JP2001286170A - Two-freedom degree torque control method of two-inertia torsion shaft system - Google Patents

Two-freedom degree torque control method of two-inertia torsion shaft system

Info

Publication number
JP2001286170A
JP2001286170A JP2000093652A JP2000093652A JP2001286170A JP 2001286170 A JP2001286170 A JP 2001286170A JP 2000093652 A JP2000093652 A JP 2000093652A JP 2000093652 A JP2000093652 A JP 2000093652A JP 2001286170 A JP2001286170 A JP 2001286170A
Authority
JP
Japan
Prior art keywords
torque
characteristic
shaft
pid controller
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093652A
Other languages
Japanese (ja)
Inventor
Masaru Nakayama
優 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2000093652A priority Critical patent/JP2001286170A/en
Publication of JP2001286170A publication Critical patent/JP2001286170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize torque control of a two-inertia torsion shaft system superior in both disturbance characteristic and instruction follow-up characteristic without using a torque meter. SOLUTION: In the torque control of a two-inertia torsion shaft system, a disturbance observer is provided in inside an electric motor to input motor torque and electric motor speed, estimated shaft torque is calculated with the disturbance observer, a PID controller is provided to input the deviation between the torque instruction and the estimated shaft torque, and a feed forward proportional compensator inputting the torque instruction is also provided, the sum of the output of the PID controller and the output of the feed forward proportional compensator takes a means for controlling the shaft torque as the motor torque, the disturbance suppression characteristic is improved by the PID controller, and the instruction follow-up characteristic is improved by the feed forward proportional compensator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電動機と負荷が低
剛性弾性軸で結合される2慣性ねじれ軸系の2自由度ト
ルク制御方法に関するものである。
The present invention relates to a two-degree-of-freedom torque control method for a two-inertia torsion shaft system in which a motor and a load are connected by a low-rigidity elastic shaft.

【0002】[0002]

【従来の技術】一般に、産業プラントや産業用ロボット
などにおけるモータドライブシステムにおいては、電動
機と負荷が低剛性の弾性軸で結合されていると機械共振
系となり、軸ねじれ振動が発生し問題となることがあ
る。その概要を図2〜図5により説明する。図2は2慣
性ねじれ軸系を示し、11は電動機、12は負荷、13
は弾性軸である。このように弾性軸13で結合されてい
る場合、この機械系には、軸ねじれ振動モードが存在
し、2慣性ねじれ軸系となる。図2の2慣性ねじれ軸系
をブロック線図で示すと、図3になる。ただし、T
モータトルク、Tは軸トルク、Tは負荷側の外乱ト
ルク、ωは電動機速度、ωは負荷速度、Kは軸の
バネ定数、Dは軸の粘性係数、Jは電動機慣性、J
は負荷慣性である。図3において開ループ系のトルク
伝達特性として、外乱トルクTから軸トルクTまで
の開ループ伝達関数G(s)およびモータトルクT
から軸トルクTまでの開ループ伝達関数G(s)は
それぞれ数1に示す(1)式と(2)式で与えられる。
2. Description of the Related Art Generally, in a motor drive system for an industrial plant or an industrial robot, if a motor and a load are connected by an elastic shaft having a low rigidity, a mechanical resonance system is generated, and a torsional vibration is generated. Sometimes. The outline will be described with reference to FIGS. FIG. 2 shows a two inertia torsion shaft system, 11 is an electric motor, 12 is a load, 13
Is an elastic axis. When the mechanical system is coupled by the elastic shaft 13 in this manner, a shaft torsional vibration mode exists in the mechanical system, and the mechanical system is a two-mass torsion shaft system. FIG. 3 is a block diagram showing the two-inertia torsion axis system of FIG. However, T m is motor torque, T c is the axial torque, T L is the disturbance torque on the load side, omega m is motor speed, omega L is the load speed, K c is the spring constant of the shaft, D c is the viscosity coefficient of the shaft , Jm is the motor inertia, J
L is the load inertia. In FIG. 3, the open loop transfer function G L (s) from the disturbance torque TL to the shaft torque Tc and the motor torque T m are shown as torque transmission characteristics of the open loop system.
The open-loop transfer function G m (s) from to the shaft torque Tc is given by the equations (1) and (2) shown in Equation 1, respectively.

【0003】[0003]

【数1】 (Equation 1)

【0004】ただし、sはラプラス演算子、ωとζ
は2慣性ねじれ軸系の固有共振周波数とダンピング係数
で、それぞれ数2に示す(3)式及び(4)式で表され
る。
Where s is a Laplace operator, ω 0 and ζ 0
Is a natural resonance frequency and a damping coefficient of the two-mass torsion axis system, and are expressed by Expressions (3) and (4) shown in Expression 2, respectively.

【0005】[0005]

【数2】 (Equation 2)

【0006】2慣性ねじれ軸系トルク制御において、考
慮すべき制御性能は外乱抑制特性(フィードバック特
性)と指令追従特性(目標値追随特性)に分けることが
できる。まず、外乱抑制特性から、外乱トルクTの印
加による軸のねじれ振動を抑えるために、図4(a)の
点線(ア)のような前記開ループ伝達関数G(s)の
周波数応答ゲイン特性のピークを抑える必要がある。ま
た、図4の(b)に同図の(a)のゲイン特性に対応す
る位相特性を示している。一方、指令追従特性から、軸
トルクTをトルク指令Tに速やかに且つ振動なく追
従させるために、前記トルク指令Tから前記軸トルク
までの閉ループ伝達関数Ф(s)を図5(a)の
実線(カ)のような望ましい周波数応答ゲイン特性を持
たせる必要がある。即ち、0周波数から共振周波数ω
の近辺までの周波数帯域で、ゲイン特性は常に定数の0
dBに近い値を持たなければならない。また、図5の
(b)に同図の(a)のゲイン特性に対応する位相特性
を示している。
In the two-inertia torsion axis system torque control, the control performance to be considered can be divided into a disturbance suppression characteristic (feedback characteristic) and a command following characteristic (target value following characteristic). First, from the disturbance suppression characteristics, in order to suppress the torsional vibration of the shaft due to the application of the disturbance torque TL , the frequency response gain of the open-loop transfer function G L (s) as shown by the dotted line (A) in FIG. It is necessary to suppress characteristic peaks. FIG. 4B shows a phase characteristic corresponding to the gain characteristic shown in FIG. On the other hand, from the command following characteristic, in order to make the shaft torque Tc follow the torque command T * quickly and without vibration, a closed loop transfer function Ф * (s) from the torque command T * to the shaft torque Tc is shown in FIG. It is necessary to have a desirable frequency response gain characteristic as shown by the solid line (f) in FIG. That is, from the 0 frequency to the resonance frequency ω 0
The gain characteristic is always a constant 0
Must have a value close to dB. FIG. 5B shows a phase characteristic corresponding to the gain characteristic shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】一般に軸の粘性係数D
は非常に小さい値であり、(4)式から分かるよう
に、ダンピング係数ζが小さいので、開ループ系周波
数応答のゲイン特性│G(jω)│と│G(jω)│は
それぞれ図4(a)の点線(ア)と図5(a)の点線
(キ)のようになり、共振周波数ωのところに、ゲイ
ン特性に高いピークが生じ、周波数ωの軸ねじれ共振
が発生しやすくなり、外乱抑制特性と指令追従特性は両
方ともよくない。このような2慣性ねじれ軸系のトルク
制御には、従来からPID(比例-積分-微分)制御が用
いられてきたが、近年の現代制御理論の発展に伴い、制
御系の周波数応答の整形に関する理論としてH∞制御や
PIDと併用した制御が広く研究されるようになった。
しかし、上述のような従来型のPID制御および最近の
H∞制御は、いずれもトルクメータで検出した軸トルク
をフィードバック制御に利用するものが多く、そのた
め、トルクメータを具備していないシステムのように軸
トルクを検出できない場合にはこれらの制御方法の適用
が不可能である。また、トルクメータがあっても、設置
場所やノイズの影響などで制御に利用できないことも多
い。
In general, the viscosity coefficient D of a shaft
c is a very small value, (4) As can be seen from the equation, since the damping factor zeta 0 is small, the open-loop system of the frequency response gain characteristic | G L (j [omega]) │ and | G m (j [omega]) │ is look like the dotted dashed, respectively, in FIG 4 (a) (a) and FIG. 5 (a) (g), at the resonance frequency omega 0, resulting high peak in the gain characteristics, torsional resonance frequency omega 0 Are likely to occur, and both the disturbance suppression characteristic and the command following characteristic are not good. Conventionally, PID (proportional-integral-derivative) control has been used for the torque control of such a two-inertia torsion shaft system. However, with the development of modern control theory in recent years, there has been a demand for shaping the frequency response of the control system. As a theory, H∞ control and control in combination with PID have been widely studied.
However, both the conventional PID control and the recent H∞ control described above often use the shaft torque detected by the torque meter for feedback control, and therefore, such as a system without a torque meter, is used. If the shaft torque cannot be detected, it is impossible to apply these control methods. Further, even if there is a torque meter, it is often impossible to use it for control due to the installation location or the influence of noise.

【0008】本発明は前述のような従来技術の問題点に
鑑みてなされたものであって、トルクメータを用いるこ
となく、外乱抑制特性と指令追従特性の改善を目的とし
ており、請求項1に示す通り、フィルタを含めた外乱オ
ブザーバにより推定した軸トルクTceをフィードバック
制御に利用することで、2慣性ねじれ軸系の2自由度ト
ルク制御を提供するものである。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to improve a disturbance suppression characteristic and a command following characteristic without using a torque meter. As shown, the two-degree-of-freedom torque control of a two-inertia torsion shaft system is provided by using the shaft torque Tce estimated by a disturbance observer including a filter for feedback control.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に示す如く、弾性軸を介して、電動機か
ら負荷へ駆動トルクを伝達する2慣性ねじれ軸系トルク
制御において、トルクメータを用いることなく、モータ
トルクTと電動機速度ωを入力とする外乱オブザー
バ3を設け、該外乱オブザーバで推定軸トルクTceを算
出し、トルク指令Tと推定軸トルクTceとの偏差ΔT
を入力とするPID制御器1を設け、かつ、トルク指令
を入力とするフィードフォワード比例補償器2を設
け、PID制御器の出力とフィードフォワード比例補償
器の出力との和を求め、その和を2慣性ねじれ軸系4の
モータトルクTとする2自由度トルク制御系を構成
し、トルク制御系の外乱抑制特性からPID制御器の比
例ゲイン(K)、積分ゲイン(K)、微分ゲイン
(K)、近似微分時定数(T)を決め、トルク制御
系の指令追従特性からフィードフォワード比例補償器の
ゲイン(Kff)を決めて外乱抑制特性と制御系の指令
追従特性を改善する。
According to a first aspect of the present invention, there is provided a two-inertia torsion shaft torque control for transmitting a driving torque from an electric motor to a load via an elastic shaft. without using the meter, the provided disturbance observer 3 that receives the motor torque T m and motor speed omega m, to calculate the estimated shaft torque T ce with the disturbance observer, the torque command T * and the estimated shaft torque T ce Deviation ΔT
Is provided, and a feed-forward proportional compensator 2 is provided with a torque command T * as an input, and the sum of the output of the PID controller and the output of the feed-forward proportional compensator is obtained. 2 constitutes a degree of freedom torque control system, a proportional gain of the PID controller from the disturbance suppression characteristic of the torque control system (K p), integral gain to the sum and the motor torque T m of a 2-mass torsional shafting 4 (K i) , Differential gain (K d ), approximate differential time constant (T d ), and the gain (K ff ) of the feedforward proportional compensator from the command following characteristics of the torque control system to determine the disturbance suppression characteristics and the command following of the control system. Improve properties.

【0010】[0010]

【発明の実施の形態】本発明は、トルクメータを用いる
ことなく、前述の外乱抑制特性と指令追従特性を改善す
る目的を達成するために、電動機側に付けられた外乱オ
ブザーバを用いて、軸ねじれ振動の原因である周波数応
答G(jω)とG(jω)のゲイン特性にあるピー
クを抑えると同時に指令追従特性のよい制御器を設ける
ことにより課題を解決するものである。以下でこれらの
手段の詳細を図によって説明する。図1は本発明を説明
するためのブロック線図であり、電動機側にモータトル
クTと電動機速度ωを入力とする外乱オブザーバ3
を設け、該外乱オブザーバによって軸トルクの推定値T
ceを算出する。そして、外乱抑制特性を改善するため
に、図1に示す如くトルク指令Tと前記外乱オブザー
バにより推定した軸トルクTceとの偏差ΔTを入力とす
るPID制御器1を設け、トルクの指令追従特性を改善
するために、トルク指令Tを入力とするフィードフォ
ワード比例補償器2を設け、PID制御器の出力とフィ
ードフォワード比例補償器の出力との和を求め、その和
を2慣性ねじれ軸系4のモータトルクTとすること
で、2慣性ねじれ軸系の2自由度トルク制御系を構成し
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to achieve the object of improving the above-described disturbance suppression characteristics and command follow-up characteristics without using a torque meter, the present invention uses a disturbance observer attached to an electric motor to obtain a shaft. An object of the present invention is to solve the problem by suppressing peaks in the gain characteristics of the frequency responses G L (jω) and G m (jω), which are the causes of torsional vibration, and providing a controller having good command follow-up characteristics. The details of these means will be described below with reference to the drawings. Figure 1 is a block diagram for describing the present invention, the disturbance observer 3 that receives the motor torque T m and motor speed omega m the motor side
And the disturbance observer estimates the shaft torque T
Calculate ce . In order to improve the disturbance suppression characteristics, as shown in FIG. 1, a PID controller 1 is provided which receives a deviation ΔT between a torque command T * and a shaft torque Tce estimated by the disturbance observer as an input to follow the torque command. In order to improve the characteristics, a feedforward proportional compensator 2 having a torque command T * as an input is provided, and the sum of the output of the PID controller and the output of the feedforward proportional compensator is obtained. with the motor torque T m of a system 4 constitute a two-degree-of-freedom torque control system of the two-inertia torsional axis system.

【0011】電動機側に付けられた外乱オブザーバによ
る推定した軸トルクTceは下記数3に示す(5)式のよ
うに表すことができる。
The shaft torque Tce estimated by the disturbance observer attached to the motor can be expressed by the following equation (5).

【0012】[0012]

【数3】 (Equation 3)

【0013】ただし、Jmnは電動機慣性Jのノミナ
ル値、Tは外乱オブザーバフィルタの時定数、sはラ
プラス演算子である。ここで、簡単のために、電動機慣
性のノミナル値Jmnを電動機慣性Jと同じとすれば
(即ち、Jmn=J)、推定軸トルクTceはさらに下
記数4に示す(6)式のように求められる。
Where J mn is a nominal value of the motor inertia J m , T f is a time constant of a disturbance observer filter, and s is a Laplace operator. Here, for the sake of simplicity, assuming that the nominal value J mn of the motor inertia is the same as the motor inertia J m (that is, J mn = J m ), the estimated shaft torque T ce is further expressed by the following equation (6). It is obtained as in the formula.

【0014】[0014]

【数4】 (Equation 4)

【0015】また、前記PID制御器1の伝達関数F
(s)は下記数5に示す(7)式のように表すことがで
きる。
The transfer function F 1 of the PID controller 1
(S) can be expressed as in the following equation (7).

【0016】[0016]

【数5】 (Equation 5)

【0017】但し 、K、K及びKはそれぞれP
ID制御器の比例ゲイン、積分ゲインと微分ゲイン、T
は近似微分時定数、sはラプラス演算子である。
Where K p , K i and K d are P
ID controller proportional gain, integral gain and derivative gain, T
d is an approximate differential time constant, and s is a Laplace operator.

【0018】ここで、制御器パラメータを簡単に設計で
きるように、軸粘性係数をD=0とし、外乱オブザー
バ3に電動機慣性のノミナル値Jmnを電動機慣性J
と同じくすれば、外乱オブザーバ3とPID制御器1を
2慣性ねじれ軸系4に適用する場合、閉ループ系の特性
多項式Δ(s)は下記数6に示す(8)式のように求め
られる。
Here, in order to easily design the controller parameters, the shaft viscosity coefficient is set to D c = 0, and the disturbance observer 3 is provided with the nominal value J mn of the motor inertia and the motor inertia J m.
When the disturbance observer 3 and the PID controller 1 are applied to the two-inertia torsion axis system 4, the characteristic polynomial Δ (s) of the closed loop system is obtained as shown in the following equation (8).

【0019】[0019]

【数6】 (Equation 6)

【0020】(8)式からわかるように、前記外乱オブ
ザーバ3のフィルタ時定数(T)と前記PID制御器
1の各定数(K、K、K、T)を決めれば、前
記特性多項式Δ(s)の各係数(a)が決められ、閉
ループ系の極の配置が決められることになる。軸トルク
を速やかに推定するために、前記外乱オブザーバフィル
タ時定数Tを速くしなければならないが、Tを小さ
くし過ぎると、ノイズの影響を受けやすくなる。そこ
で、実用面からフィルタ時定数TをT≧10[ms
ec]のように設定すればよい。また、前記PID制御
器の各定数(K、K、K、T)の決定は、一例
として係数図法に基づく真鍋多項式により行うことがで
きる。係数図法および真鍋多項式の詳細な解説は、真鍋
氏の「古典制御、最適制御、H∞制御の統一的解釈」
(平成3年10月計測と制御学会誌30−10)や真鍋
氏の「係数図法による2慣性共振系制御器の設計」(平
成10年1月電気学会産業応用部門誌118−D−1)
に掲載され、公知となっている。ここで、係数図法の概
要を簡略に説明する。
As can be seen from equation (8), if the filter time constant (T f ) of the disturbance observer 3 and each constant (K p , K i , K d , T d ) of the PID controller 1 are determined, Each coefficient (a i ) of the characteristic polynomial Δ (s) is determined, and the arrangement of the poles of the closed loop system is determined. In order to quickly estimate the shaft torque, the disturbance observer filter time constant Tf must be increased. However, if Tf is too small, the influence of noise tends to increase. Therefore, from a practical point of view, the filter time constant Tf is set to Tf ≧ 10 [ms]
ec]. The determination of the constants ( Kp , Ki , Kd , Td ) of the PID controller can be performed, for example, by a Manabe polynomial based on a coefficient diagram. For a detailed explanation of the coefficient projection and the Manabe polynomial, see Manabe's "Unified Interpretation of Classical Control, Optimal Control, and H∞ Control."
(Journal of the Society of Measurement and Control, October 1991, 30-10) and Mr. Manabe, "Design of a Two-Inertia Resonant System Controller Using Coefficient Diagrams"
And is publicly known. Here, the outline of the coefficient projection will be briefly described.

【0021】係数図法は多項式環上での代数的設計法の
一種であり、係数図を用いながら、その形の適切さを尺
度として、特性多項式と制御器を同時に設計することを
特徴とする。係数図法で用いている各種の数学的関係を
列挙すると次のようになる。n次の閉ループ系に対し
て、その特性多項式Δ(s)が数7に示す(9)式のよ
うに与えられたとする。
The coefficient diagram method is a kind of algebraic design method on a polynomial ring, and is characterized in that a characteristic polynomial and a controller are simultaneously designed using a coefficient diagram with the appropriateness of the form as a measure. The various mathematical relationships used in the CDM are listed below. It is assumed that a characteristic polynomial Δ (s) is given to an n-order closed-loop system as in Expression (9) shown in Expression 7.

【0022】[0022]

【数7】 (Equation 7)

【0023】また、制御系の安定度および応答速度を示
す安定度指標γと等価時定数τは数8に示す(10)
式と(11)式のように定義されている。
The stability index γ i indicating the stability and response speed of the control system and the equivalent time constant τ are shown in the following equation (10).
Equation (11) and Equation (11) are defined.

【0024】[0024]

【数8】 (Equation 8)

【0025】係数図法においては、真鍋氏により推奨さ
れた標準形は、数9に示す(12)式のようになり、真
鍋多項式と呼ばれる。
In the coefficient map method, the standard form recommended by Mr. Manabe is represented by the following equation (12), which is called a Manabe polynomial.

【0026】[0026]

【数9】 (Equation 9)

【0027】以下、前述した係数図法の真鍋多項式によ
り前記PID制御器の各定数を決定する方法を具体的に
説明する。(8)式の閉ループ系特性多項式に対して、
係数図法の安定度指標γ(i=1〜4)と等価時定数
τは数10に示す(13)式となる。ただし、5次系の
場合、安定度指標のγはγ=1.25となる。
Hereinafter, a method of determining each constant of the PID controller by the Manabe polynomial of the coefficient diagram will be described in detail. For the closed-loop characteristic polynomial in equation (8),
The stability index γ i (i = 1 to 4) and the equivalent time constant τ of the coefficient diagram are expressed by the following equation (13). However, in the case of the fifth-order system, γ 4 of the stability index is γ 4 = 1.25.

【0028】[0028]

【数10】 (Equation 10)

【0029】前記外乱オブザーバフィルタ時定数T
予め決めておけば、(13)式のγ項から、近似微分
時定数Tを数11に示す(14)式のように求められ
る。
[0029] if decided in advance the disturbance observer filter time constant T f, from (13) the gamma 4 Section obtained as shown in Expression 11 to approximate differentiation time constant T d (14) below.

【0030】[0030]

【数11】 [Equation 11]

【0031】(14)式で決められたTを用いて、
(13)式の解として、前記PID制御器の各ゲイン
(K、K、K)は、数12に示す(15)式で決
められる。
Using T d determined by equation (14),
As a solution of the expression (13), each gain ( Kp , Ki , Kd ) of the PID controller is determined by the expression (15) shown in Expression 12.

【0032】[0032]

【数12】 (Equation 12)

【0033】ただし、pijとqは2慣性ねじれ軸系
の機械定数の関数として数13に示す(16)式で決め
られる。
However, p ij and q i are determined by the equation (16) shown in Expression 13 as a function of the mechanical constant of the two-mass torsion axis system.

【0034】[0034]

【数13】 (Equation 13)

【0035】(15)式と(16)式で設計したPID
制御器を2慣性ねじれ軸系のトルク制御に適用すると、
図4(a)の実線(イ)で示すように、外乱トルクT
から軸トルクTまでの閉ループ伝達関数Ф(s)の
周波数応答ゲイン特性は元の開ループゲイン特性(同図
(a)の点線(ア))と比べて高いピークが低く抑えら
れており、外乱トルクTにより生じる軸ねじれ振動が
抑制できることがわかる。また、図5(a)の破線
(ク)で示すように、トルク指令Tから軸トルクT
までの閉ループ伝達関数Ф(s)の周波数応答ゲイン
特性に見られる如くピークも低く抑えられており、指令
を追従する時に軸ねじれ振動も抑制できる。しかし、ゲ
イン特性は、0〜ωの低周波数帯域で0dBより大幅
に上昇し、同図の実線(カ)の望ましい周波数ゲイン特
性と大きな差が生じるので、指令追従特性がよくない。
The PID designed by equations (15) and (16)
When the controller is applied to torque control of a two inertia torsion axis system,
As shown by the solid line (a) in FIG.L
From shaft torque TcClosed-loop transfer function up to ФL(S)
The frequency response gain characteristic is the original open-loop gain characteristic (Fig.
Higher peaks are suppressed lower than (a) (dotted line (a)).
And the disturbance torque TLShaft torsional vibration caused by
It can be seen that it can be suppressed. Also, the broken line in FIG.
As shown in FIG.*From shaft torque T c
Closed-loop transfer function up to Ф*Frequency response gain of (s)
The peak is also kept low as seen in the characteristics,
, The torsional vibration can be suppressed. However,
The in characteristic is 0 to ω0Greater than 0dB in low frequency band
And the desired frequency gain characteristic indicated by the solid line (f) in FIG.
Command follow-up characteristics are not good because there is a large difference between the command follow-up characteristics.

【0036】したがって、指令追従特性を改善するため
に、図1の如くフィードフォワード比例補償器2を前記
PID制御器1と併用し、2自由度のトルク制御系を構
成する。制御理論によれば、フィードフォワード補償は
外乱抑制特性に影響を与えないので、指令追従特性の改
善だけで前記フィードフォワード比例補償器2を設計す
ればよい。
Therefore, in order to improve the command follow-up characteristic, a feedforward proportional compensator 2 is used together with the PID controller 1 as shown in FIG. 1 to constitute a two-degree-of-freedom torque control system. According to the control theory, since the feedforward compensation does not affect the disturbance suppression characteristics, the feedforward proportional compensator 2 may be designed only by improving the command following characteristics.

【0037】図1の2自由度トルク制御系の構造で、ト
ルク指令Tからトルク指令追従偏差ΔT(=T
)までの伝達関数Ф(s)を下記の数14に示す
(17)式のように求められる。
[0037] In the structure of the two-degree-of-freedom torque control system of FIG. 1, the torque command T * torque command from tracking error [Delta] T * (= T * -
The transfer function e e (s) up to T c ) is obtained as in the following equation (17).

【0038】[0038]

【数14】 [Equation 14]

【0039】ただし、F(s)とF(s)はそれぞ
れ前記PID制御器1と前記フィードフォワード比例補
償器2の伝達関数、G(s)はモータトルクTから
軸トルクTまでの開ループ伝達関数である。ここで、
制御帯域の低周波数域の指令追従特性の改善のみを強調
すると、F(s)をФ(0)=0のように設計すれ
ばよい。その結果、F(s)は下記の数15に示す
(18)式のように比例補償器として求められる。
Here, F 1 (s) and F 2 (s) are transfer functions of the PID controller 1 and the feedforward proportional compensator 2, respectively, and G m (s) is the motor torque T m to the shaft torque T c. The open loop transfer function up to here,
When emphasizing only the improvement of the command following characteristic in the low frequency range of the control band, F 2 (s) may be designed so that Ф e (0) = 0. As a result, F 2 (s) is obtained as a proportional compensator as shown in the following equation (18).

【0040】[0040]

【数15】 (Equation 15)

【0041】上記のフィードフォワード比例補償器2を
前記PID制御器1と併用する2自由度トルク制御を図
1の2慣性ねじれ軸系に適用すると、指令追従特性を表
現する閉ループ系の周波数応答特性Ф(jω)は図5
(a)の実線(ケ)のようになり、0〜ωの低周波数
帯域にゲイン特性曲線|Ф(jω)|は0dBに近い
値を取り、同図の実線(カ)のような望ましい周波数応
答ゲイン特性に近いので、良好な外乱抑制特性を維持す
ると同時に指令追従特性がよく改善されたことが分か
る。
When the two-degree-of-freedom torque control using the feedforward proportional compensator 2 in combination with the PID controller 1 is applied to the two-inertia torsion axis system shown in FIG. 1, the frequency response characteristic of a closed loop system expressing the command following characteristic is obtained. Ф * (jω) is shown in FIG.
(A), the gain characteristic curve | Ф * (jω) | takes a value close to 0 dB in the low frequency band of 0 to ω 0 , as shown by the solid line (f) in FIG. Since it is close to the desired frequency response gain characteristic, it can be seen that the command follow-up characteristic is well improved while maintaining good disturbance suppression characteristics.

【0042】以上に説明したように、本発明の2慣性ね
じれ軸系の2自由度トルク制御方法は、トルク制御系は
図1に示すように、トルクメータを用いることなく、電
動機側に付けられた外乱オブザーバ3とPID制御器1
(F(s))とフィードフォワード比例補償器2(F
(s))で2自由度制御を構成し、PID制御器1
(F(s))は外乱抑制特性から、フィードフォワー
ド比例補償器2(F(s))は指令追従特性から設計
できる。
As described above, according to the two-degree-of-freedom torque control method of the two-inertia torsion shaft system of the present invention, the torque control system is attached to the motor without using a torque meter as shown in FIG. Disturbance observer 3 and PID controller 1
(F 1 (s)) and the feedforward proportional compensator 2 (F
2 (s)) constitutes a two-degree-of-freedom control, and the PID controller 1
(F 1 (s)) can be designed from the disturbance suppression characteristic, and the feedforward proportional compensator 2 (F 2 (s)) can be designed from the command following characteristic.

【0043】以下、数値例を挙げて、本発明の実施の具
体的形態をさらに説明する。数値例とした2慣性ねじれ
軸系の機械定数は、電動機慣性J、負荷慣性J、軸
バネ定数K、軸粘性係数Dを下記数16に示す(1
9)式の値としたときの2自由度トルク制御の各定数K
、K、K、T及びKffの決定例について説明
する。
Hereinafter, specific embodiments of the present invention will be further described with reference to numerical examples. The mechanical constants of a two-inertia torsion shaft system as a numerical example are as follows: Motor inertia J m , load inertia J L , shaft spring constant K c , and shaft viscosity coefficient D c are shown in Equation 16 below (1).
9) Each constant K of the two-degree-of-freedom torque control when the value of the equation is used.
An example of determining p , Ki , Kd , Td, and Kff will be described.

【0044】[0044]

【数16】 (Equation 16)

【0045】前記機械定数を持つ2慣性ねじれ軸系は、
外乱抑制特性と指令追従特性を表現する開ループ系の周
波数応答特性G(s)とG(s)は、それぞれ図4
と図6に示す点線(ア)と(サ)のように、ゲイン特性
は共振周波数ω(=77.3[rad/sec])の
ところにピークが生じる。
The two inertia torsion axis system having the above mechanical constant is as follows:
The frequency response characteristics G L (s) and G m (s) of the open-loop system expressing the disturbance suppression characteristic and the command following characteristic are shown in FIG.
As shown by dotted lines (a) and (sa) in FIG. 6, the gain characteristic has a peak at the resonance frequency ω 0 (= 77.3 [rad / sec]).

【0046】上記の2慣性ねじれ軸系のトルク制御に、
電動機側にモータトルクTと電動機速度ωを入力と
する外乱オブザーバ3を設け、該外乱オブザーバのパラ
メータとしてJmnとTをそれぞれJmn=J
0.0786とT=20[msec]のように設定し
ておけば、PID制御器の各定数は、前記(14)式と
(15)式よりT=0.0185、K=−0.92
07、K=5.9017、K=−0.0075とな
る。上記の外乱オブザーバ3とPID制御器1を2慣性
ねじれ軸系トルク制御に適用すると、外乱抑制特性を表
現する閉ループ系周波数応答特性Ф(jω)は、図4
に示す実線(イ)のようになり、ゲイン特性にはピーク
が生じないので、軸のねじれ振動を抑えられ、良好な外
乱抑制特性を得ることがわかる。しかし、指令追従特性
を表現する閉ループ系周波数応答特性Ф(jω)は、
図6に示す破線(シ)のようになり、0〜ωの低周波
数帯域のゲイン特性は0dBより大幅に上昇し、軸トル
クの指令追従特性がよくない。
In the torque control of the above two inertia torsion shaft system,
A disturbance observer 3 having a motor torque T m and a motor speed ω m as inputs is provided on the motor side, and J mn and T f are respectively set as parameters of the disturbance observer, J mn = J m =
If 0.0786 and T f = 20 [msec] are set, the respective constants of the PID controller are T d = 0.0185 and K p = − from equations (14) and (15). 0.92
07, K i = 5.9017, a K d = -0.0075. When the above-described disturbance observer 3 and PID controller 1 are applied to a two-inertia torsion axis system torque control, a closed-loop system frequency response characteristic L L (jω) expressing a disturbance suppression characteristic is shown in FIG.
As shown by the solid line (a) shown in FIG. 5, no peak is generated in the gain characteristic, and it is understood that the torsional vibration of the shaft can be suppressed and a good disturbance suppression characteristic can be obtained. However, the closed-loop frequency response characteristic ( * (jω) expressing the command following characteristic is
The gain characteristic in the low frequency band from 0 to ω 0 is significantly higher than 0 dB, and the command following characteristic of the shaft torque is not good, as shown by the broken line (S) shown in FIG.

【0047】上記の1自由度トルク制御の指令追従特性
を改善するために、トルク制御系に本発明の2自由度制
御を適用し、トルク指令TをゲインKffにより増幅
するフィードフォワード比例補償器2(F(s))を
追加し、該フィードフォワード比例補償器2の出力と前
記PID制御器1の出力との和を前記2慣性ねじれ軸系
4のモータトルクTとする。前記の(18)式により
計算すれば、フィードフォワード比例ゲインKffの値
はKff=1.6379となる。この2自由度補償器
(PID制御器1とフィードフォワード比例補償器2と
の組み合せ)を前記の2慣性ねじれ軸系トルク制御に適
用すると、指令追従特性を表現する閉ループ系周波数応
答特性Ф(jω)は、図6に示す実線(ス)のように
なり、0〜ωの低周波数帯域でのゲイン特性は同図の
破線(シ)より0dBに近いが、まだ0dBより大き
い。そこで、よりよい追従特性を得るために、(18)
式で算出した値を小さい方向に調整すればよい。一例と
して、値の1.6379を1.1に調整すると、その周
波数応答のゲイン特性は図6に示す破線(セ)のように
なり、指令追従特性がさらに改善されたことがわかる。
In order to improve the command following characteristic of the one-degree-of-freedom torque control, the two-degree-of-freedom control of the present invention is applied to a torque control system, and feedforward proportional compensation for amplifying a torque command T * by a gain K ff. vessel 2 Add the (F 2 (s)), the sum of the output of the feedforward proportional compensator 2 and output the PID controller 1 and the motor torque T m of a said 2-mass torsional shafting 4. If calculated by the above equation (18), the value of the feedforward proportional gain K ff is K ff = 1.6379. When this two-degree-of-freedom compensator (combination of the PID controller 1 and the feedforward proportional compensator 2) is applied to the above-described two-inertia torsion axis system torque control, a closed-loop system frequency response characteristic Ф * ( jω) is as shown by the solid line (s) shown in FIG. 6, and the gain characteristic in the low frequency band from 0 to ω 0 is closer to 0 dB than the broken line (s) in FIG. 6, but is still larger than 0 dB. Therefore, in order to obtain better tracking characteristics, (18)
What is necessary is just to adjust the value calculated by the formula in the smaller direction. As an example, when the value 1.6379 is adjusted to 1.1, the gain characteristic of the frequency response becomes as shown by a broken line (c) in FIG. 6, indicating that the command following characteristic is further improved.

【0048】図7は、ステップ状のトルク指令T(1
0Nm)およびステップ状の外乱トルクT(4Nm)
に対する軸トルクTの時間応答を示す。ただし、図中
の点線(タ)、破線(チ)と実線(ツ)は、それぞれ開
ループ系、1自由度制御(即ち、PID制御器1のみを
適用する場合)、2自由度制御(即ち、前記の1自由度
制御に、F(s)=1.1のフィードフォワード比例
補償器を加えた場合)と対応している。時間応答からわ
かるように、2自由度制御は1自由度制御と比べて、同
じ外乱抑制特性を持ちながら、トルク指令追従の立上り
に良好な応答を達成しており、外乱抑制特性と指令追従
特性の両方ともよい2自由度トルク制御ができることが
わかる。
FIG. 7 shows a step-like torque command T * (1
0Nm) and step-like disturbance torque TL (4Nm)
5 shows the time response of the shaft torque Tc to the time. However, a dotted line (T), a dashed line (H), and a solid line (T) in the figure are an open-loop system, one-degree-of-freedom control (ie, when only the PID controller 1 is applied), and two-degree-of-freedom control (ie, , The case where a feedforward proportional compensator with F 2 (s) = 1.1 is added to the one-degree-of-freedom control described above. As can be seen from the time response, the two-degree-of-freedom control achieves a better response to the rise of the torque command following while having the same disturbance suppressing characteristic as the one-degree-of-freedom controlling, and has the disturbance suppressing characteristic and the command following characteristic. It can be understood that the two-degree-of-freedom torque control can be performed in both cases.

【0049】[0049]

【発明の効果】以上に説明したように本願の発明によれ
ば、2慣性ねじれ軸系のトルク制御系を、電動機側に付
けられた外乱オブザーバ3と、PID制御器1と、フィ
ードフォワード比例補償器2を併用する2自由度制御で
構成し、外乱抑制特性からPID制御器の各定数を設計
し、指令追従特性からフィードフォワード比例補償器ゲ
インを設計することによって、外乱抑制特性と指令追従
特性の両方ともよい2慣性ねじれ軸系の2自由度トルク
制御を提供できる。
As described above, according to the invention of the present application, the torque control system of the two-inertia torsion shaft system includes the disturbance observer 3 attached to the motor side, the PID controller 1, and the feedforward proportional compensation. Disturbance control characteristics and command tracking characteristics by designing each constant of the PID controller from the disturbance suppression characteristics and designing the feed-forward proportional compensator gain from the command tracking characteristics. Can provide two-degree-of-freedom torque control of a good two-inertia torsion shaft system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するためのブロック線図である。FIG. 1 is a block diagram for explaining the present invention.

【図2】2慣性ねじれ軸系を示す図である。FIG. 2 is a diagram showing a two inertia torsion shaft system.

【図3】2慣性ねじれ軸系のブロック線図である。FIG. 3 is a block diagram of a two inertia torsion axis system.

【図4】本発明の外乱抑制効果を説明するための周波数
応答特性を示す図である。
FIG. 4 is a diagram showing frequency response characteristics for explaining a disturbance suppression effect of the present invention.

【図5】本発明の指令追従効果を説明するための周波数
応答特性を示す図である。
FIG. 5 is a diagram showing a frequency response characteristic for explaining a command following effect of the present invention.

【図6】本発明の指令追従効果を説明するための周波数
応答特性を示す具体例である。
FIG. 6 is a specific example showing a frequency response characteristic for explaining a command following effect of the present invention.

【図7】本発明の時間応答を示す図である。FIG. 7 is a diagram showing a time response of the present invention.

【符号の説明】[Explanation of symbols]

1 PID制御器 2 フィードフォワード比例補償器 3 外乱オブザーバ 4 弾性軸を有する2慣性ねじれ軸系 11 電動機 12 負荷 13 弾性軸 J 電動機慣性 Jmn 電動機慣性のノミナル値 J 負荷慣性 Kc 軸のバネ定数 D 軸の粘性係数 T トルク指令 T モータトルク T 軸トルク Tce 軸トルクの推定値 T 負荷側の外乱トルク ΔT トルク指令と軸トルクの推定値との偏差値 ΔT トルク指令と軸トルクとの偏差値 ω 電動機速度 ω 負荷速度 F(s) PID制御器の伝達関数 K PID制御器の比例ゲイン K PID制御器の積分ゲイン K PID制御器の微分ゲイン T PID制御器の近似微分時定数 F(s) フィードフォワード比例補償器の伝達関
数 Kff フィードフォワード比例補償器の比例ゲ
イン T 外乱オブザーバのフィルタ時定数 ω 2慣性ねじれ軸系の固有共振周波数 ζ 2慣性ねじれ軸系のダンピング係数 τ 係数図法の等価時定数 γ 係数図法の安定度指標 Ф(s) TからTまでの閉ループ伝達関数 Ф(s) TからTまでの閉ループ伝達関数 Ф(s) TからΔTまでの伝達関数 G(s) TからTまでの開ループ伝達関数 G(s) TからTまでの開ループ伝達関数
REFERENCE SIGNS LIST 1 PID controller 2 feedforward proportional compensator 3 disturbance observer 4 2 inertia torsion axis system having elastic axis 11 motor 12 load 13 elastic axis J m motor inertia J mn nominal value of motor inertia J L load inertia Kc spring constant of axis D Viscosity coefficient of c- axis T * Torque command Tm Motor torque T C- axis torque T E- axis torque estimated value TL Disturbance torque on load side ΔT Deviation between torque command and estimated value of shaft torque ΔT * Torque command and transmission of the deviation value omega m motor speed omega L load speed F 1 (s) PID controller with the shaft torque function K p PID controller proportional gain K i PID controller integral gain K d PID controller of differential gain T proportional transmission of d PID controller of approximate differentiation time constant F 2 (s) feedforward proportional compensator function K ff feedforward proportional compensator In T f disturbance observer filter time constant omega 0 2 inertial torsion axis system natural resonance frequency zeta 0 2 stability index of equivalent time constant gamma i coefficients projection of the damping coefficient τ coefficient projection of the inertial torsional shafting .PHI * (s) Closed-loop transfer function from T * to Tc L L (s) Closed-loop transfer function from TL to Tc Ф e (s) Transfer function from T * to ΔT * G m (s) From Tm to Tc Open-loop transfer function GL (s) Open-loop transfer function from TL to Tc

フロントページの続き Fターム(参考) 5H004 GA07 HA10 JA12 JB22 KA72 KB02 KB04 KB06 KB13 KB17 KB32 KC12 KC48 KC54 LA13 LA20 5H550 AA18 BB05 DD01 EE05 GG04 GG05 JJ04 JJ23 JJ24 LL01 LL32 MM18 5H570 AA23 AA30 BB20 GG08 GG10 JJ04 JJ22 JJ23 JJ24 JJ25 JJ30 Continued on front page F-term (reference) JJ30

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弾性軸を介して、電動機から負荷へ駆動
トルクを伝達する2慣性ねじれ軸系トルク制御におい
て、モータトルクTと電動機速度ωを入力とする外
乱オブザーバ(3)を設け、該外乱オブザーバで推定軸
トルクTceを算出し、トルク指令Tと前記推定軸トル
クTceとの偏差ΔTを入力とするPID制御器(1)を
設け、かつ、前記トルク指令Tを入力とするフィード
フォワード比例補償器(2)を設け、前記PID制御器
の出力と前記フィードフォワード比例補償器の出力との
和を求め、その和を前記2慣性ねじれ軸系(4)のモー
タトルクTとする2自由度トルク制御系を構成し、ト
ルク制御系の外乱抑制特性から前記PID制御器の比例
ゲイン(K)、積分ゲイン(K)、微分ゲイン(K
)、近似微分時定数(T)を決め、トルク制御系の
指令追従特性から前記フィードフォワード比例補償器の
ゲイン(Kff)を決めることを特徴とする2慣性ねじ
れ軸系の2自由度トルク制御方法。
In a two-inertia torsion axis system torque control for transmitting a driving torque from an electric motor to a load via an elastic shaft, a disturbance observer (3) having a motor torque T m and an electric motor speed ω m as inputs is provided. calculating the estimated shaft torque T ce with the disturbance observer, PID controller which receives the difference ΔT between the estimated shaft torque T ce a torque command T * and (1) is provided, and inputs the torque command T * , A sum of the output of the PID controller and the output of the feedforward proportional compensator is obtained, and the sum is used as the motor torque T of the two-inertia torsion shaft system (4). m , a two-degree-of-freedom torque control system is constructed, and a proportional gain ( Kp ), an integral gain ( Ki ), and a differential gain ( Ki ) of the PID controller are obtained from the disturbance suppression characteristics of the torque control system.
d ), an approximate differential time constant (T d ) is determined, and a gain (K ff ) of the feedforward proportional compensator is determined from a command following characteristic of a torque control system. Torque control method.
JP2000093652A 2000-03-30 2000-03-30 Two-freedom degree torque control method of two-inertia torsion shaft system Pending JP2001286170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093652A JP2001286170A (en) 2000-03-30 2000-03-30 Two-freedom degree torque control method of two-inertia torsion shaft system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093652A JP2001286170A (en) 2000-03-30 2000-03-30 Two-freedom degree torque control method of two-inertia torsion shaft system

Publications (1)

Publication Number Publication Date
JP2001286170A true JP2001286170A (en) 2001-10-12

Family

ID=18608808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093652A Pending JP2001286170A (en) 2000-03-30 2000-03-30 Two-freedom degree torque control method of two-inertia torsion shaft system

Country Status (1)

Country Link
JP (1) JP2001286170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051289A (en) * 2014-08-29 2016-04-11 国立大学法人 東京大学 Control device
CN106067747A (en) * 2016-06-01 2016-11-02 哈尔滨工业大学 A kind of method for designing of the sliding formwork disturbance observer for servo system control
CN111835251A (en) * 2020-07-30 2020-10-27 扬州大学 Permanent magnet synchronous motor high-performance control method based on no-speed sensing
CN116512237A (en) * 2022-11-28 2023-08-01 广东建石科技有限公司 Industrial robot vision servo method, device, electronic equipment and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051289A (en) * 2014-08-29 2016-04-11 国立大学法人 東京大学 Control device
CN106067747A (en) * 2016-06-01 2016-11-02 哈尔滨工业大学 A kind of method for designing of the sliding formwork disturbance observer for servo system control
CN106067747B (en) * 2016-06-01 2018-08-31 哈尔滨工业大学 A kind of design method of sliding formwork disturbance observer for servo system control
CN111835251A (en) * 2020-07-30 2020-10-27 扬州大学 Permanent magnet synchronous motor high-performance control method based on no-speed sensing
CN111835251B (en) * 2020-07-30 2023-11-24 扬州大学 Permanent magnet synchronous motor high-performance control method based on speed-free sensing
CN116512237A (en) * 2022-11-28 2023-08-01 广东建石科技有限公司 Industrial robot vision servo method, device, electronic equipment and storage medium
CN116512237B (en) * 2022-11-28 2023-09-19 广东建石科技有限公司 Industrial robot vision servo method, device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US5341078A (en) Sliding mode control method for a machine having an operating section operatively coupled to a servomotor and wherein a switching variable is determined based on a torsion amount and a torsion speed
US8040098B2 (en) Position controller
JP6604157B2 (en) Resonance suppression controller in multi-inertia resonance system
JP3992448B2 (en) Speed control method for motor drive system
JP5947732B2 (en) Control system, disturbance estimation system, control method, control program, and design method
JP5208610B2 (en) Characteristic identification method and motor control device for controlling inertial resonance system
JP5362339B2 (en) Motor control device
JP2001286170A (en) Two-freedom degree torque control method of two-inertia torsion shaft system
US6828749B2 (en) Full-closed control apparatus
JP2001195133A (en) Method for controlling torque of two degrees of freedom in backlash torsion axis system
JPH09305239A (en) Backlash damping control method
JP2000050666A (en) Torque controller acted on two-degrees of freedom in bi-inertial resonance system
JP2850075B2 (en) Variable structure control method
JP2002325473A (en) Vibration suppressor
JP4375849B2 (en) 2-inertia torsional shaft structure variable 2 degrees of freedom torque control method
KR102228592B1 (en) Positioning control device of actuator with wave gear device by H∞ control
JPH11332272A (en) Dual inertia resonance system torque control method
JP5092597B2 (en) Drive control device
JPH11215883A (en) Two inertia resonance systems torque control method
JP2005174011A (en) Torsional vibration system controller
Shahgholian et al. Development of state space model and control design of two-mass system using standard forms
JPH10323071A (en) Coefficient determining method for secondary serial compensator for two-inertia resonance system velocity control
JP3084675B2 (en) State feedback control method
Yazaki et al. Vibration suppression control for two-inertia system using reference governor
CN117565043A (en) Robot joint vibration control method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302