JP2002332536A - THICK STEEL PLATE HAVING YIELD STRENGTH IN 500 TO 550 MPa CLASS AND EXCELLENT CTOD PROPERTY IN HEAT AFFECTED ZONE - Google Patents

THICK STEEL PLATE HAVING YIELD STRENGTH IN 500 TO 550 MPa CLASS AND EXCELLENT CTOD PROPERTY IN HEAT AFFECTED ZONE

Info

Publication number
JP2002332536A
JP2002332536A JP2001135947A JP2001135947A JP2002332536A JP 2002332536 A JP2002332536 A JP 2002332536A JP 2001135947 A JP2001135947 A JP 2001135947A JP 2001135947 A JP2001135947 A JP 2001135947A JP 2002332536 A JP2002332536 A JP 2002332536A
Authority
JP
Japan
Prior art keywords
haz
yield strength
steel
steel plate
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001135947A
Other languages
Japanese (ja)
Other versions
JP3711249B2 (en
Inventor
Akihiko Kojima
明彦 児島
Yoshio Terada
好男 寺田
Akito Kiyose
明人 清瀬
Yuzuru Yoshida
譲 吉田
Ryuji Uemori
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001135947A priority Critical patent/JP3711249B2/en
Publication of JP2002332536A publication Critical patent/JP2002332536A/en
Application granted granted Critical
Publication of JP3711249B2 publication Critical patent/JP3711249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thick steel plate which has yield strength in a 500 to 550 MPa class and, in which CTOD(crack tip opening displacement) at -10 deg.C in HAZ(heat affected zone) is >=0.2 mm, and which has the maximum plate thickness of <=76.2 mm (3 inches). SOLUTION: The thick steel plate having yield strength in a 500 to 550 MPa class and excellent CTOD properties in the heat affected zone has chemical components containing, by mass, 0.04 to 0.14% C, <=0.4% Si, 1.0 to 2.0% Mn, <=0.02% P, <=0.005% S, 0.001 to 0.01% Al, 0.005 to 0.03% Ti, 0.005 to 0.05% Nb, 0.0001 to 0.005% Mg, 0.001 to 0.005% O and 0.001 to 0.01% N, and the balance iron with inevitable impurities, and in which Ti/(Mg+Al)>=1 is satisfied. TiN of 0.01 to 0.5 μm including oxides of Mg and Al is present in >=10,000 pieces/mm<2> , and also, oxides of 0.5 to 10 μm are present in >=10 pieces/mm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶接熱影響部(He
at Affected Zone:HAZ)のCTO
D特性に優れた500〜550MPa級の降伏強度を有
する鋼板であり、主に海洋構造物用として用いられる
が、同様の強度とHAZ靭性(CTOD特性)が要求さ
れるその他の溶接構造物へも適用できる。
The present invention relates to a heat affected zone (He).
at Affected Zone: HAZ) CTO
A steel sheet with excellent D characteristics and a yield strength of the class of 500 to 550 MPa, which is mainly used for offshore structures, but is also applicable to other welded structures requiring the same strength and HAZ toughness (CTOD characteristics). Applicable.

【0002】[0002]

【従来の技術】北海で使用される海洋構造物の溶接継ぎ
手には−10℃でのCTOD特性が要求される。このよ
うな厳格なHAZ靭性が要求される鋼材として、例えば
「Proceedings of 12th Inte
rnational Conference on O
MAE」 1993. Glasgow. UK. A
SME. VolumeIII−A. pp.207−
214に記載されているように、Tiオキサイド鋼が使
用されている。HAZの溶融線近傍は1400℃以上に
加熱されるため、TiN粒子によるピン止め効果が消失
してオーステナイト(γ)が著しく粗大化してしまい、
HAZ組織が粗大化して靭性が劣化する。このような問
題点を解決する鋼として上述のTiオキサイド鋼は開発
された。この技術は、例えば特開昭63−210235
号公報や特開平06−075599号公報に記載されて
いるように、TiN粒子によるピン止め効果が消失して
粗大化したγ粒の粒内において、熱的に安定なTi酸化
物を変態核として生成する針状フェライトを利用するこ
とでHAZ組織の微細化をはかった鋼である。粗大なγ
粒を効果的に微細化するこの針状フェライトは粒内変態
フェライト(Intra Granular Ferr
ite:IGF)と呼ばれる。しかしながら、このTi
オキサイド鋼の降伏強度は420MPa級までであり、
それ以上の降伏強度を有しつつHAZのCTOD特性を
保証するような厚鋼板は開発されていない。一方で、海
洋構造物を軽量化することで建造コストの低減をはかる
動きが活発化しつつあり、海洋構造物を軽量化するため
に降伏強度の高い厚鋼板が求められている。つまり、従
来よりも高強度である500〜550MPa級の降伏強
度を有しつつ、CTOD特性を保証できるようなHAZ
靭性の優れた厚鋼板が強く望まれている。
2. Description of the Related Art Weld joints for offshore structures used in the North Sea are required to have CTOD characteristics at -10.degree. As a steel material requiring such strict HAZ toughness, for example, “Proceedings of 12th Inte
national Conference on O
MAE "1993. Glasgow. UK. A
SME. Volume III-A. pp. 207-
As described at 214, Ti oxide steel is used. Since the vicinity of the melting line of the HAZ is heated to 1400 ° C. or higher, the pinning effect of the TiN particles disappears, and austenite (γ) becomes extremely coarse.
The HAZ structure becomes coarse and the toughness deteriorates. The Ti oxide steel described above has been developed as a steel that solves such problems. This technology is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-210235.
As described in Japanese Patent Application Laid-Open No. H06-075599, the thermally stable Ti oxide is used as a transformation nucleus in the coarsened γ grains in which the pinning effect of the TiN particles disappears. It is a steel whose HAZ structure has been refined by utilizing the generated needle-like ferrite. Coarse γ
This acicular ferrite, which effectively refines grains, is an intragranular transformed ferrite (Intra Granular Ferr).
item: IGF). However, this Ti
The yield strength of oxide steel is up to 420MPa class,
No thick steel plate has been developed that guarantees the CTOD characteristic of HAZ while having a higher yield strength. On the other hand, there is an increasing movement to reduce building costs by reducing the weight of offshore structures, and thick steel plates with high yield strength are required to reduce the weight of offshore structures. That is, a HAZ that can guarantee CTOD characteristics while having a yield strength of 500 to 550 MPa class, which is higher than conventional strengths.
There is a strong demand for thick steel plates having excellent toughness.

【0003】[0003]

【発明が解決しようとする課題】本発明は、降伏強度が
500〜550MPa級であり、HAZにおける−10
℃でのCTODが0.2mm以上であり、最大板厚が7
6.2mm(3インチ)までの厚鋼板を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has a yield strength in the range of 500 to 550 MPa and a HAZ of -10.
The CTOD at ℃ is 0.2mm or more and the maximum plate thickness is 7
It is intended to provide thick steel plates up to 6.2 mm (3 inches).

【0004】[0004]

【課題を解決するための手段】本発明は、質量%でC
:0.04〜0.14%、Si:0.4%以下、M
n:1.0〜2.0%、P :0.02%以下、S :
0.005%以下、Al:0.001〜0.01%、T
i:0.005〜0.03%、Nb:0.005〜0.
05%、Mg:0.0001〜0.005%、O :
0.001〜0.005%、N :0.001〜0.0
1%を含有し、さらに必要に応じて質量%でCa:0.
0005〜0.005%、REM:0.0005〜0.
01%、Zr:0.0005〜0.01%、Cu:0.
05〜1.5%、Ni:0.05〜3.0%、Cr:
0.05〜0.5%、Mo:0.05〜0.5%、V
:0.005〜0.05%、B :0.0001〜
0.003%の内の1種以上を含有し、質量%でTi/
(Mg+Al+Ca+REM+Zr)≧1であり、C
u、Ni、Cr、Moの和が3.0%以下であり、残部
が鉄および不可避的不純物からなる化学成分を有し、M
gとAlからなる酸化物を内包する0.01〜0.5μ
mのTiNが10000個/mm2以上存在し、かつ、
0.5〜10μmの酸化物が10個/mm2以上存在す
ることを特徴とする、溶接熱影響部のCTOD特性に優
れた500〜550MPa級の降伏強度を有する厚鋼板
である。
SUMMARY OF THE INVENTION The present invention relates to a method for producing C by mass%.
: 0.04 to 0.14%, Si: 0.4% or less, M
n: 1.0 to 2.0%, P: 0.02% or less, S:
0.005% or less, Al: 0.001 to 0.01%, T
i: 0.005 to 0.03%, Nb: 0.005 to 0.
05%, Mg: 0.0001 to 0.005%, O:
0.001 to 0.005%, N: 0.001 to 0.0
1%, and further, if necessary, by mass% of Ca: 0.1%.
0005-0.005%, REM: 0.0005-0.
01%, Zr: 0.0005 to 0.01%, Cu: 0.
05 to 1.5%, Ni: 0.05 to 3.0%, Cr:
0.05-0.5%, Mo: 0.05-0.5%, V
: 0.005 to 0.05%, B: 0.0001 to
0.003% or more, and Ti /
(Mg + Al + Ca + REM + Zr) ≧ 1 and C
The sum of u, Ni, Cr, and Mo is 3.0% or less, and the balance has a chemical component consisting of iron and unavoidable impurities.
0.01 to 0.5 μg containing an oxide consisting of g and Al
m TiN is present at least 10,000 / mm 2 , and
A thick steel plate having a CTOD characteristic of a weld heat-affected zone of 500 to 550 MPa and a yield strength of 500 to 550 MPa, characterized in that oxides of 0.5 to 10 μm are present in an amount of 10 / mm 2 or more.

【0005】[0005]

【発明の実施の形態】以下、図1を参酌して本発明を詳
細に説明する。図1(a)〜(d)は、本発明における
HAZ組織制御の考え方を模式的に示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to FIG. FIGS. 1A to 1D are views schematically showing the concept of HAZ structure control in the present invention.

【0006】Tiオキサイド鋼の降伏強度を合金元素の
添加によって現行の420MPa級から500PMa
級、さらには550MPa級へと高めていくと、溶接金
属1の溶融線3近傍溶接熱影響部HAZ2が硬化して十
分なCTOD特性を確保することが難しくなる。このと
きのHAZ組織を模式的に図1の(a)に示す。HAZ
が脆化する第一の原因は、粒内フェライトIGFの生成
によって粗大なγ粒の内部を微細化しても、粗大なγ粒
のγ粒界4に沿って生成する粗大な粒界フェライト(G
rain Boundary Ferrite:GB
F)やフェライトサイドプレート(Ferrite S
ide Plate:FSP)が、HAZの硬化に伴っ
て脆性破壊の発生に対する敏感性を高めるからである。
従って、これらのGBFやFSPを微細化することで脆
性破壊の発生に対する感受性を小さくする必要がある。
第二の脆化原因は、高強度化のために合金元素の添加量
を増加させることでHAZの焼入性が高まり、マルテン
サイト・オーステナイト混合層MA(Martensi
te−Austenite constituent)
と呼ばれる微視的な脆化相が多く生成し、これが脆性破
壊の発生を促すからである。従って、500〜550M
Pa級の降伏強度を達成する場合においても、MAを可
能な限り低減する必要がある。以上から、高い降伏強度
のもとで良好な継ぎ手CTOD特性を達成するために
は、Tiオキサイド鋼の金属学的効果(IGF効果)を
維持しつつ、上記の二つの脆化原因を取り除くことが指
針となる。つまり、本発明の要点はHAZ組織を下記の
三つの視点から同時に制御することである。 (1) 溶融線近傍HAZのγ粒界に沿って生成するG
BFやFSPを微細化する。 (2) 溶融線近傍HAZのγ粒内をIGFの生成によ
って微細化する。 (3) 溶融線近傍HAZのMA生成量を低減する。
[0006] The yield strength of Ti oxide steel is increased from the current 420 MPa class to 500 PMa by adding an alloying element.
When the temperature is further increased to the 550 MPa class, the weld heat affected zone HAZ2 near the melting line 3 of the weld metal 1 hardens and it becomes difficult to secure sufficient CTOD characteristics. The HAZ structure at this time is schematically shown in FIG. HAZ
The primary cause of embrittlement is that even if the inside of the coarse γ grains is refined by the formation of intragranular ferrite IGF, the coarse grain ferrite (G) formed along the γ grain boundaries 4 of the coarse γ grains
rain Boundary Ferrite: GB
F) or ferrite side plate (Ferrite S)
This is because ide plate (FSP) increases the sensitivity to the occurrence of brittle fracture with hardening of the HAZ.
Therefore, it is necessary to reduce the susceptibility to the occurrence of brittle fracture by making these GBFs and FSPs finer.
The second cause of embrittlement is that the hardenability of the HAZ is increased by increasing the amount of alloying elements added to increase the strength, and the martensite-austenite mixed layer MA (Martensi) is used.
te-Austenite constituent)
This is because a large number of microscopic embrittlement phases, referred to as, are generated, which promotes the occurrence of brittle fracture. Therefore, 500-550M
Even when achieving a Pa-class yield strength, it is necessary to reduce MA as much as possible. From the above, in order to achieve good joint CTOD characteristics under high yield strength, it is necessary to eliminate the above two causes of embrittlement while maintaining the metallurgical effect (IGF effect) of Ti oxide steel. Be a guide. That is, the gist of the present invention is to simultaneously control the HAZ structure from the following three viewpoints. (1) G generated along the γ grain boundary of HAZ near the melting line
BF and FSP are miniaturized. (2) The inside of the γ grains of the HAZ near the melting line is refined by the generation of IGF. (3) Reduce the amount of MA generated in the HAZ near the melting line.

【0007】まず(1)を達成する手段を説明する。脆
性破壊の発生に有害な粗大なGBFやFSPを微細化す
るためには、γ粒を小さくする必要がある。1400℃
を超えて加熱される溶融線近傍HAZのγ粒成長を強力
に抑制することを狙いとして、種々の鋼成分について鋭
意検討した結果、MgとAlを適正に制御することでM
gとAlからなる0.01〜0.1μmの超微細な酸化
物を鋼中に数多く分散させ、これを核に0.01〜0.
5μmのTiNを複合析出させる技術を発明した。この
ような複合析出のTiN粒子は、溶融線近傍でも熱的に
安定であるため、成長したり溶解したりすることなく強
力にγ粒界の移動をピン止めできる。たとえ溶接入熱量
の大きな溶接を行っても、溶融線近傍のγ粒を100μ
m程度の大きさに保つことができる。さらに、γ粒界上
に存在するこれらのピン止め粒子自身が、GBFやFS
Pの変態核として直接機能する場合があり、変態場所の
増加を通じることによってもGBFやFSPの微細化に
寄与する。このような複合析出のTiN粒子が1000
0個/mm2以上存在することで、GBFやFSPがC
TOD特性に悪影響を及ぼさない大きさまで微細化され
る。このような複合析出のTiN粒子が10000個/
mm2未満であると、γ細粒化やγ粒界上の変態核の個
数が不十分となる結果、GBFやFSPが十分に微細化
されずCTOD特性が劣化する。この複合携態のTiN
粒子には硫化物が析出する場合もあるが、上述したピン
止め粒子や変態核としての機能に悪影響を及ぼすもので
はない。図1の(b)はここで説明した(1)の技術だ
けを適用したときのHAZ組織の模式図である。GBF
やFSPは微細化するが、本技術だけではγ粒内が上部
ベイナイト(Bu)と呼ばれるMAを含む脆化組織で覆
われてしまい、十分なCTOD特性が得られない。そこ
で、次に説明する(2)の技術を併用しなければならな
い。
First, means for achieving (1) will be described. In order to refine coarse GBF or FSP which is harmful to the occurrence of brittle fracture, it is necessary to reduce γ grains. 1400 ° C
With the aim of strongly suppressing the γ-grain growth in the HAZ near the melting line heated beyond the limit, various steel components were intensively studied. As a result, by controlling Mg and Al appropriately, M
g and Al, a large number of ultrafine oxides of 0.01 to 0.1 μm are dispersed in the steel, and this is used as a nucleus to form 0.01 to 0.1 μm.
We have invented a technique for complex precipitation of 5 μm TiN. Since such composite precipitated TiN particles are thermally stable even near the melting line, they can strongly pin the movement of the γ grain boundary without growing or dissolving. Even if welding with a large welding heat input is performed, 100 μm of γ grains near the melting line
m. Furthermore, these pinning particles present on the γ grain boundary are themselves GBF and FS
It may function directly as the transformation nucleus of P, and contributes to miniaturization of GBF and FSP by increasing the number of transformation sites. Such composite precipitation of TiN particles is 1000
0 / mm 2 or more, GBF and FSP
The size is reduced to a size that does not adversely affect the TOD characteristics. The number of such composite precipitated TiN particles is 10,000 /
If the diameter is less than mm 2 , the γ-graining and the number of transformation nuclei on the γ-grain boundary become insufficient, so that GBF or FSP is not sufficiently refined and CTOD characteristics are deteriorated. This complex mobile TiN
Although sulfides may precipitate on the particles, they do not adversely affect the function as the above-described pinned particles or transformation nuclei. FIG. 1B is a schematic diagram of the HAZ structure when only the technique (1) described here is applied. GBF
However, with this technology alone, the inside of the γ grains is covered with an embrittlement structure including MA called upper bainite (Bu), and sufficient CTOD characteristics cannot be obtained. Therefore, the technique (2) described below must be used together.

【0008】(2)を達成する手段を説明する。本発明
は上述した超微細酸化物を多数生成させるめにMgを添
加する状況下で、数μm程度の比較的大きな酸化物を利
用してIGFを生成させることを追求した。その結果、
下記の三つの条件がIGF変態核として重要であること
がわかった。 最低限の個数が存在すること。 適当な大きさであること。 酸化物組成が適正であること。
Means for achieving (2) will be described. The present invention has sought to generate IGF using a relatively large oxide of about several μm under the condition that Mg is added to generate a large number of ultrafine oxides as described above. as a result,
The following three conditions were found to be important as IGF metamorphosis nuclei. There must be a minimum number. Be of appropriate size. The oxide composition is appropriate.

【0009】の観点から、IGF変態核は溶融線近傍
HAZにおいて安定に存在し、少なくとも10個/mm
2以上必要である。IGF変態核が10個/mm2未満で
はHAZ組織の微細化が不十分である。また、の観点
から、IGF変態核として有効に機能するには0.5μ
m以上の大きさが必要である。粒子の大きさが0.5μ
m未満ではIGF変態核としての能力が著しく低下す
る。これらの条件を満たすために、本発明では0.5μ
m以上の酸化物をIGF変態核として利用することを検
討した。しかし、10μmを超える酸化物は脆性破壊の
発生起点として作用するため好ましくない。の観点か
ら、酸化物がIGF変態核として有効に機能するために
は、酸化物中に2質量%以上のTiを含有することが効
果的であることが判明した。そのためには、Tiよりも
脱酸力の強いMg、Al、Ca、REM、Zrの添加量
を制限して酸化物中のTi含有量を高めなければならな
い。これらの脱酸元素の添加量を質量%を用いて下式
[1]の範囲に制御することで、0.5〜10μmの酸
化物中のTi含有量を2質量%以上に制御できることを
発見した。 Ti/(Mg+Al+Ca+REM+Zr)≧1 ・ ・ ・[1]
In view of the above, the IGF transformation nuclei are stably present in the HAZ near the melting line and have at least 10 nuclei / mm
Two or more are required. If the number of IGF metamorphic nuclei is less than 10 / mm 2 , the refinement of the HAZ structure is insufficient. Also, from the viewpoint of effective functioning as an IGF metamorphosis nucleus, 0.5 μm
m is required. Particle size 0.5μ
Below m, the ability as an IGF metamorphic nucleus is significantly reduced. In order to satisfy these conditions, in the present invention, 0.5 μm
The use of oxides of m or more as IGF transformation nuclei was studied. However, an oxide exceeding 10 μm is not preferable because it functions as a starting point of brittle fracture. From the viewpoint of, it has been found that for the oxide to effectively function as an IGF transformation nucleus, it is effective to contain 2% by mass or more of Ti in the oxide. For this purpose, the content of Mg, Al, Ca, REM, and Zr, which have stronger deoxidizing power than Ti, must be limited to increase the Ti content in the oxide. It has been discovered that by controlling the amount of these deoxidizing elements added to the range of the following formula [1] using mass%, the Ti content in the oxide of 0.5 to 10 μm can be controlled to 2 mass% or more. did. Ti / (Mg + Al + Ca + REM + Zr) ≧ 1 [1]

【0010】このような条件を満足すれば0.5〜10
μmのIGF変態核は酸化物単独である必要はない。酸
化物上に硫化物や窒化物が析出した複合形態で同様の大
きさを有する粒子でもIGF変態核として有効に作用す
る。図1の(c)は(1)の技術とここで説明した
(2)の技術を併用したときのHAZ組織の模式図であ
る。GBFやFSPの微細化に加えて多量のIGFが生
成することでHAZ組織は微細化する。しかし、合金成
分の添加量が不適切な場合にはMA生成量が増えてCT
OD特性が不十分となる。そこで、次に説明する(3)
の技術を併用することで安定的にCTOD特性を向上さ
せることが必要である。
If these conditions are satisfied, 0.5 to 10 is satisfied.
The μm IGF transformation nuclei need not be oxide alone. Even particles having a similar size in a composite form in which sulfides or nitrides are precipitated on oxides effectively act as IGF transformation nuclei. FIG. 1C is a schematic diagram of the HAZ structure when the technique of (1) and the technique of (2) described here are used together. The generation of a large amount of IGF in addition to the miniaturization of GBF and FSP makes the HAZ structure fine. However, when the addition amount of the alloy component is inappropriate, the amount of generated MA increases and CT
OD characteristics become insufficient. Then, it is explained next (3)
It is necessary to stably improve the CTOD characteristics by using the technique described above.

【0011】(3)を達成する手段を説明する。HAZ
におけるMA生成挙動は、焼入性と冷却速度に大きく依
存することが知られている。本発明におけるHAZの焼
入性は、鋼成分に加えてγ粒径やIGF生成能の影響を
大きく受ける。従来鋼ではHAZの焼入性に対してγ粒
径やIGF生成はほとんど考慮されていないが、本発明
鋼はγ粒が小さい上にIGF生成能が高いため、γ粒界
やγ粒内でフェライトの変態場所が増加しており、鋼成
分が同一である従来鋼に対してHAZの焼入性が著しく
低下する特徴を持つ。このような特徴を有する本発明鋼
に対して、海洋構造物の溶接施工時の冷却速度(800
℃から500℃の冷却時間がおおよそ15s)と本発明
のCとMnの範囲を前提に、MAの生成状況に及ぼす合
金成分の影響を鋭意検討した。その結果、下記の2点が
明らかになった。 Nbを従来より高めてもHAZのMA量は増えにく
い。 Cu、Ni、Cr、Moの和とHAZのMA量の間に
非連続的な強い相関がある。
The means for achieving (3) will be described. HAZ
It is known that the MA formation behavior of the steel greatly depends on hardenability and cooling rate. The hardenability of HAZ in the present invention is greatly affected by the γ particle size and the ability to generate IGF in addition to the steel component. In the conventional steel, the γ grain size and IGF generation are hardly taken into consideration for the hardenability of HAZ, but the steel of the present invention has a small γ grain and a high IGF generation ability. There is a feature that the transformation sites of ferrite are increased and the hardenability of HAZ is remarkably reduced with respect to the conventional steel having the same steel composition. For the steel of the present invention having such characteristics, the cooling rate (800
Based on the premise that the cooling time from 500 ° C. to 500 ° C. is approximately 15 s) and the range of C and Mn according to the present invention, the influence of the alloy component on the formation of MA was studied diligently. As a result, the following two points became clear. Even if Nb is made higher than before, the MA amount of HAZ is hard to increase. There is a strong discontinuous correlation between the sum of Cu, Ni, Cr and Mo and the MA content of HAZ.

