JP3898812B2 - Welding stability determination method and stability determination device for arc welding termination processing section - Google Patents

Welding stability determination method and stability determination device for arc welding termination processing section Download PDF

Info

Publication number
JP3898812B2
JP3898812B2 JP28974097A JP28974097A JP3898812B2 JP 3898812 B2 JP3898812 B2 JP 3898812B2 JP 28974097 A JP28974097 A JP 28974097A JP 28974097 A JP28974097 A JP 28974097A JP 3898812 B2 JP3898812 B2 JP 3898812B2
Authority
JP
Japan
Prior art keywords
welding
arc
standard deviation
short
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28974097A
Other languages
Japanese (ja)
Other versions
JPH11123548A (en
Inventor
幸充 鈴木
克則 宮崎
太郎 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP28974097A priority Critical patent/JP3898812B2/en
Priority to US09/175,564 priority patent/US6031203A/en
Publication of JPH11123548A publication Critical patent/JPH11123548A/en
Application granted granted Critical
Publication of JP3898812B2 publication Critical patent/JP3898812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、消耗電極式ガスシールドアーク溶接に関し、終端処理部の溶接現象の不安定性に起因して発生する溶接品質不良の流出防止を目的とし、アーク溶接終端処理部の溶接安定性判定方法及び判定装置に関するものである。
【0002】
【従来の技術】
消耗電極式ガスシールドアーク溶接では、溶接電源の出力制御が制御素子の進歩によりサイリスタ方式からインバータ方式に変化し、制御速度が300Hzから15〜60KHzへと約50〜200倍も高速化され、溶接電流の波形制御ができるようになり、アークスタート性能の向上、高速溶接での溶接現象の安定性向上やスパッタの発生量低減及びアークスタート性向上のための溶接ワイヤ先端球状塊の径小化が可能となり、溶接現象の安定性が改善されつつある。
【0003】
しかし終端処理部の溶接品質は、ワイヤ送給機構の慣性によって種々の異常現象が発生し易く、溶接ロボット等による自動溶接ラインの大きな問題となっていた。この終端処理部の溶接現象安定性の良否判定は、一般に作業者や技術者が終端処理部の溶接ビード外観の均一性を目視することにより行っていた。
【0004】
しかし目視による定性的な判定のため、微小な異常の場合の判定には個人差があり、インラインでの判定に統一的な基準を求めることは困難であった。
【0005】
【発明が解決しようとする課題】
現状では終端処理部の溶接現象安定性をリアルタイムで且つ定量的に監視する方法はなく、溶接現象の安定化対策として定期的にワイヤ送給経路を清掃したり、ワイヤコンジットケーブルを交換したり、コンタクトチップを交換したり、あるいは溶接品質異常が生じてからこれらの対策を実施していた。本発明は上記従来技術の問題点に鑑みてなされたもので、終端処理部の溶接現象を正確に捉え、溶接現象の安定性の良否を迅速に判定する方法及び装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、
短絡とアークを交互に繰り返しながら溶接をする消耗電極式ガスシールドアーク溶接の終端処理部アーク溶接安定性を判定するに際し、溶接ワイヤと被溶接材間の溶接電圧を検出する電圧検出手段と、溶接ワイヤと被溶接材間を流れる溶接電流を検出する電流検出手段を用いて出力されるアナログ出力信号を所定のサンプリング周波数でデジタル信号に変換して演算手段に入力し、終端処理部の溶接安定性の程度をあらわす次の3項目、
(a)1周期毎のアーク期間の溶接電流積分値の標準偏差
σ(∫IAndt)
(b)1周期毎の短絡期間の溶接電流積分値の標準偏差
σ(∫ISndt)
(c)1周期毎のアーク/短絡時間比率の標準偏差
σ(TAn/TSn
の内任意の1又は2項目以上を演算し、それぞれに対応する基準値と比較して、何れか1つでも基準値との差が予め設定した許容範囲を越えたときに終端処理部の溶接が不安定または不良であると判定することを特徴とするアーク溶接終端処理部の溶接安定性判定方法である。
【0007】
そして、請求項2の発明は、
短絡とアークを交互に繰り返しながら溶接をする消耗電極式ガスシールドアーク溶接の終端処理部アーク溶接安定性判定装置であって、溶接ワイヤと被溶接材間の溶接電圧を検出する電圧検出手段と、溶接ワイヤと被溶接材間を流れる溶接電流を検出する電流検出手段と、両手段からのアナログ出力信号をデジタル信号に変換するA/Dコンバータと、該コンバータからのデジタル信号を基に、
(a)1周期毎のアーク期間の溶接電流積分値の標準偏差
σ(∫IAndt)
(b)1周期毎の短絡期間の溶接電流積分値の標準偏差
σ(∫ISndt)
(c)1周期毎のアーク/短絡時間比率の標準偏差
σ(TAn/TSn
の3項目の内任意の1又は2項目以上を演算する演算手段と、演算手段からの演算結果を予め設定された基準値と比較し、基準値との差が許容範囲内か否かを判定する比較器と、比較器の出力を表示する表示器とからなることを特徴とするアーク溶接終端処理部の溶接安定性判定装置である。
【0008】
【作用】
終端処理部におけるアーク放電が安定して形成されないことに起因して発生する溶接現象安定性の程度を1周期毎のアーク期間の溶接電流積分値の標準偏差、1周期毎の短絡期間の溶接電流積分値の標準偏差、1周期毎のアーク/短絡時間比率の標準偏差の3項目の内任意の1又は2項目以上をそれぞれ演算し定量値として表示し、それぞれに対応する基準値と比較し、各定量値の何れか1つでも基準値との差が予め設定した許容範囲を越えたときに溶接現象が不安定であると判定する。こうすることで、溶接ワイヤへの給電不良や送給抵抗増加等による溶接現象不安定性による溶接品質異常を正確かつ確実に検知する。
【0009】
【発明の実施の形態】
次に本発明の好ましい実施の形態を図面の実施例に基づいて説明する。
図1は本発明の実施例のブロック図である。図中の1は溶接電源で所定の電流・電圧を溶接ワイヤ2、被溶接材5間に印加させ、溶接ワイヤ2は被溶接材5を溶接するために送給ローラ3によって所定の速度で送給される。4はコンタクトチップ、6は溶接電流を測定するための分流器、7は溶接ワイヤと被溶接材を流れる溶接電流を検出する電流検出回路、8は溶接ワイヤと被溶接材間の溶接電圧を検出する電圧検出回路、9は両検出回路7,8からの各アナログ出力信号を所定のサンプリング周波数でデジタル信号に変換するA/Dコンバータ、17は演算及び出力装置で両検出回路7,8とA/Dコンバータ9を含む。
【0010】
本装置17は溶接電圧、溶接電流を測定してデジタル変換し、1周期毎のアーク期間溶接電流積分値の標準偏差及び短絡期間溶接電流積分値の標準偏差、また1周期毎のアーク/短絡時間比率の標準偏差を算出するために種々の演算をしてその演算結果を予め設定された基準値と比較し、基準値との差が許容範囲内か否かの比較を行うCPU10、それらの演算データを表示及び印刷するCRT11(ディスプレイ)及びプリンター15、プログラム及び演算に必要な種々のデータを格納するメモリ(ROM12,RAM13)及び測定に必要な定数及びその他のデータを入力するキーボード14、さらに溶接電流積分値異常、アーク/短絡時間比率異常等の異常信号を表示する表示器16から構成される。
【0011】
次に本発明による終端処理部の溶接現象安定性判定方法について説明する。はじめに終端処理部のアーク放電状態解析実行の概略処理フローを図2に示す。 まずサンプリング速度、トリガーレベル、アーク・短絡判定電圧をキーボード14により入力しCPU10内に設定し、溶接を開始させる。溶接電圧がトリガーレベルに達すると溶接電圧・電流の入力を開始し測定回数が、設定回数に達するまでデータをRAM13内に格納する。所定数のサンプリングが完了すると、ROM12内に格納されているプログラムを実施することにより、各種の演算を行う。
【0012】
ここで各種の演算は、演算データの誤判定を防ぐため演算区間の設定をキーボード14より入力できるようになっている。つまりアークスタート時及び定常部を演算区間から外せるようになっている。演算が完了すると各種の演算結果をそれぞれに対応する基準値と比較して、各定量値の何れか1つでも基準値との差が予め設定した許容範囲を越えたときに溶接現象が不安定であるとして、溶接電流積分値異常、アーク/短絡時間比率異常等の異常信号の出力が行われ、ビード形状不揃い、アンダーカット、溶け落ち等の溶接品質異常の判定を行う。また、アーク放電が安定して形成された場合はOK信号を出力する。
【0013】
次に図2内サブルーチン1のアーク期間溶接電流積分値の演算について説明する。
図3はアーク期間溶接電流積分値標準偏差演算処理を行うサブルーチンの詳細である。アーク期間溶接電流積分値標準偏差の演算は、T1 時間タイムアップ後から、設定時間T2 までの溶接ワイヤと被溶接材間を流れる溶接電流と溶接電圧をサンプリングし、n周期目の溶接電圧がVa以上に到達した時間から溶接電流の測定を開始し、Va以下に下がった時間までのアーク期間の溶接電流積分値を演算し、その後にその積分値の標準偏差を演算する。なお、判別電圧Va及びT1 ,T2 時間の設定は自由に変更できるようになっている。
【0014】
このアーク期間溶接電流積分値は、図6に示すように1周期毎のアーク期間溶接電流波形とそのアーク時間によって囲まれる面積∫IAndtを表し、その標準偏差σ(∫IAndt)はアーク期間の溶接電流とアーク時間のバラツキを同時に表す。この溶接電流積分値の標準偏差が大きくなると言うことは、短絡現象がほとんど継続する瞬間アークや短絡に至らない長期アーク現象の発生等により溶滴移行現象が不安定であると言うことで、この標準偏差が低いほど溶滴移行現象が安定していることを示す。
【0015】
ここでサンプリングノイズやチャタリング等による標準偏差の変化を低減するため1msec以内のアーク現象は短絡時間として演算する。この溶接電流積分値標準偏差を基準値と比較して、基準値との差が予め設定した許容範囲を越えたときアーク期間溶接電流積分値異常として異常信号を出力する。
【0016】
次に図2内サブルーチン2の短絡期間溶接電流積分値の演算について説明する。図4は短絡期間溶接電流積分値標準偏差演算処理を行うサブルーチンの詳細である。短絡期間溶接電流積分値標準偏差の演算は、定常溶接測定開始時間であるT1 時間タイムアップ後から、定常溶接測定終了時間である設定時間T2 までの溶接ワイヤと被溶接材間を流れる溶接電流と溶接電圧をサンプリングし、n周期目の溶接電圧V(n)がアーク・短絡判定電圧Va以下に到達した時間から溶接電流の測定を開始し、Va以上に上がった時間までの短絡期間の溶接電流積分値を演算し、その後にその積分値の標準偏差を演算する。なお、判定電圧Va及びT1,T2時間の設定は任意に変更できるようになっている。
【0017】
この短絡時間溶接電流積分値は、図6に示すように1周期毎の短絡期間の溶接電流波形とその短絡時間によって囲まれる面積∫ISndtを表し、その標準偏差σ(∫ISndt)は短絡期間の溶接電流と短絡時間のバラツキを同時に表す。
【0018】
この標準偏差が大きくなると言うことは、溶滴移行がほとんど行われない瞬間短絡や短絡現象が解放されない長期短絡の発生により短絡現象が不安定であるということで、この標準偏差が低いほど短絡現象が安定し溶滴移行が周期的に行われていることを示す。
【0019】
ここでサンプリングノイズやチャタリング等による標準偏差の変化を低減するため1msec以内の短絡現象はアーク時間として演算する。この短絡期間溶接電流積分値標準偏差を基準値と比較して、基準値との差が予め設定した許容範囲を越えたとき短絡期間溶接電流標準偏差異常として異常信号を出力する。
【0020】
次に図2内サブルーチン3のアーク/短絡時間比率の標準偏差の演算について説明する。図5はこのアーク/短絡時間比率の標準偏差演算処理を行うサブルーチンの詳細である。アーク/短絡時間比率の標準偏差の演算はT1 時間タイムアップ後から、設定時間T2 までの溶接ワイヤと被溶接材間を流れる溶接電流と溶接電圧をサンプリングし、n周期目の溶接電圧V(n)がVa以上に到達した時間からアーク時間TAnの測定を開始し、Va以下に下がった時間までのアーク時間と、n周期目の溶接電圧V(n)がVa以下に到達した時間から短絡時間TSnの測定を開始し、Va以上に上がった時間までの短絡時間を測定し、アーク/短絡時間比率を演算し、その後に1周期毎のアーク/短絡時間比率の標準偏差σ(TAn/TSn)を演算する。
【0021】
このアーク/短絡時間比率標準偏差が大きくなると言うことは瞬間アーク、長期アーク及び瞬間短絡、長期短絡等の発生による溶滴移行現象が不安定であるということで、この標準偏差が低いほど溶滴移行現象が安定していることを示す。このアーク/短絡時間比率の標準偏差を基準値と比較して、基準値との差が予め設定した許容範囲を越えたときアーク/短絡時間比率異常として異常信号を出力する。
【0022】
以上のように溶接品質異常の監視をアークスタート部及び定常溶接部を除いた終端処理部だけ行うこととしたのは、溶接終端部の処理は溶接ワイヤが特有の時定数で減衰し、その惰走分を溶融させるため溶接現象が不安定になりがちで、定常溶接部の判定基準では判定ができないためである。したがって、本実施例によれば終端処理部において溶接現象が安定して形成された場合は、前記異常信号が出力されることはない。このため自動及び半自動アーク溶接装置において終端処理部における溶接現象の不安定状態を異常信号の出力により、作業者や技術者が容易に検知可能となり、異常処理等の適切な処理を施すことにより不良品の流出を確実に防止することができる。
【0023】
図7はアーク溶接中の各段階(イ)〜(チ)における溶滴の移行現象と、溶接電圧波形及び溶接電流波形を説明する図である。
【0024】
【発明の効果】
上述のように請求項1の終端処理部の溶接安定性判定方法によれば、溶接電流及び溶接電圧を所定の時間にわたって(a)〜(c)までの任意の1又は2項目以上を演算し、それぞれに対応する基準値と比較し、各定量値の何れか1つでも基準値との差が予め設定した許容範囲を越えたときに、終端処理部の溶接現象が不安定または不良であると言うことをリアルタイムに判定できるという利点がある。また溶接異常発生時の自動回復処理の電源制御信号を出力するための指標としてこれらのデータが有効に活用できるという効果も有する。
【0025】
さらに請求項2の溶接安定性判定装置によれば、溶接中に終端処理部の溶接安定性をリアルタイムに且つ正確で定量的に監視することができ、溶接品質不良品の流出を確実に防止可能にする利点がある。
【図面の簡単な説明】
【図1】本発明の終端処理部溶接安定性判定装置の一実施例の全体構成を示すブロック図である。
【図2】本発明の解析実行フローチャートである。
【図3】アーク期間溶接電流積分値標準偏差演算処理を行うサブルーチンである。
【図4】短絡期間溶接電流積分値標準偏差演算処理を行うサブルーチンである。
【図5】アーク/短絡時間比率標準偏差演算処理を行うサブルーチンである。
【図6】アーク溶接中の溶滴の移行現象、溶接電圧波形及び溶接電流波形の説明図である。
【符号の説明】
1 溶接電源
2 溶接ワイヤ
4 コンタクトチップ
5 被溶接材
6 分流器
7 溶接電流検出回路
8 溶接電圧検出回路
9 A/Dコンバータ
10 CPU
16 表示器
17 演算及び出力装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a consumable electrode type gas shielded arc welding, for the purpose of preventing outflow of poor welding quality caused by the instability of the welding phenomenon of the termination treatment portion, and a welding stability determination method of the arc welding termination treatment portion and The present invention relates to a determination device.
[0002]
[Prior art]
In consumable electrode type gas shielded arc welding, the output control of the welding power source is changed from the thyristor method to the inverter method due to the advancement of the control element, and the control speed is increased by about 50 to 200 times from 300 Hz to 15 to 60 KHz. The current waveform can be controlled, improving the arc start performance, improving the stability of the welding phenomenon during high-speed welding, reducing the amount of spatter generated, and reducing the diameter of the spherical tip of the welding wire to improve arc start performance. This is possible and the stability of the welding phenomenon is being improved.
[0003]
However, the welding quality of the termination processing section is likely to cause various abnormal phenomena due to the inertia of the wire feeding mechanism, and has become a big problem in automatic welding lines by welding robots. In general, whether or not the stability of the welding phenomenon of the termination processing unit is determined is determined by visualizing the uniformity of the appearance of the weld bead of the termination processing unit by an operator or an engineer.
[0004]
However, because of the qualitative determination by visual observation, there are individual differences in the determination in the case of a minute abnormality, and it has been difficult to obtain a uniform standard for in-line determination.
[0005]
[Problems to be solved by the invention]
At present, there is no method to monitor the welding phenomenon stability of the termination processing part in real time and quantitatively, as a countermeasure for stabilizing the welding phenomenon, regularly clean the wire feeding path, replace the wire conduit cable, These measures were taken after contact tips were replaced or when welding quality abnormalities occurred. The present invention has been made in view of the above-mentioned problems of the prior art, and aims to provide a method and apparatus for accurately determining the quality of the welding phenomenon by accurately grasping the welding phenomenon of the termination processing portion. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1
Termination part of consumable electrode type gas shielded arc welding, in which welding is performed while alternately repeating short-circuiting and arcing. In determining arc welding stability, voltage detection means for detecting the welding voltage between the welding wire and the workpiece, welding The analog output signal output using the current detection means for detecting the welding current flowing between the wire and the material to be welded is converted into a digital signal at a predetermined sampling frequency and input to the arithmetic means, and the welding stability of the termination processing section The following three items representing the degree of
(A) Standard deviation σ (∫I An dt) of the integrated value of the welding current during the arc period for each cycle
(B) Standard deviation σ (∫I Sn dt) of the integrated value of the welding current during the short-circuit period for each cycle
(C) Standard deviation σ (T An / T Sn ) of arc / short-circuit time ratio for each cycle
When any one or more items are calculated and compared with the corresponding reference values, when any one of the differences from the reference value exceeds a preset allowable range, the welding of the termination processing part Is a method for determining the welding stability of an arc welding termination processing section, characterized in that it is determined that is unstable or defective.
[0007]
The invention of claim 2
A consumable electrode type gas shielded arc welding termination treatment unit arc welding stability determination device that performs welding while alternately repeating a short circuit and an arc, and a voltage detection unit that detects a welding voltage between a welding wire and a workpiece, Based on the current detection means for detecting the welding current flowing between the welding wire and the material to be welded, the A / D converter for converting the analog output signal from both means into a digital signal, and the digital signal from the converter,
(A) Standard deviation σ (∫I An dt) of the integrated value of the welding current during the arc period for each cycle
(B) Standard deviation σ (∫I Sn dt) of the integrated value of the welding current during the short-circuit period for each cycle
(C) Standard deviation σ (T An / T Sn ) of arc / short-circuit time ratio for each cycle
The calculation means for calculating any one or more of the three items and the calculation result from the calculation means are compared with a preset reference value to determine whether the difference from the reference value is within the allowable range. And a display for displaying the output of the comparator. A welding stability determination device for an arc welding termination processing unit.
[0008]
[Action]
The degree of stability of the welding phenomenon that occurs due to the fact that the arc discharge is not stably formed in the termination processing unit, the standard deviation of the integrated welding current value in the arc period for each cycle, and the welding current in the short-circuit period for each cycle. Calculate any one or more of the three items of standard deviation of the integrated value and standard deviation of the arc / short-circuit time ratio for each cycle and display them as quantitative values, and compare them with the corresponding reference values. It is determined that the welding phenomenon is unstable when the difference between any one of the quantitative values and the reference value exceeds a preset allowable range. By doing so, it is possible to accurately and reliably detect welding quality abnormality due to instability of the welding phenomenon due to power feeding failure to the welding wire or increase in feeding resistance.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described based on examples of the drawings.
FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, reference numeral 1 denotes a welding power source that applies a predetermined current / voltage between the welding wire 2 and the workpiece 5 and the welding wire 2 is fed at a predetermined speed by the feed roller 3 to weld the workpiece 5. Be paid. 4 is a contact tip, 6 is a shunt for measuring the welding current, 7 is a current detection circuit for detecting a welding current flowing through the welding wire and the workpiece, and 8 is a welding voltage between the welding wire and the workpiece. A voltage detection circuit 9 for converting each analog output signal from both detection circuits 7 and 8 into a digital signal at a predetermined sampling frequency, and 17 an arithmetic and output device for both detection circuits 7 and 8 and A / D converter 9 is included.
[0010]
This device 17 measures the welding voltage and welding current and converts them digitally, and the standard deviation of the arc current welding current integrated value for each cycle and the standard deviation of the short circuit duration welding current integrated value, and the arc / short circuit time for each cycle. CPU 10 for performing various calculations to calculate the standard deviation of the ratio, comparing the calculation result with a preset reference value, and comparing whether the difference from the reference value is within an allowable range, and those calculations CRT 11 (display) and printer 15 for displaying and printing data, memory (ROM 12, RAM 13) for storing various data necessary for programs and calculations, keyboard 14 for inputting constants and other data necessary for measurement, and welding The display 16 displays an abnormal signal such as an abnormal current integral value or an arc / short circuit time ratio error.
[0011]
Next, a method for determining the stability of the welding phenomenon of the termination processing unit according to the present invention will be described. First, FIG. 2 shows a schematic processing flow for executing the arc discharge state analysis of the termination processing unit. First, a sampling speed, a trigger level, and an arc / short-circuit determination voltage are input from the keyboard 14 and set in the CPU 10 to start welding. When the welding voltage reaches the trigger level, the welding voltage / current input is started, and the data is stored in the RAM 13 until the number of measurements reaches the set number. When a predetermined number of samplings are completed, various calculations are performed by executing a program stored in the ROM 12.
[0012]
Here, for various calculations, setting of calculation sections can be input from the keyboard 14 to prevent erroneous determination of calculation data. That is, the arc start and the steady part can be removed from the calculation interval. When the calculation is completed, the various calculation results are compared with the corresponding reference values, and the welding phenomenon is unstable when the difference between any one of each quantitative value and the reference value exceeds a preset allowable range. As a result, an abnormality signal such as a welding current integral value abnormality or an arc / short-circuit time ratio abnormality is output, and a welding quality abnormality such as an irregular bead shape, undercut, or burnout is determined. If the arc discharge is stably formed, an OK signal is output.
[0013]
Next, the calculation of the arc period welding current integral value of subroutine 1 in FIG. 2 will be described.
FIG. 3 shows details of a subroutine for performing arc period welding current integral value standard deviation calculation processing. Calculation of arc period welding current integral value standard deviation, from one hour after the time-up T, samples the welding current and welding voltage flowing between the welding wire and material to be welded up to the set time T 2, n-th cycle of the welding voltage The welding current measurement is started from the time when the voltage reaches Va or higher, the welding current integral value of the arc period until the time when Va falls below Va is calculated, and then the standard deviation of the integrated value is calculated. The settings of the discrimination voltage Va and the times T 1 and T 2 can be freely changed.
[0014]
As shown in FIG. 6, this arc period welding current integrated value represents an arc period welding current waveform for each cycle and an area ∫I An dt surrounded by the arc time, and its standard deviation σ (∫I An dt) is It represents the welding current and arc time variation during the arc period at the same time. The fact that the standard deviation of the welding current integral value becomes large means that the droplet transfer phenomenon is unstable due to the occurrence of an instantaneous arc in which the short-circuit phenomenon almost continues or a long-term arc phenomenon that does not lead to a short-circuit. The lower the standard deviation, the more stable the droplet transfer phenomenon.
[0015]
Here, in order to reduce the change of the standard deviation due to sampling noise, chattering, etc., the arc phenomenon within 1 msec is calculated as a short circuit time. The welding current integrated value standard deviation is compared with a reference value, and when the difference from the reference value exceeds a preset allowable range, an abnormal signal is output as an arc period welding current integrated value abnormality.
[0016]
Next, the calculation of the short-circuit period welding current integral value in subroutine 2 in FIG. 2 will be described. FIG. 4 shows details of a subroutine for performing a welding current integral value standard deviation calculation process during the short-circuit period. The calculation of the standard deviation of the welding current integral value during the short-circuiting period is performed by welding flowing between the welding wire and the welded material from the time T 1 which is the start time of the steady welding measurement to the set time T 2 which is the end time of the steady welding measurement. The current and welding voltage are sampled, and the welding current measurement is started from the time when the welding voltage V (n) in the n-th cycle reaches the arc / short-circuit determination voltage Va or lower, and the short-circuit period until the time when the current rises to Va or higher is measured. Calculate the welding current integral value, and then calculate the standard deviation of the integral value. The setting of the determination voltage Va and the times T 1 and T 2 can be arbitrarily changed.
[0017]
As shown in FIG. 6, this short circuit time welding current integrated value represents the welding current waveform in each short circuit period and the area ∫I Sn dt surrounded by the short circuit time, and its standard deviation σ (∫I Sn dt). Represents simultaneously the welding current during the short circuit period and the variation in the short circuit time.
[0018]
The fact that this standard deviation increases means that the short-circuit phenomenon is unstable due to the occurrence of instantaneous short-circuits in which droplet transfer is hardly performed or long-term short-circuits in which the short-circuit phenomenon is not released. Indicates that the droplet transfer is periodically performed.
[0019]
Here, in order to reduce the change of the standard deviation due to sampling noise, chattering, etc., the short-circuit phenomenon within 1 msec is calculated as the arc time. This short-circuit period welding current integrated value standard deviation is compared with a reference value, and when the difference from the reference value exceeds a preset allowable range, an abnormality signal is output as a short-circuit period welding current standard deviation abnormality.
[0020]
Next, the calculation of the standard deviation of the arc / short circuit time ratio in subroutine 3 in FIG. 2 will be described. FIG. 5 shows the details of a subroutine for performing the standard deviation calculation processing of the arc / short-circuit time ratio. From the arc / short time ratio calculation is time T 1 after timeout of the standard deviation, and sample the welding current and welding voltage flowing between the welding wire and material to be welded up to the set time T 2, n-th cycle of the welding voltage V The measurement of the arc time T An is started from the time when (n) reaches Va or more, and the arc time until the time when it falls to Va or less, and the time when the welding voltage V (n) in the nth period reaches Va or less. The measurement of the short circuit time T Sn is started, the short circuit time until the time when the voltage rises to Va or more is measured, the arc / short circuit time ratio is calculated, and then the standard deviation σ ( T An / T Sn ) is calculated.
[0021]
The fact that the standard deviation of the arc / short-circuit time ratio increases means that the droplet transfer phenomenon due to the occurrence of instantaneous arc, long-term arc, instantaneous short-circuit, long-term short-circuit, etc. is unstable. Indicates that the transition phenomenon is stable. The standard deviation of the arc / short circuit time ratio is compared with a reference value, and when the difference from the reference value exceeds a preset allowable range, an abnormal signal is output as an arc / short circuit time ratio abnormality.
[0022]
As described above, the welding quality abnormality is monitored only in the termination processing portion excluding the arc start portion and the steady welding portion. The welding end portion processing is attenuated by a specific time constant of the welding wire. This is because the welding phenomenon tends to become unstable because the running portion is melted, and the determination cannot be made according to the criterion of the steady welded portion. Therefore, according to the present embodiment, when the welding phenomenon is stably formed in the termination processing portion, the abnormal signal is not output. For this reason, in an automatic or semi-automatic arc welding apparatus, the unstable state of the welding phenomenon in the termination processing unit can be easily detected by the output of an abnormal signal, and can be easily detected by an operator or engineer. The outflow of non-defective products can be reliably prevented.
[0023]
FIG. 7 is a diagram for explaining a droplet transfer phenomenon, a welding voltage waveform, and a welding current waveform in each stage (A) to (H) during arc welding.
[0024]
【The invention's effect】
As described above, according to the welding stability determination method of the termination processing unit according to claim 1, the welding current and the welding voltage are calculated for any one or more items from (a) to (c) over a predetermined time. When compared with the reference value corresponding to each of them, the welding phenomenon of the termination processing portion is unstable or defective when the difference between any one of the quantitative values and the reference value exceeds a preset allowable range. There is an advantage that it can be determined in real time. In addition, there is an effect that these data can be effectively used as an index for outputting a power supply control signal for automatic recovery processing when a welding abnormality occurs.
[0025]
Furthermore, according to the welding stability determination device of claim 2, the welding stability of the termination processing portion can be monitored accurately and quantitatively in real time during welding, and the outflow of defective welding quality can be reliably prevented. There is an advantage to.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of an embodiment of a termination processing portion welding stability determination device of the present invention.
FIG. 2 is an analysis execution flowchart of the present invention.
FIG. 3 is a subroutine for performing arc period welding current integral value standard deviation calculation processing;
FIG. 4 is a subroutine for performing a welding current integral value standard deviation calculation process during a short circuit period.
FIG. 5 is a subroutine for performing arc / short circuit time ratio standard deviation calculation processing;
FIG. 6 is an explanatory diagram of a droplet transfer phenomenon, a welding voltage waveform, and a welding current waveform during arc welding.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Welding power supply 2 Welding wire 4 Contact tip 5 To-be-welded material 6 Current divider 7 Welding current detection circuit 8 Welding voltage detection circuit 9 A / D converter 10 CPU
16 Display 17 Operation and Output Device

Claims (2)

短絡とアークを交互に繰り返しながら溶接をする消耗電極式ガスシールドアーク溶接の終端処理部アーク溶接安定性を判定するに際し、溶接電極(以下溶接ワイヤと称す)と被溶接材間の溶接電圧を検出する電圧検出手段と、溶接ワイヤと被溶接材間を流れる溶接電流を検出する電流検出手段を用いて出力されるアナログ出力信号を所定のサンプリング周波数でデジタル信号に変換して演算手段に入力し、終端処理部の溶接安定性の程度をあらわす次の3項目、
(a)1周期毎のアーク期間の溶接電流積分値の標準偏差
σ(∫IAndt)
(b)1周期毎の短絡期間の溶接電流積分値の標準偏差
σ(∫ISndt)
(c)1周期毎のアーク/短絡時間比率の標準偏差
σ(TAn/TSn
の内任意の1又は2項目以上を演算し、それぞれに対応する基準値と比較して、何れか1つでも基準値との差が予め設定した許容範囲を越えたときに終端処理部の溶接が不安定または不良であると判定することを特徴とするアーク溶接終端処理部の溶接安定性判定方法。
Termination part of consumable electrode type gas shielded arc welding, in which welding is performed while alternately repeating short-circuiting and arcing, to detect the welding voltage between the welding electrode (hereinafter referred to as the welding wire) and the workpiece to be welded. An analog output signal output using a voltage detection means, and a current detection means for detecting a welding current flowing between the welding wire and the material to be welded, is converted into a digital signal at a predetermined sampling frequency, and input to the calculation means, The following three items that indicate the degree of welding stability of the end treatment part:
(A) Standard deviation σ (∫I An dt) of the integrated value of the welding current during the arc period for each cycle
(B) Standard deviation σ (∫I Sn dt) of the integrated value of the welding current during the short-circuit period for each cycle
(C) Standard deviation σ (T An / T Sn ) of arc / short-circuit time ratio for each cycle
When any one or more items are calculated and compared with the corresponding reference values, when any one of the differences from the reference value exceeds a preset allowable range, the welding of the termination processing part Is determined to be unstable or defective. A method for determining the welding stability of an arc welding termination treatment section.
短絡とアークを交互に繰り返しながら溶接をする消耗電極式ガスシールドアーク溶接の終端処理部アーク溶接安定性判定装置であって、溶接ワイヤと被溶接材間の溶接電圧を検出する電圧検出手段と、溶接ワイヤと被溶接材間を流れる溶接電流を検出する電流検出手段と、両手段からのアナログ出力信号をデジタル信号に変換するA/Dコンバータと、該コンバータからのデジタル信号を基に、
(a)1周期毎のアーク期間の溶接電流積分値の標準偏差
σ(∫IAndt)
(b)1周期毎の短絡期間の溶接電流積分値の標準偏差
σ(∫ISndt)
(c)1周期毎のアーク/短絡時間比率の標準偏差
σ(TAn/TSn
の3項目の内任意の1又は2項目以上を演算する演算手段と、演算手段からの演算結果を予め設定された基準値と比較し、基準値との差が許容範囲内か否かを判定する比較器と、比較器の出力を表示する表示器とからなることを特徴とするアーク溶接終端処理部の溶接安定性判定装置。
A consumable electrode type gas shielded arc welding termination treatment unit arc welding stability determination device that performs welding while alternately repeating a short circuit and an arc, and a voltage detection unit that detects a welding voltage between a welding wire and a workpiece, Based on the current detection means for detecting the welding current flowing between the welding wire and the material to be welded, the A / D converter for converting the analog output signal from both means into a digital signal, and the digital signal from the converter,
(A) Standard deviation σ (∫I An dt) of the integrated value of the welding current during the arc period for each cycle
(B) Standard deviation σ (∫I Sn dt) of the integrated value of the welding current during the short-circuit period for each cycle
(C) Standard deviation σ (T An / T Sn ) of arc / short-circuit time ratio for each cycle
The calculation means for calculating any one or more of the three items and the calculation result from the calculation means are compared with a preset reference value to determine whether the difference from the reference value is within the allowable range. And a display for displaying the output of the comparator. A welding stability determination device for an arc welding termination processing section.
JP28974097A 1997-10-22 1997-10-22 Welding stability determination method and stability determination device for arc welding termination processing section Expired - Fee Related JP3898812B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28974097A JP3898812B2 (en) 1997-10-22 1997-10-22 Welding stability determination method and stability determination device for arc welding termination processing section
US09/175,564 US6031203A (en) 1997-10-22 1998-10-20 Method and apparatus for determining stability of arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28974097A JP3898812B2 (en) 1997-10-22 1997-10-22 Welding stability determination method and stability determination device for arc welding termination processing section

Publications (2)

Publication Number Publication Date
JPH11123548A JPH11123548A (en) 1999-05-11
JP3898812B2 true JP3898812B2 (en) 2007-03-28

Family

ID=17747154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28974097A Expired - Fee Related JP3898812B2 (en) 1997-10-22 1997-10-22 Welding stability determination method and stability determination device for arc welding termination processing section

Country Status (1)

Country Link
JP (1) JP3898812B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285203B2 (en) * 1999-11-15 2002-05-27 ナストーア株式会社 Method for monitoring arc welding apparatus and arc welding apparatus
JP4642267B2 (en) * 2001-04-26 2011-03-02 中央精機株式会社 Pulse arc welding welding stability assessment device
JP4703910B2 (en) * 2001-08-10 2011-06-15 中央精機株式会社 Apparatus and method for determining electrode tip wear state

Also Published As

Publication number Publication date
JPH11123548A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
CN109834367B (en) System and method for torch oscillation
EP1252962A2 (en) Welding process stability assessment apparatus for pulsed arc welding
KR100503554B1 (en) Arc welding monitoring device
US5756967A (en) Sensing ARC welding process characteristics for welding process control
US5349156A (en) Sensing of gas metal arc welding process characteristics for welding process control
US6236017B1 (en) Method and apparatus for assessing weld quality
JP2003094167A (en) Arc welding quality evaluation device
EP1283088B1 (en) Apparatus and method for assessing the state of wear of electrode tips used in consumable electrode gas shield arc welding
US20110192828A1 (en) System for monitoring arc welding processes and corresponding monitoring method
JP3898811B2 (en) Method and apparatus for determining welding stability of arc welding steady state part
JP3898810B2 (en) Welding stability determination method and stability determination device at arc start
JP3898812B2 (en) Welding stability determination method and stability determination device for arc welding termination processing section
JP4642267B2 (en) Pulse arc welding welding stability assessment device
JP4271293B2 (en) Optimal control method and apparatus for arc welding
EP1233843B1 (en) Method and apparatus for monitoring weld quality
JP4534770B2 (en) Welding monitoring device and welding monitoring method
JP3697359B2 (en) Arc welding stability judgment method and apparatus
JP2000024779A (en) Method and device for evaluating service life of welding tip
JPH0484673A (en) Arc welding monitoring device
JPS61199578A (en) Welding monitoring device in arc welding robot
JP2002321053A (en) Device for determination of welding stability of pulsed arc welding
JPH0644542Y2 (en) Inverter resistance welding machine control or measuring device
JPH07323376A (en) Resistance welding method of stud and device therefor
JP2006122950A (en) Spot-welding monitoring instrument
JP3396602B2 (en) Method and apparatus for monitoring welding quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees