JP2002321054A - Device for determination of welding stability of pulsed arc welding - Google Patents

Device for determination of welding stability of pulsed arc welding

Info

Publication number
JP2002321054A
JP2002321054A JP2001129574A JP2001129574A JP2002321054A JP 2002321054 A JP2002321054 A JP 2002321054A JP 2001129574 A JP2001129574 A JP 2001129574A JP 2001129574 A JP2001129574 A JP 2001129574A JP 2002321054 A JP2002321054 A JP 2002321054A
Authority
JP
Japan
Prior art keywords
welding
pulse
degree
current
stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001129574A
Other languages
Japanese (ja)
Other versions
JP4642267B2 (en
Inventor
Yukimitsu Suzuki
幸充 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP2001129574A priority Critical patent/JP4642267B2/en
Priority to US10/134,304 priority patent/US6621049B2/en
Priority to EP02076690A priority patent/EP1252962A3/en
Publication of JP2002321054A publication Critical patent/JP2002321054A/en
Application granted granted Critical
Publication of JP4642267B2 publication Critical patent/JP4642267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device to accurately and quickly determine the welding stability of a pulsed arc welding, by quantitatively and accurately assessing a phenomenon of welding instability at the time of steady state welding of a consumable electrode pulsed arc welding. SOLUTION: At least one numeric value out of a welding voltage between a welding electrode 2 and a material to be welded 5, a welding current between the electrode 2 and the material 5, and an energization time of a pulse period or a base period is detected by a detecting device 11-13. The degree of distortion of the detected value is computed by a computing device 14. The welding stability at the time of steady state welding of the pulsed arc welding is determined based on the deviance between the computed degree of distortion and the degree of distortion at the time of steady state welding of a normal pulsed arc welding. For example, each pulse cycle of a product of each standard deviation of a pulse current integral value and a base current integral value and the like is computed as the degree of distortion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、消耗電極式ガスシ
ールドアーク溶接の内、パルスアーク溶接による溶接の
定常溶接時の溶接安定性を判定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for judging the welding stability during steady-state welding of pulse arc welding among consumable electrode type gas shielded arc welding.

【従来の技術】消耗電極式ガスシールドパルスアーク溶
接法は、図8の模式図に示すように、溶接ワイヤに一定
周期のパルス電流を流し、溶接ワイヤと被溶接部との間
に形成されるアーク放電の入熱により溶接ワイヤ先端部
を溶融し、この溶融部をパルス電流による電磁ピンチ力
で絞り出すことにより、溶接ワイヤ先端部から溶滴を離
脱させ、被溶接部へ溶滴を滴下移行させるものであり、
最適な溶接条件の下での安定した溶接状態では、1パル
ス→1ドロップの溶滴移行形態を取る。
2. Description of the Related Art In a consumable electrode type gas shield pulse arc welding method, as shown in a schematic diagram of FIG. 8, a pulse current of a fixed period is applied to a welding wire to form a gap between the welding wire and a portion to be welded. The tip of the welding wire is melted by the heat input of the arc discharge, and the molten portion is squeezed out by the electromagnetic pinch force by the pulse current to release the droplet from the tip of the welding wire and transfer the droplet to the portion to be welded. Things,
In a stable welding state under optimum welding conditions, a droplet transfer form of one pulse → one drop is taken.

【0002】このパルスアーク溶接法では、近時、イン
バータ溶接電源の進歩により出力電流の高速制御を行な
いながら出力電圧を細かくフィードバック制御すること
で1パルス→1ドロップの溶滴移行が可能となり、これ
により溶接の低スパッタ化、溶接状態の規則的再現性向
上および高速溶接性向上等が図れるようになりつつあ
る。
In the pulse arc welding method, recently, the progress of the inverter welding power supply has made it possible to carry out high-speed control of the output current and finely control the output voltage, thereby making it possible to shift the droplet from one pulse to one drop. As a result, it has become possible to reduce welding spatter, improve the regular reproducibility of the welding state, and improve the high-speed weldability.

【0003】ところで、パルスアーク溶接の定常溶接時
においては、溶接トーチと被溶接材との相対距離の変
化、開先形状の急速な変化及びワイヤ送給速度の変化等
が不測に発生することがよくある。このような場合、短
絡現象等が発生して溶滴移行状態が変化すると共にアー
ク長が大きく変化し、アーク現象が不安定になる。そし
て、溶接ビードの均一性と美観性を維持できなくなり、
安定した溶接品質を得ることが困難になる。
[0003] Incidentally, at the time of steady welding of pulse arc welding, a change in the relative distance between the welding torch and the material to be welded, a rapid change in the groove shape, a change in the wire feeding speed, and the like may occur unexpectedly. Often there. In such a case, a short-circuit phenomenon or the like occurs, the droplet transfer state changes, and the arc length greatly changes, so that the arc phenomenon becomes unstable. And the uniformity and aesthetics of the weld bead cannot be maintained,
It becomes difficult to obtain stable welding quality.

【0004】従来、定常溶接時に於ける溶接現象の安定
性良否判定は、主として作業者や技術者が溶接ビード外
観の均一性、形状及びスパッタ付着量を目視観察するこ
とにより判定していた。しかし、何れも目視による定性
的な判定であるため、軽微な異常の判定には個人差が不
可避であり、インラインでの判定に統一的な基準を求め
ることは困難であった。
Conventionally, the stability of welding phenomena at the time of steady welding has been determined mainly by visually observing the uniformity, shape and spatter adhesion amount of the weld bead by an operator or a technician. However, since both are qualitative judgments by visual observation, individual differences are inevitable in the judgment of minor abnormalities, and it has been difficult to obtain a uniform standard for in-line judgment.

【0005】また、定量的な判定方法として、例えば特
開平11−123547号公報(第1の従来技術)や特
開平10−314940号公報(第2の従来技術)が提
案されている。第1の従来技術は、定常溶接時に於ける
アーク不安定現象を溶接安定性判定指標で定量的に表示
する判定方法であり、第2の従来技術は、溶接電源から
出力される溶接電流及び溶接電圧の少なくとも一方を測
定し、パルス溶接電源のパルス立ち上がり時の不安定な
測定値を除いた安定域の測定値を表示するモニタ方法で
ある。
Further, as a quantitative determination method, for example, Japanese Patent Application Laid-Open No. H11-123547 (first conventional technology) and Japanese Patent Application Laid-Open No. H10-314940 (second conventional technology) have been proposed. The first prior art is a determination method for quantitatively displaying an arc instability phenomenon during steady welding with a welding stability determination index, and the second prior art is a welding current and a welding current output from a welding power source. This is a monitoring method that measures at least one of the voltages and displays a measured value in a stable region excluding an unstable measured value at the time of a pulse rise of a pulse welding power supply.

【0006】[0006]

【発明が解決しようとする課題】第1の従来技術は、短
絡とアークを交互に繰り返しながら溶接を行なう消耗電
極式ガスシールドアーク溶接を対象としている。この短
絡アーク溶接法は図7の模式図に示すように、消耗電極
(以下溶接ワイヤと言う)の先端部をアーク放電の入熱
により溶融し、この溶融部を高い電流密度による電磁ピ
ンチ力により溶接ワイヤの先端部から溶滴として離脱さ
せて被溶接部へと短絡移行させるものであり、短絡現象
による溶滴の「接触移行」形態を取るものである。従っ
てその溶接性判定指標は、本来的に周期性のないアーク
現象の中での周期性のある指標を溶接安定性の尺度とし
て判定対象にするため、指標の抽出と判定が容易で非常
に有効な方法といえる。
The first prior art is directed to consumable electrode type gas shielded arc welding in which welding is performed while alternately repeating a short circuit and an arc. In this short-circuit arc welding method, as shown in the schematic diagram of FIG. 7, the tip of a consumable electrode (hereinafter, referred to as a welding wire) is melted by the heat input of arc discharge, and the melted portion is electromagnetically pinched by a high current density. The wire is detached from the tip of the welding wire as a droplet and short-circuited to the portion to be welded, and takes the form of “contact transfer” of the droplet due to the short-circuit phenomenon. Therefore, the index of weldability is very effective because it is easy to extract and judge the index because the index with periodicity in the originally non-periodic arc phenomena is used as a measure of welding stability. It can be said that it is a method.

【0007】しかし、パルスアーク溶接のように短絡現
象が基本的に発生せず溶接波形に本来的に周期性が含ま
れる場合、第1の従来技術のように周期性のある指標を
溶接安定性の尺度として判定対象にする方法では、指標
の抽出自体が困難であり、アーク現象の安定性を定量的
に判定することが困難であるから、定常溶接部の溶接品
質判定に誤判定を招く恐れがある。
However, when a short circuit phenomenon does not basically occur and a welding waveform inherently includes a periodicity as in pulse arc welding, an index having a periodicity as in the first prior art is used to determine the welding stability. In the method of determining the index as a scale, it is difficult to extract the index itself, and it is difficult to quantitatively determine the stability of the arc phenomenon. There is.

【0008】そのため、両溶接法で溶接欠陥発生時の現
象は同じであるものの、前述の如く溶滴移行形態がまっ
たく異なり、従って溶接欠陥に至るまでのプロセスも異
なり定常溶接時の溶接安定性評価のために共通の判定指
標を使用できないことが判明した。
Therefore, although the phenomenon at the time of occurrence of a welding defect is the same in both welding methods, as described above, the droplet transfer mode is completely different, and thus the process leading to the welding defect is also different, and the evaluation of welding stability during steady welding is performed. It turned out that a common judgment index cannot be used because of the following.

【0009】因みに、特開平11―123547号公報
記載の短絡アーク溶接法に於ける定常溶接時の溶接安定
性判定方法を、パルスアーク溶接法での同様の判定に適
用しても、周期的なパルス波形の中から瞬間的なアーク
の不安定現象を定量的に検出することが難しく、正確な
判定をすることができない。
Incidentally, even if the method for determining the welding stability at the time of steady welding in the short-circuit arc welding method described in Japanese Patent Application Laid-Open No. 11-23547 is applied to the similar determination in the pulse arc welding method, the periodic It is difficult to quantitatively detect the instantaneous arc unstable phenomenon from the pulse waveform, and accurate determination cannot be made.

【0010】一方、第2の従来技術の場合、安定域の測
定値のみの判定を行うため所望の溶接品質に必要な溶接
条件(溶接電圧や溶接電流)を求めるためには有効な方
法といえるが、アーク現象の不安定性を定量的に判定す
ることは困難であり、定常溶接部の溶接品質を判定する
際に誤判定を招く恐れがある。
On the other hand, in the case of the second prior art, it can be said that it is an effective method for determining welding conditions (welding voltage and welding current) necessary for desired welding quality because only the measured value in the stable region is determined. However, it is difficult to quantitatively determine the instability of the arc phenomenon, and there is a risk of erroneous determination when determining the welding quality of a steady-state weld.

【0011】以上のように、短絡アーク溶接法における
定常溶接時の溶接安定性判定方法はパルスアーク溶接法
での同様の判定に使用することができず、アーク溶接ロ
ボット等による自動溶接ライン及び半自動溶接ラインに
おける定常溶接時の溶接現象の不安定状態に起因して発
生する溶接品質不良の流出防止を図る上で、依然として
大きな問題となっていた。
As described above, the method for judging the welding stability at the time of steady welding in the short-circuit arc welding method cannot be used for the same judgment in the pulse arc welding method. This has been a major problem in preventing outflow of poor welding quality caused by an unstable state of the welding phenomenon during steady welding in a welding line.

【0012】本発明は、前記の問題に鑑みてなされたも
ので、消耗電極式パルスアーク溶接における定常溶接時
の溶接不安定現象を定量的且つ正確に捉えることによ
り、パルスアーク溶接の溶接安定性良否を的確且つ迅速
に判定する判定装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has a quantitative and accurate understanding of a welding instability phenomenon during steady-state welding in consumable electrode type pulse arc welding. It is an object of the present invention to provide a determination device for accurately and quickly determining quality.