【0012】の観点から、Nbを0.05%まで高め
てもHAZのMA量に大きな影響を及ぼさないことがわ
かった。従来の海構造物向け厚鋼板(継ぎ手CTOD保
証鋼)で実際に用いられるNbは、例えば、「Proc
eedings of 12th Internati
onal Conference on OMAE」1
993. Glasgow. UK. ASME. V
olumeIII−A. pp.207−214では4
20MPa級の降伏強度で0.02%のNbが上限であ
り、「Proceedings of 12th In
ternational Conference on
OMAE」 1993. Glasgow. UK.
ASME. VolumeIII−A. pp.19
9−205では460MPa級の降伏強度で0.021
%のNbが上限であり、「Proceedings o
f 13th International Conf
erence on OMAE」 1994. Hou
ston. ASME.VolumeIII. pp.
307−314では420MPa級の降伏強度で0.0
24%のNbである。このように、従来は0.02%程
度のNb量が実質的に上限とされており、これに対して
本発明はNbを0.05%まで有効に利用できる利点が
ある。の観点から、Cu、Ni、Cr、Moの和が
3.0%を超えるとHAZのMA量が急激に増えること
がわかった。以上の知見から、500〜550MPa級
の降伏強度を保ちつつ板厚を76.2mmまで拡大して
いく場合の成分設計として、できる限りNbを活用して
厚手材の母材強度を稼ぎ、その反面、MA生成を助長す
るCu、Ni、Cr、Moを削減することが指針とな
る。Cu、Ni、Cr、Moの削減は合金コストの面か
らも好ましい。図1の(d)は(1)、(2)の技術に
ここで説明した(3)の技術を併用したときのHAZ組
織の模式図である。HAZ組織の十分な微細化に加えて
安定的にMA量が低減されることで、高強度においても
良好な継ぎ手CTOD特性が達成される。このように、
本発明は(1)、(2)、(3)の技術を同時に発現さ
せることで実現可能となる。
From the viewpoint, it has been found that increasing Nb to 0.05% does not significantly affect the MA amount of HAZ. Nb actually used in a conventional steel plate (joint CTOD guaranteed steel) for marine structures is, for example, “Proc
eatings of 12th International
onal Conference on OMAE "1
993. Glasgow. UK. ASME. V
olume III-A. pp. 4 for 207-214
The upper limit is 0.02% Nb at a yield strength of the 20 MPa class, and "Proceedings of 12th In"
international Conference on
OMAE "1993. Glasgow. UK.
ASME. Volume III-A. pp. 19
For 9-205, a yield strength of 460 MPa class was 0.021.
% Of Nb is the upper limit, and "Proceedings o
f 13th International Conf
erence on OMAE "1994. Hou
stone. ASME. Volume III. pp.
For 307-314, a yield strength of 420 MPa class is 0.0
24% Nb. As described above, conventionally, the upper limit of the Nb content is about 0.02%, whereas the present invention has an advantage that Nb can be effectively used up to 0.05%. From the viewpoint, it was found that when the sum of Cu, Ni, Cr, and Mo exceeds 3.0%, the MA amount of HAZ sharply increases. From the above findings, as a component design when expanding the plate thickness to 76.2 mm while maintaining the yield strength in the range of 500 to 550 MPa, Nb is used as much as possible to increase the base material strength of the thick material, and on the other hand, The guideline is to reduce Cu, Ni, Cr, and Mo that promote the formation of MA. Reduction of Cu, Ni, Cr, and Mo is preferable also from the viewpoint of alloy cost. FIG. 1D is a schematic diagram of the HAZ structure when the technique of (3) described here is used in combination with the techniques of (1) and (2). Since the amount of MA is stably reduced in addition to sufficiently miniaturizing the HAZ structure, good joint CTOD characteristics are achieved even at high strength. in this way,
The present invention can be realized by simultaneously expressing the techniques (1), (2), and (3).

【0013】次に化学成分の限定理由について説明す
る。
Next, the reasons for limiting the chemical components will be described.

【0014】Cは母材とHAZの強度、靭性を確保する
ために0.04%以上必要である。しかし、0.14%
を超えると母材とHAZの靭性が低下すると共に溶接性
が劣化するので、これが上限である。
C is required to be 0.04% or more in order to secure the strength and toughness of the base material and HAZ. However, 0.14%
If it exceeds 300, the toughness of the base material and the HAZ decreases, and the weldability deteriorates. Therefore, this is the upper limit.

【0015】Siは脱酸のために添加することができ
る。しかし、0.4%を超えるとHAZ靭性が劣化す
る。本発明ではAl、Ti、Mgによっても脱酸は可能
であり、HAZ靭性の観点からSiは少ないほどよい。
SiはHAZのMA生成を助長するので本発明では好ま
しくない元素である。
[0015] Si can be added for deoxidation. However, if it exceeds 0.4%, HAZ toughness deteriorates. In the present invention, deoxidation is possible with Al, Ti, and Mg, and the smaller the amount of Si, the better from the viewpoint of HAZ toughness.
Si is an unfavorable element in the present invention because it promotes the formation of HAZ in MA.

【0016】Mnは母材とHAZの強度、靭性を確保す
るために1.0%以上必要である。MnはIGF変態核
を構成する硫化物を形成する上でも重要である。しか
し、Mnが2.0%を超えると母材やHAZが脆化した
り、溶接性が劣化するので、これが上限である。
Mn must be at least 1.0% in order to ensure the strength and toughness of the base material and HAZ. Mn is also important in forming sulfides constituting the IGF transformation nucleus. However, if Mn exceeds 2.0%, the base material and HAZ become brittle or the weldability deteriorates, so this is the upper limit.

【0017】Pは本発明において不純物元素であり、良
好な母材とHAZの材質を確保するためには0.02%
以下に低減する必要がある。
P is an impurity element in the present invention, and is 0.02% in order to ensure a good base material and HAZ material.
It is necessary to reduce it below.

【0018】Sは本発明において不純物元素であり、良
好な母材とHAZの材質を確保するためには0.005
%以下に低減する必要がある。
S is an impurity element in the present invention, and is 0.005% in order to secure a good base material and HAZ material.
% Or less.

【0019】NbはHAZ靭性の劣化を最小限に抑えて
母材強度を高めることに極めて有効である。Nbは母材
の組織微細化を通じて靭性を高めることにも有効であ
る。本発明の最大板厚である76.2mmで500MP
a級の降伏強度を達成しつつ、さらに良好な母材靭性を
得るためには、0.005%以上のNbが必須である。
しかし、Nbが0.05%を超えるとMA量の増加や析
出硬化によってHAZ靭性が劣化するので、これが上限
である。Nbは本発明の母材を造り込む上で積極的に用
いるべき元素であり、0.02%以上のNbを有効利用
することが好ましい。
Nb is extremely effective in minimizing HAZ toughness degradation and increasing base material strength. Nb is also effective in increasing the toughness through the refinement of the structure of the base material. 500MP at the maximum plate thickness of 76.2mm of the present invention
In order to achieve a more excellent base metal toughness while achieving a-class yield strength, 0.005% or more of Nb is essential.
However, if Nb exceeds 0.05%, the HAZ toughness deteriorates due to an increase in the amount of MA and precipitation hardening, so this is the upper limit. Nb is an element that should be actively used in forming the base material of the present invention, and it is preferable to effectively use 0.02% or more of Nb.

【0020】AlはMgと共に0.01〜0.1μmの
超微細酸化物を形成し、その上に複合析出するTiNを
伴ってピン止め粒子として、さらにはGBFやFSPの
変態核として機能し、HAZ組織を微細化する。そのた
めには0.001%以上必要である。Alが0.001
%未満になると10000個/mm2以上の超微細酸化
物を確保することができず、γ細粒化やγ粒界上の変態
核の個数が不十分となる結果、GBFやFSPが十分に
微細化されずにHAZ靭性が劣化する。しかしAlが
0.01%を超えると、たとえ前記[1]式を満たす場
合でも、IGF変態核として有効な大きさの酸化物中に
おけるTi含有量が2質量%未満となり、これらの酸化
物がIGF変態核としての能力を失う結果、10個/m
2以上のIGF変態核を安定に確保することが難しく
なる。このようにIGF変態核の個数が不足するとHA
Z靭性は劣化する。従ってAlの上限は0.01%であ
る。
Al forms an ultrafine oxide of 0.01 to 0.1 μm together with Mg, and functions as pinning particles with TiN which is compositely deposited thereon, and also as a transformation nucleus of GBF or FSP, Refine HAZ structure. For that purpose, 0.001% or more is required. Al is 0.001
%, It is not possible to secure an ultrafine oxide of 10000 / mm 2 or more, resulting in insufficient γ refinement and an insufficient number of transformation nuclei on the γ grain boundary, resulting in a sufficient GBF or FSP. The HAZ toughness is degraded without being refined. However, if the Al content exceeds 0.01%, even if the above formula [1] is satisfied, the Ti content in an oxide having a size effective as an IGF transformation nucleus becomes less than 2% by mass, and these oxides As a result of losing the ability as an IGF metamorphosis nucleus, 10 cells / m
It becomes difficult to stably secure an IGF transformation nucleus of m 2 or more. When the number of IGF metamorphic nuclei is insufficient in this way, HA
Z toughness deteriorates. Therefore, the upper limit of Al is 0.01%.

【0021】TiはTiNを形成して超微細な(Mg、
Al)酸化物上に0.01〜0.5μmの大きさで複合
析出し、ピン止め粒子として、さらにはGBFやFSP
の変態核として機能し、HAZ組織を微細化する。さら
に、0.5〜10μmの酸化物中に2質量%以上含有さ
れることを通じてIGF変態を促進する。そのためには
0.005%以上必要である。Tiが0.005%未満
になるとこのような複合形態のTiN粒子を10000
個/mm2以上確保することができず、GBFやFSP
が十分に微細化されずにHAZ靭性が劣化する。Siと
Alが共に下限に近い場合は脱酸元素が不足する場合が
あるため、Tiに脱酸を担わせる意味で0.01%以上
の添加が望ましい。しかし、Tiが0.03%を超える
と、TiCが析出したり、TiNが数μmにまで粗大化
するなどして母材やHAZが脆化する。以上の理由から
Tiの上限は0.03%である。
Ti forms TiN to form ultrafine (Mg,
Al) A composite precipitate having a size of 0.01 to 0.5 μm is formed on the oxide, and as pinning particles, further, GBF or FSP
Functions as a transformation nucleus and refines the HAZ structure. Furthermore, IGF transformation is promoted by containing 2% by mass or more in an oxide of 0.5 to 10 μm. For that purpose, 0.005% or more is required. When the Ti content is less than 0.005%, such a composite form of TiN particles is reduced to 10,000.
Pieces / mm 2 or more cannot be secured.
Is not sufficiently refined, and the HAZ toughness is deteriorated. When both Si and Al are close to the lower limits, the deoxidizing element may be insufficient, so that 0.01% or more is desirably added in the sense that Ti is deoxidized. However, if the Ti content exceeds 0.03%, the base material and the HAZ become embrittled due to precipitation of TiC and coarsening of TiN to several μm. For the above reasons, the upper limit of Ti is 0.03%.

【0022】Mgは本発明で重要な役割を担う。Mgは
Alと共に0.01〜0.1μmの超微細酸化物を形成
し、その上に複合析出するTiNを伴ってピン止め粒子
として、さらにはGBFやFSPの変態核として機能
し、HAZ組織を微細化することである。そのためには
0.0001%以上のMgが必要である。Mgが0.0
001%未満であると、10000個/mm2以上の超
微細(Mg、Al)酸化物を確保することも困難とな
る。しかし、Mgが0.005%を超えてもその金属学
的効果は飽和するため、これを上限とする。
Mg plays an important role in the present invention. Mg forms an ultrafine oxide of 0.01 to 0.1 μm together with Al, and functions as pinning particles with TiN which is compositely deposited thereon, and also as a transformation nucleus of GBF or FSP, and has a HAZ structure. It is to miniaturize. For that purpose, 0.0001% or more of Mg is required. Mg is 0.0
If the content is less than 001%, it becomes difficult to secure an ultrafine (Mg, Al) oxide of 10,000 / mm 2 or more. However, even if Mg exceeds 0.005%, its metallurgical effect is saturated, so that the upper limit is set.

【0023】Oは超微細な(Mg、Al)酸化物を形成
してHAZでのピン止め効果を担うと同時に、0.5〜
10μmのTi含有酸化物を形成してHAZでIGF変
態核として機能する。これら二つの役割を満たすために
は0.001%以上のOが必要である。Oが0.001
%未満になると、10000個/mm2以上の超微細酸
化物や10個/mm2以上の0.5〜10μm酸化物を
確保することが難しくなる。しかし、Oが0.005%
を超えると10μmを超える粗大な酸化物が多く生成
し、これが母材やHAZで脆性破壊の発生起点として作
用するため、0.005%を上限とする。
O forms an ultra-fine (Mg, Al) oxide to perform the pinning effect in HAZ,
It forms a 10 μm Ti-containing oxide and functions as an IGF transformation nucleus in HAZ. To fulfill these two roles, 0.001% or more of O is required. O is 0.001
%, It becomes difficult to secure an ultrafine oxide of 10,000 / mm 2 or more and an oxide of 10 / mm 2 or more of 0.5 to 10 μm. However, O is 0.005%
If more than 0.005%, a large amount of coarse oxides exceeding 10 μm is generated and this acts as a starting point of brittle fracture in the base material or HAZ, so the upper limit is 0.005%.

【0024】NはTiNを生成して超微細な(Mg、A
l)酸化物上に0.01〜0.5μmの大きさで複合析
出し、ピン止め粒子として、さらにはGBFやFSPの
変態核として機能し、HAZ組織を微細化する。そのた
めには0.001%以上必要である。Nが0.001%
未満になるとこのような複合形態のTiN粒子を100
00個/mm2以上確保することができない。しかし、
Nが0.01%を超えると固溶Nが増えて母材やHAZ
が脆化したり、鋳片の表面性状が劣化したりするので、
これを上限とする。
N forms TiN to form ultrafine (Mg, A
1) Complex precipitation is performed on the oxide with a size of 0.01 to 0.5 μm, which functions as pinning particles and further functions as a transformation nucleus of GBF or FSP and refines the HAZ structure. For that purpose, 0.001% or more is required. N is 0.001%
When it is less than 100, the TiN particles in such a composite form are reduced to 100
More than 00 pieces / mm 2 cannot be secured. But,
If N exceeds 0.01%, solute N increases and the base material and HAZ
Embrittlement or the surface properties of the slab deteriorate.
This is the upper limit.

【0025】次に選択元素の限定理由を説明する。Next, the reasons for limiting the selected elements will be described.

【0026】Ca、REM、Zrは脱酸剤や脱硫剤とし
て添加することができる。脱酸剤としてO量の低減に寄
与する。脱硫剤としてS量の低減に寄与すると同時に、
硫化物の形態を制御する。これらの効果を通じて母材と
HAZの材質を改善するためには、それぞれ0.000
5%以上必要である。しかし、これらの強脱酸元素が多
すぎると、たとえ[1]式を満たす場合でも、IGF変
態核として有効な大きさの酸化物中におけるTi含有量
が2質量%未満となり、これらの酸化物がIGF変態核
としての能力を失う結果、10個/mm2以上のIGF
変態核を安定に確保することが難しくなる。この意味か
ら、Ca、REM、Zrのそれぞれの上限は0.005
%、0.01%、0.01%であり、これら三つの元素
の和を0.02%以下に制限する必要がある。ここでの
REMとは、La,Ceなどのランタノイド系の元素を
さし、これらの元素が混在したミッシュメタルを添加し
た場合でも同様である。
Ca, REM and Zr can be added as a deoxidizing agent or a desulfurizing agent. It contributes to the reduction of the amount of O as a deoxidizing agent. At the same time as contributing to the reduction of S content as a desulfurizing agent,
Control sulfide morphology. In order to improve the material of the base material and the HAZ through these effects, it is necessary to use 0.000 respectively.
5% or more is required. However, if the amount of these strong deoxidizing elements is too large, even if the formula [1] is satisfied, the Ti content in an oxide having a size effective as an IGF transformation nucleus becomes less than 2% by mass, and these oxides Loses the ability as an IGF metamorphic nucleus, resulting in 10 or more IGFs / mm 2
It becomes difficult to secure a stable transformation nucleus. In this sense, the upper limit of each of Ca, REM, and Zr is 0.005.
%, 0.01% and 0.01%, and it is necessary to limit the sum of these three elements to 0.02% or less. REM here refers to lanthanoid elements such as La and Ce, and is the same even when a misch metal in which these elements are mixed is added.

【0027】Cu、Ni、Cr、Moは母材の強度、靭
性、耐食性や溶接性を向上させることに利用できる。そ
のめにはいずれの元素も0.05%以上必要である。従
来、母材の高強度化、高靭性化、板厚拡大を同時に達す
る場合にこれらの元素を積極的に利用してきたが、本発
明ではHAZのCTOD特性を確保する観点からこれら
の元素を極力低減することが好ましい。このような意味
から、Cu、Ni、Cr、Moの上限をそれぞれ1.5
%、3.0%、0.5%、0.5%に規制し、さらに、
これらの元素の和が3.0%以下になるように調整しな
ければならない。各元素が上限を超えたり、これらの元
素の和が3.0%を超えるとHAZのCTOD特性が著
しく劣化する。
Cu, Ni, Cr and Mo can be used to improve the strength, toughness, corrosion resistance and weldability of the base material. For that purpose, each element needs 0.05% or more. Conventionally, these elements have been actively used when simultaneously increasing the strength, toughness, and sheet thickness of the base material, but in the present invention, these elements are minimized from the viewpoint of securing the CTOD characteristics of the HAZ. It is preferable to reduce it. In this sense, the upper limits of Cu, Ni, Cr, and Mo are each set to 1.5.
%, 3.0%, 0.5%, 0.5%,
It must be adjusted so that the sum of these elements is 3.0% or less. If each element exceeds the upper limit or the sum of these elements exceeds 3.0%, the CTOD characteristic of the HAZ is significantly deteriorated.

【0028】Vは析出強化によって母材およびHAZの
強度に有効である。そのためには0.005%以上必要
である。しかし、Vが0.05%を超えると溶接性やH
AZ靭性が劣化するため、これを上限とする。
V is effective for the strength of the base material and HAZ by precipitation strengthening. For that purpose, 0.005% or more is required. However, if V exceeds 0.05%, weldability and H
Since the AZ toughness deteriorates, this is set as the upper limit.

【0029】Bは母材の強度、靭性を向上させるのに有
効である。そのためには0.0001%以上必要であ
る。しかし、Bが0.003%を超えると溶接性が著し
く劣化するため、これを上限とする。
B is effective for improving the strength and toughness of the base material. For this purpose, 0.0001% or more is required. However, if B exceeds 0.003%, the weldability deteriorates remarkably, so this is made the upper limit.

【0030】本発明鋼は、鉄鋼業の製鋼工程において所
定の化学成分に調整し、連続鋳造した鋳片を再加熱して
圧延、冷却、熱処理の各工程を様々に制御して厚鋼板と
して製造される。板厚76.2mmの鋼板において50
0〜550MPa級の降伏強度を得るためには、Nb量
を最大限に活用するために、圧延後の直接焼入あるいは
加速冷却を適用することが有効である。さらに、焼き戻
しによって強度と靭性を調整できる。鋳片を一旦冷やす
ことなくホットチャージ圧延することも可能である。H
AZ靭性は鋼成分に加え、ピン止め粒子とIGF変態核
の分散状態できまる。これらの粒子の分散状態は母材の
製造過程で大きく変化しない。従って、HAZ靭性は母
材の製造工程に大きく依存することはなく、どのような
加熱、圧延、熱処理の工程を適用してもよい。
The steel of the present invention is manufactured as a thick steel sheet by adjusting the chemical composition to a predetermined chemical composition in the steelmaking process of the steel industry, reheating a continuously cast slab, and controlling various processes of rolling, cooling and heat treatment in various ways. Is done. 50 for a 76.2 mm thick steel plate
In order to obtain a yield strength in the range of 0 to 550 MPa, it is effective to apply direct quenching or accelerated cooling after rolling in order to maximize the amount of Nb. Further, strength and toughness can be adjusted by tempering. It is also possible to perform hot charge rolling without cooling the slab once. H
AZ toughness is determined by the dispersion of pinned particles and IGF transformation nuclei in addition to steel components. The dispersion state of these particles does not change significantly during the manufacturing process of the base material. Therefore, the HAZ toughness does not largely depend on the manufacturing process of the base material, and any heating, rolling, or heat treatment process may be applied.

【0031】本発明で規定した介在物の分散状態は、例
えば以下のような方法で定量的に測定される。
The dispersion state of the inclusions specified in the present invention is quantitatively measured, for example, by the following method.

【0032】MgとAlからなる酸化物を内包する0.
01〜0.5μmのTiNの個数は、母材鋼板の任意の
場所から抽出レプリカ試料を作製し、これを透過電子顕
微鏡(TEM)を用いて10000〜50000倍の倍
率で少なくとも1000μm 2以上の面積にわたって観
察し、対象となる大きさのTiNの個数を測定し、これ
を単位面積あたりの個数(個/mm2)に換算する。こ
のとき、(Mg、Al)酸化物とTiNの同定は、TE
Mに付属のエネルギー分散型X線分光法(EDS)によ
る組成分析と、TEMによる電子線回折像の結晶構造解
析によって行われる。このような同定を測定するすべて
の複合介在物に対して行うことが煩雑な場合、簡易的に
は次の手順による。まず、四角い形状の介在物をTiN
とみなし、対象となる大きさのTiNの内部に介在物が
存在するものの個数を測定する。次に、このような方法
で個数を測定した複合析出TiNのうち、少なくとも1
0個以上について上記の要領で詳細な同定を行い、(M
g、Al)酸化物とTiNが複合する割合を求める。そ
して、はじめに測定された複合析出TiNの個数にこの
割合を掛け合わせる。鋼中の炭化物が以上のTEM観察
を邪魔する場合、500℃以下の熱処理によって炭化物
を凝集・粗大化させ、対象となる複合介在物の観察を容
易にすることができる。
Including oxide containing Mg and Al
The number of TiN of from 0.01 to 0.5 μm may be any number of base steel sheets.
An extraction replica sample is prepared from the location, and this is
10000 to 50,000 times magnification using a microscope (TEM)
At least 1000 μm TwoViewing over the above area
The number of TiN of the target size
Is the number per unit area (pcs / mmTwo). This
, The (Mg, Al) oxide and TiN are identified by TE
By energy dispersive X-ray spectroscopy (EDS) attached to M
Composition analysis and crystal structure solution of electron diffraction image by TEM
This is done by analysis. All that measures such identification
If it is complicated to perform for complex inclusions,
According to the following procedure. First, a square-shaped inclusion is made of TiN
And inclusions are present inside the target size TiN.
Measure the number of things present. Then, such a method
Of the composite precipitated TiN whose number was measured in
Detailed identification of 0 or more is performed as described above, and (M
g, Al) The ratio of the composite of oxide and TiN is determined. So
Then, the number of the composite deposited TiN measured first
Multiply by percentage. TEM observation of carbide in steel
If it disturbs the carbide, heat treatment at 500 ° C or less
Agglomerates and coarsens, allowing observation of target inclusions.
Can be easier.

【0033】IGF変態核となる0.5〜10μmの酸
化物(硫化物や窒化物が複合する場合もある)の個数
は、次のような方法で測定できる。まず、母材鋼板の任
意の場所から小片試料を切り出して鏡面研磨試料を作製
し、X線マイクロアナライザー(EPMA)を用いて少
なくとも1mm2以上の面積にわたってOの元素マッピ
ングを行い、Oが検出された0.5〜10μmの粒子個
数を測定する。これを単位面積あたりの個数(個/mm
2)に換算する。あるいは、次の方法によっても測定で
きる。酸化物以外の炭化物、硫化物、窒化物を溶解する
目的で小片試料を高温加熱(例えば1400℃)した後
に急冷し、これを鏡面研磨して光学顕微鏡観察を行う。
1000倍の倍率で少なくとも3mm2以上の面積にわ
たって観察し、0.5〜10μmの粒子個数を測定す
る。これを単位面積あたりの個数(個/mm2)に換算
する。
The number of oxides having a size of 0.5 to 10 μm (in some cases, sulfides and nitrides) serving as IGF transformation nuclei can be measured by the following method. First, a small piece sample is cut out from an arbitrary position of the base steel sheet to prepare a mirror-polished sample, and elemental mapping of O is performed over an area of at least 1 mm 2 using an X-ray microanalyzer (EPMA), and O is detected. The number of particles having a particle size of 0.5 to 10 μm is measured. The number per unit area (pcs / mm
2 ) Alternatively, it can be measured by the following method. For the purpose of dissolving carbides, sulfides, and nitrides other than oxides, a small piece sample is heated at a high temperature (for example, 1400 ° C.), rapidly cooled, mirror-polished, and observed with an optical microscope.
Observe at least 1000 mm magnification over an area of at least 3 mm 2 and measure the number of particles of 0.5 to 10 μm. This is converted into the number per unit area (pieces / mm 2 ).

【0034】[0034]

【実施例】表1に連続鋳造した鋼の化学成分を、表2に
鋼板の板厚、製造法、ピン止め粒子とIGF変態核の個
数、母材材質、溶接条件、HAZ靭性を示す。本発明鋼
は38.1〜76.2mmの板厚で、母材の降伏強度
(YS)が510〜570MPaであり、溶接入熱量が
3.5〜10.0kJ/mmのサブマージアーク溶接に
よる多層盛り継ぎ手ボンド部(CGHAZ)において−
10℃で0.2mmを超える良好なCTODを有する。
一方、比較鋼は化学成分が適正でないために、76.2
mmの板厚で母材あるいはHAZの材質が劣っている。
鋼11はSが多すぎるために母材とHAZの靭性が劣っ
ている。鋼12はNbが少なすぎるために母材の強度と
靭性が劣っている。鋼13はNbが多すぎるためにHA
Z靭性が劣っている。鋼14はAlが少なすぎるために
ピン止め粒子の個数が不足してHAZ靭性が劣ってい
る。鋼15はAlが多すぎて脱酸元素のバランスが悪い
ため、0.5〜10μm酸化物の組成が不適切となり、
これらのIGF変態能が低下してHAZ靭性が劣ってい
る。鋼16はTiが少なすぎるためにピン止め粒子の個
数が不足し、さらに、脱酸元素のバランスが悪くて0.
5〜10μm酸化物の組成が不適切となってIGF変態
能が低下してしまい、HAZ靭性が劣っている。鋼17
はTiが多すぎるために母材とHAZの靭性が劣ってい
る。鋼18はMgが少なすぎるためにピン止め粒子の個
数が不足してHAZ靭性が劣っている。鋼19はOが少
なすぎるためにピン止め粒子とIGF変態核の個数が不
足してHAZ靭性が劣っている。鋼20はNが少なすぎ
るためにピン止め粒子の個数が不足してHAZ靭性が劣
っている。鋼21はCu、Ni、Cr、Moの和が多す
ぎるためにHAZ靭性が劣っている。鋼22は脱酸元素
のバランスが悪くて0.5〜10μm酸化物の組成が不
適切となってIGF変態能が低下してしまい、HAZ靭
性が劣っている。
EXAMPLES Table 1 shows the chemical composition of continuously cast steel, and Table 2 shows the thickness of the steel sheet, the manufacturing method, the number of pinned particles and IGF transformation nuclei, the base material, welding conditions, and HAZ toughness. The steel of the present invention has a thickness of 38.1 to 76.2 mm, a yield strength (YS) of the base metal of 510 to 570 MPa, and a heat input of 3.5 to 10.0 kJ / mm by submerged arc welding. At the spliced joint (CGHAZ)-
It has a good CTOD of more than 0.2 mm at 10 ° C.
On the other hand, the comparative steel had a bad chemical composition,
The base material or HAZ material is inferior at a plate thickness of mm.
Steel 11 is inferior in the toughness of the base metal and HAZ due to too much S. Steel 12 is inferior in strength and toughness of the base material because Nb is too small. Steel 13 has HA due to too much Nb
Poor Z toughness. Steel 14 is inferior in HAZ toughness due to insufficient number of pinned particles due to too little Al. Since steel 15 has too much Al and the balance of deoxidizing elements is poor, the composition of the oxide of 0.5 to 10 μm becomes inappropriate,
Their IGF transformation ability is reduced and HAZ toughness is inferior. In steel 16, the number of pinned particles was insufficient due to too small amount of Ti, and the balance of deoxidizing elements was poor.
The composition of the oxide of 5 to 10 μm becomes inappropriate, the IGF transformation ability is reduced, and the HAZ toughness is poor. Steel 17
Is inferior in the toughness of the base material and HAZ due to too much Ti. Steel 18 is inferior in HAZ toughness due to insufficient number of pinned particles due to too little Mg. Steel 19 is inferior in HAZ toughness due to insufficient number of pinned particles and IGF transformation nuclei due to too little O. Since the steel 20 has too little N, the number of pinning particles is insufficient and the HAZ toughness is inferior. Steel 21 is inferior in HAZ toughness because the sum of Cu, Ni, Cr and Mo is too large. Steel 22 has a poor balance of deoxidizing elements and an unsuitable composition of 0.5 to 10 μm oxide, resulting in a decrease in IGF transformation ability and poor HAZ toughness.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明によって高強度かつ極厚である厚
鋼板の継ぎ手CTOD特性が格段に向上した結果、海洋
構造物の軽量化や大型化に道が開けた。このことによっ
て、海洋構造物の建造コストが大幅に削減できたり、さ
らに深い海域でのエネルギー開発が可能となる。
According to the present invention, the joint CTOD characteristics of a high-strength and extremely-thick steel plate have been remarkably improved. This can greatly reduce the cost of building offshore structures and enable energy development in deeper waters.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明におけるHAZ組織制御の考え方
を模式的に示す図である。
FIG. 1 is a diagram schematically showing the concept of HAZ organization control in the present invention.

【符号の説明】[Explanation of symbols]

1 溶接金属 2 溶接熱影響部(HAZ) 3 溶接線 4 γ粒界 GBF 粒界フェライト FSP フェライトサイドプレート IGF 粒内変態フェライト Bu 上部ベイナイト MA マルテンサイト・オーステナイト混合相 DESCRIPTION OF SYMBOLS 1 Weld metal 2 Heat affected zone (HAZ) 3 Welding line 4 γ grain boundary GBF grain boundary ferrite FSP ferrite side plate IGF intragranular transformation ferrite Bu Upper bainite MA Martensite / austenite mixed phase

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清瀬 明人 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 吉田 譲 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 植森 龍治 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akito Kiyose 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Division (72) Inventor Joe Yoshida 1 Kimitsu, Kimitsu-shi Nippon Steel Corporation Kimitsu Works (72) Inventor Ryuji Uemori 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC :0.04〜0.14%、
Si:0.4%以下、Mn:1.0〜2.0%、P :
0.02%以下、S :0.005%以下、Al:0.
001〜0.01%、Ti:0.005〜0.03%、
Nb:0.005〜0.05%、Mg:0.0001〜
0.005%、O :0.001〜0.005%、N
:0.001〜0.01%を含有し、質量%でTi/
(Mg+Al)≧1であり、残部が鉄および不可避的不
純物からなる化学成分を有し、MgとAlからなる酸化
物を内包する0.01〜0.5μmのTiNが1000
0個/mm2以上存在し、かつ、0.5〜10μmの酸
化物が10個/mm2以上存在することを特徴とする、
溶接熱影響部のCTOD特性に優れた500〜550M
Pa級の降伏強度を有する厚鋼板。
C: 0.04 to 0.14% by mass%,
Si: 0.4% or less, Mn: 1.0 to 2.0%, P:
0.02% or less, S: 0.005% or less, Al: 0.
001 to 0.01%, Ti: 0.005 to 0.03%,
Nb: 0.005 to 0.05%, Mg: 0.0001 to
0.005%, O: 0.001 to 0.005%, N
: Containing 0.001 to 0.01%, and Ti /
(Mg + Al) ≧ 1, the balance has a chemical composition of iron and inevitable impurities, and 0.01 to 0.5 μm of TiN containing an oxide of Mg and Al is 1000
0 / mm 2 or more, and 0.5 to 10 μm of oxides are present at 10 / mm 2 or more,
500-550M with excellent CTOD characteristics of welding heat affected zone
Thick steel plate with Pa-class yield strength.
【請求項2】 請求項1の化学成分に加えて、質量%で
Ca:0.0005〜0.005%、REM:0.00
05〜0.01%、Zr:0.0005〜0.01%の
内の1種以上を含有し、質量%でTi/(Mg+Al+
Ca+REM+Zr)≧1であることを特徴とする請求
項1記載の溶接熱影響部靭性のCTOD特性に優れた5
00〜550PMa級の降伏強度を有する厚鋼板。
2. In addition to the chemical components according to claim 1, Ca: 0.0005 to 0.005% by mass%, REM: 0.00
And at least one of Zr: 0.0005 to 0.01%, and Ti / (Mg + Al +
2. The steel according to claim 1, wherein the heat-affected zone toughness is excellent in CTOD characteristics, wherein Ca + REM + Zr) ≧ 1.
A thick steel plate having a yield strength of 00 to 550 PMa class.
【請求項3】 質量%で、Cu:0.05〜1.5%、
Ni:0.05〜3.0%、Cr:0.05〜0.5
%、Mo:0.05〜0.5%、V :0.005〜
0.05%、B :0.0001〜0.003%の内の
1種以上を含有し、Cu、Ni、Cr、Moの和が3.
0%以下であることを特徴とする請求項1または請求項
2記載の溶接熱影響部靭性のCTOD特性に優れた50
0〜550PMa級の降伏強度を有する厚鋼板。
3. Cu: 0.05 to 1.5% by mass.
Ni: 0.05 to 3.0%, Cr: 0.05 to 0.5
%, Mo: 0.05-0.5%, V: 0.005-
0.05%, B: contains one or more of 0.0001 to 0.003%, and the sum of Cu, Ni, Cr, and Mo is 3.
The steel sheet according to claim 1 or 2, wherein the heat-affected zone toughness is excellent in CTOD characteristics.
A steel plate having a yield strength of 0 to 550 PMa class.
JP2001135947A 2001-05-07 2001-05-07 Thick steel plate with yield strength of 500-550MPa class with excellent CTOD characteristics of weld heat affected zone Expired - Fee Related JP3711249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135947A JP3711249B2 (en) 2001-05-07 2001-05-07 Thick steel plate with yield strength of 500-550MPa class with excellent CTOD characteristics of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135947A JP3711249B2 (en) 2001-05-07 2001-05-07 Thick steel plate with yield strength of 500-550MPa class with excellent CTOD characteristics of weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2002332536A true JP2002332536A (en) 2002-11-22
JP3711249B2 JP3711249B2 (en) 2005-11-02

Family

ID=18983323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135947A Expired - Fee Related JP3711249B2 (en) 2001-05-07 2001-05-07 Thick steel plate with yield strength of 500-550MPa class with excellent CTOD characteristics of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP3711249B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108929990A (en) * 2018-07-24 2018-12-04 南京钢铁股份有限公司 A kind of S460ML slab and preparation method thereof
CN111088462A (en) * 2020-01-06 2020-05-01 柳州钢铁股份有限公司 Production method of hot-rolled steel strip for 610 MPa-grade automobile frame
CN111172456A (en) * 2020-01-06 2020-05-19 柳州钢铁股份有限公司 610 MPa-grade hot-rolled steel strip for automobile beam
CN111455271A (en) * 2020-03-25 2020-07-28 南京钢铁股份有限公司 Steel plate with thickness of S355G10+ N for ocean structure and production method thereof
WO2022152106A1 (en) * 2021-01-12 2022-07-21 宝山钢铁股份有限公司 Steel for marine engineering having corrosion resistance to highly humid and hot marine atmosphere and fabrication method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108929990A (en) * 2018-07-24 2018-12-04 南京钢铁股份有限公司 A kind of S460ML slab and preparation method thereof
CN108929990B (en) * 2018-07-24 2020-05-22 南京钢铁股份有限公司 S460ML thick plate and preparation method thereof
CN111088462A (en) * 2020-01-06 2020-05-01 柳州钢铁股份有限公司 Production method of hot-rolled steel strip for 610 MPa-grade automobile frame
CN111172456A (en) * 2020-01-06 2020-05-19 柳州钢铁股份有限公司 610 MPa-grade hot-rolled steel strip for automobile beam
CN111088462B (en) * 2020-01-06 2021-06-22 柳州钢铁股份有限公司 Production method of hot-rolled steel strip for 610 MPa-grade automobile frame
CN111455271A (en) * 2020-03-25 2020-07-28 南京钢铁股份有限公司 Steel plate with thickness of S355G10+ N for ocean structure and production method thereof
CN111455271B (en) * 2020-03-25 2021-10-26 南京钢铁股份有限公司 Steel plate with thickness of S355G10+ N for ocean structure and production method thereof
WO2022152106A1 (en) * 2021-01-12 2022-07-21 宝山钢铁股份有限公司 Steel for marine engineering having corrosion resistance to highly humid and hot marine atmosphere and fabrication method therefor

Also Published As

Publication number Publication date
JP3711249B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP3699657B2 (en) Thick steel plate with yield strength of 460 MPa or more with excellent CTOD characteristics of the heat affected zone
KR100839262B1 (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
JP5076658B2 (en) Steel material for large heat input welding
WO2018185851A1 (en) Vertical-seam-welded steel pipe
JP4515430B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP5172391B2 (en) Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
JP4295315B2 (en) Steel sheet with excellent toughness of weld heat affected zone in super large heat input welding
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
KR101618482B1 (en) Steel material for welding
KR100997341B1 (en) Steel plate excellent in toughness of large heat-input weld heat affected zone
KR20160127808A (en) High-tensile-strength steel plate and process for producing same
JP2011074447A (en) High strength steel excellent in toughness in high heat input weld heat-affected zone
JP3820079B2 (en) High strength steel plate with excellent low temperature toughness of weld heat affected zone
WO2018185853A1 (en) Vertical-seam-welded steel pipe
EP3378962B1 (en) High heat input welded steel material
JP2002332536A (en) THICK STEEL PLATE HAVING YIELD STRENGTH IN 500 TO 550 MPa CLASS AND EXCELLENT CTOD PROPERTY IN HEAT AFFECTED ZONE
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP4768526B2 (en) Thick steel plate with excellent high heat input HAZ toughness and low temperature base metal toughness
JP4116857B2 (en) High strength steel pipe with excellent weld toughness and deformability
JPH1025536A (en) Steel material excellent in toughness in heat affected zone, and its production
JP2002371338A (en) Steel superior in toughness at laser weld
JPH11264048A (en) High-strength steel plate excellent in toughness of welded zone
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
JP3522647B2 (en) Thick 600MPa grade steel with excellent toughness in the heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050812

R151 Written notification of patent or utility model registration

Ref document number: 3711249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees