JP2002325471A - Pid speed control method in motor drive system - Google Patents

Pid speed control method in motor drive system

Info

Publication number
JP2002325471A
JP2002325471A JP2001127131A JP2001127131A JP2002325471A JP 2002325471 A JP2002325471 A JP 2002325471A JP 2001127131 A JP2001127131 A JP 2001127131A JP 2001127131 A JP2001127131 A JP 2001127131A JP 2002325471 A JP2002325471 A JP 2002325471A
Authority
JP
Japan
Prior art keywords
motor drive
inertia
drive system
equation
pid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127131A
Other languages
Japanese (ja)
Other versions
JP3998433B2 (en
Inventor
Masaru Nakayama
優 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2001127131A priority Critical patent/JP3998433B2/en
Publication of JP2002325471A publication Critical patent/JP2002325471A/en
Application granted granted Critical
Publication of JP3998433B2 publication Critical patent/JP3998433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize stable speed control in a motor drive system, using only PID control, regardless of the existence of a nonlinear element, such as backlashes in the motor drive system. SOLUTION: When the speed control of a motor drive system is carried out by PID control, sufficient conditions for the stability of a control system are introduced, and a measure which can set respective constants of a PID controllers so as to satisfy the sufficient conditions for stability is taken. With such a constitution, the stable control can be realized, regardless of the existence of a nonlinear element, such as backlashes in the motor drive system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータ駆動系にお
けるPID速度制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PID speed control method for a motor drive system.

【0002】[0002]

【従来の技術】一般に、産業プラントや産業用ロボット
などにおけるモータ駆動系においては、モータと負荷機
がギア(又は、カップリング)と弾性軸で結合されてい
ると多慣性モータ駆動系となり、バックラッシ振動と軸
ねじれ振動が発生し問題となることがある。その概要を
図7〜図9により説明する。図7はモータ駆動系の代表
例とした3慣性モータ駆動系を示す外観図であり、11
はモータ、12は負荷機、13はギア、14は弾性軸で
ある。図7において、このようにギア13と弾性軸14
で結合されている場合、この機械系は、モータ慣性とギ
ア慣性及び負荷機慣性からなる三つの慣性を持つので、
ギアバックラッシ振動モードと軸ねじれ振動モードが共
存する3慣性モータ駆動系となる。図7は3慣性モータ
駆動系をブロック線図で示すと図8になる。ただし、ω
はモータ速度、ωはギア速度、ωは負荷機速度、
はモータトルク、Tはギアトルク、Tは軸トル
ク、Tは負荷機側の外乱トルク、Kはギアのバネ定
数、Kは軸のバネ定数、Dはギアの粘性係数、D
は軸の粘性係数、δはギアバックラッシ幅、Jはモー
タ慣性、Jはギア慣性、Jは負荷機慣性、sはラプ
ラス演算子である。図8において、前記3慣性モータ駆
動系の開ループ伝達特性として、モータトルクTから
モータ速度ωまでの開ループ伝達関数G3m(s)は
次に示す(1)式で与えられる。ただし、粘性係数D
とDは非常に小さい値なので省略する。
2. Description of the Related Art Generally, in a motor drive system of an industrial plant or an industrial robot, when a motor and a load machine are connected by a gear (or a coupling) and an elastic shaft, the motor drive system becomes a multi-inertia motor drive system, and a backlash occurs. Vibration and torsional vibration may occur, which may be a problem. The outline will be described with reference to FIGS. FIG. 7 is an external view showing a three-inertia motor drive system as a representative example of the motor drive system.
Denotes a motor, 12 denotes a load machine, 13 denotes a gear, and 14 denotes an elastic shaft. In FIG. 7, the gear 13 and the elastic shaft 14
When this mechanical system has three inertia consisting of motor inertia, gear inertia and load machine inertia,
A three-inertia motor drive system in which the gear backlash vibration mode and the shaft torsional vibration mode coexist. FIG. 7 is a block diagram showing a three-inertia motor drive system as shown in FIG. Where ω
m is the motor speed, ω g is the gear speed, ω L is the load machine speed,
The T m is motor torque, T g is Giatoruku, T c is the axial torque, T L is the disturbance torque of the load-side, K g is the spring constant of the gear, K c is the spring constant of the shaft, D g is the viscosity coefficient of the gear , D c
The viscosity of the shaft, [delta] is a gear backlash width, J m is the motor inertia, J g is the gear inertia, J L is the load machine inertia, s is a Laplace operator. In FIG. 8, as an open-loop transfer characteristic of the three-inertia motor drive system, an open-loop transfer function G 3m (s) from the motor torque T m to the motor speed ω m is given by the following equation (1). However, the viscosity coefficient D g
And Dc are very small values, and are omitted.

【0003】[0003]

【数1】 (Equation 1)

【0004】ここで、ωh1は軸ねじれ振動モードに対
応する固有反共振周波数、ωh2はギアバックラッシ振
動モードに対応する固有反共振周波数、ω01は軸ねじ
れ振動モードに対応する固有共振周波数、ω02はギア
バックラッシ振動モードに対応する固有共振周波数で
り、それぞれ次に示す(2)式〜(5)式で表される。
Here, ω h1 is a natural anti-resonance frequency corresponding to the shaft torsional vibration mode, ω h2 is a natural anti-resonance frequency corresponding to the gear backlash vibration mode, ω 01 is a natural resonance frequency corresponding to the shaft torsional vibration mode, ω 02 is a natural resonance frequency corresponding to the gear backlash vibration mode, and is represented by the following equations (2) to (5), respectively.

【0005】[0005]

【数2】 (Equation 2)

【0006】図9に開ループ伝達関数G3m(s)の周
波数応答を示す特性図であり、同図(a)と(b)はそ
れぞれゲイン特性と位相特性を示している。図9(a)
のゲイン特性に二つのピークは、それぞれ軸ねじれ振動
モードとギアバックラッシ振動モードと対応している。
また、図9(b)の位相特性は全周波数帯域で∠G3m
(jω)≧−90°の特徴を持っている。同様に、3慣
性以上の多慣性系についても、∠Gnm(jω)≧−9
0°の特徴がある。ただし、下付文字のnは慣性の数を
意味する。
FIG. 9 is a characteristic diagram showing a frequency response of the open-loop transfer function G 3m (s). FIGS. 9A and 9B show a gain characteristic and a phase characteristic, respectively. FIG. 9 (a)
The two peaks in the gain characteristics correspond to the torsional vibration mode and the gear backlash vibration mode, respectively.
Also, the phase characteristic of FIG. 9B is ΔG 3m in all frequency bands.
(Jω) ≧ −90 °. Similarly, for a multi-inertia system with three or more inertia, ΔG nm (jω) ≧ −9
There is a feature of 0 °. However, the subscript n means the number of inertia.

【0007】ここで、2慣性モータ駆動系にて設計した
従来のPID速度制御を述べ、そして、3慣性モータ駆
動系に適用する場合の問題点を説明する。モータ駆動系
において、 一般にギアのバネ定数は軸のバネ定数より
ずっと高い(即ち、K>>K)ので、モータ慣性(J
)とギア慣性(J)を合併しモータ等価慣性(J
mg=J+J)とすることで、もとの3慣性モータ
駆動系(J、J、J)を2慣性モータ駆動系(J
mg、J)としてPID速度制御を設計するのは普通
である。図6にPID制御器1を2慣性モータ駆動系3
に適用するブロック線図を示す。モータトルクTから
モータ速度ωまでの2慣性モータ駆動系3の開ループ
伝達関数G2m(s)は次に示す(6)式のように表す
ことができる。
Here, conventional PID speed control designed with a two-inertia motor drive system will be described, and problems in applying to a three-inertia motor drive system will be described. In a motor drive system, the spring constant of the gear is generally much higher than the spring constant of the shaft (ie, K g >> K c ), so that the motor inertia (J
m ) and the gear inertia (J g ) are merged into the motor equivalent inertia (J
mg = J m + J g ), the original three inertia motor drive systems (J m , J g , J L ) are replaced with the two inertia motor drive systems (J
It is common to design PID speed control as mg , J L ). FIG. 6 shows a PID controller 1 having a two-inertia motor drive system 3.
Is a block diagram applied to FIG. The open-loop transfer function G 2m (s) of the two-inertia motor drive system 3 from the motor torque T m to the motor speed ω m can be expressed by the following equation (6).

【0008】[0008]

【数3】 [Equation 3]

【0009】ただし、sはラプラス演算子、JmgはJ
mg=J+Jで算出するモータ等価慣性、ωとω
はそれぞれ前記2慣性モータ駆動系3の反共振周波数
と共振周波数であり、次に示す(7)式と(8)式で表
される。
Where s is the Laplace operator and J mg is J
motor equivalent inertia is calculated in mg = J m + J g, ω h and ω
0 is the anti-resonance frequency and the resonance frequency of the two inertial motor drive system 3, respectively, and is expressed by the following equations (7) and (8).

【0010】[0010]

【数4】 (Equation 4)

【0011】また、前記PID制御器1の伝達関数F
(s)は次に示す(9)式のように表すことができる。
The transfer function F 1 of the PID controller 1
(S) can be expressed as in the following equation (9).

【0012】[0012]

【数5】 (Equation 5)

【0013】ただし 、K、K及びKはそれぞれ
PID制御器1の比例ゲイン、積分ゲインと微分ゲイ
ン、Tは微分の時定数、sはラプラス演算子である。
Where K p , K i and K d are the proportional gain, integral gain and differential gain of the PID controller 1, Td is the time constant of differentiation, and s is the Laplace operator.

【0014】また、ここで、解析を容易にするために、
前記PID制御器1の伝達関数F(s)を次に示す
(10)式のような2次式で表す。
Here, in order to facilitate the analysis,
The transfer function F 1 (s) of the PID controller 1 is represented by a quadratic equation such as the following equation (10).

【0015】[0015]

【数6】 (Equation 6)

【0016】ただし、PID制御器1の各定数(K
、K、T)は前記2次式表示の各係数(l
、l、T)との関係は次に示す(11)式のよう
に求められる。
However, each constant (K p ,
K i , K d , T d ) are the respective coefficients (l 0 ,
l 1 , l 2 , T) is obtained as shown in the following equation (11).

【0017】[0017]

【数7】 (Equation 7)

【0018】ここで、制御器パラメータを簡単に設計で
きるように、軸粘性係数をD=0とし、前記PID制
御器1を2慣性モータ駆動系3に適用する場合、閉ルー
プ系の特性多項式Δ(s)は次に示す(12)式のよう
に求められる。
Here, when the shaft viscosity coefficient is set to D c = 0 and the PID controller 1 is applied to the two-inertia motor drive system 3 so that the controller parameters can be easily designed, the closed-loop system characteristic polynomial Δ (S) is obtained as in the following equation (12).

【0019】[0019]

【数8】 (Equation 8)

【0020】ただし、l~=Jmg+lは中間変数で
ある。
Here, l 2 = J mg + l 2 is an intermediate variable.

【0021】(12)式からわかるように、前記PID
制御器1の2次式表示の各係数(l 、l、l
T)を決めれば、前記特性多項式Δ(s)の各係数(a
)が決められ、閉ループ系の極の配置が決められるこ
とになる。前記PID制御器1の2次式表示の各係数
(l、l、l、T)の決定は、一例として真鍋係
数図法により行うことができる。係数図法の詳細な解説
は、真鍋氏の「古典制御、最適制御、H∞制御の統一的
解釈」(平成3年10月計測と制御学会誌30−10)
や真鍋氏の「係数図法による2慣性共振系制御器の設
計」(平成10年1月電気学会産業応用部門誌118−
D−1)に掲載され、公知となっている。ここで、係数
図法の概要を簡略に説明する。
As can be seen from equation (12), the PID
Each coefficient (l 0, L1, L2,
T), each coefficient (a) of the characteristic polynomial Δ (s) is determined.
i) Is determined, and the pole arrangement of the closed loop system is determined.
And Each coefficient of the quadratic expression of the PID controller 1
(L0, L1, L2, T), for example,
It can be performed by a numerical projection. Detailed explanation of CDM
"Manabe's unification of classical control, optimal control and H∞ control
Interpretation ”(Journal of the Society of Instrument and Control Engineers, October 1991, 30-10)
Mr. Manabe said, “Installation of a two-inertial-resonant-system controller using the coefficient diagram method.
Total "(January 1998, IEEJ Industrial Applications Section, 118-
D-1) and is publicly known. Where the coefficient
An outline of the projection will be briefly described.

【0022】係数図法は多項式環上での代数的設計法の
一種であり、係数図を用いながら、その形の適切さを尺
度として、特性多項式と制御器を同時に設計することを
特徴とする。係数図法で用いている各種の数学的関係を
列挙すると次のようになる。n次の閉ループ系に対し
て、その特性多項式△(s)が次に示す(13)式のよ
うに与えられたとする。
The coefficient diagram method is a kind of algebraic design method on a polynomial ring, and is characterized in that a characteristic polynomial and a controller are simultaneously designed using a coefficient diagram with the appropriateness of the form as a measure. The various mathematical relationships used in the CDM are listed below. It is assumed that a characteristic polynomial △ (s) is given to an n-order closed-loop system as in the following equation (13).

【0023】[0023]

【数9】 (Equation 9)

【0024】また、制御系安定度を示す安定度指標γi
と制御系応答速度を示す等価時定数τはそれぞれ次に示
す(14)式と(15)式のように定義されている。
Also, a stability index γ i indicating the stability of the control system.
And the equivalent time constant τ indicating the control system response speed are defined as in the following equations (14) and (15), respectively.

【0025】[0025]

【数10】 (Equation 10)

【0026】係数図法においては、真鍋氏により推奨さ
れた標準形安定度指標は、次に示す(16)式のように
なる。
In the coefficient map method, the standard form stability index recommended by Mr. Manabe is represented by the following equation (16).

【0027】[0027]

【数11】 (Equation 11)

【0028】また、係数図法によると、制御系の安定十
分条件と不安定十分条件は、それぞれ次に示す(17)
式と(18)式のようになる。
According to the coefficient diagram method, the sufficient and stable conditions of the control system are as follows (17)
Equation (18) is obtained.

【0029】[0029]

【数12】 (Equation 12)

【0030】以下、前述した真鍋係数図法により前記P
ID制御器1の各定数を決定する。前記(12)式の閉
ループ系特性多項式に対して、係数図法の安定度指標γ
(i=1〜4)と等価時定数τは次に示す(19)式
となる。
Hereinafter, the above-mentioned P
Each constant of the ID controller 1 is determined. For the closed-loop characteristic polynomial of the above equation (12), the stability index γ
i (i = 1 to 4) and the equivalent time constant τ are expressed by the following equation (19).

【0031】[0031]

【数13】 (Equation 13)

【0032】γγγγ、γγ、γ、γ
より、前記PID制御器1の2次式表示の各係数
(l、l、l~、T)は、次に示す(20)式の
関係がある。
Γ 1 γ 2 γ 3 γ 4 , γ 3 γ 4 , γ 1 , γ 4
Therefore, the coefficients (l 0 , l 1 , l ~ 2 , T) of the quadratic expression of the PID controller 1 have the relationship of the following expression (20).

【0033】[0033]

【数14】 [Equation 14]

【0034】ただし、k、k、kは中間変数であ
り、次に示す(21)式で定義されている。
Here, k 0 , k 1 , and k 2 are intermediate variables and are defined by the following equation (21).

【0035】[0035]

【数15】 (Equation 15)

【0036】前記(20)式の連立方程式から、PID
制御器1の2次式表示の各係数(l 、l、l~
T)を求めるには手数がかかるが、解の手順としては、
まず、lを求めて、そして、第二項の式からl~
を、次に第三項の式からlを、最後に第一項の式か
らTを求める。(20)式から、lは次に示す(2
2)式のような2次方程式の解として求められる。
From the simultaneous equations of the above equation (20), PID
Each coefficient (l 0, L1, L ~2,
Although it takes time to find T), the solution procedure is as follows:
First, l0, And from the expression of the second term, l ~
2From the third term equation1And finally the expression in the first term
Find T. From equation (20), l0Is shown below (2
2) It is obtained as a solution of a quadratic equation such as the equation.

【0037】[0037]

【数16】 (Equation 16)

【0038】ただし、係数のa、bとcは次に示す(2
3)式のように定義される。
However, the coefficients a, b and c are as follows (2
3) It is defined as in the following equation.

【0039】[0039]

【数17】 [Equation 17]

【0040】(22)式の解l(=K)は実数解に
なるために、b−4ac≧0より、次に示す(24)
式のような制限条件が得られる。
Since the solution l 0 (= K i ) of the equation (22) is a real number solution, the following equation (24) is obtained from b 2 −4ac ≧ 0.
A limiting condition such as the equation is obtained.