【課題を解決するための手段】前記目的を達成するため
本発明の請求項1に係るパルスアーク溶接の溶接安定性
判定装置は、溶接電極と被溶接材との間に溶接電圧を印
加してパルス・ベース電流を交互に繰り返し供給し、前
記溶接電極から溶滴を1パルス毎に被溶接材上に滴下さ
せながら溶接する消耗電極式ガスシールドパルスアーク
溶接に於いて、前記溶接電極と被溶接材間の溶接電圧、
前記溶接電極と被溶接材間の溶接電流及び通電時間の少
なくとも1つを検出する検出手段と、前記検出手段の検
出値の乱れ度を演算する演算手段と、前記乱れ度を正常
なパルスアーク溶接の定常溶接時の乱れ度と比較して両
者の乖離度からパルスアーク溶接の定常溶接時の溶接安
定性を判定する判定手段とを有することを特徴とする。
上記の溶接安定性判定装置によれば、パルスアーク溶接
の定常溶接時に於ける溶接安定性の良否の判定に対して
は、検出手段からの検出値に基づいて乱れ度が演算手段
により演算され、判定手段により良否が判定されるの
で、パルスアーク溶接の定常溶接時に於ける溶接安定性
の的確な判定が行なわれる。
According to a first aspect of the present invention, there is provided an apparatus for determining a welding stability of pulse arc welding, comprising the steps of: applying a welding voltage between a welding electrode and a workpiece; In a consumable electrode type gas shielded pulse arc welding in which a pulse-base current is alternately and repeatedly supplied, and a droplet is dropped from the welding electrode on the material to be welded every pulse, the welding electrode and the welding electrode are welded. Welding voltage between materials,
Detecting means for detecting at least one of a welding current and an energizing time between the welding electrode and the material to be welded; calculating means for calculating a degree of disturbance of a detection value of the detecting means; And judge means for judging the welding stability at the time of steady welding of pulse arc welding from the degree of divergence between the two and the degree of turbulence at the time of steady welding.
According to the above welding stability determination device, the degree of turbulence is calculated by the calculation means based on the detection value from the detection means for determining whether the welding stability is good at the time of steady welding of pulse arc welding, Since the pass / fail is judged by the judging means, an accurate judgment of the welding stability in the steady welding of the pulse arc welding is made.

【0013】また、本発明の請求項2に係るパルスアー
ク溶接の溶接安定性判定装置は、前記演算手段が、パル
ス周期毎のパルス電流積分値とベース電流積分値の各標
準偏差の積を乱れ度として演算することを特徴とする。
この溶接安定性判定装置では、パルスアーク溶接の定常
溶接時に於ける溶接安定性の指標として、パルス周期毎
のパルス電流積分値とベース電流積分値の各標準偏差の
積が取上げられている。この指標は、パルス電流とベー
ス電流の均一性並びにパルス時間とベース時間の均一性
の両方が同時に評価されるものであり、この指標の値が
小さいほど、パルスアーク溶接の定常溶接時に於ける溶
滴の移行現象が安定していることを示すものである。
According to a second aspect of the present invention, there is provided the welding stability determining apparatus for pulse arc welding, wherein the calculating means disturbs a product of each standard deviation of a pulse current integral and a base current integral for each pulse period. It is characterized in that it is calculated as a degree.
In this welding stability determination device, the product of each standard deviation of the pulse current integral value and the base current integral value for each pulse cycle is taken as an index of welding stability during steady welding of pulse arc welding. This index evaluates both the uniformity of the pulse current and the base current and the uniformity of the pulse time and the base time at the same time. This indicates that the droplet transfer phenomenon is stable.

【0014】また、本発明の請求項3に係るパルスアー
ク溶接の溶接安定性判定装置は、前記演算手段が、パル
ス周期毎のパルス期通電時間とベース期通電時間の各標
準偏差の積を乱れ度として演算することを特徴とする。
上記の溶接安定性判定装置によれば、パルスアーク溶接
の定常溶接時に於ける溶接安定性の指標として、パルス
周期毎のパルス期通電時間とベース期通電時間の各標準
偏差の積が取上げられている。この指標は、パルス時間
とベース時間の均一性が評価されるものであり、この指
標の値が小さいほど、前述と同じくパルスアーク溶接の
定常溶接時に於ける溶滴の移行現象が安定していること
を示すものである。
According to a third aspect of the present invention, in the apparatus for determining welding stability of pulse arc welding, the calculating means disturbs a product of each standard deviation between a pulse period energizing time and a base period energizing time for each pulse cycle. It is characterized in that it is calculated as a degree.
According to the welding stability determination device described above, the product of each standard deviation of the pulse period energizing time and the base period energizing time for each pulse cycle is taken as an index of welding stability during steady welding of pulse arc welding. I have. This index evaluates the uniformity of the pulse time and the base time, and the smaller the value of this index, the more stable the droplet transfer phenomenon during steady welding of pulse arc welding as described above. It shows that.

【0015】また、本発明の請求項4に係るパルスアー
ク溶接の溶接安定性判定装置は、前記演算手段が、パル
ス周期毎のパルス電圧積分値とベース電圧積分値の各標
準偏差の積を乱れ度として演算することを特徴とする。
上記の溶接安定性判定装置によれば、パルス及びベース
電圧の均一性及びパルス及びベース時間の均一性を同時
に評価できる。特に、この電圧積分値標準偏差の積は、
瞬間的なアーク途切れに対し電圧波形が大きく変化する
ため、アーク途切れ不良の判定に有効であり、パルス電
圧積分値とベース電圧積分値の各標準偏差の積が低いほ
どアーク現象が安定しているといえる。
According to a fourth aspect of the present invention, in the pulse arc welding welding stability judging apparatus, the calculating means disturbs the product of the pulse voltage integral and the standard deviation of the base voltage integral for each pulse period. It is characterized in that it is calculated as a degree.
According to the above welding stability determination device, the uniformity of the pulse and the base voltage and the uniformity of the pulse and the base time can be simultaneously evaluated. In particular, the product of this voltage integral standard deviation is
Since the voltage waveform changes greatly with momentary arc interruption, it is effective in determining arc interruption failure, and the arc phenomenon is more stable as the product of each standard deviation of the pulse voltage integral value and the base voltage integral value is lower. It can be said that.

【0016】また、本発明の請求項5に係るパルスアー
ク溶接の溶接安定性判定装置は、前記演算手段が、パル
ス周期毎のパルス電流積分値と正常溶接時パルス電流積
分値の各標準偏差の比を乱れ度として演算することを特
徴とする。上記の溶接安定性判定装置によれば、パルス
アーク溶接の定常溶接時に於ける溶接安定性の指標とし
て、パルス周期毎のパルス電流積分値と正常溶接時パル
ス電流積分値の各標準偏差の比が取上げられている。こ
の指標は、現在の溶滴の滴下状態が最適の滴下状態と比
較して、どの程度外れているかが評価されるものであ
り、この指標の値が小さいほど、パルスアーク溶接の定
常溶接時に於ける溶滴の滴下状態が良好であることを示
すものである。
According to a fifth aspect of the present invention, in the apparatus for determining welding stability of pulse arc welding, the arithmetic means includes a pulse current integrated value for each pulse cycle and a standard deviation of a pulse current integrated value for normal welding. The ratio is calculated as the degree of turbulence. According to the welding stability determination device described above, as an index of welding stability at the time of steady welding of pulse arc welding, the ratio of each standard deviation between the pulse current integrated value for each pulse cycle and the pulse current integrated value during normal welding is used. Has been picked up. This index evaluates the degree to which the current dropping state of the droplet is deviated from the optimal dropping state. This indicates that the dropping state of the droplets is good.

【0017】また、本発明の請求項6に係るパルスアー
ク溶接の溶接安定性判定装置は、前記演算手段が、パル
ス周期毎のパルス電流積分値をパルス期通電時間で除し
たパルス電流積分値平均値と、パルス周期毎の正常溶接
時パルス電流積分値をパルス期通電時間で除した正常パ
ルス電流積分値平均値の比を乱れ度として演算すること
を特徴とする。この指標は、溶接ワイヤへの現在の入熱
状態が最適状態の入熱状態と比較してどのくらい外れて
いるかを評価するもので、アーク現象の安定性を入熱量
の過不足から判定するものである。
According to a sixth aspect of the present invention, in the pulse arc welding welding stability judging apparatus, the calculating means may be configured such that the pulse current integral value obtained by dividing the pulse current integral value for each pulse period by the pulse period energizing time. The ratio of the average value of the normal pulse current integral value obtained by dividing the integral value of the pulse current during normal welding for each pulse period by the pulse period conduction time is calculated as the degree of disturbance. This index evaluates how much the current heat input state to the welding wire deviates from the optimal heat input state, and determines the stability of the arc phenomenon from excess or deficiency of the heat input. is there.

【0018】以上の請求項2〜6に取上げた5種の指標
は、上述のようにパルスアーク溶接の定常溶接時の溶接
安定性を判定するためには重要な指標であるので、これ
等5種の指標の値を全て演算し、それぞれの基準値と比
較して溶接安定性の良否を判定するのが望ましいが、場
合によっては、これ等5種の指標のうち、1種又は2種
の指標について演算し、これを該当する基準値と比較し
て溶接安定性の良否を判定してもよい。
Since the five types of indices described in claims 2 to 6 are important in order to determine the welding stability at the time of steady welding of pulse arc welding as described above, these five indices are used. It is desirable to calculate the values of all the indices and determine whether the welding stability is good by comparing the values with the respective reference values. In some cases, one or two of these five indices are used. An index may be calculated, and the index may be compared with a corresponding reference value to determine whether welding stability is good.

【0019】また、前記5指標の2以上を相互に掛け合
わせた積を乱れ度として演算し、これを正常なパルスア
ーク溶接の定常溶接時の同様指標の乱れ度と比較して、
両者の乖離度からパルスアーク溶接の定常溶接時の溶接
安定性を判定するようにしてもよい。
Further, a product obtained by multiplying two or more of the above-mentioned five indices by each other is calculated as a degree of turbulence, and this is compared with the degree of turbulence of the same index during normal welding of normal pulse arc welding.
The welding stability at the time of steady welding of pulse arc welding may be determined from the degree of deviation between the two.

【発明実施の形態】以下、本発明の実施の形態として、
パルスMIG溶接をする場合を取上げ、図1乃至図7に
基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, as an embodiment of the present invention,
The case of performing the pulse MIG welding will be described with reference to FIGS. 1 to 7.

【0020】図1は本発明の一実施形態に係る消耗電極
式ガスシールドパルスアーク溶接装置(以下、単にアー
ク溶接装置と言う)の概略構成を示す。図1で1は溶接
電源、2は溶接ワイヤ、3は送給ローラ、4はコンタク
トチップ、5は被溶接材、6は溶接電流を測定するため
の分流器、31は溶接電流検出回路、32は溶接電圧検
出回路である。溶接電源1から供給される電流・電圧が
溶接ワイヤ2と被溶接材5の間に印加されるようになっ
ている。溶接ワイヤ2は送給ローラ3によって所定速度
で送り出され、コンタクトチップ4を通して被溶接材5
に供給されるようになっている。溶接電源1のアース側
は、分流器6を介して溶接電流検出回路31へ接続され
る一方、溶接電圧検出回路32及び通電時間検出回路
(図示せず)に対して直接的に接続されている。
FIG. 1 shows a schematic configuration of a consumable electrode type gas shield pulse arc welding apparatus (hereinafter simply referred to as an arc welding apparatus) according to an embodiment of the present invention. In FIG. 1, 1 is a welding power source, 2 is a welding wire, 3 is a feed roller, 4 is a contact tip, 5 is a material to be welded, 6 is a shunt for measuring welding current, 31 is a welding current detection circuit, 32 Is a welding voltage detection circuit. A current / voltage supplied from the welding power source 1 is applied between the welding wire 2 and the workpiece 5. The welding wire 2 is sent out at a predetermined speed by the feed roller 3 and passes through the contact tip 4 to the material 5 to be welded.
It is supplied to. The ground side of the welding power source 1 is connected to the welding current detection circuit 31 via the shunt 6, while being directly connected to the welding voltage detection circuit 32 and the conduction time detection circuit (not shown). .

【0021】図2は本発明のパルスアーク溶接判定装置
10の基本構成を示すブロック図であって、この溶接安
定性判定装置10はパルス期又はベース期の溶接電流検
出手段11、パルス期又はベース期の溶接電圧検出手段
12、パルス期又はベース期の通電時間検出手段13、
溶接安定性演算手段14、溶接安定性判定手段15及び
警報手段16を有する。そして3つの検出手段11,1
2,13から検出される検出値に基づいて溶接安定性演
算手段14により各検出値の乱れ度が個別に演算され、
これら乱れ度と、正常なパルスアーク溶接の定常溶接時
の同種検出値の乱れ度とを溶接安定性判定手段15によ
りそれぞれ比較して、両者の乖離度からパルスアーク溶
接の定常溶接時の溶接安定性が総合的に判定され、総合
的な乖離度が基準値を越えて溶接安定性がないと判定さ
れる場合は、警報手段16により警報が発せられるよう
になっている。
FIG. 2 is a block diagram showing a basic configuration of the pulse arc welding determination device 10 of the present invention. The welding stability determination device 10 includes a welding current detecting means 11 for a pulse period or a base period, a pulse period or a base period. Period welding voltage detecting means 12, pulse period or base period energizing time detecting means 13,
It has welding stability calculation means 14, welding stability determination means 15, and alarm means 16. And three detecting means 11, 1
The turbulence degree of each detection value is individually calculated by the welding stability calculation means 14 based on the detection values detected from 2, 13 and
The degree of turbulence is compared with the degree of turbulence of the same detection value during normal welding of normal pulse arc welding by the welding stability judging means 15, and based on the divergence between the two, the welding stability during steady welding of pulse arc welding is determined. If the overall deviation is determined to be beyond the reference value and it is determined that there is no welding stability, a warning is issued by the warning means 16.

【0022】次に、パルスアーク溶接安定性判定装置1
0の基本回路を、図3のブロック図に基づき説明する。
同図で20はプロセシングユニット(CPU)、21は
メモリ(ROM)、22はメモリ(RAM)、23は入
力インターフェース、24は出力インターフェース、2
5はキーボード・ディスプレイ・プリンター等の周辺機
器、26は以上の要素を収納したコントローラ、30は
A/Dコンバータ(信号変換手段)、31は溶接電流検
出回路、32は溶接電圧検出回路、33は通電時間検出
回路、34は警報手段16を駆動する駆動回路である。
Next, a pulse arc welding stability determination device 1
The basic circuit of 0 will be described with reference to the block diagram of FIG.
In the figure, 20 is a processing unit (CPU), 21 is a memory (ROM), 22 is a memory (RAM), 23 is an input interface, 24 is an output interface,
Reference numeral 5 denotes a peripheral device such as a keyboard, display, or printer, 26 denotes a controller containing the above elements, 30 denotes an A / D converter (signal conversion means), 31 denotes a welding current detection circuit, 32 denotes a welding voltage detection circuit, and 33 denotes a welding voltage detection circuit. An energization time detection circuit 34 is a drive circuit for driving the alarm unit 16.

【0023】メモリ(ROM)21には溶接性を判定す
るための後述フローチャートを含む種々の処理に供する
プログラム(判定プログラム)が記憶されており、プロ
セシングユニット(CPU)20が起動されている間は
当該判定プログラムを実行するようになっている。ま
た、メモリ(RAM)22は判定プログラムの実行に必
要な変数データを一時的に記憶するようになっている。
The memory (ROM) 21 stores programs (judgment programs) for various processes including a flowchart described later for judging weldability, and while the processing unit (CPU) 20 is activated. The determination program is executed. The memory (RAM) 22 temporarily stores variable data necessary for executing the determination program.

【0024】各検出回路31〜33の出力信号は、A/
Dコンバータ30を介して入力インターフェース23か
らプロセシングユニット(CPU)20に入力され、プ
ロセシングユニット(CPU)20で演算された溶接電
流、溶接電圧及び通電時間に関する各乱れ度をそれぞれ
の基準値と比較し、基準値を外れる場合は出力インター
フェース24を介して駆動回路34が駆動され、警報手
段16から警報が発せられる。
The output signals of the detection circuits 31 to 33 are A /
The respective turbulences related to the welding current, welding voltage, and energization time, which are input to the processing unit (CPU) 20 from the input interface 23 via the D converter 30 and calculated by the processing unit (CPU) 20, are compared with respective reference values. When the value deviates from the reference value, the drive circuit 34 is driven via the output interface 24, and an alarm is issued from the alarm means 16.

【0025】次に、溶接性を判定するためのフローチャ
ートを図4〜図6に基づき説明する。図4は概略フロー
チャートを示し、図5及び図6は詳細フローチャートを
示す。これらフローチャートを実行するための判定プロ
グラムは、図3のメモリ(ROM)21に格納されてい
ることは既述した。図4から分かるように、溶接開始に
よりサンプリングが開始され(ステップ101、10
2)、溶接終了によりサンプリングが終了し(ステップ
103、104)、その後、定常溶接時の溶接安定性乱
れ度の指標としてパルス・ベース電流積分値標準偏差
積、パルス・ベース時間標準偏差積、パルス・ベース電
圧積分値標準偏差積、パルス・ベース電流積分値標準偏
差比、パルス・ベース電流積分値平均値比が順次演算さ
れ(ステップ105〜109)、これら指標が正常溶接
時の同種指標と比較されて両者の乖離度により溶接性の
良否が判定され(ステップ110)、乖離度が基準値よ
りも大きい場合は異常信号が出力される(ステップ11
1)。
Next, a flowchart for determining the weldability will be described with reference to FIGS. FIG. 4 shows a schematic flowchart, and FIGS. 5 and 6 show detailed flowcharts. As described above, the determination program for executing these flowcharts is stored in the memory (ROM) 21 in FIG. As can be seen from FIG. 4, sampling is started by the start of welding (steps 101, 10).
2) Sampling is completed by the end of welding (steps 103 and 104). Thereafter, the pulse-base current integral value standard deviation product, pulse-base time standard deviation product, pulse The base voltage integrated value standard deviation product, the pulse base current integrated value standard deviation ratio, and the pulse base current integrated value average value ratio are sequentially calculated (steps 105 to 109), and these indexes are compared with the same kind index at the time of normal welding. Then, the quality of weldability is determined based on the degree of deviation between the two (step 110), and if the degree of deviation is greater than the reference value, an abnormal signal is output (step 11).
1).

【0026】次に、サンプリング開始からパルス・ベー
ス電流積分値標準偏差積及びパルス・ベース時間標準偏
差積、パルス・ベース電圧積分値標準偏差積を演算する
までのフローチャートを図5に基づき説明する。既述の
図9を参照すると、パルス・ベース電流積分値標準偏差
積=σ(∫IP(n)dt)×σ(∫IB(n)dt)、パルス・ベー
ス時間標準偏差積=σT P(n) ×σTB(n) 、パルス・ベ
ース電圧積分値標準偏差積=σ(∫VP(n)dt)×σ(∫V
B(n)dt)と表される。図5から分るように、先ず溶接電
流、溶接電圧のサンプリングが開始され(ステップ20
1)、通電が開始されているかが判定され(ステップ2
02)、開始されていれば定常溶接期間の溶接電流、溶
接電圧の測定を開始する(ステップ203)。
Next, a flow chart from the start of sampling to the calculation of the pulse-base current integral value standard deviation product, the pulse-base time standard deviation product, and the pulse-base voltage integral value standard deviation product will be described with reference to FIG. Referring to FIG. 9 described above, the pulse-base current integrated value standard deviation product = σ (∫IP (n) dt) × σ (∫IB (n) dt), the pulse-base time standard deviation product = σT P (n) × σT B (n) , standard deviation product of pulse-base voltage integrated value = σ (∫V P (n) dt) × σ (∫V
B (n) dt). As can be seen from FIG. 5, sampling of the welding current and welding voltage is first started (step 20).
1) It is determined whether energization has been started (step 2)
02) If started, measurement of the welding current and welding voltage during the steady welding period is started (step 203).

【0027】ステップ203に次いで、溶接電流がパル
ス判定電流Iw1(図9参照)以上になっているかが判定
され(ステップ204)、その条件が満足されていれ
ば、パルス溶接電流、パルス溶接電圧、パルス時間の測
定が開始される(ステップ205)。またパルス判定電
流Iw1以下の場合は、ベース溶接電流、ベース溶接電
圧、ベース時間の測定が開始される(ステップ20
8)。次いで溶接電流がパルス判定電流Iw1以下になっ
ているかが判定され(ステップ206)、その条件が満
足されると、パルス溶接電流、パルス溶接電圧、パルス
時間の測定が終了し(ステップ207)、またパルス判
定電流Iw1以上になっているかが判定され(ステップ2
09)、当該条件が満足されると、ベース溶接電流、ベ
ース溶接電圧、ベース時間の測定が終了する(ステップ
210)。
After step 203, it is determined whether the welding current is equal to or greater than the pulse determination current Iw1 (see FIG. 9) (step 204). If the conditions are satisfied, the pulse welding current, pulse welding voltage, The measurement of the pulse time is started (Step 205). If the current is equal to or less than the pulse determination current Iw1, measurement of the base welding current, the base welding voltage, and the base time is started (step 20).
8). Next, it is determined whether the welding current is equal to or less than the pulse determination current Iw1 (step 206). When the conditions are satisfied, the measurement of the pulse welding current, the pulse welding voltage, and the pulse time is completed (step 207). It is determined whether the pulse determination current is equal to or greater than Iw1 (step 2).
09) When the conditions are satisfied, the measurement of the base welding current, the base welding voltage, and the base time is completed (Step 210).

【0028】次に、タイムアップしているか否かが判定
され(ステップ211)、タイムアップしていれば定常
溶接期間のパルス電流積分値、パルス電圧積分値、パル
ス時間、ベース電流積分値、ベース電圧積分値、ベース
時間が演算され(ステップ212、213、214)、
次にそれぞれパルス電流積分値、パルス電圧積分値及び
パルス時間の各標準偏差と、ベース電流積分値、ベース
電圧積分値及びベース時間の各標準偏差が演算され(ス
テップ215、216、217)、続いてそれぞれの標
準偏差積が演算される(ステップ218、219、22
0)。
Next, it is determined whether or not the time is up (step 211). If the time is up, the pulse current integral, the pulse voltage integral, the pulse time, the base current integral, the base current integral during the steady welding period are determined. The voltage integration value and the base time are calculated (steps 212, 213, 214),
Next, the respective standard deviations of the pulse current integral, the pulse voltage integral and the pulse time, and the standard deviations of the base current integral, the base voltage integral and the base time are calculated (steps 215, 216 and 217). The respective standard deviation products are calculated (steps 218, 219, 22).
0).

【0029】図6はパルス電流積分値標準偏差比(σ(∫
IP(n)dt)/Sσ)とパルス電流積分値平均値比(Ave(∫I
p(n)dt)/Save)に関するフローチャートで、先ず溶接電
流、溶接電圧のサンプリングを開始し(ステップ30
1)、通電が開始されているかを判定し(ステップ30
2)、開始されていれば定常溶接期間の溶接電流、溶接
電圧の測定を開始する(ステップ303)。次いで溶接
電流がパルス判定電流Iw1以上になっているかを判定し
(ステップ304)、その条件を満足していれば、パル
ス溶接電流、パルス通電時間の測定を開始する(ステッ
プ305)。次いで溶接電流がパルス判定電流Iw1以下
になっているかを判定し(ステップ306)、その条件
を満足したらパルス溶接電流、パルス時間の測定を終了
する(ステップ307)。次いでタイムアップしている
かを判定し(ステップ308)、タイムアップしていれ
ば定常溶接期間のパルス電流積分値を演算し(ステップ
309)、次にそのパルス電流積分値の標準偏差と平均
値を演算し(ステップ310、311)、次いでそのパ
ルス電流積分値標準偏差を適正電圧で溶接した場合のパ
ルス溶接電流積分値標準偏差適正値「Sσ:σ(∫I
P(n)dt)」で除し、そのパルス電流積分値標準偏差比を
演算する(ステップ312)。また、そのパルス電流積
分値平均適正値「Save:Ave(∫Ip(n)dt)」で除し、その
パルス電流積分値平均値比を演算する(ステップ31
3)。
FIG. 6 shows the standard deviation ratio (σ (∫
I P (n) dt) / S σ ) and the pulse current integral average value ratio (Ave (∫I
In the flowchart relating to p (n) dt) / Save ), sampling of the welding current and welding voltage is first started (step 30).
1) It is determined whether energization has been started (step 30).
2) If started, measurement of the welding current and welding voltage during the steady welding period is started (step 303). Next, it is determined whether or not the welding current is equal to or greater than the pulse determination current Iw1 (step 304). If the conditions are satisfied, measurement of the pulse welding current and the pulse conduction time is started (step 305). Next, it is determined whether the welding current is equal to or less than the pulse determination current Iw1 (step 306). When the conditions are satisfied, the measurement of the pulse welding current and the pulse time is terminated (step 307). Next, it is determined whether or not the time is up (Step 308). If the time is up, the pulse current integral value during the steady welding period is calculated (Step 309), and then the standard deviation and average value of the pulse current integral value are calculated. Calculate (steps 310 and 311), and then, when the pulse current integral standard deviation is welded at an appropriate voltage, the pulse welding current integral standard deviation appropriate value “S σ : σ (∫I
P (n) dt) "to calculate the pulse current integral standard deviation ratio (step 312). Moreover, the pulse current integral average proper value "S ave: Ave (∫I p ( n) dt) " is divided by, for calculating the pulse current integral value average ratio (Step 31
3).

【0030】上述の要領により演算された各重要特性の
値は、それぞれの基準値と比較して溶接安定性の良否が
判定され、否と判定された場合には、前述のように警報
が発せられる、この場合には、後工程に溶接不良品が流
れないように溶接ラインの稼働が直ちに停止されると共
に、溶接装置の異常箇所の点検と調整が行われ、処置が
完了すれば溶接ラインは再稼働される。
The value of each important characteristic calculated according to the above-described procedure is compared with the respective reference value to determine whether the welding stability is good or not. If it is determined that the welding stability is not good, an alarm is issued as described above. In this case, the operation of the welding line is immediately stopped so that defective welding does not flow in the subsequent process, and the inspection and adjustment of abnormal parts of the welding equipment are performed. Will be restarted.

【0031】以上、本発明の一実施形態につき説明した
が、本発明は前記実施形態に限定されることなく種々の
変形が可能であり、例えば前記実施形態では溶接安定性
の乱れ度として、パルス電流積分値とベース電流積分
値の各標準偏差の積、パルス期通電時間とベース期通
電時間の各標準偏差の積、パルス電圧積分値とベース
電圧積分値の各標準偏差の積、パルス電流積分値標準
偏差と正常溶接時の同様標準偏差との比、パルス電流
積分値平均値と正常溶接時の同様平均値との比の5つの
指標を例示したが、本発明はこれら5つの指標以外の指
標を乱れ度として演算することも可能であって、例えば
(パルス電流積分値標準偏差)×(ベース電流積分値標
準偏差)×(パルス期通電時間標準偏差)×(ベース期
通電時間標準偏差)を乱れ度の指標としてもよい。
The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and various modifications can be made. The product of each standard deviation of the current integral value and the base current integral value, the product of each standard deviation of the pulse period conduction time and the base period conduction time, the product of each standard deviation of the pulse voltage integral value and the base voltage integral value, and the pulse current integral Although five indices of the ratio of the standard deviation to the standard deviation during normal welding and the ratio between the average value of the pulse current integrated value and the same average during normal welding have been exemplified, the present invention is not limited to these five indices. It is also possible to calculate the index as the degree of turbulence. For example, (pulse current integral standard deviation) × (base current integral standard deviation) × (pulse period conduction time standard deviation) × (base period conduction time standard deviation) The degree of disturbance It may be used as the target.

【0032】[0032]

【発明の効果】本発明は前述の如く、パルスアーク溶接
の定常溶接時におけるパルス期とベース期の溶接電流、
溶接電圧及び溶接時間をそれぞれ検出してこれら検出値
の乱れ度を演算し、この乱れ度を正常溶接時の同種指標
と比較して両者の乖離度から溶接安定性を判定するよう
にしたので、溶接安定性の良否をリアルタイムで的確に
判定することができ、溶接不良品の流出を未然に防止す
ることができる。また溶接不良発生時の対策結果も直ち
に判るから、溶接異常発生時の自動回復処理で電源制御
信号をフィードバック制御するなどの早期対策が容易と
なる。
As described above, according to the present invention, the welding current in the pulse period and the base period in the steady welding of the pulse arc welding,
Since the welding voltage and the welding time were each detected and the degree of turbulence of these detection values was calculated, and the degree of turbulence was compared with the same kind of index during normal welding to determine the welding stability from the degree of divergence between the two. The quality of welding stability can be accurately determined in real time, and outflow of defective welding products can be prevented. In addition, since the result of a countermeasure in the event of poor welding is immediately known, early countermeasures such as feedback control of a power supply control signal in automatic recovery processing in the event of a welding error can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶接安定性判定装置を組込んだパルス
アーク溶接装置の概略構成図。
FIG. 1 is a schematic configuration diagram of a pulse arc welding device incorporating a welding stability determination device of the present invention.

【図2】溶接安定性判定装置の基本構成を示すブロック
図。
FIG. 2 is a block diagram showing a basic configuration of a welding stability determination device.

【図3】溶接安定性判定装置の基本回路を示すブロック
図。
FIG. 3 is a block diagram showing a basic circuit of the welding stability determination device.

【図4】判定プログラムの概略フローチャートである。FIG. 4 is a schematic flowchart of a determination program.

【図5】判定プログラムの詳細フローチャート。FIG. 5 is a detailed flowchart of a determination program.

【図6】判定プログラムの詳細フローチャート。FIG. 6 is a detailed flowchart of a determination program.

【図7】短絡アーク溶接法における公知の溶滴移行形態
を示す模式図。
FIG. 7 is a schematic diagram showing a known droplet transfer mode in a short-circuit arc welding method.

【図8】パルスアーク溶接法における公知の溶滴移行形
態を示す模式図。
FIG. 8 is a schematic view showing a known droplet transfer mode in the pulse arc welding method.

【図9】パルスアーク溶滴移行と溶接電圧・電流の関係
を示す模式図。
FIG. 9 is a schematic diagram showing a relationship between transfer of a pulsed arc droplet and welding voltage / current.

【符号の説明】[Explanation of symbols]

1 溶接電源 2 溶接電極(溶接ワイヤ) 5 被溶接材 11 溶接電流検出手段 12 溶接電圧検出手段 13 通電時間検出手段 14 溶接安定性演算手段 15 溶接安定性判定手段 30 A/Dコンバータ(信号変換手段) REFERENCE SIGNS LIST 1 welding power source 2 welding electrode (welding wire) 5 material to be welded 11 welding current detecting means 12 welding voltage detecting means 13 conduction time detecting means 14 welding stability calculating means 15 welding stability determining means 30 A / D converter (signal converting means) )

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶接電極と被溶接材との間に溶接電圧を
印加してパルス・ベース電流を交互に繰り返し供給し、
前記溶接電極から溶滴を1パルス毎に被溶接材上に滴下
させながら溶接する消耗電極式ガスシールドパルスアー
ク溶接に於いて、 前記溶接電極と被溶接材間の溶接電圧、前記溶接電極と
被溶接材間の溶接電流及び通電時間の少なくとも1つを
検出する検出手段と、 前記検出手段の検出値の乱れ度を演算する演算手段と、 前記乱れ度を正常なパルスアーク溶接の定常溶接時の乱
れ度と比較して両者の乖離度からパルスアーク溶接の定
常溶接時の溶接安定性を判定する判定手段とを有するこ
とを特徴とするパルスアーク溶接の溶接安定性判定装
置。
1. A pulse-base current is alternately and repeatedly supplied by applying a welding voltage between a welding electrode and a workpiece.
In a consumable electrode type gas shield pulse arc welding in which a droplet is dropped from a welding electrode onto a material to be welded every pulse, a welding voltage between the welding electrode and the material to be welded, a welding voltage between the welding electrode and the material to be welded, Detecting means for detecting at least one of a welding current and an energizing time between welding materials; calculating means for calculating a degree of turbulence of a detection value of the detecting means; Determining means for determining welding stability during steady-state welding of pulse arc welding based on a degree of deviation between the two and a degree of turbulence, the welding stability determining apparatus for pulse arc welding.
【請求項2】 前記演算手段が、パルス周期毎のパルス
電流積分値とベース電流積分値の各標準偏差の積を乱れ
度として演算することを特徴とする請求項1記載のパル
スアーク溶接の溶接安定性判定装置。
2. The pulse arc welding according to claim 1, wherein the calculating means calculates a product of a standard deviation of a pulse current integral value and a base current integral value for each pulse period as a degree of turbulence. Stability determination device.
【請求項3】 前記演算手段が、パルス周期毎のパルス
期通電時間とベース期通電時間の各標準偏差の積を乱れ
度として演算することを特徴とする請求項1記載のパル
スアーク溶接の溶接安定性判定装置。
3. The welding of pulse arc welding according to claim 1, wherein said calculating means calculates a product of each standard deviation between a pulse period energizing time and a base period energizing time for each pulse cycle as a degree of turbulence. Stability determination device.
【請求項4】 前記演算手段が、パルス周期毎のパルス
電圧積分値とベース電圧積分値の各標準偏差の積を乱れ
度として演算することを特徴とする請求項1記載のパル
スアーク溶接の溶接安定性判定装置。
4. The welding of pulse arc welding according to claim 1, wherein said calculating means calculates a product of a standard deviation of a pulse voltage integral value and a base voltage integral value for each pulse period as a degree of turbulence. Stability determination device.
【請求項5】 前記演算手段が、パルス周期毎のパルス
電流積分値と正常溶接時パルス電流積分値の各標準偏差
の比を乱れ度として演算することを特徴とする請求項1
記載のパルスアーク溶接の溶接安定性判定装置。
5. The apparatus according to claim 1, wherein said calculating means calculates a ratio of a standard deviation between a pulse current integral value for each pulse period and a pulse current integral value during normal welding as a degree of turbulence.
A welding stability determination device for pulse arc welding according to the above.
【請求項6】 前記演算手段が、パルス周期毎のパルス
電流積分値をパルス期通電時間で除したパルス電流積分
値平均値と、パルス周期毎の正常溶接時パルス電流積分
値をパルス期通電時間で除した正常パルス電流積分値平
均値の比を乱れ度として演算することを特徴とする請求
項1記載のパルスアーク溶接の溶接安定性判定装置。
6. The pulse current integration value obtained by dividing the pulse current integration value for each pulse period by the pulse period conduction time, and the pulse current integration value during normal welding for each pulse period. The welding stability determination apparatus for pulse arc welding according to claim 1, wherein the ratio of the average value of the integral values of the normal pulse currents divided by (1) is calculated as the degree of turbulence.
JP2001129574A 2001-04-26 2001-04-26 Pulse arc welding welding stability assessment device Expired - Fee Related JP4642267B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001129574A JP4642267B2 (en) 2001-04-26 2001-04-26 Pulse arc welding welding stability assessment device
US10/134,304 US6621049B2 (en) 2001-04-26 2002-04-25 Welding stability assessment apparatus for pulsed arc welding
EP02076690A EP1252962A3 (en) 2001-04-26 2002-04-26 Welding process stability assessment apparatus for pulsed arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129574A JP4642267B2 (en) 2001-04-26 2001-04-26 Pulse arc welding welding stability assessment device

Publications (2)

Publication Number Publication Date
JP2002321054A true JP2002321054A (en) 2002-11-05
JP4642267B2 JP4642267B2 (en) 2011-03-02

Family

ID=18978080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129574A Expired - Fee Related JP4642267B2 (en) 2001-04-26 2001-04-26 Pulse arc welding welding stability assessment device

Country Status (1)

Country Link
JP (1) JP4642267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510725A (en) * 2009-11-13 2013-03-28 リンカーン グローバル,インコーポレイテッド Method and apparatus for monitoring welding quality
JP2017535431A (en) * 2014-11-10 2017-11-30 リンカーン グローバル,インコーポレイテッド System, method and apparatus for monitoring welding quality
JP2017226010A (en) * 2016-06-21 2017-12-28 日立造船株式会社 Weld defect detection system, and weld defect detection device comprising the same
JP2019206015A (en) * 2018-05-28 2019-12-05 株式会社神戸製鋼所 Welding state determination device, welding state determination method and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255676A (en) * 1988-08-19 1990-02-26 Mitsubishi Electric Corp Pulse arc welding equipment
JPH09206941A (en) * 1996-01-29 1997-08-12 Kobe Steel Ltd Co2 gas shielded pulsed arc welding method
JP3898812B2 (en) * 1997-10-22 2007-03-28 中央精機株式会社 Welding stability determination method and stability determination device for arc welding termination processing section
JP3898810B2 (en) * 1997-10-22 2007-03-28 中央精機株式会社 Welding stability determination method and stability determination device at arc start
JP3898811B2 (en) * 1997-10-22 2007-03-28 中央精機株式会社 Method and apparatus for determining welding stability of arc welding steady state part

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510725A (en) * 2009-11-13 2013-03-28 リンカーン グローバル,インコーポレイテッド Method and apparatus for monitoring welding quality
JP2017535431A (en) * 2014-11-10 2017-11-30 リンカーン グローバル,インコーポレイテッド System, method and apparatus for monitoring welding quality
JP2017226010A (en) * 2016-06-21 2017-12-28 日立造船株式会社 Weld defect detection system, and weld defect detection device comprising the same
JP2019206015A (en) * 2018-05-28 2019-12-05 株式会社神戸製鋼所 Welding state determination device, welding state determination method and program
CN110539056A (en) * 2018-05-28 2019-12-06 株式会社神户制钢所 Welding state determination device, welding state determination method, and medium having program
JP7026576B2 (en) 2018-05-28 2022-02-28 株式会社神戸製鋼所 Welding condition determination device, welding condition determination method, and program

Also Published As

Publication number Publication date
JP4642267B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
US6621049B2 (en) Welding stability assessment apparatus for pulsed arc welding
US6703585B2 (en) Arc welding quality evaluation apparatus
CN109834367B (en) System and method for torch oscillation
US5349156A (en) Sensing of gas metal arc welding process characteristics for welding process control
US6031203A (en) Method and apparatus for determining stability of arc welding
JP2002321054A (en) Device for determination of welding stability of pulsed arc welding
JP3898811B2 (en) Method and apparatus for determining welding stability of arc welding steady state part
JP2008006485A (en) Welding acceptance device and welding acceptance method
JP3898810B2 (en) Welding stability determination method and stability determination device at arc start
JP4271293B2 (en) Optimal control method and apparatus for arc welding
EP3539707A1 (en) Arc welding display device and display method
JP4642266B2 (en) Pulse arc welding welding stability assessment device
JP2002346776A (en) Method and device for deciding quality of laser welding
JP3898812B2 (en) Welding stability determination method and stability determination device for arc welding termination processing section
JP2006198674A (en) Monitoring system and monitoring method for welding
JPH07276075A (en) Method for detecting abnormality at welding time
JPS61199578A (en) Welding monitoring device in arc welding robot
KR101584421B1 (en) Monitoring system for arc welding
KR100270098B1 (en) Apparatus and method for quality judge of welding
JP3697359B2 (en) Arc welding stability judgment method and apparatus
JPH072275B2 (en) Arc welding monitor
JP3396602B2 (en) Method and apparatus for monitoring welding quality
JP2000301349A (en) Device for inspecting resistance welding
JP2006122950A (en) Spot-welding monitoring instrument
JP2501156B2 (en) Welder diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees