JP2002327241A - High tension hot-rolled steel sheet superion in surface property, and manufacturing method therefor - Google Patents

High tension hot-rolled steel sheet superion in surface property, and manufacturing method therefor

Info

Publication number
JP2002327241A
JP2002327241A JP2001133964A JP2001133964A JP2002327241A JP 2002327241 A JP2002327241 A JP 2002327241A JP 2001133964 A JP2001133964 A JP 2001133964A JP 2001133964 A JP2001133964 A JP 2001133964A JP 2002327241 A JP2002327241 A JP 2002327241A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolled steel
cooling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001133964A
Other languages
Japanese (ja)
Inventor
Takaaki Nakamura
隆彰 中村
Teruki Hayashida
輝樹 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001133964A priority Critical patent/JP2002327241A/en
Publication of JP2002327241A publication Critical patent/JP2002327241A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high tension hot-rolled steel sheet, which has low surface roughness along with high strength of 550 MPa or higher, elongation of 30% or higher, and adequate fatigue strength. SOLUTION: The hot-rolled steel sheet is characterized by including 0.05-0.15 wt.% C, 0.5-2.0 wt.% Mn, 0.02-0.2 wt.% Si, 0.02-0.07 wt.% P, 0.01 wt.% or less S, and 0.1 wt.% or less Al, satisfying 40×[Si wt.%]+200×[P wt.%]<=15, and having ferrite grains with an average particle diameter of 6 μm or less, of 60% or more at an area rate in a cross sectional structure, martensite with an average cross sectional area of 25 μm<2> or less, of 10% or more, and surface roughness of 2 μm or less by Ra (an arithmetic mean roughness specified in JIS). The manufacturing method is characterized by finish rolling the steel material at 800-900 deg.C, cooling it to 650-730 deg.C at a cooling rate of 10 deg.C/s or lower, then immediately cooling it to 200 deg.C or lower at a cooling rate of 50 deg.C/s or higher, and winding it up.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、環境や燃費の問題
から要望が高まっている、自動車用鋼板について強度と
表面性状を兼ね備える鋼板を提供することを目的とする
ものである。
BACKGROUND OF THE INVENTION An object of the present invention is to provide a steel sheet for automobiles having both strength and surface properties, which has been increasingly demanded due to environmental and fuel consumption problems.

【0002】[0002]

【従来の技術】現在、自動車は生活必需品として頻繁に
用いられており、ユーザーの要望に応じて、多様な機能
が搭載されている。便利さを追求するために、車体重量
は大きくなっており、それに伴って燃費が低下し、環境
劣化を招くため重量の軽減は大きな課題になっている。
また一方では、自動車が衝突した場合にも人の命を守
る、いわゆる衝突安全性が問われており、材料に対して
は、軽量化と共に強度保障が求められている。とくに、
自動車の車体重量の70%以上を占める鉄鋼材料への要
望は強い。
2. Description of the Related Art At present, automobiles are frequently used as daily necessities, and are equipped with various functions according to the demands of users. In order to pursue convenience, the weight of the vehicle body has increased, and accordingly, fuel efficiency has been reduced and environmental degradation has been caused. Therefore, reducing the weight has become a major issue.
On the other hand, what is called collision safety, which protects human lives even when a vehicle collides, is required, and materials are required to be lighter and more secure. In particular,
There is a strong demand for steel materials that account for more than 70% of the body weight of automobiles.

【0003】この課題を解決するためには、鋼材の強度
を高めて必要な厚みを薄くする方法が考えられ、多くの
研究が進められている。しかし、足廻り部品などの鋼材
は複雑な形状に成型されるため、強度を高めるだけでは
使用に耐えず、強度と共に伸び等の加工性も具備してお
く必要がある。さらに、製造後にも長期間の活用に対し
て疲労強度が求められる。
In order to solve this problem, a method of increasing the strength of a steel material to reduce the required thickness has been considered, and much research has been conducted. However, since steel materials such as undercarriage parts are molded into a complicated shape, it is not possible to withstand use only by increasing the strength, and it is necessary to provide not only strength but also workability such as elongation. Furthermore, fatigue strength is required for long-term utilization even after production.

【0004】加工性を有する高張力鋼板として、フェラ
イト相にマルテンサイト(残留オーステナイトを含む)
が分散したデュアルフェース鋼(DP鋼)がある。この
鋼は、降伏点が低く伸びも比較的高い高強度鋼である。
特開昭57−137452号公報、特開昭59−742
17号公報では安価なMn、Si、Pを用いて伸びと共
に強度を確保できる高強度鋼板が開示されている。
[0004] As a high tensile strength steel sheet having workability, martensite (including retained austenite) is added to the ferrite phase.
Is dispersed in dual face steel (DP steel). This steel is a high strength steel having a low yield point and relatively high elongation.
JP-A-57-137452, JP-A-59-742
No. 17 discloses a high-strength steel sheet that can secure strength together with elongation using inexpensive Mn, Si, and P.

【0005】また、高張力鋼としてSiを活用する場
合、圧延後の表面にSiスケールと呼ばれる模様が生成
し、化成処理ができにくい等の課題がある。その対策と
して、特開平8−206723号公報では、P、Siを
規制した材料に高圧デスケをかける方法が提案されてい
る。
[0005] Further, when Si is used as the high-tensile steel, there is a problem that a pattern called Si scale is formed on the surface after rolling, making it difficult to carry out a chemical conversion treatment. As a countermeasure, Japanese Patent Application Laid-Open No. Hei 8-206723 proposes a method of applying a high-pressure deske to a material in which P and Si are regulated.

【0006】[0006]

【発明が解決しようとする課題】上述の、特開昭57−
137452号公報、特開昭59−74217号公報の
ようにSi、Pを多く用いる場合は、材質が良好であっ
ても次の問題が発生する。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No.
When a large amount of Si and P are used as in JP-A-137452 and JP-A-59-74217, the following problem occurs even if the material is good.

【0007】Siを多用すると、鋼板上にSiスケール
と呼ばれる赤い筋模様ができて酸洗効率が落ちる。酸洗
後の鋼板にも模様は残存し、この部分の粗度が粗くな
る。
[0007] When a large amount of Si is used, a red streak pattern called a Si scale is formed on a steel plate, and the pickling efficiency is reduced. The pattern also remains on the steel plate after pickling, and the roughness of this portion becomes rough.

【0008】Pの多用は、偏析による脆化、溶接性の低
下を引き起こす。
[0008] Excessive use of P causes embrittlement due to segregation and lowers weldability.

【0009】この課題に対して、解決法として用いられ
る特開平8−206723号公報のように、Siスケー
ルを高圧デスケによって排除する場合は、その設置位置
によって効果が異なる。すなわち、加熱直後又は粗圧延
前後に設置した場合は、一旦Siスケールは剥離するも
のの、デスケ後にSiスケールが再度生成して圧延後に
は模様が残存し、酸洗によってこのスケールを落として
も表面粗度の粗さは大きくなってしまう。これをなくし
てしまうためには、仕上げ圧延前に実施することが有効
であるが、この場合、高圧水によりSiスケールの除去
と共に、鋼材の温度低下を起こし、鋼材の最終仕上げ圧
延温度の確保が困難になり、表面組織が加工組織もしく
は粗大粒となって材料特性を劣化させることが多い。
In order to solve this problem, when the Si scale is eliminated by a high-pressure desk, as in Japanese Patent Application Laid-Open No. 8-206723, the effect differs depending on the installation position. In other words, when installed immediately after heating or before and after rough rolling, the Si scale is once peeled off, but the Si scale is generated again after deske and the pattern remains after rolling. The degree of roughness increases. In order to eliminate this, it is effective to carry out before the finish rolling, but in this case, the high-pressure water removes the Si scale and causes the temperature of the steel material to drop, and it is necessary to secure the final finishing rolling temperature of the steel material. It becomes difficult, and the surface texture often becomes a processed texture or coarse grains to deteriorate the material properties.

【0010】このように、従来の高強度鋼板では、Si
を活用して強度を確保し、表面のSiスケールを高圧デ
スケで落とす方法がとられているものの、強度と共に表
面状態の良好な鋼材を製造することが難しかった。
As described above, in the conventional high-strength steel sheet, Si
However, it is difficult to manufacture a steel material having both good strength and good surface condition.

【0011】本発明は、このような問題を解決し、鋼材
の強度上昇と同時に表面の粗度を小さくし、さらに組織
微細化によって、550MPa以上の強度と30%以上
の伸びと共に疲労強度が良好で外観を損なわない高張力
鋼材を提供することを目的とする。
The present invention solves such a problem, reduces the surface roughness at the same time as the increase in the strength of the steel material, and further improves the fatigue strength together with the strength of 550 MPa or more and the elongation of 30% or more by making the structure finer. It is an object of the present invention to provide a high-tensile steel material that does not impair the appearance.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
の解決のために材料成分の見直しと共に、要求される強
度・伸びおよび疲労特性についての影響因子を実験によ
り抽出し、本発明に至ることができた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have reviewed the material components, extracted the influencing factors on the required strength, elongation and fatigue characteristics by experiments, and obtained the present invention. Was able to reach.

【0013】本発明で開示する熱延鋼板の特徴は、質量
%として、C:0.05〜0.15%、Mn:0.5〜
2.0%、Si:0.02〜0.2%、P:0.02〜
0.07%、S:0.01%以下、Al:0.1%以
下、かつSiとPの質量%が、40・[Si%]+20
0・[P%]≦15を満足し、残部にFeおよび不可避
的不純物からなる鋼材において、断面組織面積率で、平
均粒径が6μm以下のフェライト粒が60%以上、平均
断面積が25μm2以下のマルテンサイトの総断面積率
が10%以上、かつ鋼板表面粗度がRa≦2μmである
ことを特徴とする表面性状に優れた高張力熱延鋼板であ
る。
The features of the hot-rolled steel sheet disclosed in the present invention are as follows: C: 0.05 to 0.15%, Mn: 0.5 to 100% by mass.
2.0%, Si: 0.02-0.2%, P: 0.02-
0.07%, S: 0.01% or less, Al: 0.1% or less, and the mass% of Si and P is 40 · [Si%] + 20
In a steel material which satisfies 0 · [P%] ≦ 15, the balance being Fe and unavoidable impurities, the ferrite grains having an average grain size of 6 μm or less are 60% or more and the average cross-sectional area is 25 μm 2 in terms of a sectional structure area ratio. A high-tensile hot-rolled steel sheet having excellent surface properties, characterized in that the following martensite has a total cross-sectional area ratio of 10% or more and a steel sheet surface roughness of Ra ≦ 2 μm.

【0014】さらに成分として、B:0.01%以下、
Ni:1.0%以下、Cr:1.0%以下、Cu:2.
0%以下、Mo:1.0%以下、Ti:0.1%以下、
Nb:0.1%以下、Zr:0.1%以下、V:0.1
%以下の内の1種又は2種以上含有する鋼材においても
本発明の特徴が得られる。
Further, as a component, B: 0.01% or less;
Ni: 1.0% or less, Cr: 1.0% or less, Cu: 2.
0% or less, Mo: 1.0% or less, Ti: 0.1% or less,
Nb: 0.1% or less, Zr: 0.1% or less, V: 0.1
%, The characteristics of the present invention can be obtained in a steel material containing one or more of the steel materials of not more than%.

【0015】その製造方法は、800〜900℃で仕上
げ圧延を終了させた後、冷却速度10℃/s以下で65
0℃〜730℃の範囲まで冷却した後、直ちに50℃/
s以上の冷却速度で200℃以下まで冷却して巻き取る
ことを特徴とする。
[0015] The manufacturing method is such that after finish rolling at 800 to 900 ° C, 65 ° C at a cooling rate of 10 ° C / s or less.
Immediately after cooling to the range of 0 ° C to 730 ° C, 50 ° C /
It is characterized by cooling to 200 ° C. or less at a cooling rate of at least s and winding.