【0041】[0041]

【数18】 (Equation 18)

【0042】例えば、標準形安定度指標(γ=2.5;γ
=2.0)を使う場合、前記(24)式により
慣性比KはK≦3.0のように制限される。一方、K
>3.0の場合は、安定度指標の第四項γを標準形の
γ=2.0から非標準形のγ≧(1+K)/2のよう
に変えればよい。また、前記(22)式の解答は二つあ
るが、l(=K)はPID制御の積分ゲインとなる
ので、正の値しか使えない。また、lの解答にも正と
負の二つがあるが、(20)式の第一項の式からわかる
ように、l~ の値の正負で時定数Tの値の正負を
決め、物理上から時定数Tは正の値しか使えないので、
の値の正負はl~ の値の正負と一致しなければな
らない。
For example, the standard form stability index (γ1= 2.5; γ
2= γ3= γ4= 2.0), use the above equation (24)
Inertia ratio KJIs KJLimited to ≤3.0. On the other hand, K
JIf> 3.0, the fourth term γ of the stability index4The standard form
γ4= 2.0 to non-standard form γ4≧ (1 + KJ) / 2
Can be changed to There are two answers to the above equation (22).
But l0(= Ki) Is the integral gain of PID control
So only positive values can be used. Also, l1The answer is correct
There are two negative ones, as can be seen from the first term of equation (20)
So, l1l~ 2The sign of the value of the time constant T
Since the time constant T can only use a positive value from the physical point of view,
l 1The sign of the value of is l~ 2Must match the sign of the value of
No.

【0043】慣性比Kの大きい場合、2慣性又は3慣
性モータ駆動系に関わらず、上述のように標準形安定度
指標で設計したPID制御器1を適用すると、いずれも
よい制御特性が得られるが、慣性比Kの小さい場合、
上述のように標準形安定度指標で設計したPID制御器
1を2慣性モータ駆動系の速度制御に適用すると、図1
0に示すようによい時間応答特性が得られるが、モータ
駆動系にバックラッシの非線型要素の存在で、2慣性モ
ータ駆動系は3慣性モータ駆動系となると、図11に示
すようにバックラッシ振動が発生し、安定な制御ができ
なくなってしまう。
[0043] When the inertia ratio K J large, regardless of the 2 inertial or 3 inertial motor drive system, applying the PID controller 1 designed in the standard form stability index, as described above, either may control characteristic obtained If used, but small inertia ratio K J,
When the PID controller 1 designed with the standard stability index as described above is applied to speed control of a two-inertia motor drive system, FIG.
0, a good time response characteristic can be obtained. However, if a non-linear element of backlash exists in the motor drive system, and the two-inertia motor drive system becomes a three-inertia motor drive system, the backlash vibration as shown in FIG. Occurs, and stable control cannot be performed.

【0044】前記の標準形安定度指標で設計したPID
制御器1を3慣性モータ駆動系に適用するとき、制御系
が安定であるかどうかは一巡周波数応答(G3m(j
ω)F (jω))の位相余裕解析からわかる。慣性比
の大きい場合、標準形安定度指標による設計したP
ID制御器1は、K>0の微分ゲインを持つPID制
御器となる。このようなPID制御器を3慣性モータ駆
動系に適用すると、その一巡周波数応答(G3m(j
ω)F(jω))は全周波数帯域に位相余裕があるの
で、制御系は安定である。しかし、慣性比Kの小さい
場合、標準形安定度指標による設計したPID制御器1
は、K<0の微分ゲインと速い微分時定数Tを持つ
PID制御器となる。このようなPID制御器を3慣性
モータ駆動系に適用すると、その一巡周波数応答(G
3m(jω)F(jω))は図12に示すように、高
周波数帯域に位相余裕はФm3<0°となり、即ち、位
相余裕がないので、制御系は図11に示すように時間応
答が発散し、不安定となる。
PID designed with the above standard form stability index
When the controller 1 is applied to a three-inertia motor drive system, the control system
Is stable if the loop frequency response (G3m(J
ω) F 1(Jω)) from the phase margin analysis. Inertia ratio
KJIs large, P designed by the standard form stability index
ID controller 1 uses KdPID system with differential gain> 0
Become an instrument. Such a PID controller is connected to a three-inertia motor drive.
When applied to a dynamic system, its loop frequency response (G3m(J
ω) F1(Jω)) means that there is a phase margin in all frequency bands
Thus, the control system is stable. However, the inertia ratio KJSmall
In case, PID controller 1 designed by standard form stability index
Is Kd<0 differential gain and fast differential time constant Tdhave
It becomes a PID controller. Such a PID controller has three inertia
When applied to a motor drive system, its loop frequency response (G
3m(Jω) F1(Jω)) is high as shown in FIG.
Phase margin in frequency band is Фm3<0 °, that is,
Since there is no margin, the control system responds as shown in FIG.
The answer diverges and becomes unstable.

【0045】[0045]

【発明が解決しようとする課題】前述のように、一般に
ギアのバネ定数Kは軸のバネ定数Kよりずっと高
い、即ち、K>>K、なので、モータ慣性(J)と
ギア慣性(J)を一つの等価慣性(Jmg=J+J
)(以降Jmgをモータ等価慣性と呼ぶ)とすること
で、もとの3慣性モータ駆動系(J、J、J)を
2慣性モータ駆動系(Jmg、J)に等価し、速度制
御系を設計するのは普通である。このような2慣性モー
タ駆動系の速度制御には、従来からPID(比例-積分-
微分)制御が用いられてきたが、近年の現代制御理論の
発展に伴い、外乱オブザーバに基づく共振比制御や制御
系の周波数応答の整形に関する理論としたH∞制御など
が広く研究されている。しかし、負荷機慣性とモータ等
価慣性との比(K=J/Jmg、以降、Kを慣性比
と呼ぶ)が小さい場合は、上述のような従来型のPID
制御は、2慣性モータ駆動系の軸ねじれ振動を抑えるた
めに、負値の微分ゲイン(K<0)を持ちながら、速
い微分時定数(T)も必要となる。しかし、速い微分
の実現には高速なコントローラーが必要となることだけ
でなく、モータ駆動系にバックラッシなどの非線型要素
の存在で2慣性モータ駆動系が3慣性又は3慣性以上の
多慣性モータ駆動系に変わるとき、バックラッシ振動が
誘発され、制御系が不安定となる恐れがある。同様に、
前記慣性比が小さい場合は、最近の共振比制御にも速い
外乱オブザーバ時定数(T)が必要となるので、2慣
性モータ駆動系が3慣性又は3慣性以上の多慣性モータ
駆動系に変わるとき、バックラッシ振動が誘発され、制
御系が不安定となる恐れもある。
As described above [0006] in general is a spring constant K g gear much higher than the spring constant K c of the shaft, i.e., K g >> K c, since a motor inertia (J m) The gear inertia (J g ) is reduced to one equivalent inertia (J mg = J m + J
g ) (hereinafter, J mg is referred to as motor equivalent inertia), so that the original three inertia motor drive systems (J m , J g , J L ) are replaced with the two inertia motor drive systems (J mg , J L ). Equivalently, it is common to design a speed control system. Conventionally, PID (proportional-integral-
Differential) control has been used, but with the recent development of modern control theory, resonance ratio control based on a disturbance observer, H や control as a theory relating to shaping of frequency response of a control system, and the like have been widely studied. However, the ratio between the load unit inertia and the motor equivalent inertia (K J = J L / J mg, and later, the K J is referred to as inertia ratio) when is small, conventional PID as described above
The control also requires a fast differential time constant (T d ) while having a negative differential gain (K d <0) in order to suppress the torsional vibration of the two inertial motor drive system. However, the realization of fast differentiation not only requires a high-speed controller, but also the presence of non-linear elements such as backlash in the motor drive system makes it possible for the two-inertia motor drive system to drive three or three or more inertia motors. When switching to the system, backlash vibration is induced, and the control system may become unstable. Similarly,
When the inertia ratio is small, a recent disturbance ratio control also requires a fast disturbance observer time constant (T f ). Therefore, the two-inertia motor drive system is changed to a three-inertia or multi-inertia motor drive system with three or more inertia. Sometimes, backlash vibration is induced and the control system may become unstable.

【0046】本発明は前述のような従来技術の問題点に
鑑みてなされたものであって、バックラッシ振動のない
安定な速度制御を図ることを目的として、モータ駆動系
の速度制御に従来と同様にPID制御のみを適用する
が、前記PID制御の各定数を制御系の安定十分条件を
満たせるように決める速度制御方法とする。
The present invention has been made in view of the above-described problems of the prior art, and aims at achieving stable speed control without backlash vibration. Is applied only to the PID control, but a speed control method is adopted in which the constants of the PID control are determined so as to satisfy a sufficient condition for stability of the control system.

【0047】[0047]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、請求項1において、多慣性モータ駆
動系における速度制御方法として、速度指令とモータ速
度との偏差を入力とするPID制御器により前記モータ
駆動系の速度制御を行う場合に、 K+T≧0と、K+8T≧0 但し、K 微分ゲイン、T 微分時定数、K
例ゲイン、K 積分ゲインである。を制御系の安定十
分条件として導出し、前記PID制御器の各定数を前記
制御系の安定十分条件を満たせるよう設定することによ
って、慣性比の小さい場合でも、上記多慣性モータ駆動
系の中にバックラッシなど非線型要素の有無に関わら
ず、安定な速度制御が実現できることを特徴とするPI
D速度制御方法である。
In order to achieve the above object, there is provided a speed control method in a multi-inertia motor drive system according to claim 1, wherein a PID having a deviation between a speed command and a motor speed as an input is used. when the controller controls the speed of the motor drive system, the K d + T d K p ≧ 0, K d + 8T d K i ≧ 0 , however, K d derivative gain, T d differential time constant, K p proportional gain , Ki integral gain. Is derived as a sufficient control system stability condition, and by setting each constant of the PID controller so as to satisfy the sufficient stability condition of the control system, even when the inertia ratio is small, the multi-inertia motor drive system includes PI that can achieve stable speed control regardless of the presence or absence of nonlinear elements such as backlash
This is a D speed control method.

【0048】[0048]

【発明の実施の形態】図1は本発明のPID速度制御方
法を説明するためのブロック線図であり、図1におい
て、速度指令ωとモータ速度ωとの偏差△ωを入力
とするPID制御器1を設け、前記PID制御器1の出
力を前記3慣性モータ駆動系2のモータトルクTとす
ることで、モータ駆動系の速度制御系を構成している。
前記PID制御器1の各定数の設計は従来の手法と同様
に、3慣性モータ駆動系を2慣性モータ駆動系に等価す
ることによって行われるが、慣性比Kの大きさによら
ずにモータ駆動系を安定させるための安定十分条件を導
出し、その安定十分条件を満たすように前記PID制御
器1の各定数を設定すれば、モータ駆動系にバックラッ
シなどの非線型要素の存在で2慣性モータ駆動系は3慣
性系モータ駆動系に変わっても制御系は安定できる。前
記安定十分条件を導出するために、PID制御器1の伝
達関数F(s)を次に示す(25)のように書き直
す。
Figure 1 DETAILED DESCRIPTION OF THE INVENTION is a block diagram for explaining a PID speed control method of the present invention, in FIG. 1, and inputs the deviation △ omega between the speed command omega * and the motor speed omega m the provided PID controller 1, the output of the PID controller 1 by a motor torque T m of a said 3 inertial motor drive system 2 constitute a speed control system of the motor drive system.
The design of the constants of the PID controller 1 is similar to the conventional technique, it is performed by the equivalent of 3 inertial motor drive system 2 inertial motor drive system, the motor regardless of the magnitude of the inertia ratio K J By deriving a sufficient stability condition for stabilizing the drive system and setting each constant of the PID controller 1 so as to satisfy the sufficient stability condition, two inertia due to the presence of a nonlinear element such as backlash in the motor drive system can be obtained. Even if the motor drive system is changed to a three-inertia motor drive system, the control system can be stabilized. In order to derive the sufficient stability condition, the transfer function F 1 (s) of the PID controller 1 is rewritten as shown in (25) below.

【0049】[0049]

【数19】 [Equation 19]

【0050】ただし、L(s)(=1/(Ts+1))
は一次遅れ要素であり、F~(s)は完全微分PID制御器
である。K~ 、K~ 、K~ はそれぞれ前記完全微分
PID制御器F~(s)の比例ゲイン、積分ゲイン、微分ゲ
インであり、次に示す(26)のように定義される。
[0050] However, L (s) (= 1 / (T d s + 1))
Is a first-order lag element, and F ~ (s) is a fully differential PID controller. K ~ p , K ~ i , and K ~ d are the proportional gain, integral gain, and derivative gain of the full differential PID controller F ~ (s), respectively, and are defined as (26) shown below.

【0051】[0051]

【数20】 (Equation 20)

【0052】(25)式から、PID制御器F(s)は
完全微分PID制御器F~(s) (=K~ +K~ /s+K~
s)と一次遅れ要素L(s)(=1/(Ts+1))
の直列から構成されると見られる。すると、(1):完
全微分ゲインK~ >0の場合(即ち、K+T
≧0の場合)、周波数応答F~(jω)は図2に示すよう
に、位相特性がωの増大と共に−90°→+90°に変
化する。一方、一次遅れ要素の周波数応答L(jω)の
位相特性はωの増大と共に0°→−90°に変化するの
で、F~(jω)の位相変化率(増加率)が一次遅れ要素
の位相変化率(減少率)の絶対値より高ければ(即ち、
d(∠F~(jω))/dω≧|d(∠L(jω))/dω
|)、PID制御器F(jω)の位相特性∠F(j
ω)(=∠F~(jω)+∠L(jω))は全周波数帯域
で∠F(jω)≧−90°となり、3慣性モータ駆動
系に適用されても、∠Gnm(jω)≧−90°なの
で、一巡周波数応答は全周波数帯域に位相余裕があり
(∠(Gnm(jω)F(jω))≧−180°)、
制御系は不安定にならないと予想できる。しかし、
(2):完全微分ゲインK~ <0の場合(即ち、K
<0の場合)、周波数応答F~(jω)は図3に
示すような特徴があり、高周波数帯域で、F~(jω)
の位相特性は−90°に収束する。一方、一次遅れ要素
L(jω)も高周波数帯域で位相特性は−90°に収束
するので、3慣性モータ駆動系に適用されると、高周波
数帯域に一巡周波数応答の位相特性は∠(Gnm(j
ω)F(jω))|ω→∞→−270°となり、位相
余裕がなくなる可能性があり、制御系は不安定となる恐
れがある。
From equation (25), the PID controller F1(s) is
Fully differential PID controller F~(s) (= K~ p+ K~ i/ s + K~
ds) and the first-order lag element L (s) (= 1 / (Tds + 1))
It seems to be composed of a series. Then (1): complete
Total derivative gain K~ d> 0 (ie, Kd+ TdKp
≧ 0), frequency response F~(jω) is as shown in FIG.
In addition, the phase characteristic changes from -90 ° to + 90 ° as ω increases.
Become On the other hand, the frequency response L (jω) of the first-order lag element
The phase characteristic changes from 0 ° to -90 ° as ω increases
And F~The phase change rate (increase rate) of (jω) is the first-order lag element
Is higher than the absolute value of the phase change rate (decrease rate) of
d (∠F~(jω)) / dω ≧ | d (∠L (jω)) / dω
|), PID controller F1(jω) phase characteristic ∠F1(J
ω) (= ∠F~(jω) + ∠L (jω)) is the entire frequency band
∠F1(Jω) ≧ −90 °, 3 inertia motor drive
Even if applied to the system,nm(Jω) ≧ -90 °
The loop frequency response has a phase margin in all frequency bands.
(∠ (Gnm(Jω) F1(Jω)) ≧ −180 °),
It can be expected that the control system will not become unstable. But,
(2): Complete differential gain K~ d<0 (ie, Kd+
TdKp<0), frequency response F~(jω) is shown in FIG.
As shown in the figure, in the high frequency band, F~(Jω)
Phase characteristics converge to -90 °. On the other hand, the first-order lag element
L (jω) also converges to -90 ° in the high frequency band
When applied to a three-inertia motor drive system,
The phase characteristic of the loop frequency response in several bands is ∠ (Gnm(J
ω) F1(Jω)) |ω → ∞→ -270 °, phase
There is a possibility that the margin may be lost, and the control system may become unstable.
There is.

【0053】以下、PID制御を適用する多慣性モータ
駆動系の安定十分条件はK+T≧0とK+8
≧0であることを導出する。ここで、前記安定
十分条件の導出を簡単にするために、F~(jω)の位相
変化率(d(∠F~(jω))/dω)と一次遅れ要素の位
相変化率の絶対値(|d(∠L(jω))/dω|)との
比較に関連する関数f(ω)を導入する。ただし、関数
f(ω)はf(ω)≧0であれば、d(∠F~(jω))/
dω≧|d(∠L(jω))/dω|が成立つ性質を持
つ。そして、(1)K≧0のPID制御と(2)K
0のPID制御を分けて、関数f(ω)の解析によって
制御系を安定するための十分条件を見つける。(25)
式より、伝達関数の周波数表現F~(jω)とL(jω)
はそれぞれ次に示す(27)と(28)式となる。
Hereinafter, the stable and sufficient conditions of the multi-inertia motor drive system to which the PID control is applied are as follows: K d + T d K p ≧ 0 and K d +8
It derives that T d K i ≧ 0. Here, in order to simplify the derivation of the stable and sufficient conditions, F ~ rate of change of phase (jω) (d (∠F ~ (jω)) / dω) the absolute value of the phase change rate of the primary delay element ( Introduce a function f (ω) related to comparison with | d (∠L (jω)) / dω |). However, if f (ω) ≧ 0, the function f (ω) is d (∠F ~ (jω)) /
dω ≧ | d (∠L (jω)) / dω | Then, (1) PID control of K d ≧ 0 and (2) K d <
The PID control of 0 is divided, and a sufficient condition for stabilizing the control system is found by analyzing the function f (ω). (25)
From the equation, the frequency expression of the transfer function F ~ (jω) and L (jω)
Are expressed by the following equations (27) and (28), respectively.

【0054】[0054]

【数21】 (Equation 21)

【0055】F~(jω)の位相特性とL(jω)の位相
特性はそれぞれ次に示す(29)と(30)式で表され
る。
The phase characteristic of F ~ (jω) and the phase characteristic of L (jω) are expressed by the following equations (29) and (30), respectively.

【0056】[0056]

【数22】 (Equation 22)

【0057】d(arctanx)/dx=1/(1+x)の微
分法則により、F~(jω)の位相変化率d(∠F~(j
ω))/dωとL(jω)の位相変化率の絶対値|d(∠
L(jω))/dω|はそれぞれ次に示す(31)と(3
2)式のように求められる。
[0057] d (arctanx) / dx = by the differentiation law of 1 / (1 + x 2) , F ~ phase rate of change d (∠F ~ (j of (jω)
ω)) / dω and the absolute value of the phase change rate of L (jω) | d (∠
L (jω)) / dω | are (31) and (3)
It is obtained as in equation 2).

【0058】[0058]

【数23】 (Equation 23)

【0059】(31)式と(32)式より、関数f
(ω)を次に示す(33)式のように定義する。
From the expressions (31) and (32), the function f
(Ω) is defined as in the following equation (33).

【0060】[0060]

【数24】 (Equation 24)

【0061】ただし、A、B、Cは中間変数である。
(33)式から、f(ω)≧0であれば、d(∠F~(j
ω))/dω≧|d(∠L(jω))/dω|となることが
分かる。また、比例ゲインK>0と積分ゲインK
0なので、(33)式に係数CはC>0となる。
Here, A, B and C are intermediate variables.
From equation (33), if f (ω) ≧ 0, then d (∠F ~ (j
ω)) / dω ≧ | d (∠L (jω)) / dω |. Also, the proportional gain K p > 0 and the integral gain K i >
Since it is 0, the coefficient C becomes C> 0 in the equation (33).

【0062】(1)K≧0のPID制御 慣性比Kの大きい場合は、微分ゲインK≧0となる
ので、(33)式に係数BはB>0となる。もし、係数
AはA≧0(即ち、K≦T )であると、関数
f(ω)は全周波数帯域でf(ω)>0となるので、P
ID制御器F(jω)の位相特性∠F(jω)(=∠
~(jω)+∠L(jω))は全周波数帯域で∠F
(jω)≧−90°となる。そこで、3慣性モータ駆
動系に適用しても、制御系を安定することができる。一
方、もし、係数AはA<0(即ち、K >T
であると、関数f(ω)は頂点を最大値とする4次の放
物線関数となり、その頂点に達する周波数ωt1はd
(f(ω))/dω=0より次に示す(34)式のよう
に求められる。
(1) Kd≧ 0 PID control Inertia ratio KJIs large, the differential gain Kd≧ 0
Therefore, the coefficient B becomes B> 0 in the equation (33). If the coefficient
A is A ≧ 0 (ie, Kd≤Td 2Ki), The function
f (ω) is f (ω)> 0 in the entire frequency band, so that P
ID controller F1(jω) phase characteristic ∠F1(Jω) (= ∠
F~(jω) + ∠L (jω)) is ∠F over the entire frequency band.
1(Jω) ≧ −90 °. Therefore, three inertia motor drive
Even when applied to a dynamic system, the control system can be stabilized. one
On the other hand, if the coefficient A is A <0 (ie, K d> Td 2Ki)
, The function f (ω) is a fourth-order function with the maximum value at the vertex.
Frequency ω which becomes the object function and reaches its vertext1Is d
From (f (ω)) / dω = 0, the following equation (34) is obtained.
Required.

【0063】[0063]

【数25】 (Equation 25)

【0064】(33)式より、f(0)=C>0なの
で、0〜ωt1の周波数帯域に関数f(ω)はf(ω)
>0であることがわかる。また、周波数ωt1のところ
で、前記完全微分PID制御器F~(s)の位相特性∠F
~(jωt1)は、次に示す(35)式のように∠F~(j
ωt1)>0°と求められる。
[0064] (33) from the equation, f (0) = C> 0 , so, to the frequency band of the 0~ω t1 function f (ω) is f (ω)
It can be seen that> 0. Further, at the frequency omega t1, phase characteristic ∠F of the full differential PID controller F ~ (s)
~ (jω t1 ) is expressed as ∠F ~ (j
ω t1 )> 0 °.

【0065】[0065]

【数26】 (Equation 26)

【0066】前記(31)式より、K≧0の場合、F
~(jω)の位相変化率はd(∠F~(jω))/dω>0と
なり、即ち、∠F~(jω)は単調増加の関数であるの
で、ω>ωt1の周波数帯域で∠F~(jω)>∠F~(j
ωt1)>0°となる。従って、前記PID制御器のF
(jω)の位相特性は0〜ωt1〜+∞の全周波数帯
域で∠F(jω)≧−90°となる。従って、以上を
まとめると、微分ゲインK≧0のPID制御を3慣性
モータ駆動系に適用しても、制御系は不安定になれな
い。
From equation (31), when K d ≧ 0, F
~ (J [omega]) phase change rate d of (∠F ~ (jω)) / dω> 0 , and the words, since ∠F ~ (jω) is a function of monotonically increasing, ∠ in the frequency band of omega> omega t1 F ~ (jω)> ∠F ~ (j
ω t1 )> 0 °. Therefore, FID of the PID controller
1 phase characteristics of (j [omega]) is the ∠F 1 (jω) ≧ -90 ° over the entire frequency band of 0~ω t1 ~ + ∞. Therefore, in summary, even if the PID control with the differential gain K d ≧ 0 is applied to the three-inertia motor drive system, the control system does not become unstable.

【0067】(2)K<0のPID制御 慣性比Kの小さい場合は、微分ゲインK<0となる
ので、前記(33)式の係数AにT −K>0
となる。もし、K~ =K+T≧0の条件があ
れば、係数AはA>0となる。更に、もし、前記(3
3)式の係数BはB≧0であれば、すべての周波数ωに
対して、関数f(ω)≧0が成立てる(即ち、∠F
(jω)≧−90°)。そこで、ここで、A>0とB
<0のケースで、関数f(ω)≧0も成立つ条件を導出
すればよいと考えられる。A>0かつB<0の場合は、
関数f(ω)は頂点を最小値とする4次の放物線関数と
なり、その頂点に達する周波数ωt2はd(f(ω))
/dω=0より次に示す(36)式のように求められ
る。
[0067] (2) When the small K d <0 PID control inertia ratio K J, derivative gain K and since d <0, T d 2 to the coefficient A of the equation (33) K i -K d> 0
It becomes. If there is a condition of K ~ d = K d + T d K p ≧ 0, coefficient A is A> 0 become. Furthermore, if (3)
If the coefficient B of the equation 3) is B ≧ 0, the function f (ω) ≧ 0 holds for all frequencies ω (that is, ∠F
1 (jω) ≧ −90 °). Therefore, here, A> 0 and B
In the case of <0, it is considered that a condition that also satisfies the function f (ω) ≧ 0 should be derived. If A> 0 and B <0,
The function f (ω) is a fourth-order parabolic function with the minimum value at the vertex, and the frequency ω t2 reaching the vertex is d (f (ω))
From / dω = 0, it is obtained as in the following equation (36).

【0068】[0068]

【数27】 [Equation 27]

【0069】頂点(最小値)とする関数値f(ωt2
は次に示す(37)式のように求められる。
Function value f (ω t2 ) as vertex (minimum value)
Is obtained as in the following equation (37).

【0070】[0070]

【数28】 [Equation 28]

【0071】(37)式より、K+8T≧0で
あれば、関数f(ω)の最小値はf(ωt2)≧0とな
るので、前記の仮定K+T≧0を合わせて、K
<0の場合、制御系の安定十分条件は、次に示す(3
8)式のように導出される。
From equation (37), if K d + 8T d K i ≧ 0, then the minimum value of the function f (ω) is f (ω t2 ) ≧ 0, so the above assumption K d + T d K p ≧ 0, K
When d <0, the sufficient conditions for stability of the control system are as follows (3.
It is derived as in equation 8).

【0072】[0072]

【数29】 (Equation 29)

【0073】K≧0であれば、(38)式は常に成立
つので、前記(1)K≧0のPID制御と(2)K
0のPID制御を合わせて、(38)式を制御系の安定
十分条件とすることができる。また、通常は、8K
のケースがほとんどなので、(38)式の第一項式
のみを安定十分条件として使ってもよいと考えられる。
If K d ≧ 0, equation (38) always holds, so that (1) the PID control of K d ≧ 0 and (2) K d <
By combining PID control of 0, equation (38) can be set as a sufficient condition for the stability of the control system. Also, usually, 8K i >
Since the case of K p is almost considered to be using only the first term expression (38) below as a stable sufficient condition.

【0074】以上のことから、慣性比の大きい場合は、
≧0となるので、(38)式の安定十分条件が常に
満たされる。しかし、慣性比の小さい場合は、K<0
となるので、(38)式の安定十分条件を満たすため
に、遅い微分時定数T(即ち、値の大きいT)を有
するPID制御の設計が必要であることがわかる。そこ
で、以下、(38)式の安定十分条件を満たすように、
安定度指標γの調整により本発明の遅い微分時定数T
を有するPID制御を設計する。
From the above, when the inertia ratio is large,
Since K d ≧ 0, the sufficient stability condition of the equation (38) is always satisfied. However, when the inertia ratio is small, K d <0
Therefore, it is understood that in order to satisfy the sufficient stability condition of the equation (38), it is necessary to design a PID control having a slow differential time constant T d (that is, a large value T d ). Therefore, hereinafter, to satisfy the sufficient stability condition of the equation (38),
By adjusting the stability index γ i , the slow differential time constant T of the present invention is obtained.
Design a PID control with d .

【0075】(38)式の安定十分条件を満たすように
PID制御を設計するために、まず、微分時定数T
決める要因を明らかにする必要がある。2慣性のモータ
駆動系のトータル慣性JをJ=Jmg+Jのよう
に定義すると、(20)式からTを次に示す(39)
式のように表すことができる。
In order to design the PID control so as to satisfy the sufficient stability condition of the equation (38), it is first necessary to clarify the factors that determine the differential time constant Td . When the total inertia J t of the motor drive system 2 inertia is defined as J t = J mg + J L , shown below T d from (20) (39)
It can be expressed like an equation.

【0076】[0076]

【数30】 [Equation 30]

【0077】異なるKとγによって、l、l
~ の値が変わるが、直観的に、微分時定数Tは慣
性比Kと比例するので、慣性比Kが小さいほど、微
分時定数Tが小さくなり、即ち、前述のように、慣性
比Kの小さい場合、標準形安定度指標によってPID
制御を設計すると、速い微分時定数Tが必要となる。
また、Tは安定度指標γと反比例するので、γ
標準形より小さく設定すれば、Tを大きくすることが
できることがわかる。しかし、前述した制御系の不安定
十分条件の(18)式およびlの実数解存在条件の
(24)式から、安定度指標γの設定には、次に示す
(40)式のような制限がある。
[0077] by a different K J and γ i, l 0, l 1 ,
The value of l ~ 2 changes, intuitively, is proportional and derivative time constant T d is the inertia ratio K J, as the inertia ratio K J is small, the differential time constant T d decreases, i.e., as described above , if small inertia ratio K J, PID by standard form stability index
Designing the control requires a fast differential time constant Td .
Further, T d is inversely proportional with the stability index gamma i, is set smaller than the standard form of gamma i, it can be seen that it is possible to increase the T d. However, from the equation (18) for the sufficient condition of instability of the control system and the equation (24) for the existence condition of the real number solution of l 0 , the stability index γ i is set as shown in the following equation (40). There are some restrictions.

【0078】[0078]

【数31】 [Equation 31]

【0079】したがって、2慣性モータ駆動系に対し、
(40)式の制限で、標準形安定度指標より小さいγ
を設定し、安定十分条件の(38)式を満たすように遅
い微分時定数を有するPID制御を設計すれば、3慣性
モータ駆動系に適用しても、安定な制御ができることが
わかる。図4と図5に、それぞれ以上のように設計した
PID制御を3慣性モータ駆動系に適用する一巡周波数
応答と時間応答を示す。安定十分条件の(38)式を満
たすので、図4(b)の一巡周波数応答の位相特性に、
高周波数帯域でも位相余裕があるので、制御系が安定
で、図5の時間応答にバックラッシ振動のない安定な制
御ができたことがわかる。
Therefore, for a two inertia motor drive system,
Due to the restriction of equation (40), γ i smaller than the standard form stability index
Is set, and if the PID control having a slow differential time constant is designed so as to satisfy the equation (38) of a sufficiently stable condition, it can be understood that stable control can be performed even when applied to a three-inertia motor drive system. FIGS. 4 and 5 show a loop frequency response and a time response in which the PID control designed as described above is applied to a three-inertia motor drive system. Since the equation (38) of the sufficient stability condition is satisfied, the phase characteristic of the loop frequency response in FIG.
Since there is a phase margin even in a high frequency band, the control system is stable, and it can be seen that stable control without backlash oscillation in the time response of FIG. 5 was performed.

【0080】以上のまとめとして、本発明のモータ駆動
系におけるPID速度制御方法は、速度制御系は図1に
示すようにPID制御器1(F(s))のみで構成さ
れ、PID制御器1(F(s))を制御系安定十分条
件のK+T≧0とK +8T≧0を満た
すように設計すると、モータ駆動系にバックラッシなど
の非線型要素の存在で2慣性モータ駆動系が3慣性モー
タ駆動系に変わっても、バックラッシ振動のない安定な
速度制御ができる。また、3慣性以上の多慣性モータ駆
動系には、その開ループ伝達関数Gnm(s)の周波数
応答の位相特性は全周波数帯域で∠Gnm(jω)≧−
90°となるので、本発明の安定十分条件を満たすPI
D速度制御を3慣性以上の多慣性モータ駆動系に適用し
ても、安定な速度制御が実現できる。
In summary, the motor drive of the present invention
The PID speed control method in the system is as follows.
As shown, the PID controller 1 (F1(S)) only
And the PID controller 1 (F1(S)) control system stability
Kd+ TdKp≧ 0 and K d+ 8TdKiSatisfies ≧ 0
If designed so that the motor drive system has backlash etc.
Of the two inertia motor drive system due to the presence of
Stable without backlash vibration
Speed control is possible. Also, a multi-inertia motor drive with three or more inertia
The dynamic system has its open-loop transfer function Gnm(S) frequency
Response phase characteristic is ∠G in all frequency bands.nm(Jω) ≧ −
Since the angle is 90 °, the PI that satisfies the sufficient stability conditions of the present invention is
Apply D speed control to multi-inertia motor drive system with 3 or more inertia
However, stable speed control can be realized.

【0081】以下、数値例を挙げて、本発明の実施の具
体的形態をさらに説明する。数値例とした3慣性モータ
駆動系の機械定数は、モータ慣性J、ギア慣性J
負荷機慣性J、ギアバネ定数K、軸バネ定数K
ギア粘性係数D、軸粘性係数D、およびギアバック
ラッシ幅δを次に示す(41)式の値としたときのPI
D制御器1の各定数K、K、K、Tの決定例に
ついて説明する。
Hereinafter, the present invention will be described with reference to numerical examples.
The physical form will be further described. Three inertia motors as numerical examples
The mechanical constant of the drive system is the motor inertia Jm, Gear inertia J g,
Load machine inertia JL, Gear spring constant Kg, Shaft spring constant Kc,
Gear viscosity coefficient Dg, Shaft viscosity coefficient Dc, And gear back
PI when the lash width δ is the value of the following equation (41)
Each constant K of D controller 1p, Ki, Kd, TdIn the decision example of
explain about.

【0082】[0082]

【数32】 (Equation 32)

【0083】前記機械定数を持つ3慣性モータ駆動系
は、ギアバネ定数は軸バネ定数よりずっと大きい、即
ち、K>>Kなので、モータ慣性Jとギア慣性J
を合併し、モータ等価慣性Jmg(=J+J)とす
ることで、図6に示すように2慣性モータ駆動系として
PID速度制御系を設計することができる。K=J/
mg=0.5の小さい慣性比の2慣性モータ駆動系である
ので、標準形安定度指標(γ=2.5;γ=
2.0)によって、PID制御器F(s)を設計する
と、次に示す(42)式のように、K<0のPID制
御器1となる。
[0083] 3 inertial motor drive system with the machine constants, Giabane constant is much greater than the axial spring constant, i.e., K g >> K c So motor inertia J m and gear inertia J g
And the motor inertia J mg (= J m + J g ), a PID speed control system can be designed as a two inertia motor drive system as shown in FIG. K J = J L /
Since it is a two inertia motor drive system having a small inertia ratio of J mg = 0.5, the standard form stability index (γ 1 = 2.5; γ 2 = γ 3 = γ 4 =
When the PID controller F 1 (s) is designed according to (2.0), the PID controller 1 satisfies K d <0 as shown in the following equation (42).

【0084】[0084]

【数33】 [Equation 33]

【0085】(42)式の値をもつPID制御を図6に
示す2慣性モータ駆動系に適用すると、その時間応答は
図10に示すようになり、軸ねじれ振動のないしかも収
束の速い速度制御ができたことがわかる。しかし、モー
タ駆動系にギアバックラッシの存在で、2慣性モータ駆
動系が3慣性モータ駆動系に変わる場合は、(42)式
の値で計算すると、K+T=−0.4948<0とな
るので、前記(38)式の制御系安定十分条件が満たさ
れない。一巡周波数応答G3m(jω)F(jω)は
図12に示すように高周波数帯域に位相余裕はФm3
0°となるので、3慣性モータ駆動系の速度制御は不安
定となる。その時間応答は図11に示すようになり、持
続のバックラッシ振動が発生してしまう。そこで、(3
8)式の安定十分条件が満たされるように、係数図法の
安定度指標γをγ=2.5、γ=1.3333、γ=2.0、
γ=1.25の非標準形に設定すると、PID制御器F
(s)の各定数は次に示す(43)式のように求められ
る。
When the PID control having the value of the equation (42) is applied to the two-inertia motor drive system shown in FIG. 6, the time response becomes as shown in FIG. It turns out that was completed. However, in the presence of a gear backlash to the motor drive system, if the two-inertia motor drive system is changed to 3 inertial motor drive system, calculated by the value of equation (42), and K d + T d K p = -0.4948 <0 Therefore, the sufficient condition for stabilizing the control system of the equation (38) is not satisfied. As shown in FIG. 12, the loop frequency response G 3m (jω) F 1 (jω) has a phase margin of Ф m3 <in the high frequency band.
Since it is 0 °, the speed control of the three inertia motor drive system becomes unstable. The time response is as shown in FIG. 11, and continuous backlash vibration occurs. Then, (3
8) The stability index γ i of the coefficient projection is set to γ 1 = 2.5, γ 2 = 1.3333, γ 3 = 2.0, so that the sufficient stability condition of the equation is satisfied.
When the non-standard form of γ 4 = 1.25 is set, the PID controller F 1
Each constant of (s) is obtained as in the following equation (43).

【0086】[0086]

【数34】 (Equation 34)

【0087】K+T=0.1494>0とK+8T
=1.7491>0となるので、制御系が安定である。
一巡周波数応答G3m(jω)F(jω)は図4に示
すように、高周波数帯域でも位相余裕があり(Фm3
0°)、時間応答は図5に示すようになり、バックラッ
シ振動のない安定な速度制御ができたことがわかる。
K d + T d K p = 0.1494> 0 and K d + 8T
Since d K i = 1.7491> 0, the control system is stable.
As shown in FIG. 4, the loop frequency response G 3m (jω) F 1 (jω) has a phase margin even in a high frequency band (Ф m3 >
0 °), and the time response is as shown in FIG. 5, indicating that stable speed control without backlash vibration was achieved.

【0088】[0088]

【発明の効果】以上説明したように本願の発明によれ
ば、モータ駆動系の速度制御系を、PID制御のみで構
成し、制御系安定十分条件のK+T≧0とK
+8T≧0が満たされるようにPID制御の各定
数を設定することによって、モータ駆動系にバックラッ
シなど非線型要素の有無に関わらず、安定な速度制御を
実現することができ、実用上、極めて有用性の高いもの
である。
As described above, according to the invention of the present application, the speed control system of the motor drive system is constituted only by the PID control, and K d + T d K p ≧ 0 and K d satisfying the sufficient condition of the control system stability.
By setting the constants of the PID control so that + 8T d K i ≧ 0 is satisfied, stable speed control can be realized regardless of the presence or absence of a non-linear element such as a backlash in the motor drive system. Is extremely useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項1記載の一実施例を示すブロッ
ク線図である
FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】完全微分を有するPID制御器の周波数応答特
性図である(微分ゲインK~ >0の場合)。
2 is a frequency response diagram of the PID controller having a complete differentiation (for derivative gain K ~ d> 0).

【図3】完全微分を有するPID制御器の周波数応答特
性図である(微分ゲインK~ <0の場合)。
3 is a frequency response diagram of the PID controller having a complete differentiation (for derivative gain K ~ d <0).

【図4】遅い微分時定数を有するPID制御を適用した
3慣性モータ駆動系一巡周波数応答特性図である。
FIG. 4 is a three-inertia motor drive system loop frequency response characteristic diagram to which PID control having a slow differential time constant is applied.

【図5】遅い微分時定数を有するPID制御を適用した
3慣性モータ駆動系時間応答特性図である。
FIG. 5 is a time response characteristic diagram of a three-inertia motor drive system to which PID control having a slow differential time constant is applied.

【図6】PID制御を適用した2慣性モータ駆動系のブ
ロック線図である。
FIG. 6 is a block diagram of a two-inertia motor drive system to which PID control is applied.

【図7】3慣性モータ駆動系の外観図である。FIG. 7 is an external view of a three-inertia motor drive system.

【図8】3慣性モータ駆動系のブロック線図である。FIG. 8 is a block diagram of a three inertia motor drive system.

【図9】3慣性モータ駆動系の開ループ伝達関数G3m
(s)の周波数応答特性図である。
FIG. 9 shows an open-loop transfer function G 3m of a three-inertia motor drive system.
It is a frequency response characteristic figure of (s).

【図10】速い微分時定数を有するPID制御を適用し
た2慣性モータ駆動系時間応答特性図である。
FIG. 10 is a time response characteristic diagram of a two inertial motor drive system to which PID control having a fast differential time constant is applied.

【図11】速い微分時定数を有するPID制御を適用し
た3慣性モータ駆動系時間応答特性図である。
FIG. 11 is a time response characteristic diagram of a three-inertia motor drive system to which PID control having a fast differential time constant is applied.

【図12】速い微分時定数を有するPID制御を適用し
た3慣性モータ駆動系一巡周波数応答特性図である。
FIG. 12 is a diagram showing a loop frequency response characteristic of a three-inertia motor drive system to which PID control having a fast differential time constant is applied.

【符号の説明】[Explanation of symbols]

1 PID制御器 2 ギアと弾性軸を有する3慣性モータ駆動系 3 弾性軸を有する2慣性モータ駆動系 11 モータ 12 負荷機 13 ギア 14 弾性軸 J モータ慣性 J ギア慣性 Jmg モータ等価慣性 J 負荷機慣性 K ギアのバネ定数 D ギアの粘性係数 K 軸のバネ定数 D 軸の粘性係数 δ ギアバックラッシ幅 ω 速度指令 ω モータ速度 Δω 速度指令とモータ速度との偏差値 ω ギア速度 ω 負荷機速度 T モータトルク T ギアトルク T 軸トルク T 負荷機側の外乱トルク F(s) PID制御器1の伝達関数 K PID制御器1の比例ゲイン K PID制御器1の積分ゲイン K PID制御器1の微分ゲイン T PID制御器1の微分時定数 F~(s) 完全微分PID制御器の伝達関数 K~ 完全微分PID制御器の比例ゲイン K~i 完全微分PID制御器の積分ゲイン K~ 完全微分PID制御器の微分ゲイン L(s) 一次遅れ要素の伝達関数 ∠F~(jω) F~(jω)の位相特性 ∠L(jω) L(jω)の位相特性 f(ω) F~(jω)の位相変化率とL(jω)の
位相変化率の絶対値との関係関数 ω 2慣性モータ駆動系の固有反共振周波数 ω 2慣性モータ駆動系の固有共振周波数 ωh1 3慣性モータ駆動系の固有反共振周波数(ねじ
れ振動モードと対応) ωh2 3慣性モータ駆動系の固有反共振周波数(バッ
クラッシ振動モードと対応) ω01 3慣性モータ駆動系の固有共振周波数(ねじれ
振動モードと対応) ω02 3慣性モータ駆動系の固有共振周波数(バック
ラッシ振動モードと対応) τ 係数図法の等価時定数 γi 係数図法の安定度指標 G3m(s) 3慣性モータ駆動系のモータトルクT
からモータ速度ωまでの開ループ伝達関数 G2m(s) 2慣性モータ駆動系のモータトルクT
からモータ速度ωまでの開ループ伝達関数 Gnm(s) 3慣性以上の多慣性モータ駆動系のモー
タトルクTからモータ速度ωまでの開ループ伝達関
DESCRIPTION OF SYMBOLS 1 PID controller 2 3 inertia motor drive system which has a gear and an elastic axis 3 2 inertia motor drive system which has an elastic axis 11 motor 12 load machine 13 gear 14 elastic axis J m motor inertia J g gear inertia J mg motor equivalent inertia J L load machine inertia K g gear spring constant D g deviation of the gear of the viscosity coefficient K c axis of the spring constant D c axis of the viscosity coefficient δ gear backlash width omega * speed command omega m motor speed Δω speed command and the motor speed ω g gear speed ω L load machine speed T m motor torque T g gear torque T c- axis torque TL disturbance torque on the load machine side F 1 (s) Transfer function of PID controller 1 K p Proportional gain of PID controller 1 K i PID controller 1 integral gain K d PID controller 1 differential gain T d differential time constant of the PID controller 1 F ~ (s) completely derivative PID controller transfer function K ~ p complete Min PID controller proportional gain K ~ i fully differential PID controller integral gain K ~ d fully differential PID controller of differential gain L (s) transfer function ∠F ~ primary delay element (jω) F ~ (jω) L (jω) Phase characteristic of L (jω) Relational function between the phase change rate of f (ω) F ~ (jω) and the absolute value of the phase change rate of L (jω) ω h 2 Inertia motor drive Natural anti-resonance frequency of the system ω 0 natural resonance frequency of the two inertial motor drive system ω h1 natural anti-resonance frequency of the three inertial motor drive system (corresponding to the torsional vibration mode) ω h2 natural anti-resonance frequency of the three inertial motor drive system (backlash) Ω 01 The natural resonance frequency of the three-inertia motor drive system (corresponding to the torsional vibration mode) ω 02 The natural resonance frequency of the three-inertia motor drive system (corresponds to the backlash vibration mode) τ Equivalent time constant of coefficient diagram γ i Person in charge Projection of stability index G 3m (s) 3 inertial motor drive system of the motor torque T m
-Loop transfer function G 2m (s) from ω m to motor speed ω m Motor torque T m of two inertia motor drive system
-Loop transfer function from nm to motor speed ω m G nm (s) Open-loop transfer function from motor torque T m to motor speed ω m of a multi-inertia motor drive system with three or more inertia

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バックラッシや弾性軸等を介して、モー
タから負荷機へ駆動トルクを伝達する多慣性モータ駆動
系の速度制御において、速度指令とモータ速度との偏差
を入力とするPID制御器により前記モータ駆動系の速
度制御を行う場合に、前記PID制御器の各定数を制御
系の安定十分条件 K+T≧0と、K+8T≧0 ここで、K 微分ゲイン、T 微分時定数、K
比例ゲイン、 K 積分ゲインである。を満たすよう設定することに
よって、上記多慣性モータ駆動系の中にギアバックラッ
シなどの非線型要素の有無に関わらず、安定な速度制御
が実現できることを特徴とするPID速度制御方法。
In a speed control of a multi-inertia motor drive system that transmits a drive torque from a motor to a load machine via a backlash, an elastic shaft, or the like, a PID controller that receives a deviation between a speed command and a motor speed as an input. When performing the speed control of the motor drive system, the constants of the PID controller are adjusted to the sufficient and sufficient conditions of the control system K d + T d K p ≧ 0 and K d + 8T d K i ≧ 0 where K d differentiation Gain, Td derivative time constant, Kp
Proportional gain, Ki integral gain. A PID speed control method characterized by realizing stable speed control irrespective of the presence or absence of a non-linear element such as a gear backlash in the multi-inertia motor drive system by setting to satisfy the following.
JP2001127131A 2001-04-25 2001-04-25 PID speed control method in motor drive system Expired - Fee Related JP3998433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127131A JP3998433B2 (en) 2001-04-25 2001-04-25 PID speed control method in motor drive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127131A JP3998433B2 (en) 2001-04-25 2001-04-25 PID speed control method in motor drive system

Publications (2)

Publication Number Publication Date
JP2002325471A true JP2002325471A (en) 2002-11-08
JP3998433B2 JP3998433B2 (en) 2007-10-24

Family

ID=18976057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127131A Expired - Fee Related JP3998433B2 (en) 2001-04-25 2001-04-25 PID speed control method in motor drive system

Country Status (1)

Country Link
JP (1) JP3998433B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078327A (en) * 2003-08-29 2005-03-24 Seiko Epson Corp State feedback controlling device
JP2010088290A (en) * 2008-09-29 2010-04-15 Oriental Motor Co Ltd Method and apparatus for controlling inertia system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09305239A (en) * 1996-05-16 1997-11-28 Toyo Electric Mfg Co Ltd Backlash damping control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09305239A (en) * 1996-05-16 1997-11-28 Toyo Electric Mfg Co Ltd Backlash damping control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078327A (en) * 2003-08-29 2005-03-24 Seiko Epson Corp State feedback controlling device
JP2010088290A (en) * 2008-09-29 2010-04-15 Oriental Motor Co Ltd Method and apparatus for controlling inertia system

Also Published As

Publication number Publication date
JP3998433B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
Gao Scaling and bandwidth-parameterization based controller tuning
US20200133226A1 (en) Output device, control device and method of outputting learning parameter
Shahgholian Modeling and simulation of a two-mass resonant system with speed controller
CN107924163B (en) System for controlling controlled parameters
CN109634116B (en) Acceleration self-adaptive stabilizing method of fractional order mechanical centrifugal speed regulator system
JP2002291272A (en) Velocity control device and its control method
Zirkohi Command filtering-based adaptive control for chaotic permanent magnet synchronous motors considering practical considerations
JP7039176B2 (en) Delay compensator filter design method, feedback control method using it, motor control device
JP4781000B2 (en) Servo control device
JP2002325471A (en) Pid speed control method in motor drive system
Hasegawa et al. Robot joint angle control based on Self Resonance Cancellation using double encoders
Kaiser et al. Fundamentals of servo motion control
JPH086603A (en) Adjusting method for servo system and its servo controller
US6920362B2 (en) Control apparatus
JPH0235501A (en) Fuzzy control system
KR102698952B1 (en) Position controlling apparatus for motor
CN108448987B (en) Disturbance perception control method for three-phase permanent magnet synchronous motor
JP3650708B2 (en) Control method for control system having dead time
JP2001195133A (en) Method for controlling torque of two degrees of freedom in backlash torsion axis system
CN108494304B (en) quasi-PI disturbance perception control method for three-phase permanent magnet synchronous motor
JPH06113578A (en) Motor speed control method
JPH10323071A (en) Coefficient determining method for secondary serial compensator for two-inertia resonance system velocity control
JP3244184B2 (en) Torsion control system by state space method.
Albagul Performance improvement of practical control method for positioning systems in the presence of actuator saturation
Schlegel et al. Active vibration control of two-mass flexible system using parametric Jordan form assignment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees