transistor for horizontal-deflection output or the like, for which strict wafer characteristics are not required. SOLUTION: The wafer is ground half-off and is simultaneously subjected to a half-mirror polishing under the grinding condition, to keep the work-strain layer to be 0.2 μm or shallower. By initially forming a thermal oxide film in forming the device, silicon is consumed to eliminate the work-strain layer. By adopting this method for a wafer for which not so strict characteristics are required as a user's demand, wastage can be eliminated in time terms of and cost, to realize streamlining of the manufacturing processes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関し、特にウエファの鏡面加工時の合理化を実現す
る半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device which realizes rationalization in mirror-finish processing of a wafer.

【0002】[0002]

【従来の技術】ICが作られるシリコンウエファ表面の
領域は厳しい平坦性の要求から鏡面研磨が行われてい
る。
2. Description of the Related Art The surface area of a silicon wafer on which an IC is manufactured is mirror-polished due to strict flatness requirements.

【0003】図3および図4に、従来のウエファの製造
方法をn型シリコンウエファを例に示す。図3は工程図
であり、図4は各工程のウエファ断面図である。
FIGS. 3 and 4 show a conventional method of manufacturing a wafer, taking an n-type silicon wafer as an example. 3 is a process chart, and FIG. 4 is a cross-sectional view of a wafer in each process.

【0004】まず、シリコン単結晶のインゴットの外周
部を研削し、1枚1枚のウエファにスライスする。その
後、ウエファは面取り工程で側面部を放物線状に研磨さ
れる。これは、ICの製造工程でウエファをハンドリン
グする際に、側面部が欠けたり、熱処理などで周辺部か
ら歪みによる結晶欠陥が入ったりするのを極力抑えるた
めである。面取り後は表面を滑らかにするために細かい
粒径の研磨剤を含む研磨液を用いてウエファ11を機械
的に研磨するラップ加工12(図4(A))を施す。
[0004] First, the outer peripheral portion of a silicon single crystal ingot is ground and sliced into individual wafers. Thereafter, the side surface of the wafer is polished parabolically in a chamfering step. This is to minimize chipping of side surfaces and introduction of crystal defects due to distortion from the periphery due to heat treatment or the like when handling the wafer in the IC manufacturing process. After the chamfering, a lapping process 12 (FIG. 4A) for mechanically polishing the wafer 11 is performed using a polishing liquid containing a polishing agent having a fine particle diameter to smooth the surface.

【0005】次に、リン等の高濃度層13を拡散にて形
成し、ウエファの上下面にコレクタ領域を形成する(図
4(B))。
Next, a high concentration layer 13 of phosphorus or the like is formed by diffusion, and collector regions are formed on the upper and lower surfaces of the wafer (FIG. 4B).

【0006】グラインド研削14によりシリコンウエフ
ァをハーフオフし、所望のウエファ厚みとする(図4
(C))。この場合の砥石は#2000程度である。こ
のグラインド研削14は荒削りであるため、ウエファ表
面は加工欠陥や不完全結晶域を含む加工歪み層15とな
っている。
The silicon wafer is half-offed by grinding 14 to obtain a desired wafer thickness (FIG. 4).
(C)). The whetstone in this case is about # 2000. Since the grinding 14 is a rough cutting, the surface of the wafer becomes a work distortion layer 15 including a work defect and an incomplete crystal region.

【0007】更に、ウエファをターンテーブルに乗せ、
グラインド研削のダメージを取り除くため表面を化学的
・機械的ポリッシング法(CMP:Chemical Mechanica
l Polishing)により鏡面加工16して、グラインド研
削による加工歪み層15を除去する。その後、鏡面加工
16したウエファ表面に既知の拡散工程などを経てデバ
イスを形成する。
Further, the wafer is placed on a turntable,
Chemical and mechanical polishing (CMP: Chemical Mechanica)
l Polishing) to remove the work distortion layer 15 by grinding. Thereafter, a device is formed on the mirror-finished surface 16 of the wafer through a known diffusion process or the like.

【0008】[0008]

【発明が解決しようとする課題】シリコンウエファには
様々な形状的・結晶的・性能的特性が要求される。形状
面では口径寸法、厚さ、表面・裏面及び側面の仕上げ度
合いなどが決められている。品質面では、キズや汚れが
無いことはもちろん、平坦度や反りに関する厳しい規格
がある。
SUMMARY OF THE INVENTION Silicon wafers are required to have various geometrical, crystalline and performance characteristics. For the shape surface, the caliber size, thickness, the degree of finish of the front / back and side surfaces are determined. In terms of quality, there are strict standards for flatness and warpage, as well as scratch and dirt.