【0016】さらに、粗圧延終了後に巻き取り、その後
巻き戻して、該鋼材の後端部と後行材の先端部を接合し
て順次仕上げ圧延を行う熱延連続化を行うことで均一な
材質を得ることができる。
Further, after the rough rolling is completed, the steel is rolled up and then unwound, and the rear end portion of the steel material and the front end portion of the following material are joined and the finish rolling is performed successively. Can be obtained.

【0017】以下に、本発明の鋼板および製造方法の限
定理由について詳細に述べる。
Hereinafter, the reasons for limiting the steel sheet and the manufacturing method of the present invention will be described in detail.

【0018】[0018]

【発明の実施の形態】以下に、本発明について詳細に説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0019】現在、多数の複合組織高強度鋼板が製造さ
れているが、その材質特性を決める組織は、圧延終了後
の冷却パターンで決められる。この工程で作り分けられ
る組織は、フェライト、パーライト、ベーナイト、マル
テンサイト、残留オーステナイトである。鋼材の強度に
関しては、マルテンサイト、ベーナイト、パーライトの
影響が大きく、フェライト、残留オーステナイトは伸び
への影響が大きい。
At present, a number of high-strength composite structure steel sheets are manufactured, and the structure that determines the material properties is determined by the cooling pattern after rolling is completed. The structures formed in this step are ferrite, pearlite, bainite, martensite, and retained austenite. Regarding the strength of the steel material, martensite, bainite, and pearlite have a large effect, and ferrite and retained austenite have a large effect on elongation.

【0020】DP鋼は、フェライトとマルテンサイト
(残留オーステナイトを含む)で構成される。本発明者
らの調査によると、これにパーライトやベーナイトが混
在すると強度・伸びともに劣化する傾向が強い。強度を
保つためには、第2相である硬いマルテンサイトが必要
である。そのためには、マルテンサイトへの変態前のオ
ーステナイト相にCを濃縮させる必要がある。
[0020] DP steel is composed of ferrite and martensite (including retained austenite). According to the investigation by the present inventors, when pearlite and bainite are mixed in this, both the strength and the elongation tend to deteriorate. To maintain the strength, hard martensite, which is the second phase, is required. For that purpose, it is necessary to concentrate C in the austenite phase before transformation into martensite.

【0021】従って、ある程度のベースC量と、オース
テナイト相へCを排出しやすいオーステナイト安定化元
素Si、Mn、Pなどが活用される。
Therefore, a certain amount of base C and austenite stabilizing elements Si, Mn, P, etc., which easily discharge C into the austenite phase, are utilized.

【0022】しかし、上述のようにSi、Pの多用は弊
害を伴う。そこで、この2つの元素の効用について詳細
な検討を進めた結果、熱延鋼板におけるSiとPのある
組み合わせによる活用が、組織の微細化と表面の改善に
有効に働き、加工性と共に疲労特性を改善することが判
明した。
However, as described above, heavy use of Si and P has an adverse effect. Therefore, as a result of detailed studies on the effects of these two elements, the use of a combination of Si and P in a hot-rolled steel sheet effectively works to refine the structure and improve the surface, and to improve the workability and fatigue characteristics. It was found to improve.

【0023】まず、Siの添加については0.02%以
上で多くなるほどCの排斥効果を示してくるが、0.0
5%以上になると鋼板表面にSiスケールが生成し始
め、Si量の増加に伴ってその面積が広がり、酸洗後も
表面粗度が粗くなってくる。しかし、Pの添加によって
Siスケールの生成抑制効果が見られる。この効果の上
限はSi量0.2%であった。SiとPの同時添加によ
って、低融点3元共晶FeO−Fe2SiO4−P25
できるため、通常のデスケでSiスケールが剥離しやす
くなったためと考えられる。
First, as for the addition of Si at 0.02% or more, the effect of rejecting C is exhibited.
When it is 5% or more, Si scale starts to be formed on the steel sheet surface, and its area increases as the amount of Si increases, and the surface roughness becomes rough even after pickling. However, the effect of suppressing the formation of Si scale is seen by the addition of P. The upper limit of this effect was 0.2% of Si. It is considered that a low melting point ternary eutectic FeO—Fe 2 SiO 4 —P 2 O 5 is formed by simultaneous addition of Si and P, so that the Si scale is easily peeled off by a normal deske.

【0024】次に、Siとともに添加するPは、0.0
2%より少ないとC排斥効果、Siスケールの排除効果
共に見られなかった。0.02%を超えるとこの効果が
見られ、さらに、SiおよびPの含有量が、40・[S
i%]+200・[P%]≦15を満足する場合に、組
織の均一微細化に有効であることを見いだした。
Next, P added together with Si is 0.0%.
If less than 2%, neither C-exclusion effect nor Si scale exclusion effect was observed. This effect is seen when the content exceeds 0.02%, and when the content of Si and P is 40 · [S
i%] + 200 · [P%] ≦ 15 was found to be effective for uniform micronization of the structure.

【0025】DP鋼では、材質確保のためにSi又はP
を活用することが多かった。これらの元素はいずれもA
3変態点を上げる働きがある。本発明者らの実験結果
によると、Si:40℃/%、P:200℃/%の割合
で変態点を上昇させる。しかし、これらはいずれも高温
下で表面に偏析して、酸化物を形成しやすい。このた
め、高温下においては、鋼材の板厚中心部の変態点温度
が上昇して、表層の方が先にフェライトができやすくな
る。DP鋼は、フェライトを生成させて、オーステナイ
ト域のC量を濃化させて冷却により2相鋼とするが、表
面と中心の変態開始温度差のために、均一な細粒を得る
ことが難しかった。
In DP steel, Si or P is used to secure the material.
Was often used. Each of these elements is A
there is work to increase the r 3 transformation point. According to the experimental results of the present inventors, the transformation point is increased at a rate of Si: 40 ° C./% and P: 200 ° C./%. However, all of these tend to segregate on the surface at high temperatures to form oxides. For this reason, at a high temperature, the transformation point temperature at the center of the thickness of the steel material increases, so that the surface layer is more likely to form ferrite first. In DP steel, ferrite is formed, the amount of C in the austenite region is enriched, and the steel is cooled to form a two-phase steel. Was.

【0026】そこで、図1に示すようにSi、Pの組み
合わせを変えて調査を進めた結果、計算変態点の温度差
が15℃以内であれば、均一な細粒組織が得られ、40
・[Si%]+200・[P%]≦15の規制条件が必
要であることを見いだしたのである。
Therefore, as shown in FIG. 1, the investigation was carried out by changing the combination of Si and P. As a result, if the temperature difference between the calculated transformation points was within 15 ° C., a uniform fine grain structure was obtained.
It has been found that a regulation condition of [Si%] + 200 · [P%] ≦ 15 is required.

【0027】以上の適度なSiおよびP量を保つこと
で、フェライト粒平均粒径が6μm以下、マルテンサイ
トの平均断面積が25μm2以下となり、フェライト占
積率が60%以上、マルテンサイトの断面積が10%以
上で、均一な材質特性と共に、疲労強度の高い特性を有
する鋼材が得られる。また、DP鋼でありながら、Si
スケールがなくなるため、酸洗後の鋼板表面粗度がRa
≦2μmとなり、見栄えの良好な表面性状の優れた鋼板
であると共に、疲労強度の特性も向上する。
By maintaining the above-mentioned appropriate amounts of Si and P, the average ferrite grain size is 6 μm or less, the average cross-sectional area of martensite is 25 μm 2 or less, the ferrite space factor is 60% or more, and the martensite breakage. A steel material having an area of 10% or more and having high fatigue strength as well as uniform material properties can be obtained. Also, despite being DP steel, Si
Since the scale disappears, the surface roughness of the steel sheet after pickling is Ra
≦ 2 μm, the steel sheet is excellent in appearance and has excellent surface properties, and also has improved fatigue strength characteristics.

【0028】以下に、本発明の成分範囲限定理由を説明
する。
The reasons for limiting the range of the components of the present invention will be described below.

【0029】C:0.05〜0.15% 強度確保とマルテンサイト生成のために、0.05%が
必要であるが、0.15%を超えると延性の劣化が顕著
となるため、Cは0.05%〜0.15%とした。
C: 0.05 to 0.15% 0.05% is necessary for securing the strength and forming martensite, but if it exceeds 0.15%, the ductility is significantly deteriorated. Was set to 0.05% to 0.15%.

【0030】Si:0.02〜0.2% Siは、鋼板表面でファイアライト(2FeO・SiO
2)となり最表面に微細なFe23を残存させ赤スケー
ルを発生させやすい元素であるが、Cをオーステナイト
中に排斥するのに有効な元素である。0.02%より少
ないとこの効果がなくなる。また、赤スケールの発生は
Pとの併用で、0.2%まで防止可能であり、これを上
限とした。
Si: 0.02 to 0.2% Si is made of firelite (2FeO.SiO.
2 ) is an element that easily causes red scale by leaving fine Fe 2 O 3 on the outermost surface, but is an element effective for excluding C into austenite. If less than 0.02%, this effect is lost. Further, the occurrence of red scale can be prevented up to 0.2% when used in combination with P, and this is set as the upper limit.

【0031】P:0.02〜0.07% Pは、強化元素であり、Cの排斥効果もある。0.02
%より少ないとこの効果が見られない。0.07%を超
えると加工性を劣化させると共に、溶接割れを起こしや
すくするため、上限を0.07%とした。
P: 0.02 to 0.07% P is a strengthening element and has an effect of rejecting C. 0.02
%, The effect is not seen. If it exceeds 0.07%, the workability is degraded, and weld cracks are liable to occur. Therefore, the upper limit is made 0.07%.

【0032】さらに、上述したようにSiとの併用で、
40・[Si%]+200・[P%]≦15の条件を満
たすことで、組織の均一微細化効果が得られる。
Further, as described above, in combination with Si,
By satisfying the condition of 40 · [Si%] + 200 · [P%] ≦ 15, an effect of uniformly miniaturizing the structure can be obtained.

【0033】Mn:0.5〜2.0% Mnは、鋼中Sを固定してMnSとなり、鋼板の加工性
を向上させる作用がある。また、高強度鋼板の製造にお
いては強化元素として用いられる。Mnは鋼材の強化元
素であり、DP鋼を作る場合、0.5%以上は必要であ
る。しかし、2.0%を超えると強度の向上と共に加工
性も劣化する。従って、Mn含有量は、0.5%〜2.
0%とした。
Mn: 0.5 to 2.0% Mn fixes M in steel to form MnS, and has the effect of improving the workability of the steel sheet. It is used as a strengthening element in the production of high-strength steel sheets. Mn is a strengthening element for steel, and when producing DP steel, 0.5% or more is required. However, when the content exceeds 2.0%, the workability is deteriorated as well as the strength is improved. Therefore, the Mn content is 0.5% to 2.
0%.

【0034】S:0.01%以下 Sは、MnSなどの硫化物を形成し、伸長介在物になる
と加工性劣化の起因となる。0.01%を超えるこの影
響が顕著に現れるため、上限を0.01%とした。
S: 0.01% or less S forms a sulfide such as MnS, and when it becomes an elongation inclusion, it causes deterioration of workability. Since this effect exceeding 0.01% appears remarkably, the upper limit was made 0.01%.

【0035】Al:0.1%以下 Alは、脱酸元素として必要に応じ投入されるが、0.
1%を超えて含有すると、酸化物の増加に伴い延性を劣
化させるため、上限を0.1%とした。
Al: 0.1% or less Al is added as a deoxidizing element if necessary.
If the content exceeds 1%, the ductility is degraded with an increase in oxides, so the upper limit was made 0.1%.

【0036】Cr:1.0%以下 Crは、強度調整のために添加される。オーステナイト
の安定化によりマルテンサイト形成に有効な元素であ
る。この効果は、0.2%以上で得られるが、1.0%
を超えると効果が停滞するため、上限を1.0%とし
た。
Cr: 1.0% or less Cr is added for strength adjustment. It is an element effective in forming martensite by stabilizing austenite. This effect is obtained at 0.2% or more, but 1.0%
If the ratio exceeds 1, the effect stagnates, so the upper limit is set to 1.0%.

【0037】Cu:2.0%以下 Cuは、固溶強度を向上させ、疲労特性の向上に有効で
ある。また、耐食性の向上の役割を持つ。しかし、2.
0%を超える多量の添加では、Cuヘゲの発生が顕著と
なり、表面性状を劣化させるため、上限を2.0%とし
た。
Cu: 2.0% or less Cu is effective for improving solid solution strength and improving fatigue characteristics. Also, it has a role of improving corrosion resistance. However, 2.
When added in a large amount exceeding 0%, the generation of Cu scab becomes remarkable and the surface properties deteriorate, so the upper limit was made 2.0%.

【0038】Ni:1.0%以下 Niは、耐食性および強度向上に有効であり、Cuヘゲ
対策としてCu添加の際に同時に用いられる。高価であ
り、1.0%を超えると効果が薄れるため上限を1.0
%とした。
Ni: 1.0% or less Ni is effective in improving corrosion resistance and strength, and is used simultaneously with the addition of Cu as a measure against Cu baldness. It is expensive, and if it exceeds 1.0%, the effect is diminished.
%.

【0039】Mo:1.0%以下 Moは、耐熱性および強度向上のため用いられる。1.
0%を超えると加工性が顕著に劣化するため上限を1.
0%とした。
Mo: 1.0% or less Mo is used for improving heat resistance and strength. 1.
If it exceeds 0%, the workability is significantly deteriorated.
0%.

【0040】Ti、Nb、Zr、V Ti、Nb、Zr、Vは炭窒化物形成元素であり、析出
物による強化や細粒化のために活用される。いずれの場
合も0.1%を超えるとこの効果が飽和するため、上限
を0.1%とした。
Ti, Nb, Zr, V Ti, Nb, Zr, V are carbonitride forming elements, and are used for strengthening and grain refinement by precipitates. In any case, when the content exceeds 0.1%, this effect is saturated. Therefore, the upper limit is set to 0.1%.

【0041】B:0.01%以下 Bはオーステナイトの焼き入れ性を高め、マルテンサイ
トの形成に有効な元素である。微量で効果が発現する
が、0.01%を超えると、効果が飽和すると共に加工
性が劣化するため、上限を0.01%とした。
B: 0.01% or less B is an element which enhances the hardenability of austenite and is effective for forming martensite. The effect is manifested in a trace amount, but if it exceeds 0.01%, the effect is saturated and the workability deteriorates, so the upper limit was made 0.01%.

【0042】次に、本発明の表面性状に優れた高張力熱
延鋼板の熱延工程における製造方法について詳細に説明
する。
Next, a method for producing a high-tensile hot-rolled steel sheet having excellent surface properties in the hot-rolling step according to the present invention will be described in detail.

【0043】本発明者らは、上述した高張力熱延鋼板の
製造方法について様々な製造条件を変えて調査を行っ
た。その結果、次の方法に規制することで狙った熱延鋼
板の製造が可能であることが判明した。以下に詳細に記
す。
The present inventors conducted investigations on the above-described method for producing a high-tensile hot-rolled steel sheet while changing various production conditions. As a result, it was found that the production of the target hot-rolled steel sheet was possible by restricting to the following method. The details are described below.

【0044】DP鋼を熱間圧延工程において製造する場
合は、表面性状を仕上げ圧延前までに作り込み、DP組
織となるフェライト、マルテンサイトは圧延後の冷却パ
ターン制御によって作り分ける。
When the DP steel is manufactured in the hot rolling step, the surface properties are formed before the finish rolling, and the ferrite and martensite which form the DP structure are separately formed by controlling the cooling pattern after the rolling.

【0045】スラブを加熱し、粗圧延を経由して、仕上
げ圧延を行うが、粗圧延後に巻き取り−巻き戻しを行う
のは、温度確保および均一化と共に表面のスケールを除
去して、表面性状を向上させるためである。その後、先
行材の後端部と後行材の先端部を接合して順次仕上げ圧
延を行う、連続圧延を行うのは、前述の温度が均一され
たコイルを圧延し、冷却時に全長で均一な冷却パターン
をとるためである。連続圧延では、1本目鋼材の先行部
および最終鋼材の後行部をのぞき、これに挟まれた部位
は常時、圧延−巻き取り、が同時期に実施されるため、
圧延から巻き取り間では程良い張力が保たれるため、安
定した冷却パターンをとることができる。従って、均一
な材質・表面性状状態が得られやすくなる。
The slab is heated and subjected to finish rolling via rough rolling. The winding and rewinding after rough rolling is performed by removing the scale on the surface while securing the temperature and making it uniform. It is for improving. Thereafter, the rear end of the preceding material and the front end of the succeeding material are joined and finish rolling is sequentially performed.Continuous rolling is performed by rolling a coil having a uniform temperature as described above and uniformly cooling the entire length during cooling. This is to take a cooling pattern. In continuous rolling, except for the leading portion of the first steel material and the trailing portion of the final steel material, the portion sandwiched between the rolling and rolling is always performed at the same time,
Since moderate tension is maintained between rolling and winding, a stable cooling pattern can be obtained. Therefore, it is easy to obtain a uniform material / surface property state.

【0046】仕上げ圧延を800〜900℃としたの
は、オーステナイト域での圧延を確実に行うことで、そ
の後のフェライト変態を起こしやすくするためである。
900℃を上限としているのは、仕上げ温度が高すぎた
場合に発生するスケール疵を防止するためである。
The reason why the finish rolling is performed at 800 to 900 ° C. is to ensure that the rolling in the austenite region is performed so that the subsequent ferrite transformation is likely to occur.
The reason why the upper limit is set to 900 ° C. is to prevent scale flaws generated when the finishing temperature is too high.

【0047】圧延終了後の10℃/s以下で650〜7
30℃までの冷却は、フェライトは、Ar3変態点以下
の高温のフェライト域で生成しやすいため、できるだけ
高温に保持するためである。冷速が10℃/s以上の場
合や、冷却停止温度が730℃以上の場合は、フェライ
ト生成量が不十分となり、フェライト面積率60%以上
が確保できず、また、オーステナイトへのCの濃化も不
足するため、この後の冷却を早くしてもパーライトやベ
ーナイトが主体の組織となり、マルテンサイト面積率5
%以上が得られなくなり、強度・延性が低下することに
なる。また、冷却停止温度が、650℃以下になるとオ
ーステナイト内にCが濃化していてもパーライトやベー
ナイトの生成温度域となるため、マルテンサイトが少な
くなってしまい、やはりDP組織が得られない。
650 to 7 at 10 ° C./s or less after the end of rolling
Cooling to 30 ° C. is for keeping ferrite as high as possible because ferrite is easily formed in a high-temperature ferrite region below the Ar 3 transformation point. When the cooling rate is 10 ° C./s or more, or when the cooling stop temperature is 730 ° C. or more, the amount of ferrite generated becomes insufficient, and the ferrite area ratio of 60% or more cannot be secured. Therefore, even if the subsequent cooling is accelerated, a structure mainly composed of pearlite and bainite is formed, and the martensite area ratio is 5
% Or more cannot be obtained, resulting in reduced strength and ductility. Further, when the cooling stop temperature is 650 ° C. or less, since the temperature is in the pearlite or bainite generation temperature range even if C is concentrated in austenite, martensite is reduced and a DP structure cannot be obtained.

【0048】650〜730℃での停止後直ちに50℃
/s以上で冷却するのは、C濃化したオーステナイトか
らパーライト・ベーナイトが出ないように焼き入れてマ
ルテンサイトを生成させるためである。この停止温度を
200℃以下にしたのも同じ理由である。
Immediately after stopping at 650-730 ° C.
The reason for cooling at or more than / s is to form martensite by quenching the C-enriched austenite so that pearlite bainite does not appear. For the same reason, the stop temperature was set to 200 ° C. or lower.

【0049】[0049]

【実施例】表1に示す成分の鋼種1〜13を出鋼した
後、表2に示すように、1000℃〜1200℃に加熱
して粗圧延−粗後巻き取り−バー接合−仕上げ圧延−冷
却−巻き取り工程において、それぞれ製造条件を変え
て、圧延を行い、その後材料特性を調べた。
EXAMPLE After steel types 1 to 13 having the components shown in Table 1 were tapped, as shown in Table 2, they were heated to 1000 ° C. to 1200 ° C. to perform rough rolling—rolling after roughing—bar joining—finish rolling— In the cooling-winding step, rolling was performed under different manufacturing conditions, and then the material properties were examined.

【0050】表2のNo.1〜13について、熱延工程
での条件は、本発明範囲内で実施し、成分の影響につい
て評価した。No.14〜22は、表1の鋼種No.3
を用いて熱延条件を変えた試験を行った。
In Table 2, No. Regarding 1 to 13, the conditions in the hot rolling step were performed within the scope of the present invention, and the influence of the components was evaluated. No. 14 to 22 are steel types No. 1 in Table 1. 3
A test was carried out by changing the hot-rolling conditions using.

【0051】試験終了後に、組織調査を行って、フェラ
イトの平均粒径(表層から中心部平均)面積率、マルテ
ンサイトの1個当たりの平均面積および組織面積率を求
めた。また、JIS5号引張試験片を加工して、引張試
験を行い、降伏強度(YP)、引張強度(TS)、突き
合わせによる全伸び(El)を求めた。さらに、両振り
タイプの曲げ疲労試験片を作成し、疲労試験を行い、1
000万回の疲労限強度を求め、母材強度に対する疲労
限強度の比率を求め、疲労限度比とした。
After completion of the test, a microscopic examination was conducted to determine an average grain size (average from the surface layer to the center) area ratio of ferrite, an average area per martensite, and a microstructure area ratio. Further, a JIS No. 5 tensile test piece was processed and a tensile test was performed to determine a yield strength (YP), a tensile strength (TS), and a total elongation due to abutting (El). Further, a swing-type bending fatigue test piece was prepared and subjected to a fatigue test.
The fatigue limit strength was determined for 10 million times, the ratio of the fatigue limit strength to the base metal strength was determined, and the ratio was defined as the fatigue limit ratio.

【0052】鋼材の表面については、圧延まま材の外観
評価として、赤スケール(Siスケール)の有りなしを
○×で評価した後、酸洗した後の鋼板表面の粗度(R
a)を測定した。
Regarding the surface of the steel material, as an evaluation of the appearance of the as-rolled material, the presence or absence of a red scale (Si scale) was evaluated by ○ ×, and then the surface roughness of the steel plate after pickling (R
a) was measured.

【0053】表2の試験No.1〜9は、本発明条件成
分の鋼材を本発明の製造条件で作成したので、平均粒径
が6μm以下と微細であり組織面積率が60%以上のフ
ェライト、および平均断面積25μm2以下と微細であ
り組織面積率が10%以上のマルテンサイト(残留オー
ステナイトを含む)から構成されるDP鋼となった。こ
の材料は、Siスケールが出ないよう、またPによる溶
接割れの問題を回避し、また変態点温度ばらつきを極力
防止するようにSiとPバランス制御を行ったため、表
層から中心部にかけて組織が細粒になった。このため
に、強度は540MPa以上を確保しながら伸びは30
%以上が得られた。さらに、組織微細化の効果で疲労限
度比も0.5以上の高い値を得ることができた。
Test No. 2 in Table 2 1-9, since the steel of the present invention conditions component created in manufacturing conditions of the present invention, the average particle size of 6μm or less and a microstructure area ratio of 60% ferrite, and average cross-sectional area 25 [mu] m 2 or less and The DP steel was fine and composed of martensite (including retained austenite) having a structure area ratio of 10% or more. In this material, since the balance between Si and P was controlled to prevent the occurrence of Si scale, to avoid the problem of welding cracks due to P, and to minimize the variation in transformation point temperature, the structure was fine from the surface layer to the center. It became a grain. For this reason, the elongation is 30 while securing the strength of 540 MPa or more.
% Was obtained. Furthermore, a high fatigue limit ratio of 0.5 or more could be obtained due to the effect of the fine structure.

【0054】比較例として行った、鋼種No.10は、
Si、Pとも低くオーステナイトへのC濃化が不十分で
マルテンサイト量が少なく、十分な強度・伸びが得られ
なかった。鋼種No.11、12は、SiとPの添加バ
ランスが良くないために、表層と中心部の組織の大きさ
にばらつきが生じてフェライト粒が大きくなり、また、
ベーナイトの生成が起こったため、強度・伸びが不十分
となった。鋼種No.13は、Siに対するP量が少な
いため、また比較例No.14は粗圧延後の巻き取りが
なく、スケール剥離が不十分となって、Siスケールの
生成回避ができず、赤スケールが発生し、粗度も劣化し
た。
As a comparative example, steel type No. 10 is
Both Si and P were low and the concentration of C in austenite was insufficient, the martensite amount was small, and sufficient strength and elongation could not be obtained. Steel type No. In Nos. 11 and 12, since the addition balance of Si and P is not good, the size of the structure of the surface layer and the central portion varies, and the ferrite grains become large.
Due to the formation of bainite, the strength and elongation were insufficient. Steel type No. Comparative Example No. 13 has a small amount of P with respect to Si. Sample No. 14 did not take up after rough rolling, the scale peeling was insufficient, the generation of Si scale could not be avoided, a red scale was generated, and the roughness was deteriorated.

【0055】比較例No.15は、バー接合による連続
化を実施しなかったため組織微細化が不十分となり、ま
た比較例No.16は仕上げ圧延温度が950℃と高い
ために、フェライト粒径が大きくなり、逆に比較例N
o.17は変態点以下の圧延となって表層に粗大粒がで
きたため、いずれも疲労限度比が向上しなかった。
Comparative Example No. In Comparative Example No. 15, the structure was not sufficiently refined because continuity by bar joining was not performed. In No. 16, the finish rolling temperature was as high as 950 ° C., so that the ferrite grain size was large.
o. In No. 17, rolling was performed at a temperature lower than the transformation point, and coarse grains were formed on the surface layer.

【0056】比較例No.18は、仕上げ圧延後の1次
冷却速度が速く、オーステナイトへのCの濃化が不十分
となり、比較例No.19は1次冷却の停止温度が低く
なりすぎでパーライト組織が混在し、いずれもマルテン
サイト面積率が低くなり、強度・伸びが低かった。
Comparative Example No. In Comparative Example No. 18, the primary cooling rate after finish rolling was high, and the concentration of C in austenite was insufficient. In No. 19, the stop temperature of the primary cooling was too low, and the pearlite structure was mixed. In each case, the martensite area ratio was low, and the strength and elongation were low.

【0057】逆に、比較例No.20は1次冷却停止温
度が高いためフェライトの生成が少なく、面積率が低く
なり、マルテンサイト面積率が高くなったため強度が高
くなりすぎて、伸びが低くなった。
On the contrary, in Comparative Example No. In No. 20, since the primary cooling stop temperature was high, the generation of ferrite was small, the area ratio was low, and the martensite area ratio was high, so that the strength was too high and the elongation was low.

【0058】比較例No.21は2次冷速が遅く、冷却
中にパーライト・ベーナイトが生成したため、比較例N
o.22は2次冷却停止温度が高くマルテンサイトにな
りきれなかったため、いずれも強度・伸びが不十分とな
った。
Comparative Example No. Sample No. 21 had a low secondary cooling rate and generated pearlite bainite during cooling.
o. Sample No. 22 had a high secondary cooling stop temperature and could not completely become martensite, and thus all had insufficient strength and elongation.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【発明の効果】本発明によって、表面性状が良好であり
微細な組織を有するDP鋼板を得ることができる。この
ために、加工性が良好であり、かつ疲労強度が向上する
ため、自動車用材料として活用でき、産業界への経済的
効果がきわめて大きい。
According to the present invention, a DP steel sheet having good surface properties and a fine structure can be obtained. For this reason, since the workability is good and the fatigue strength is improved, it can be used as a material for automobiles, and the economic effect on the industrial world is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼材特性に及ぼすP量とSi量の影響を示した
図である。
FIG. 1 is a diagram showing the influence of the amounts of P and Si on the properties of steel materials.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA11 EA13 EA15 EA17 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EA35 EB05 EB07 EB08 EB11 FA02 FC03 FC04 FD01 FD02 FD04 FE01 FE06 HA05 JA01 JA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K037 EA01 EA02 EA05 EA06 EA11 EA13 EA15 EA17 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EA35 EB05 EB07 EB08 EB11 FA02 FC03 FC04 FD01 FD02 FD04 FE01 FE01 JA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%として、C:0.05〜0.15
%、Mn:0.5〜2.0%、Si:0.02〜0.2
%、P:0.02〜0.07%、S:0.01%以下、
Al:0.1%以下、を含有し、かつ、SiとPの質量
%が 40・[Si%]+200・[P%]≦15 を満たし、残部がFeおよび不可避的不純物を有し、断
面組織面積率で、平均粒径が6μm以下のフェライト粒
が60%以上、平均断面積が25μm2以下のマルテン
サイトの総断面積率が10%以上、かつ鋼板表面粗度が
Ra≦2μmであることを特徴とする表面性状に優れた
高張力熱延鋼板。
C: 0.05 to 0.15 as mass%
%, Mn: 0.5 to 2.0%, Si: 0.02 to 0.2
%, P: 0.02 to 0.07%, S: 0.01% or less,
Al: 0.1% or less, and the mass% of Si and P satisfies 40 · [Si%] + 200 · [P%] ≦ 15, the balance has Fe and unavoidable impurities, and the cross section In terms of the structure area ratio, the ferrite grains having an average grain size of 6 μm or less have a total cross-sectional area ratio of 60% or more, martensite having an average cross-sectional area of 25 μm 2 or less of 10% or more, and a steel sheet surface roughness of Ra ≦ 2 μm. High tensile strength hot rolled steel sheet with excellent surface properties.
【請求項2】 質量%として、B:0.01%以下、N
i:1.0%以下、Cr:1.0%以下、Cu:2.0
%以下、Mo:1.0%以下、Ti:0.1%以下、N
b:0.1%以下、Zr:0.1%以下、V:0.1%
以下の内の1種又は2種以上含有することを特徴とする
請求項1に記載の表面性状に優れた高張力熱延鋼板。
2. As mass%, B: 0.01% or less, N
i: 1.0% or less, Cr: 1.0% or less, Cu: 2.0
%, Mo: 1.0% or less, Ti: 0.1% or less, N
b: 0.1% or less, Zr: 0.1% or less, V: 0.1%
The high-tensile hot-rolled steel sheet having excellent surface properties according to claim 1, comprising one or more of the following.
【請求項3】 質量%として、C:0.05〜0.15
%、Mn:0.5〜2.0%、Si:0.02〜0.2
%、P:0.02〜0.07%、S:0.01%以下、
Al:0.1%以下を含有し、かつSiとPの質量% 40・[Si%]+200・[P%]≦15 を満たし、残部がFeおよび不可避的不純物元素からな
る鋼を、加熱し粗圧延を行った後、800〜900℃以
上で仕上げ圧延を終了させた後、冷却速度10℃/s以
下で650℃〜730℃の範囲まで冷却した後、直ちに
50℃/s以上の冷却速度で200℃以下まで冷却して
巻き取ることを特徴とする、表面性状に優れた高張力熱
延鋼板の製造方法。
3. C: 0.05 to 0.15 as mass%
%, Mn: 0.5 to 2.0%, Si: 0.02 to 0.2
%, P: 0.02 to 0.07%, S: 0.01% or less,
Al: A steel containing 0.1% or less and satisfying the mass% of 40% [Si%] + 200% [P%] ≦ 15 of Si and P, and the balance consisting of Fe and unavoidable impurity elements is heated. After performing the rough rolling, finishing the finish rolling at 800 to 900 ° C. or higher, cooling to a range of 650 to 730 ° C. at a cooling rate of 10 ° C./s or lower, and immediately cooling at a rate of 50 ° C./s or higher. A method for producing a high-tensile hot-rolled steel sheet having excellent surface properties, comprising cooling to 200 ° C. or less and winding.
【請求項4】 質量%として、B:0.01%以下、N
i:1.0%以下、Cr:1.0%以下、Cu:2.0
%以下、Mo:1.0%以下、Ti:0.1%以下、N
b:0.1%以下、Zr:0.1%以下、V:0.1%
以下の内の1種又は2種以上含有することを特徴とす
る、請求項3に記載の表面性状に優れた高張力熱延鋼板
の製造方法。
4. As mass%, B: 0.01% or less, N
i: 1.0% or less, Cr: 1.0% or less, Cu: 2.0
%, Mo: 1.0% or less, Ti: 0.1% or less, N
b: 0.1% or less, Zr: 0.1% or less, V: 0.1%
The method for producing a high-tensile hot-rolled steel sheet having excellent surface properties according to claim 3, characterized by containing one or more of the following.
【請求項5】 粗圧延終了後に巻き取り、その後巻き戻
して、該鋼材の後端部と後行材の先端部を接合して順次
仕上げ圧延を行う熱延連続化を行うことを特徴とする請
求項3および4に記載の表面性状に優れた高張力熱延鋼
板の製造方法。
5. A continuous rolling process in which the rolling is performed after the rough rolling is completed, and then the film is unwound, and the rear end of the steel material and the front end of the following material are joined to sequentially perform finish rolling. A method for producing a high-tensile hot-rolled steel sheet having excellent surface properties according to claim 3.
JP2001133964A 2001-05-01 2001-05-01 High tension hot-rolled steel sheet superion in surface property, and manufacturing method therefor Withdrawn JP2002327241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133964A JP2002327241A (en) 2001-05-01 2001-05-01 High tension hot-rolled steel sheet superion in surface property, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133964A JP2002327241A (en) 2001-05-01 2001-05-01 High tension hot-rolled steel sheet superion in surface property, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002327241A true JP2002327241A (en) 2002-11-15

Family

ID=18981731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133964A Withdrawn JP2002327241A (en) 2001-05-01 2001-05-01 High tension hot-rolled steel sheet superion in surface property, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002327241A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209424A (en) * 2008-03-05 2009-09-17 Nippon Steel Corp High-strength hot-rolled steel sheet having excellent fatigue property, and method for producing the same
JP2014065935A (en) * 2012-09-25 2014-04-17 Jfe Steel Corp Method for manufacturing high carbon hot-rolled steel strip
KR101569357B1 (en) 2013-12-25 2015-11-16 주식회사 포스코 Low yield ratio high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209424A (en) * 2008-03-05 2009-09-17 Nippon Steel Corp High-strength hot-rolled steel sheet having excellent fatigue property, and method for producing the same
JP2014065935A (en) * 2012-09-25 2014-04-17 Jfe Steel Corp Method for manufacturing high carbon hot-rolled steel strip
KR101569357B1 (en) 2013-12-25 2015-11-16 주식회사 포스코 Low yield ratio high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP3320014B2 (en) High strength, high workability cold rolled steel sheet with excellent impact resistance
RU2478123C1 (en) Thick-wall high-strength hot-rolled steel sheet that features high resistance to cracking induced by oxygen, and method of its production
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4837426B2 (en) High Young&#39;s modulus thin steel sheet with excellent burring workability and manufacturing method thereof
WO2012036312A1 (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
WO2011122031A1 (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP5867381B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
EP3508599B1 (en) High-strength steel sheet and method for manufacturing same
JP5509909B2 (en) Manufacturing method of high strength hot-rolled steel sheet
EP3521474A1 (en) High-strength plated steel sheet and production method therefor
KR20200086737A (en) Hot rolled steel sheet and manufacturing method thereof
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JP2007070648A (en) High strength thin steel sheet having excellent hole expandability, and method for producing the same
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP5655381B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
EP2993245B1 (en) High-strength low-specific gravity steel sheet having superior spot weldability
JP2987815B2 (en) Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance
JP4692519B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2002327241A (en) High tension hot-rolled steel sheet superion in surface property, and manufacturing method therefor
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701