JP2002316827A - Cooling method and cooling device for glass panel molding for cathode ray tube - Google Patents

Cooling method and cooling device for glass panel molding for cathode ray tube

Info

Publication number
JP2002316827A
JP2002316827A JP2002000466A JP2002000466A JP2002316827A JP 2002316827 A JP2002316827 A JP 2002316827A JP 2002000466 A JP2002000466 A JP 2002000466A JP 2002000466 A JP2002000466 A JP 2002000466A JP 2002316827 A JP2002316827 A JP 2002316827A
Authority
JP
Japan
Prior art keywords
cooling
cooling air
molded body
cathode ray
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002000466A
Other languages
Japanese (ja)
Inventor
Kentaro Riyuuyo
健太郎 龍腰
Tetsuo Tominaga
哲郎 富永
Hiroshi Takamukai
洋 高向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002000466A priority Critical patent/JP2002316827A/en
Publication of JP2002316827A publication Critical patent/JP2002316827A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • C03B11/127Cooling of hollow or semi-hollow articles or their moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve productivity by efficiently cooling a peripheral part while suppressing cooling of the central part of a face section in a pressure molding manufacturing process step for glass panels for cathode ray tubes. SOLUTION: A shielding plate 3 is disposed below a duct 4 for cooling a molding 1 and the cooling air blown off from the duct 4 is blown to this shielding plate 3 and is introduced into the peripheral part 7 of the face section 5, by which the portions exclusive of the portions protected by the shielding plate 3 are preferentially cooled while the cooling of the portions protected by the shielding plate 3 of the face section is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、陰極線管用ガラス
パネル成型体の製造工程における加圧成型直後の成型体
の冷却に関し、特に成型体の遮断版で保護された中央部
の冷却を抑制しながらその他の部分を効果的に冷却する
方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cooling of a molded body immediately after pressure molding in a manufacturing process of a glass panel molded body for a cathode ray tube, and more particularly to cooling of a central portion of the molded body which is protected by a shield plate. The present invention relates to a method and apparatus for effectively cooling other parts.

【0002】[0002]

【従来の技術】陰極線管用ガラスパネル(以下、「パネ
ル」とも記載する)の製造方法としては、溶融ガラスを
一定量下型に供給し、次いで上型を下降させて加圧成型
した後、上型を上昇させて引き続き下型内で成型体を冷
却した後に取り出すようにした方法が一般的であり、以
下にこの方法について具体的に説明する。
2. Description of the Related Art As a method of manufacturing a glass panel for a cathode ray tube (hereinafter, also referred to as a "panel"), a certain amount of molten glass is supplied to a lower mold, and then the upper mold is lowered to perform pressure molding. In general, a method in which the mold is raised and the molded body is cooled in the lower mold and then taken out is used, and this method will be specifically described below.

【0003】まず、ゴブと呼ばれる所定量の溶融ガラス
塊が、パネルの端部を成型するための中間型を載せた下
型に供給される。ゴブが装填された下型は、続いて加圧
成型ポジションに運ばれ、該加圧成型ポジションで上型
が下降してきてゴブは中空箱型のパネル形状に加圧成型
される。
[0003] First, a predetermined amount of molten glass mass called a gob is supplied to a lower mold on which an intermediate mold for molding an end of a panel is placed. The lower mold having the gob loaded thereon is subsequently transported to a pressure molding position, at which the upper mold descends, and the gob is pressure molded into a hollow box-shaped panel shape.

【0004】このとき相対的に低温の上型によって下型
内のガラスは急冷されるが、その後、上型が上昇してさ
らに中間型が外されてからも、下型内の陰極線管用ガラ
スパネル成型体(以下「成型体」とも記載する)は、下
型から取り出せる温度になるまでは引き続き冷却され
る。この場合、複数の下型が回転盤に等間隔で配置され
ている成型装置では、この冷却は下型が回転盤の回動に
より複数の冷却ポジションに順次運ばれて行われる。各
冷却ポジションにおいて、成型体と下型との接触面は下
型によって冷却され、また成型体の内面は下型の上方に
設けたダクトから吹き出される冷却空気により冷却され
る。
At this time, the glass in the lower mold is quenched by the upper mold having a relatively low temperature. However, even after the upper mold rises and the intermediate mold is further removed, the glass panel for a cathode ray tube in the lower mold is removed. The molded body (hereinafter also referred to as a “molded body”) is continuously cooled until the temperature can be taken out of the lower mold. In this case, in a molding apparatus in which a plurality of lower dies are arranged at equal intervals on a rotating disk, this cooling is performed by sequentially rotating the lower die to a plurality of cooling positions by rotating the rotating disk. In each cooling position, the contact surface between the molded body and the lower mold is cooled by the lower mold, and the inner surface of the molded body is cooled by cooling air blown from a duct provided above the lower mold.

【0005】この冷却工程についてさらに詳述すると、
中間型を外す前の成型体がまだ高温で柔らかいうちは、
エアーフォーマーと呼ばれる、冷却効率よりも成型体の
側面部の倒れ込み防止に重点をおいた装置によって冷却
がなされる。そして、中間型が外された後の冷却は冷却
効率に重点をおいて行われ、通常は円形断面を有するダ
クトから送風機により冷却空気を供給し、前記成型体の
内表面中央部に吹き付けて行う。
[0005] The cooling step will be described in more detail.
While the molded body before removing the intermediate mold is still hot and soft,
Cooling is performed by a device called an air former, which focuses more on preventing the side of the molded product from falling down than on cooling efficiency. The cooling after the removal of the intermediate mold is performed with emphasis on the cooling efficiency, and is usually performed by supplying cooling air from a duct having a circular cross section with a blower and spraying the air on the center of the inner surface of the molded body. .

【0006】図6は、下型内の成型体の内面を冷却する
際の状態を示す基本構成図であり、図7は、前記成型体
の断面を示す概略説明図である。図6のように成型体1
は下型2内に置かれ、この状態で下型2の上方に配置し
たダクト4から送られてくる空気によって内面が冷却さ
れる。成型体がその後の取り扱いで変形が実質的に生じ
ない程度まで十分に冷却されると、成型体は下型から取
り出されて次工程へと送られる。そして、成型体を取り
出した後の下型は、次のゴブの供給ポジションへと送ら
れる。
FIG. 6 is a basic configuration diagram showing a state in which the inner surface of the molded body in the lower mold is cooled, and FIG. 7 is a schematic explanatory view showing a cross section of the molded body. As shown in FIG.
Is placed in the lower mold 2, and in this state, the inner surface is cooled by air sent from the duct 4 disposed above the lower mold 2. When the molded body is sufficiently cooled to such a degree that deformation does not substantially occur in subsequent handling, the molded body is removed from the lower mold and sent to the next step. Then, the lower mold after removing the molded body is sent to the next gob supply position.