【0009】グラインド研削は荒削りであるため、この
工程における加工欠陥や不完全結晶域である加工歪み層
が残っていると、デバイス形成後に加工欠陥によりリー
ク電流が大きくなり、デバイス特性を劣化させてしま
う。この加工歪み層を取り除き、ウエファ表面を平坦化
するために従来では化学的・機械的ポリッシング加工
(CMP)の工程が必須であった。
Since the grinding is a rough cutting, if a processing defect in this step or a processing strain layer which is an incomplete crystal region remains, a leakage current becomes large due to the processing defect after device formation, thereby deteriorating device characteristics. I will. Conventionally, a chemical-mechanical polishing process (CMP) has been indispensable in order to remove the processing strain layer and flatten the wafer surface.

【0010】ここでCMPの工程を以下に詳述する。ま
ずウエファをセラミックプレートにワックスで固定す
る。研磨機にウエファをセットし、研磨クロスの張られ
た研磨機のテーブルとセラミックプレートを同時に回転
させ研磨液によりポリッシュ加工する。研磨後、ウエフ
ァをセラミックプレートからはがし、ウエファ裏面に残
ったワックスを除去し、洗浄する。
Here, the CMP process will be described in detail below. First, the wafer is fixed to a ceramic plate with wax. A wafer is set on a polishing machine, and a table and a ceramic plate of the polishing machine on which a polishing cloth is stretched are simultaneously rotated to polish with a polishing liquid. After polishing, the wafer is peeled off from the ceramic plate, wax remaining on the back surface of the wafer is removed, and the wafer is washed.

【0011】微細加工の進んだ先端的ICでは、ウエフ
ァ表面も当然厳しい平坦性が要求されているが、当然そ
れほど特性がシビアでないウエファも市場要求があり、
その場合でも上記の如くCMPによる鏡面加工を行って
おり、製造工程の合理化が進まない問題があった。
In advanced ICs with advanced microfabrication, the wafer surface is naturally required to have strict flatness. Of course, wafers whose characteristics are not so severe are also required by the market.
Even in such a case, there is a problem that the mirror surface processing by CMP is performed as described above, and the manufacturing process cannot be rationalized.

【0012】[0012]

【課題を解決するための手段】本発明は、かかる課題に
鑑みてなされ、ラップ加工されたウエファに高濃度層を
形成後、グラインド研削によりハーフオフし同時にグラ
インド研削条件にてハーフ鏡面加工する工程と、前記ウ
エファにデバイスを形成する際の最初の熱酸化工程にお
いて所望の熱酸化膜を形成し、前記ウエファの加工歪み
層を取り除く工程とを具備することを特徴とし、所望の
グラインド研削条件において加工歪み層を従来よりでき
るだけ小さくなるように研削することにより、デバイス
形成時の熱酸化工程において熱酸化膜により加工歪み層
を取り除くものである。この方法により、水平偏向出力
用トランジスタ等シビアなウエファ特性が要求されない
製品ついては化学的・機械的ポリッシング法(CMP)
による鏡面加工の工程を省略することにより、製造工程
のコスト的および時間的合理化を実現するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and comprises a step of forming a high-concentration layer on a lap-processed wafer, then half-off by grinding, and simultaneously performing a half-mirror processing under grinding conditions. Forming a desired thermal oxide film in a first thermal oxidation step when forming a device on the wafer, and removing a processing strain layer of the wafer. By grinding the strained layer so as to be as small as possible in the prior art, the processed strained layer is removed by a thermal oxide film in a thermal oxidation step at the time of device formation. For products that do not require severe wafer characteristics, such as horizontal deflection output transistors, use this method for chemical and mechanical polishing (CMP).
By omitting the mirror finishing step, the cost and time rationalization of the manufacturing process can be realized.

【0013】[0013]

【発明の実施の形態】図1を用いて、本発明の実施の形
態をn型シリコンウエファを例に詳述する。図1には、
本発明の製造方法の工程図を、図2には、図1の各工程
におけるウエファ断面図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, an embodiment of the present invention will be described in detail by taking an n-type silicon wafer as an example. In FIG.
FIG. 2 is a process diagram of the manufacturing method of the present invention, and FIG. 2 is a sectional view of a wafer in each process of FIG.

【0014】本発明の半導体装置の製造方法は、図1に
示す如く、ラップ加工されたウエファに高濃度層を形成
後、グラインド研削によりハーフオフし同時にグライン
ド研削条件にてハーフ鏡面加工する工程と、前記ウエフ
ァにデバイスを形成する際の最初の熱酸化工程において
所望の熱酸化膜を形成し、前記ウエファの加工歪み層を
取り除く工程とから構成される。
As shown in FIG. 1, the method of manufacturing a semiconductor device according to the present invention comprises, as shown in FIG. 1, a step of forming a high-concentration layer on a lap-processed wafer, half-off by grinding, and half-mirror processing at the same time under grinding conditions. Forming a desired thermal oxide film in an initial thermal oxidation step when a device is formed on the wafer, and removing a work distortion layer of the wafer.

【0015】まず、シリコン単結晶のインゴットの外周
部を研削し、1枚1枚のウエファにスライスする。その
後、ウエファは面取り工程で側面部を放物線状に研磨さ
れる。これは、ICの製造工程でウエファをハンドリン
グする際に、側面部が欠けたり、熱処理などで周辺部か
ら歪みによる結晶欠陥が入ったりするのを極力抑えるた
めである。面取り後は表面を滑らかにするために細かい
粒径の研磨剤を含む研磨液を用いてウエファ1を機械的
に研磨するラップ加工2(図2(A))を施す。
First, the outer periphery of a silicon single crystal ingot is ground and sliced into individual wafers. Thereafter, the side surface of the wafer is polished parabolically in a chamfering step. This is to minimize chipping of side surfaces and introduction of crystal defects due to distortion from the periphery due to heat treatment or the like when handling the wafer in the IC manufacturing process. After the chamfering, a lapping process 2 (FIG. 2 (A)) for mechanically polishing the wafer 1 using a polishing liquid containing an abrasive having a fine particle diameter is performed to smooth the surface.

【0016】次に、リン等の高濃度層3を拡散にて形成
し、ウエファの上下面にコレクタ領域を形成する(図2
(B))。
Next, a high concentration layer 3 of phosphorus or the like is formed by diffusion, and collector regions are formed on the upper and lower surfaces of the wafer (FIG. 2).
(B)).

【0017】ここで、本発明の第1の特徴となる工程で
あるグラインド研削を行う。グラインド研削4によりシ
リコンウエファ1をハーフオフして所望のウエファ厚み
とし、同時に所望のハーフ鏡面加工4を施す(図2
(C))。この場合の砥石は#2000〜#4000程
度を用い、面粗度を200Å以下にする。更に、加工歪
み層5の深さをできるだけ小さく、具体的には0.2μ
m以下になるように研削する。これによりウエファ1の
ハーフオフと同時にグラインド研削条件にてハーフ鏡面
加工4ができる。この工程で重要なことは、所望のグラ
インド研削条件により、加工歪み層5の深さを0.2μ
m以下とし、ハーフ鏡面加工4することである。
Here, the grinding which is the first feature of the present invention is performed. The silicon wafer 1 is half-off by grinding 4 to obtain a desired wafer thickness, and at the same time, a desired half mirror finishing 4 is performed (FIG. 2).
(C)). In this case, a grindstone of about # 2000 to # 4000 is used, and the surface roughness is set to 200 ° or less. Further, the depth of the work strain layer 5 is made as small as possible, specifically, 0.2 μm.
grinding to less than m. Thus, the half mirror finishing 4 can be performed under the grinding condition simultaneously with the half-off of the wafer 1. What is important in this step is that the depth of the work strained layer 5 is set to 0.2 μm depending on desired grinding conditions.
m or less and half mirror surface processing 4 is performed.

【0018】次に、本発明の第2の特徴となる工程であ
る、熱酸化を施す。前記のウエファにデバイスを形成す
る際の最初の熱酸化工程(拡散工程)において、所望の
熱酸化膜6を形成することで、ウエファ表面の加工欠陥
および不完全結晶を除去することができる(図2
(D))。加工歪み層5は従来より浅く0.2μm以下
であり、ハーフ鏡面加工4が施されて平坦化されてい
る。このため、デバイス形成時の最初の熱酸化工程(拡
散工程)において、所望の膜厚の熱酸化膜6を生成する
と、一般的にはこの熱酸化膜6の膜厚の45%のシリコ
ンが削られ、加工欠陥および不完全結晶が除去できるわ
けである。
Next, the second feature of the present invention, that is, thermal oxidation, is performed. By forming a desired thermal oxide film 6 in the first thermal oxidation step (diffusion step) when forming a device on the wafer, it is possible to remove processing defects and incomplete crystals on the wafer surface (FIG. 2
(D)). The processing strain layer 5 is shallower than the conventional one and has a thickness of 0.2 μm or less, and is flattened by the half mirror surface processing 4. For this reason, when a thermal oxide film 6 having a desired film thickness is generated in the first thermal oxidation step (diffusion step) at the time of device formation, generally, 45% of the silicon film of the thermal oxide film 6 is etched. As a result, processing defects and incomplete crystals can be removed.

【0019】具体的には例えば、水平偏向出力用トラン
ジスタの場合、約10000〜20000Åの熱酸化膜
6により加工欠陥および不完全結晶を含む加工歪み層5
が除去できることがわかった。これに限らず、ユーザ要
求にあったウエファ特性が得られれば、他のデバイスに
も応用できる。
More specifically, for example, in the case of a transistor for horizontal deflection output, a processing strain layer 5 containing a processing defect and an incomplete crystal is formed by a thermal oxide film 6 of about 10,000 to 20000 °.
Was found to be removable. However, the present invention is not limited to this, and can be applied to other devices as long as wafer characteristics that meet user requirements can be obtained.

【0020】デバイス形成時の最初の熱酸化工程はいず
れの機種でも実施する工程である。つまり、予めグライ
ンド研削により従来よりも加工歪み層を浅くし、且つハ
ーフ鏡面加工を施して平坦化しておくことにより、CM
Pの工程を省いても加工歪み層を除去することが可能と
なる。
The first thermal oxidation step at the time of device formation is a step to be carried out by any type. In other words, by making the work strained layer shallower than before by grinding in advance, and performing flattening by applying half mirror finishing, CM
Even if the step of P is omitted, the work distortion layer can be removed.

【0021】上述の如く、ウエファには様々な形状的・
結晶的・性能的特性が要求される。微細加工の進んだ先
端的ICでは、ウエファ表面も当然厳しい平坦性が要求
されているが、当然それほど特性がシビアでないウエフ
ァも市場要求がある。そのようなウエファに対しても従
来のような鏡面加工(CMP)を行っていては、製造工
程の合理化が進まない。つまり、例えば水平偏向出力用
トランジスタのようなウエファの平坦化等の特性がそれ
ほどシビアでない製品に関しては、グラインド研削のハ
ーフオフと同時に、グラインド研削条件にてハーフ鏡面
加工を行い、加工歪み層を0.2μm以下に形成してお
けば、デバイス形成時の熱酸化により加工歪み層を除去
することができる。これによりCMPによる時間的・コ
スト的ロスを削減でき、製造工程の合理化が実現するわ
けである。
As described above, the wafer has various shapes and shapes.
Crystalline and performance characteristics are required. In advanced ICs with advanced microfabrication, the wafer surface is naturally required to have strict flatness, but there is naturally a market demand for wafers with less severe characteristics. If such mirror processing (CMP) is performed on such a wafer, the manufacturing process cannot be rationalized. In other words, for a product such as a transistor for horizontal deflection output, which does not have such severe characteristics as flatness of a wafer, half mirror-off is performed at the same time as half-off of grind grinding, and a half-mirror surface process is performed under the grinding condition to form a processed strain layer of 0.1 mm. If the thickness is less than 2 μm, the work-strained layer can be removed by thermal oxidation during device formation. As a result, time and cost loss due to CMP can be reduced, and the manufacturing process can be rationalized.

【0022】[0022]

【発明の効果】本発明に依れば、所望のグラインド研削
条件により、ウエファのハーフオフと同時に、グライン
ド研削条件にてウエファにハーフ鏡面加工を施し、加工
歪み層を0.2μm以下に形成する。これにより後の工
程であるデバイス形成の最初の熱酸化膜生成により、シ
リコン表面が削られ、加工歪み層が除去できるものであ
る。例えば水平偏向出力用トランジスタ等、ユーザの要
求によりウエファの平坦化等の特性がそれほどシビアで
ない製品に関して本発明の方法を採用することにより、
従来のような化学的・機械的ポリッシング法(CMP)
による鏡面加工の工程が省略できる。つまり、時間的・
コスト的な削減が可能となり、製造工程の合理化に寄与
できるものである。
According to the present invention, the wafer is subjected to half mirror finishing under the grinding condition simultaneously with the half-off of the wafer under the desired grinding condition to form a processed strained layer of 0.2 μm or less. As a result, the silicon surface is shaved by the first step of forming a thermal oxide film for device formation, which is a later step, and the work-strained layer can be removed. For example, by adopting the method of the present invention for a product whose characteristics such as wafer flattening are not so severe at the request of the user, such as a transistor for horizontal deflection output, etc.
Conventional chemical and mechanical polishing (CMP)
Can be omitted. In other words,
This enables cost reduction and contributes to rationalization of the manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の製造方法の説明図であるFIG. 1 is an explanatory diagram of a method for manufacturing a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法の説明図であ
る。
FIG. 2 is an explanatory diagram of a method for manufacturing a semiconductor device according to the present invention.

【図3】従来の半導体装置の製造方法の説明図であるFIG. 3 is an explanatory diagram of a conventional method for manufacturing a semiconductor device.

【図4】従来の半導体装置の製造方法の説明図である。FIG. 4 is an explanatory view of a conventional method for manufacturing a semiconductor device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ラップ加工されたウエファに高濃度層を
形成後、グラインド研削によりハーフオフし同時にグラ
インド研削条件にてハーフ鏡面加工する工程と、前記ウ
エファにデバイスを形成する際の最初の熱酸化工程にお
いて所望の熱酸化膜を形成し、前記ウエファの加工歪み
層を取り除く工程とを具備することを特徴とする半導体
装置の製造方法。
1. A step of forming a high-concentration layer on a lap-processed wafer, half-off by grinding, and simultaneously half-mirror processing under grinding conditions, and a first thermal oxidation step for forming a device on the wafer Forming a desired thermal oxide film and removing a work-strained layer of the wafer.
【請求項2】 前記グラインド研削の面粗度を200Å
以下とすることを特徴とする請求項1に記載の半導体装
置の製造方法。
2. The surface roughness of the grinding is 200 °.
2. The method for manufacturing a semiconductor device according to claim 1, wherein:
【請求項3】 前記ウエファは加工歪み層の深さが0.
2μm以下となることを特徴とする請求項1に記載の半
導体装置の製造方法。
3. The wafer according to claim 1, wherein the depth of the work-strained layer is 0.5 mm.
The method according to claim 1, wherein the thickness is 2 μm or less.
JP2001140045A 2001-05-10 2001-05-10 Method of manufacturing semiconductor device Pending JP2002334854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140045A JP2002334854A (en) 2001-05-10 2001-05-10 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140045A JP2002334854A (en) 2001-05-10 2001-05-10 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2002334854A true JP2002334854A (en) 2002-11-22

Family

ID=18986721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140045A Pending JP2002334854A (en) 2001-05-10 2001-05-10 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2002334854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398915B (en) * 2004-04-30 2013-06-11 Disco Corp Semiconductor device including semiconductor memory element and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223498A (en) * 1997-02-03 1998-08-21 Sanken Electric Co Ltd Method for smoothing surface of semiconductor substrate and manufacture of semiconductor substrate and semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223498A (en) * 1997-02-03 1998-08-21 Sanken Electric Co Ltd Method for smoothing surface of semiconductor substrate and manufacture of semiconductor substrate and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398915B (en) * 2004-04-30 2013-06-11 Disco Corp Semiconductor device including semiconductor memory element and method for producing same

Similar Documents

Publication Publication Date Title
US6352927B2 (en) Semiconductor wafer and method for fabrication thereof
JP3169120B2 (en) Method for manufacturing semiconductor mirror-surface wafer
WO2013187441A1 (en) Semiconductor wafer manufacturing method
JP3328193B2 (en) Method for manufacturing semiconductor wafer
JPH08316180A (en) Fabrication method of semiconductor wafer
US6465328B1 (en) Semiconductor wafer manufacturing method
JPH08236489A (en) Manufacture of semiconductor wafer
KR20190057394A (en) Polishing method of silicon wafer and method of manufacturing silicon wafer
JP3534213B2 (en) Method for manufacturing semiconductor wafer
JP4493062B2 (en) Manufacturing method of double-side polished wafer
JP3336191B2 (en) Method for manufacturing semiconductor wafer
JP2588326B2 (en) Method for manufacturing semiconductor wafer
JPH11348031A (en) Manufacture of semiconductor substrate, external surface processing device, and single crystal ingot
JP3528166B2 (en) Manufacturing method of high flatness wafer
JP3551300B2 (en) Manufacturing method of high flatness wafer
JP2002334854A (en) Method of manufacturing semiconductor device
JP2001071244A (en) Precise chamfering method for semiconductor wafer
JP2002025950A (en) Manufacturing method for semiconductor wafer
JPH056881A (en) Manufacture of semiconductor wafer
JP3521051B2 (en) Silicon wafer manufacturing method
JP2004087523A (en) Method of manufacturing semiconductor wafer
KR20030053085A (en) Method for fabricating silicon wafer
JP2004319717A (en) Method of manufacturing semiconductor wafer
JP2001102331A (en) High flatness back surface matted wafer and its manufacturing method and/or front surface grinding back surface lapping device used for manufacturing method
TW298662B (en) Manufacturing method of semiconductor wafer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A02 Decision of refusal

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A02