【0007】また、前記成型体1は、図7に示すように
画像を表示するスクリーンを有し略矩形に形成されてい
るフェース部5と、該フェース部5と実質的に垂直とな
るように設けられ側壁を構成するスカート部6とを備え
ている。前記スカート部6の端部はシールエッジ部9を
有している。
As shown in FIG. 7, the molded body 1 has a face portion 5 having a screen for displaying an image and formed in a substantially rectangular shape, and is formed so as to be substantially perpendicular to the face portion 5. And a skirt portion 6 forming a side wall. The end of the skirt 6 has a sealing edge 9.

【0008】[0008]

【発明が解決しようとする課題】近年、陰極線管の画像
表示面のフラット化が急速に進みつつある。それに伴っ
て、シャドウマスクタイプの陰極線管では、その構造上
内面が比較的大きな曲率を有する球面を持つ必要がある
ため、図7に示すようにパネル(成型体1)のフェース
部5は、周辺部7の厚さが中央部8の厚さの2倍以上と
なるように設計される。すなわち、フェース部5の断面
は方位により若干の肉厚分布の違いはあるが、中央から
周辺に向かって厚肉となる偏肉形状となる。
In recent years, the flattening of the image display surface of a cathode ray tube has been rapidly progressing. Accordingly, in the shadow mask type cathode ray tube, since the inner surface needs to have a spherical surface having a relatively large curvature due to its structure, as shown in FIG. The thickness of the portion 7 is designed to be at least twice the thickness of the central portion 8. In other words, the cross section of the face portion 5 has a thickness variation from the center to the periphery, although the thickness distribution is slightly different depending on the orientation.

【0009】このため、前記製造工程において成型体を
冷却する際に、この偏肉形状のため中央部は過冷却、周
辺部は冷却不足という問題が生じる。特に、この現象は
従来の内面中央部に向けた単一のダクト冷却(図6参
照)のとき、より助長される傾向がある。このため、下
型内の成型体をこの冷却工程において物理強化すると
き、フェース部の周辺部7と中央部8とで大きな強化応
力値の差異が生じる。フェース部の周辺部7は均一の肉
厚分布であっても、フェース部の周縁に直角に延在する
スカート部の影響で冷却しにくいうえに、相対的に他の
部位より肉厚が厚いことに起因する冷却不足が更に重な
るため、周辺部7の強化応力は相対的にかなり低くな
る。
For this reason, when the molded body is cooled in the manufacturing process, there is a problem that the central portion is overcooled and the peripheral portion is insufficiently cooled due to the uneven thickness. In particular, this phenomenon tends to be further exacerbated when the conventional single duct cooling toward the center of the inner surface (see FIG. 6). Therefore, when the molded body in the lower mold is physically strengthened in this cooling step, a large difference in the reinforcing stress value occurs between the peripheral portion 7 and the central portion 8 of the face portion. Even if the peripheral portion 7 of the face portion has a uniform thickness distribution, it is difficult to cool due to the influence of the skirt portion extending at right angles to the peripheral edge of the face portion, and is relatively thicker than other portions. In addition, since the insufficient cooling caused by the above is further overlapped, the reinforcing stress of the peripheral portion 7 is relatively considerably reduced.

【0010】一方陰極線管は、その使用時において排気
・減圧され、内部が真空状態になるため、外囲器には随
所に引っ張り性の応力(以下、これを「引張り性真空応
力」と記載する)が発生する。前記の引張り性真空応力
は、パネルの形状や肉厚などにより応力値の大きさや分
布が変わる。この引張り性真空応力の大きさと分布をほ
ぼ矩形状のフェース部について見ると、フェース部外表
面の周辺部、特に短軸と長軸の端部において最大とな
る。したがって、パネルをこの最大引張り真空応力に対
抗できるようにするためには、これら短軸と長軸の端部
を含むフェース部の周辺部に相対的に大きい強化応力を
付与することが望ましい。
[0010] On the other hand, the cathode ray tube is evacuated and decompressed during use, and the inside thereof is in a vacuum state. Therefore, the envelope has a tensile stress (hereinafter referred to as "tensile vacuum stress") everywhere. ) Occurs. The magnitude and distribution of the tensile vacuum stress vary depending on the shape and thickness of the panel. Looking at the magnitude and distribution of the tensile vacuum stress for the substantially rectangular face portion, the maximum is at the periphery of the outer surface of the face portion, particularly at the ends of the short axis and the long axis. Therefore, in order to allow the panel to withstand the maximum tensile vacuum stress, it is desirable to apply a relatively large reinforcing stress to the peripheral portion of the face portion including the ends of the short axis and the long axis.

【0011】しかしながら、従来の冷却技術では前記の
ように、フェース部の周辺部には、フェース部の中央部
などより小さい強化圧縮応力しか付与できないために、
所望の物理強化を施したパネルを製造することが困難で
ある。特に、フェース部の外面がフラットなパネルを十
分に物理強化することは至難である。
However, in the conventional cooling technique, as described above, only a smaller strengthening compressive stress can be applied to the peripheral portion of the face portion such as the central portion of the face portion.
It is difficult to produce panels with the desired physical reinforcement. In particular, it is very difficult to sufficiently physically reinforce a flat panel with a flat outer surface.

【0012】本発明は、特にこのようなフェース部の周
辺部が厚肉な偏肉パネルに対して、冷却効率が中央部で
低く、かつ周辺部で高くなるような冷却方法と装置を提
供することを目的とする。
The present invention provides a cooling method and a cooling apparatus in which the cooling efficiency is low at the central portion and high at the peripheral portion, particularly for such an uneven thickness panel whose peripheral portion of the face portion is thick. The purpose is to:

【0013】[0013]

【課題を解決するための手段】本発明は、前述の課題を
解決するためになされたものであり、特にフェース部の
周辺部肉厚が中央部肉厚より大きい偏肉パネルガラスの
製造工程において、下型内の成型体を冷却する際、成型
体の厚肉部の冷却を促進するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and particularly, in a manufacturing process of an uneven thickness panel glass in which a peripheral portion of a face portion is thicker than a central portion. When the molded body in the lower mold is cooled, the cooling of the thick part of the molded body is promoted.

【0014】すなわち、本発明は、溶融したガラスを下
型に供給し、次いで上型を下降させて前記ガラスを加圧
成型した後、前記上型を上昇させ下型の上方に設けたダ
クトから下型内の陰極線管用ガラスパネル成型体のフェ
ース部内表面中央またはフェース部内表面中央近傍に向
けて冷却空気を吹き付ける冷却方法において、冷却空気
を前記ダクトの冷却空気吹き出し口と陰極線管用ガラス
パネル成型体のフェース部内表面との間に設けられた遮
断板に当てることにより、前記フェース部内表面のう
ち、遮断板を冷却空気の吹き出し方向に投影して得られ
る冷却抑制領域への冷却空気の直接衝突を抑制しなが
ら、前記冷却抑制領域以外の部分を冷却することを特徴
とする陰極線管用ガラスパネル成型体の冷却方法を提供
する。
That is, according to the present invention, the molten glass is supplied to a lower mold, and then the upper mold is lowered to form the glass under pressure, and then the upper mold is raised to form a duct provided above the lower mold. In a cooling method of blowing cooling air toward the center of the face part inner surface or the vicinity of the center of the face part inner surface of the cathode ray tube glass panel molded body in the lower mold, the cooling air is blown out from the cooling air outlet of the duct and the cathode ray tube glass panel molded body. By hitting against a blocking plate provided between the inner surface of the face and the cooling plate, the direct collision of the cooling air with the cooling suppression region obtained by projecting the blocking plate in the direction of blowing the cooling air on the inner surface of the face portion is suppressed. The present invention also provides a method for cooling a glass panel molded body for a cathode ray tube, which cools a portion other than the cooling suppression region.

【0015】また、本発明は、加圧成型した後の成型体
を乗載する下型と、該下型の上方に設けられ下端の開口
部から冷却空気を吹き出す冷却空気吹き出し口を有する
ダクトと、前記下型内の成型体のフェース部内表面中央
と前記冷却空気吹き出し口との間に、冷却空気が前記フ
ェース部内表面中央またはその近傍に直接に当たらない
ようにする遮断板とを設けたことを特徴とする陰極線管
用ガラスパネル成型体の冷却装置を提供する。
Further, the present invention provides a lower mold on which a molded body after pressure molding is mounted, and a duct provided above the lower mold and having a cooling air outlet for blowing cooling air from an opening at a lower end. A blocking plate is provided between the center of the face inner surface of the molded body in the lower mold and the cooling air outlet to prevent the cooling air from directly hitting the center of the face inner surface or its vicinity. The present invention provides a cooling apparatus for a glass panel molded body for a cathode ray tube, characterized by the following.

【0016】本発明の冷却装置において、前記遮断板
は、実質的に平板、または冷却空気の吹き出し方向と反
対方向に凸状の非平板であって、冷却空気の吹き出し方
向に垂直な断面における前記ダクトの吹き出し口の内壁
を外周とする領域の面積をS、前記遮断板を冷却空気
の吹き出し方向に投影して得られる領域の面積をS
ガラスパネルのシールエッジ部内壁側を外周とする開口
部面積をSとするとき、S≦S≦0.75S
る関係を有するものであることが好ましい。
In the cooling device according to the present invention, the blocking plate is substantially a flat plate or a non-flat plate convex in a direction opposite to the direction in which the cooling air is blown out, and has a cross section perpendicular to the direction in which the cooling air is blown out. The area of a region having the inner wall of the outlet of the duct as the outer periphery is S D , the area of a region obtained by projecting the blocking plate in the direction of blowing the cooling air is S B ,
When the opening area of the outer peripheral sealing edge portion inner wall of the glass panel and S S, it preferably has a S D ≦ S B ≦ 0.75S S the relationship.

【0017】[0017]

【発明の実施の形態】本発明は、基本的にはダクトから
の高速の冷却空気と遮断板とで構成されるが、遮断板の
形状および設置位置が技術的に重要となる。一般に、遮
断板の形状および設置位置は製造設備の形態によって異
なるが、ダクトからの冷却空気が直接に成型体のフェー
ス部の中央部に当たらないようにする遮断機能を有して
いる点では共通している。つまり、この遮断機能はフェ
ース部の中央部の冷却を抑制するもので、遮断板の基本
機能である。なお、実際の遮断板においては、成型体の
形状、肉厚分布などの製品仕様に合った所望の冷却がで
きるように形状を設計し、設置位置が調整されることは
言うまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is basically composed of high-speed cooling air from a duct and a blocking plate, but the shape and installation position of the blocking plate are technically important. In general, the shape and installation position of the shielding plate differ depending on the form of the manufacturing equipment, but are common in that they have a shielding function that prevents cooling air from the duct from directly hitting the center of the face of the molded body. are doing. That is, this blocking function suppresses the cooling of the central portion of the face portion, and is a basic function of the blocking plate. Needless to say, in the actual shielding plate, the shape is designed and the installation position is adjusted so that desired cooling can be performed in accordance with product specifications such as the shape and thickness distribution of the molded body.

【0018】本発明の好ましい実施態様において、遮断
板はダクトの先端部に冶具を介して固定して設けられて
おり、ダクトから吹き出された冷却空気がこの遮断板に
当ったとき略平行平板流状流れが得られるように、遮断
板とダクトとの間に所定の間隔が設けられている。この
遮断板の位置としては、大きく分けて二通りある。第一
は成型体の上方の位置であり、第二は成型体の中空内部
の位置である。遮断板を成型体の内部に設けるには、遮
断板を装着したダクトを上方から下降させて装入しなけ
ればならない。このため、製造装置の冷却ポジションで
前記ダクトは上下に昇降する機構(以下、「上下機構」
と記載する)を具備している。
In a preferred embodiment of the present invention, the shut-off plate is fixedly provided at the end of the duct via a jig, and when the cooling air blown out of the duct hits the shut-off plate, a substantially parallel plate flow is formed. A predetermined interval is provided between the shut-off plate and the duct so that a state flow is obtained. The position of the blocking plate can be roughly divided into two types. The first is a position above the molded body, and the second is a position inside the hollow of the molded body. In order to provide the shielding plate inside the molded body, the duct to which the shielding plate is attached must be lowered from above and inserted. For this reason, in the cooling position of the manufacturing apparatus, the duct moves up and down (hereinafter, referred to as a “vertical mechanism”).
Described below).

【0019】次に、本発明を図面に従って具体的に説明
する。図1は、製造装置の冷却ポジションにおける本発
明の基本構成を示す断面説明図、図2は図1の上方から
見た平面図である。冷却時の成型体1は、図1に示すよ
うに加圧成型後に中間型と上型が外されて下型2に乗載
されている。この下型2の上方には、上下機構を装備し
たダクト4が成型体1の中心に向けて設けられており、
遮断板3はこのダクト4の冷却空気吹き出し口11から
所定の間隔をおいて装着されている。
Next, the present invention will be specifically described with reference to the drawings. FIG. 1 is a cross-sectional explanatory view showing a basic configuration of the present invention at a cooling position of a manufacturing apparatus, and FIG. 2 is a plan view seen from above in FIG. The molded body 1 at the time of cooling is mounted on the lower mold 2 with the intermediate mold and the upper mold removed after pressure molding as shown in FIG. Above the lower mold 2, a duct 4 equipped with a vertical mechanism is provided toward the center of the molded body 1.
The blocking plate 3 is mounted at a predetermined distance from the cooling air outlet 11 of the duct 4.

【0020】冷却ポジションにおいて前記ダクト4が上
下機構の作動により降下すると、遮断板3も一緒に下り
て成型体の中空内部12に装入され、成型体1からの高
さが所定となる位置に保持される。この状態でダクト4
から所定流量の冷却空気を所定速度で吹き出すと、冷却
空気は遮断板3に当り平行平板流状流れとなって遮断板
3に沿って水平方向に広がり、成型体1のフェース部の
遮断版3で保護された以外の部分を優先的に冷却する。
このとき、ダクト4から吹き出され前記フェース部の中
央部に向かう冷却空気は遮断板3により遮断されるの
で、フェース部の内表面中央部8は冷却空気によって直
接に冷却されない。その結果、フェース部の内表面中央
部8の冷却は抑制されるため、この部分は温度が維持さ
れる。
When the duct 4 is lowered by the operation of the vertical mechanism in the cooling position, the shut-off plate 3 is also lowered and inserted into the hollow interior 12 of the molded body, and is located at a position where the height from the molded body 1 becomes a predetermined value. Will be retained. In this state, duct 4
When a predetermined flow rate of cooling air is blown out from the cooling plate at a predetermined speed, the cooling air hits the blocking plate 3 and becomes a parallel flat plate-like flow and spreads horizontally along the blocking plate 3, and the blocking plate 3 on the face portion of the molded body 1. The parts other than those protected by are preferentially cooled.
At this time, the cooling air blown out from the duct 4 toward the center of the face portion is blocked by the blocking plate 3, so that the inner surface center portion 8 of the face portion is not directly cooled by the cooling air. As a result, since the cooling of the central portion 8 of the inner surface of the face portion is suppressed, the temperature of this portion is maintained.

【0021】次に、本発明に有用な遮断板について説明
する。図1および図2に例示した遮断板3は、矩形状の
平板である。このような平板状の遮断板3は、前述の例
のように遮断板3を成型体1の中空内部12に装入して
冷却空気を水平方向に流動させる場合には、形状が単純
で使用しやすいことから最も適している。遮断板が成型
体1の中空内部12に装入されていれば、遮断板に沿っ
て水平方向に流動する冷却空気により、成型体1の遮断
版で保護された領域、すなわち前記フェース部内表面の
うち、遮断板を冷却空気の吹き出し方向に投影して得ら
れる冷却抑制領域以外の領域(以下、「優先冷却領域」
という)を優先的に冷却できるからである。
Next, a shielding plate useful in the present invention will be described. The blocking plate 3 illustrated in FIGS. 1 and 2 is a rectangular flat plate. Such a flat blocking plate 3 has a simple shape when the blocking plate 3 is inserted into the hollow interior 12 of the molded body 1 and the cooling air flows in the horizontal direction as in the above-described example. Most suitable because it is easy to do. If the shielding plate is inserted into the hollow interior 12 of the molded body 1, the area protected by the shielding plate of the molded body 1 by the cooling air flowing in the horizontal direction along the shielding plate, that is, the inner surface of the face portion Areas other than the cooling suppression area obtained by projecting the blocking plate in the direction in which the cooling air is blown out (hereinafter referred to as “priority cooling area”)
) Can be preferentially cooled.

【0022】なお、前記優先冷却領域の局部的な冷却を
防ぐために、前記遮断板3を冷却空気の吹き出し方向に
投影して得られる領域の面積をS、ガラスパネル(成
型体1)のシールエッジ部内壁側13を外周とする略矩
形の開口部面積をSとするとき、S≦0.75S
なる関係を有するものであることが好ましい。また、前
記冷却抑制領域の必要以上の冷却を防止するには、冷却
空気の吹き出し方向に垂直な断面における前記ダクト4
の吹き出し口11の内壁(内径)を外周とする領域の面
積をSとするとき、S≦Sであることが好まし
く、すなわちS≦S≦0.75Sなる関係を有す
ることが好ましい。なお、この面積の関係は、後述する
他の形状の遮断板でも同じである。
In order to prevent local cooling of the preferential cooling area, the area of the area obtained by projecting the blocking plate 3 in the direction in which the cooling air is blown out is defined as S B , and the sealing of the glass panel (molded body 1) is performed. Assuming that the area of the substantially rectangular opening having the edge portion inner wall side 13 as the outer periphery is S S , S B ≦ 0.75S S
It is preferable that they have the following relationship. Further, in order to prevent the cooling suppression region from being cooled more than necessary, the duct 4 in a cross section perpendicular to the direction in which the cooling air is blown out.
When the area of the region to outlet 11 outer circumference an inner wall (inner diameter) of the S D, to have preferably a S DS B, i.e. S DS B ≦ 0.75S S the relationship Is preferred. Note that the relationship between the areas is the same in the case of another shape of the shielding plate described later.

【0023】図3は本発明における遮断板の他の形状を
示し、(a)は平面図、(b)は(a)のA−A部の断
面図である。この遮断板3は四角錐状のもので、ダクト
から送り出された冷却空気は、遮断板に当たった後に四
角錐の傾斜面に沿って流動して、優先冷却領域を優先的
に冷却する。
FIGS. 3A and 3B show other shapes of the blocking plate according to the present invention, wherein FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along the line AA in FIG. The blocking plate 3 is in the shape of a quadrangular pyramid, and the cooling air sent out of the duct flows along the inclined surface of the quadrangular pyramid after hitting the blocking plate to cool the preferential cooling region preferentially.

【0024】図4はさらに他の形状の遮断板を示したも
ので、(a)は平面図、(b)は(a)のB−B部の断
面図である。この遮断板3は断面が山形であり、山形の
稜線部を例えば成型体の短軸に合わせて使用すると、成
型体1の長軸側の周辺部のみ効率的に冷却でき、短軸側
の周辺部は成型体の中央部と同様にほとんど冷却されな
い。
FIGS. 4 (a) and 4 (b) show a further different shape of the blocking plate. FIG. 4 (a) is a plan view, and FIG. This blocking plate 3 has a mountain-shaped cross section, and when the ridge of the mountain is used, for example, in accordance with the short axis of the molded body, only the peripheral part on the long axis side of the molded body 1 can be efficiently cooled, and the peripheral part on the short axis side can be cooled. The part is hardly cooled like the central part of the molded body.

【0025】本発明において、遮断板の形状は前記のよ
うに適宜変えることができる。また、図3および図4に
は複数の平面で構成される遮断板を示したが、これらの
遮断板3は冷却空気の流動性や方向を改善するために、
例えば所望の曲率を有し、冷却空気の吹き出し方向と反
対方向に凸状の曲面であってもよい。
In the present invention, the shape of the blocking plate can be appropriately changed as described above. Further, FIGS. 3 and 4 show the blocking plate composed of a plurality of planes. These blocking plates 3 are used to improve the flowability and direction of the cooling air.
For example, a curved surface having a desired curvature and projecting in a direction opposite to the direction in which the cooling air is blown out may be used.

【0026】さらに、適当な形状の遮断板3を実際に選
定する場合、製造装置のダクトが上下機構(図示せず)
を具備していれば、遮断板3を成型体の中空内部12に
装入できるので、いずれの形状の遮断板3も適用でき
る。しかし、ダクト4が上下機構を具備していないとき
には、図3または図4のような、冷却空気の吹き出し方
向と反対方向に凸状の非平板の遮断板が用いられる。ダ
クト4が上下機構を具備していないと、遮断板は成型体
1の上方に位置させざるを得ない。このため冷却空気を
成型体1の周辺部7に導くには、傾斜面を持った遮断板
3でなければならないからである。
Further, when actually selecting an appropriate shape of the shielding plate 3, the duct of the manufacturing apparatus is provided with a vertical mechanism (not shown).
Is provided, the blocking plate 3 can be inserted into the hollow interior 12 of the molded body, so that any shape of the blocking plate 3 can be applied. However, when the duct 4 is not provided with a vertical mechanism, a non-flat blocking plate that is convex in the direction opposite to the direction in which the cooling air is blown out is used as shown in FIG. 3 or FIG. If the duct 4 is not provided with a vertical mechanism, the blocking plate must be located above the molded body 1. Therefore, in order to guide the cooling air to the peripheral portion 7 of the molded body 1, the shielding plate 3 must have an inclined surface.

【0027】また、本発明の遮断板3により成型体1を
好ましく冷却するには、ダクト4からの冷却空気の流速
は50m/秒以上が望ましい。この流速は、遮断板3を
用いない通常の方法における流速(約10〜40m/
秒)に比べると、かなり大きい速度である。流速が50
m/秒より小さいと、ダクトから吹き出された冷却空気
が遮断板に当たったときに好ましい平行平板流状流れが
形成されなくなる、所望の冷却効果が得られなくなる、
均一な冷却が困難となる、等の問題の原因となる。前記
流速は、100m/秒以上であれば、より好ましい。
In order to preferably cool the molded body 1 by the blocking plate 3 of the present invention, the flow rate of the cooling air from the duct 4 is desirably 50 m / sec or more. This flow rate is the flow rate (about 10 to 40 m /
Second), which is considerably faster. Flow velocity is 50
If the flow rate is less than m / sec, the cooling air blown out from the duct will not form a desirable parallel flat plate flow when hitting the shut-off plate, and the desired cooling effect will not be obtained.
This causes problems such as difficulty in uniform cooling. The flow rate is more preferably 100 m / sec or more.

【0028】さらに、成型体1を複数の冷却ポジション
に順次移動して冷却するとき、通常は各冷却ポジション
において本発明の冷却方法を実施するが、これら冷却ポ
ジションの一部だけに本発明を適用してもよい。
Further, when the molded body 1 is successively moved to a plurality of cooling positions for cooling, the cooling method of the present invention is usually carried out at each cooling position, but the present invention is applied to only a part of these cooling positions. May be.

【0029】[0029]

【実施例】複数の冷却ポジションがある製造装置のうち
の一つの冷却ポジションに、図1および図2に例示した
平板状の遮断板3を装備する冷却装置を設置した。この
冷却ポジションのダクト4は上下機構を具備しており、
遮断板3を成型体1の中空内部12まで押し下げられる
ようになっている。下型2に乗載した成型体1は、この
状態で、ダクト4と平板状遮断板3で構成される冷却装
置で冷却される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A cooling device equipped with a flat blocking plate 3 illustrated in FIGS. 1 and 2 was installed at one of the manufacturing devices having a plurality of cooling positions. The duct 4 in this cooling position has a vertical mechanism,
The blocking plate 3 can be pushed down to the hollow interior 12 of the molded body 1. In this state, the molded body 1 mounted on the lower mold 2 is cooled by a cooling device including the duct 4 and the flat blocking plate 3.

【0030】この冷却装置により17型陰極線管用パネ
ルの成型体を冷却した。このパネルはフェース部外表面
が実質的にフラット(曲率半径50000mm)で、フ
ェース部の中央部8の肉厚は約11mm、フェース部の
周辺部にあたる長軸端部の肉厚は約20mm、フェース
部の周辺部にあたる対角軸端部の肉厚は約22mmの偏
肉分布をしている。
The molded body of the 17-inch cathode ray tube panel was cooled by the cooling device. In this panel, the outer surface of the face portion is substantially flat (the radius of curvature is 50,000 mm), the thickness of the central portion 8 of the face portion is about 11 mm, and the thickness of the long axis end portion corresponding to the peripheral portion of the face portion is about 20 mm. The thickness of the end of the diagonal shaft corresponding to the periphery of the portion has a thickness uneven distribution of about 22 mm.

【0031】遮断板3は、成型体1との隙間が80mm
になるように形成されており、冷却時の遮断板3の高さ
は、成型体1のフェース部中央部8と遮断板3との距離
が約20mmになるよう設定している。また、ダクト4
の内径はφ50mm、冷却空気流量は800Nm
h、冷却空気流速は約113m/秒、冷却空気吹き出し
開始から吹き出し停止までの時間を7秒とした。この冷
却装置を例1(実施例)とした。
The gap between the blocking plate 3 and the molded body 1 is 80 mm.
The height of the blocking plate 3 at the time of cooling is set so that the distance between the center part 8 of the face of the molded body 1 and the blocking plate 3 is about 20 mm. Also, duct 4
Has an inner diameter of φ50 mm and a cooling air flow rate of 800 Nm 3 /
h, the flow rate of the cooling air was about 113 m / sec, and the time from the start of the blowing of the cooling air to the stop of the blowing was 7 seconds. This cooling device was designated as Example 1 (Example).

【0032】一方、遮断板を設けない従来タイプの冷却
装置のダクト4の冷却空気吹き出し口11の内径はφ1
00mm、冷却空気流量は1000Nm/h、冷却空
気流速は約35m/秒、冷却空気吹き出し開始から吹き
出し停止までの時間を8秒と設定した。この冷却装置を
例2(比較例)とした。その他の条件は例1の冷却装置
とすべて同じにして前記17型の成型体を冷却してパネ
ル(陰極線管用パネル)とし、例1の冷却装置によって
製造したパネルと比較した。前記例1および例2では、
φ50mmの小口径ダクトであるため流速を高速にする
ことができ、この高速の冷却空気を遮断板3に当てるこ
とによって平行平板流状流れが形成できる。
On the other hand, the inside diameter of the cooling air blow-out port 11 of the duct 4 of the conventional cooling device having no blocking plate is φ1.
The cooling air flow rate was set to 1000 Nm 3 / h, the cooling air flow rate was set to about 35 m / sec, and the time from the start of the cooling air blowing to the stop of the blowing was set to 8 seconds. This cooling device was designated as Example 2 (Comparative Example). Other conditions were the same as those of the cooling device of Example 1, and the 17-type molded body was cooled to form a panel (panel for cathode ray tube), which was compared with the panel manufactured by the cooling device of Example 1. In Examples 1 and 2,
Since the duct is a small-diameter duct of φ50 mm, the flow velocity can be made high. By applying the high-speed cooling air to the blocking plate 3, a parallel plate flow can be formed.

【0033】そして、前記例1の冷却装置では、この平
行平板流状流れを遮断板3に沿って流動させることによ
って、成型体1の遮断版3で保護された以外の部分、す
なわち優先冷却領域を優先的に冷却することができる。
また、成型体1のフェース部中央部8においては冷却が
抑制されて例2の冷却装置とほぼ同等の冷却効果であ
り、過冷却を防止できた。
In the cooling device of the first embodiment, the parallel plate flow is caused to flow along the blocking plate 3 so that the portion of the molded body 1 other than the portion protected by the blocking plate 3, ie, the preferential cooling region. Can be cooled preferentially.
In addition, cooling was suppressed in the center portion 8 of the face portion of the molded body 1 and the cooling effect was almost the same as that of the cooling device of Example 2, and overcooling was prevented.

【0034】そのため、例1の冷却装置によって冷却し
た成型体(パネル)は、例2の冷却装置によるものに比
べて、冷却時間を約12%短縮したにもかかわらず、下
型から取り出した時点でのフェース部内面中央部8の温
度は20℃高温であったが、最も冷却されにくい周辺コ
ーナ部の温度は、例1と例2とがほぼ同一であった。こ
のことから、本発明の冷却装置は従来型のダクト冷却に
比べてフェース部の遮断版で保護された以外の部分(優
先冷却領域)を効率よく冷却できることが確認できた。
For this reason, the molded product (panel) cooled by the cooling device of Example 1 was removed from the lower mold although the cooling time was shortened by about 12% as compared with the cooling device of Example 2. Although the temperature of the central portion 8 of the inner surface of the face portion was 20 ° C. higher in Example 1, the temperature of the peripheral corner portion where the cooling was most difficult was almost the same in Examples 1 and 2. From this, it was confirmed that the cooling device of the present invention can efficiently cool the portion (priority cooling region) other than the face portion protected by the cutoff plate as compared with the conventional duct cooling.

【0035】さらに、二つの17型の前記成型体を、一
方は遮断板を設けた本発明の例1の冷却装置で、もう一
方は遮断板を設けない従来型の例2の冷却装置によりそ
れぞれ約8秒間冷却し、続いて前記二つの成型体を同じ
条件で徐冷して、成型体に物理強化法による圧縮応力を
付与した。そして、これら物理強化した成型体につい
て、それぞれのフェース部の外表面における強化圧縮応
力を測定した。
Further, the two 17-type molded bodies were respectively cooled by the cooling device of Example 1 of the present invention provided with a blocking plate and the other by the cooling device of Example 2 of the conventional type having no blocking plate. After cooling for about 8 seconds, the two molded bodies were gradually cooled under the same conditions to apply a compressive stress to the molded bodies by the physical strengthening method. Then, for these physically reinforced molded bodies, the reinforced compressive stress on the outer surface of each face portion was measured.

【0036】なお、前記圧縮応力の測定には、特開平1
1−281501号公報に記載されている装置、具体的
には、光源、偏向素子、スリット、第一のプリズムと第
二のプリズムとその両者の間に配置された遮光板からな
る測定部、補正器、検光子および接眼レンズとを備え
た、光弾性法による応力測定装置を用いた。
The measurement of the compressive stress is described in
No. 1-281501, specifically, a light source, a deflecting element, a slit, a measurement unit including a first prism and a second prism, and a light-shielding plate disposed between both, and a correction unit. A photoelasticity-based stress measuring device equipped with a detector, an analyzer and an eyepiece was used.

【0037】また、フェース部の外表面における強化圧
縮応力の測定箇所を図5に示す。なお、図5はフェース
部5を上向きにした状態の成型体1(陰極線管用ガラス
パネル)の一部を切り欠いて示した図である。第一の測
定箇所は、フェース部5の外表面の中央部21(短軸2
2と長軸23とが交差する位置)であり、第二の測定箇
所はフェース部5の外表面の長軸端近傍部24である。
ここで、該長軸端近傍部24とは、長軸23端の最外周
位置25からフェース部5の外表面の中央部に向かって
60mm移動した位置をいう。
FIG. 5 shows locations where the reinforced compressive stress is measured on the outer surface of the face portion. FIG. 5 is a partially cutaway view of the molded body 1 (glass panel for a cathode ray tube) with the face portion 5 facing upward. The first measurement point is a central portion 21 (short axis 2) of the outer surface of the face portion 5.
2 and the long axis 23), and the second measurement point is a portion 24 near the long axis end of the outer surface of the face portion 5.
Here, the portion 24 near the long axis end refers to a position shifted by 60 mm from the outermost peripheral position 25 at the end of the long axis 23 toward the center of the outer surface of the face portion 5.

【0038】その結果、本発明の例1の冷却装置で冷却
した成型体は、フェース部の中央部で14.8MPa、
長軸端近傍部で14.3MPaであり、フェース部の周
辺部にも充分な強化圧縮応力が形成されていることを確
認した。これに対し、従来型の例2のダクトによる冷却
では、フェース部の中央部で17.8MPa、長軸端近
傍部で8.4MPaであり、フェース部の中央部は過剰
な程度に強化圧縮応力が付与されたが、フェース部の周
辺部は充分に冷却されないため、所望の強化圧縮応力が
付与できなかった。
As a result, the molded product cooled by the cooling device of Example 1 of the present invention was 14.8 MPa at the center of the face portion.
It was 14.3 MPa in the vicinity of the major axis end, and it was confirmed that a sufficient strengthening compressive stress was also formed in the periphery of the face portion. On the other hand, in the cooling by the duct of the conventional example 2, the pressure was 17.8 MPa at the center of the face portion and 8.4 MPa near the long axis end, and the central portion of the face portion had excessive compressive stress. However, since the peripheral portion of the face portion was not sufficiently cooled, a desired reinforcing compressive stress could not be provided.

【0039】[0039]

【発明の効果】従来タイプの遮断板を用いない冷却方法
および装置において、成型体の周辺部を冷却しようとし
て冷却空気の流量および/または流速を上げると、フェ
ース部の中央部も同時に過剰に冷却強化してしまうため
に、周辺部が中央部に比較して著しく厚い偏肉のパネル
の冷却には問題があったが、本発明の冷却方法および装
置では、ダクトからの冷却空気をフェース部の中央部に
向けて吹き付けないため、フェース部の中央部の冷却を
抑制しながら、冷却されにくいフェース部の周辺部を優
先的に冷却できる。これにより、フェース部の中央部の
過冷却を防ぐとともに、フェース部の周辺部に所望の強
化圧縮応力を形成できる。
According to the conventional cooling method and apparatus which do not use a shielding plate, if the flow rate and / or flow rate of the cooling air is increased to cool the peripheral portion of the molded body, the central portion of the face portion is also excessively cooled at the same time. Although there was a problem in cooling the uneven thickness panel in which the peripheral portion was significantly thicker than the central portion due to strengthening, the cooling method and the device of the present invention caused the cooling air from the duct to reduce the cooling air from the face portion. Since it is not sprayed toward the central portion, the peripheral portion of the face portion that is difficult to be cooled can be preferentially cooled while suppressing the cooling of the central portion of the face portion. This prevents overcooling of the central portion of the face portion, and also enables formation of a desired strengthening compressive stress in the peripheral portion of the face portion.

【0040】また、本発明の冷却方法および装置におい
て、ダクトの下方に遮断板を設けてダクトから吹き出さ
れた冷却空気を遮断板に当てると、フェース部の中央部
の冷却が促進されるのを防止できるばかりでなく、むら
のない冷却に適する平行平板流状流れを形成することが
でき、さらにこの平行平板流状流れを遮断板に沿ってフ
ェース部の周辺部に導くことにより、冷却しにくい周辺
部を効率的に冷却できるとともに、遮断板の形状や位置
を変えることにより、冷却を簡便かつ適切に調整でき
る。
Further, in the cooling method and apparatus according to the present invention, when a blocking plate is provided below the duct and the cooling air blown out of the duct is applied to the blocking plate, the cooling of the central portion of the face portion is promoted. Not only can it prevent, but also can form a parallel plate flow suitable for uniform cooling, and furthermore, it is difficult to cool by guiding this parallel plate flow to the periphery of the face along the blocking plate. The peripheral portion can be efficiently cooled, and the cooling can be simply and appropriately adjusted by changing the shape and position of the blocking plate.

【0041】本発明は、前記のようにフェース部の中央
部の冷却を抑制しながら周辺部を効率的に冷却できるの
で、フェース部の周辺部の肉厚が中央部の肉厚より著し
く大きい偏肉分布を有する陰極線管用パネルの冷却に特
に好適である。
According to the present invention, since the peripheral portion can be efficiently cooled while suppressing the cooling of the central portion of the face portion as described above, the thickness of the peripheral portion of the face portion is significantly larger than the thickness of the central portion. It is particularly suitable for cooling a cathode ray tube panel having a wall distribution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態である冷却装置の断面説明
図。
FIG. 1 is a sectional explanatory view of a cooling device according to an embodiment of the present invention.

【図2】図1に記載した本発明の一実施形態である冷却
装置の平面図。
FIG. 2 is a plan view of the cooling device according to the embodiment of the present invention described in FIG. 1;

【図3】本発明の遮断板の他の実施形態であって、
(a)はその平面図、(b)は(a)のA−A部の断面
図。
FIG. 3 is another embodiment of the blocking plate of the present invention,
(A) is the top view, (b) is sectional drawing of the AA part of (a).

【図4】本発明の遮断板の、さらに他の実施形態であっ
て、(a)はその平面図、(b)は(a)のB−B部の
断面図。
4A and 4B are still another embodiment of the blocking plate of the present invention, wherein FIG. 4A is a plan view thereof, and FIG. 4B is a cross-sectional view taken along a line BB of FIG.

【図5】実施例における強化圧縮応力の測定箇所を示す
一部切り欠き説明図。
FIG. 5 is a partially cutaway explanatory view showing a measurement point of a reinforcing compressive stress in the embodiment.

【図6】従来技術の遮断板を用いない冷却装置の断面説
明図。
FIG. 6 is an explanatory cross-sectional view of a conventional cooling device that does not use a blocking plate.

【図7】陰極線管用ガラスパネル成型体の断面図。FIG. 7 is a sectional view of a molded glass panel for a cathode ray tube.

【符号の説明】[Explanation of symbols]

1:成型体(陰極線管用ガラスパネル) 2:下型 3:遮断板 4:ダクト 5:フェース部 6:スカート部 7:フェース部内表面周辺部 8:フェース部内表面中央部 9:シールエッジ部 11:冷却空気吹き出し口 12:中空内部 21:フェース外表面中央部 22:フェース部短軸 23:フェース部長軸 24:長軸端近傍部 1: Molded body (glass panel for cathode ray tube) 2: Lower mold 3: Blocking plate 4: Duct 5: Face portion 6: Skirt portion 7: Peripheral portion of inner surface of face portion 8: Central portion of inner surface of face portion 9: Seal edge portion 11: Cooling air outlet 12: hollow interior 21: center of outer face of face 22: short axis of face 23: long axis of face 24: near the end of long axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】溶融したガラスを下型に供給し、次いで上
型を下降させて前記ガラスを加圧成型した後、前記上型
を上昇させ下型の上方に設けたダクトから下型内の陰極
線管用ガラスパネル成型体のフェース部内表面中央また
はフェース部内表面中央近傍に向けて冷却空気を吹き付
ける冷却方法において、 冷却空気を前記ダクトの冷却空気吹き出し口と陰極線管
用ガラスパネル成型体のフェース部内表面との間に設け
られた遮断板に当てることにより、前記フェース部内表
面のうち、遮断板を冷却空気の吹き出し方向に投影して
得られる冷却抑制領域への冷却空気の直接衝突を抑制し
ながら、前記冷却抑制領域以外の優先冷却領域を冷却す
ることを特徴とする陰極線管用ガラスパネル成型体の冷
却方法。
1. The molten glass is supplied to a lower mold, and then the upper mold is lowered to form the glass under pressure. Then, the upper mold is raised and a duct provided above the lower mold is moved into the lower mold. In a cooling method of blowing cooling air toward the center of the face portion inner surface or the vicinity of the center of the face portion inner surface of the cathode ray tube glass panel molded body, the cooling air is blown out from the cooling air outlet of the duct and the face portion inner surface of the cathode ray tube glass panel molded body. By hitting the shielding plate provided between the, while suppressing the direct collision of the cooling air to the cooling suppression region obtained by projecting the shielding plate in the direction of blowing the cooling air, of the face inner surface, A method for cooling a glass panel molded body for a cathode ray tube, comprising cooling a priority cooling area other than the cooling suppression area.
【請求項2】溶融ガラスを加圧成型して、略矩形のスク
リーンを備えたフェース部と該フェース部の側壁を構成
し端部にシールエッジ部を有するスカート部とからなる
陰極線管用ガラスパネル形状とした後の成型体を乗載す
る下型と、 該下型の上方に設けられ、下端の開口部から冷却空気を
吹き出す冷却空気吹き出し口を有するダクトと、 前記下型内の成型体のフェース部内表面中央と前記冷却
空気吹き出し口との間に、冷却空気が前記フェース部内
表面中央またはその近傍に直接に当たらないようにする
遮断板とを設けたことを特徴とする陰極線管用ガラスパ
ネル成型体の冷却装置。
2. A glass panel shape for a cathode ray tube comprising a face portion provided with a substantially rectangular screen and a skirt portion forming a side wall of the face portion and having a seal edge portion at an end portion by molding a molten glass under pressure. A lower mold on which the molded body is mounted, a duct provided above the lower mold and having a cooling air outlet for blowing cooling air from an opening at a lower end, and a face of the molded body in the lower mold A glass panel molded body for a cathode ray tube, wherein a shielding plate for preventing cooling air from directly hitting the center of the face portion inner surface or its vicinity is provided between the center of the inner surface of the portion and the cooling air outlet. Cooling system.
【請求項3】前記遮断板は、実質的に平板、または冷却
空気の吹き出し方向と反対方向に凸状の非平板であっ
て、 冷却空気の吹き出し方向に垂直な断面における前記ダク
トの吹き出し口の内壁を外周とする領域の面積をS
前記遮断板を冷却空気の吹き出し方向に投影して得られ
る領域の面積をS、ガラスパネルのシールエッジ部内
壁側を外周とする開口部面積をSとするとき、S
≦0.75Sなる関係を有することを特徴とする
請求項2に記載の陰極線管用ガラスパネル成型体の冷却
装置。
3. The blocking plate is substantially a flat plate or a non-flat plate projecting in a direction opposite to a direction in which the cooling air is blown out, and has a cross section perpendicular to the direction in which the cooling air is blown out. The area of the region having the inner wall as the outer periphery is S D ,
When the area of a region obtained by projecting the blocking plate in the direction in which the cooling air is blown out is S B , and the opening area with the inner wall side of the seal edge portion of the glass panel as the outer periphery is S S , S D
3. The cooling device for a glass panel molded body for a cathode ray tube according to claim 2, wherein a relationship of S B ≦ 0.75S S is satisfied.
JP2002000466A 2001-02-19 2002-01-07 Cooling method and cooling device for glass panel molding for cathode ray tube Withdrawn JP2002316827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000466A JP2002316827A (en) 2001-02-19 2002-01-07 Cooling method and cooling device for glass panel molding for cathode ray tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-42203 2001-02-19
JP2001042203 2001-02-19
JP2002000466A JP2002316827A (en) 2001-02-19 2002-01-07 Cooling method and cooling device for glass panel molding for cathode ray tube

Publications (1)

Publication Number Publication Date
JP2002316827A true JP2002316827A (en) 2002-10-31

Family

ID=26609640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000466A Withdrawn JP2002316827A (en) 2001-02-19 2002-01-07 Cooling method and cooling device for glass panel molding for cathode ray tube

Country Status (1)

Country Link
JP (1) JP2002316827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452494A1 (en) * 2003-02-25 2004-09-01 Asahi Glass Company, Limited Bottom mold for molding a glass panel for a cathode ray tube and method for producing a glass panel for a cathode ray tube
WO2007074701A1 (en) * 2005-12-27 2007-07-05 Asahi Glass Company, Limited Lower die for molding of cathode ray tube glass panel and process for producing cathode ray tube glass panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452494A1 (en) * 2003-02-25 2004-09-01 Asahi Glass Company, Limited Bottom mold for molding a glass panel for a cathode ray tube and method for producing a glass panel for a cathode ray tube
WO2007074701A1 (en) * 2005-12-27 2007-07-05 Asahi Glass Company, Limited Lower die for molding of cathode ray tube glass panel and process for producing cathode ray tube glass panel

Similar Documents

Publication Publication Date Title
KR100353185B1 (en) Glass bulb for a cathode ray tube
JP3671568B2 (en) Method for producing cathode ray tube panel glass
JP2002316827A (en) Cooling method and cooling device for glass panel molding for cathode ray tube
US20030025439A1 (en) Glass funnel for a cathode ray tube and cathode ray tube
JP2009057214A (en) Lower die for molding cathode ray tube glass panel and method for producing cathode ray tube glass panel
KR100370082B1 (en) structure of panel in flat-type CRT
JP2005053718A (en) Cooling unit for glass panel for cathode-ray tube
JP2001026431A (en) Cooler for glass formed article
JP2004359486A (en) Mold for shaping glass panel for cathode ray tube
EP1452494A1 (en) Bottom mold for molding a glass panel for a cathode ray tube and method for producing a glass panel for a cathode ray tube
JP2001220162A (en) Method and device for cooling glass panel for cathode ray tube
JP2004277278A (en) Lower molding die for glass panel for cathode ray tube and method for producing glass panel for cathode ray tube
JPH09315829A (en) Method for cooling glass formed body
JP2002068759A (en) Method of and apparatus for cooling glass panel for cathode-ray tube
JP3624882B2 (en) Glass funnel for projection
KR100432769B1 (en) Apparatus for forming crt flat panel and the crt flat panel formed by the apparatus
KR0115840Y1 (en) Panel extraction head for cathode ray tube
JPH1045417A (en) Method for cooling hollow glass formed body
KR20020063721A (en) Apparatus for forming crt panel
CN1935713A (en) Die for cathode ray tube glass screen shaping
KR20030018771A (en) Cooling apparatus for cathode ray tube panel
KR100432768B1 (en) Apparatus for forming crt flat panel and the crt flat panel formed by the apparatus
KR100756534B1 (en) Bottom mold for molding cathode ray tube glass
KR100331679B1 (en) Manufacturing Equipment and Manufacturing Method of Glass Panel for Cathode Ray Tube
JPH07257934A (en) Formed glass article cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070803