JP2002316825A - Method for manufacturing synthetic quartz glass member for excimer laser and synthetic quartz glass member for excimer laser optical use obtained by this manufacturing method - Google Patents

Method for manufacturing synthetic quartz glass member for excimer laser and synthetic quartz glass member for excimer laser optical use obtained by this manufacturing method

Info

Publication number
JP2002316825A
JP2002316825A JP2002037884A JP2002037884A JP2002316825A JP 2002316825 A JP2002316825 A JP 2002316825A JP 2002037884 A JP2002037884 A JP 2002037884A JP 2002037884 A JP2002037884 A JP 2002037884A JP 2002316825 A JP2002316825 A JP 2002316825A
Authority
JP
Japan
Prior art keywords
quartz glass
hydrogen
excimer laser
synthetic quartz
glass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002037884A
Other languages
Japanese (ja)
Other versions
JP4191935B2 (en
Inventor
Hiroyuki Nishimura
裕幸 西村
Toru Yokota
透 横田
Akira Fujinoki
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2002037884A priority Critical patent/JP4191935B2/en
Publication of JP2002316825A publication Critical patent/JP2002316825A/en
Application granted granted Critical
Publication of JP4191935B2 publication Critical patent/JP4191935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a synthetic quartz glass member for an excimer laser by introducing hydrogen molecules sufficient for obtaining high laser resistance into quartz glass body under suppression of the formation of reducing defects to degrade the laser resistance in view of the defects of the prior art and uniformly introducing the hydrogen molecule in such a manner that the refractive index distribution occurring in the concentration distribution of the hydrogen molecules is flattened and the synthetic quartz member for the excimer laser optical use which is obtained by this manufacturing method and has both of the high laser resistance and homogeneity. SOLUTION: The method for manufacturing the synthetic quartz glass member for the excimer laser includes a process step of incorporating the hydrogen molecules into the quartz glass body by heat treating the quartz glass body at a treatment temperature below 600 deg.C in a hydrogen-containing atmosphere of pressure above 1 atm to below 150 atm. The pressure of the hydrogen-containing gas is continuously or stepwise changed at least partly during the heat treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、紫外線、特にKrF、
ArFエキシマレーザー光の高強度の照射に対して優れ
た光透過性、均質性、および安定性を有する光学用合成
石英ガラス部材ならびにその製造方法に関するものであ
る。具体的には、本発明による合成石英ガラス部材は、
特に半導体チップ製造用のエキシマレーザーを用いたリ
ソグラフィーの露光装置のレンズやその他の光学部品、
また、エキシマレーザー本体に用いられる狭帯化用のプ
リズム、その他KrF、ArFエキシマレーザー光に使
用される一般的な光学部材、レンズ、ビームスプリッタ
ー、プリズム、などに好適に使用される合成石英ガラス
部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ultraviolet light, especially KrF,
The present invention relates to an optical synthetic quartz glass member having excellent light transmittance, homogeneity, and stability with respect to high-intensity irradiation of ArF excimer laser light, and a method for manufacturing the same. Specifically, the synthetic quartz glass member according to the present invention is:
In particular, lenses and other optical components of lithography exposure equipment using excimer lasers for semiconductor chip manufacturing,
Also, a prism for narrowing a band used in an excimer laser body, a general optical member used for KrF or ArF excimer laser light, a synthetic quartz glass member suitably used for a lens, a beam splitter, a prism, and the like. It is about.

【0002】[0002]

【従来の技術】近年、KrFエキシマレーザーリソグラ
フィーによるLSIの製造が本格的に行われ、次世代の露
光技術としてArFエキシマレーザーリソグラフィーの
実現化にむけて開発がすすめられている。KrFリソグ
ラフィーにおいても、随時改良が進められており、より
微少な回路パターンを描画する性能や時間当たりの処理
能力(スループット)をアップさせるなどの改良が行わ
れている。具体的には、微少な回路パターンの描画には
変形照明法や位相シフトマスクなどの露光方法の改良技
術が用いられるが、基本的に露光装置のレンズ材の性能
自体もより高いレベルが要求されてきている。すなわ
ち、正確な焦点を結ぶために、高均質性や低複屈折がレ
ンズ材料に強く要求されている。またスループットの改
善にはエキシマレーザーの繰り返し周波数やエネルギー
の増大によって、露光量をアップするなどの手法が取ら
れている。このような場合、露光機のレンズ材を透過す
る光量が増加するために、光学的なダメージが生じ易く
なってしまう。いずれの場合でもレンズ材の石英ガラス
に要求される品質は、露光機の性能アップにともない年
々高くなってきており、従来技術による均質性の向上や
レーザー耐性の向上策では不十分になりつつある。
2. Description of the Related Art In recent years, LSIs have been manufactured in earnest by KrF excimer laser lithography, and development is being pursued toward realization of ArF excimer laser lithography as a next-generation exposure technique. The KrF lithography is also being improved as needed, and improvements are being made such as increasing the performance of drawing finer circuit patterns and increasing the processing capacity (throughput) per time. Specifically, for the writing of minute circuit patterns, improved techniques for exposure methods, such as a modified illumination method and a phase shift mask, are used, but basically a higher level of performance of the lens material of the exposure apparatus is required. Is coming. That is, high homogeneity and low birefringence are strongly demanded of lens materials in order to focus accurately. In order to improve the throughput, techniques such as increasing the exposure amount by increasing the repetition frequency or energy of the excimer laser are used. In such a case, since the amount of light transmitted through the lens material of the exposure device increases, optical damage is likely to occur. In any case, the quality required for the quartz glass lens material is increasing year by year with the improvement of the performance of the exposure machine, and the measures to improve the homogeneity and laser resistance by the conventional technology are becoming insufficient. .

【0003】高均質の石英ガラスを得る技術は従来から
多くの分野で研究されており、多くの特許も出願されて
いる。一般的に光学用石英ガラスの均質性とは屈折率の
均質性を意味し、通常、632.8nmのHe−Neレ
ーザーを用いた干渉計によって位相の遅れを測定し、屈
折率の分布を算出している。リソグラフィーに用いられ
るレンズは非常に高い結像性能が要求されるために、非
常に高均質な石英ガラスのレンズ材が必要である。屈折
率は石英ガラス中の不純物、例えば塩素や水酸基によっ
て変化し、また、仮想温度によっても変化する。石英ガ
ラス中に不純物の分布があれば屈折率もその分布に伴っ
て変化する。例えば、SiOH基の量が多い部分は相対
的に屈折率が低くなる。仮想温度は石英ガラスを熱処理
する際の冷却速度に依存し、石英ガラス中に仮想温度分
布が生じることによって屈折率分布も形成される。特開
平3−88743号公報では高均質な光学用石英ガラス
材を得るために、上記、屈折率変動を起こす個々の要因
を積極的に組み合わせて、高均質のガラスを得るための
製造方法が開示されている。更に該公報中には高いレー
ザー耐性を付与するために、水素含有雰囲気で熱処理し
水素分子をドープすることが記載されている。すなわ
ち、水素をドープすることで、高いエキシマレーザー性
を維持しつつ、高均質なガラスを得る、という技術であ
る。このように、SiOHや塩素などの不純物分布を制
御して得られた高均質な石英ガラスに水素ドープを施す
ことによって、高いレーザー耐性を付与できることか
ら、エキシマレーザーリソグラフィー用のレンズ材料と
して好適に使用できると考えられていた。しかしなが
ら、実際には、1)近年のレーザーの高繰り返し化や高
エネルギー化などで更に高いレーザー耐性が要求されて
いること、2)高NA化により更に大きな材料が要求され
ているため、水素分子を均一にドープすることが難しい
こと、という実際的な問題点が浮上してきており、かな
らずしも上記公報に記載された方法で現在の要求レベル
を十分に満足できる材料が得られていない。特に水素含
有雰囲気で熱処理により水素分子が均一にドープされた
大型材料を得ることは、水素分子の拡散係数を考慮する
とかなり難しい。計算上非常に長時間処理が必要であっ
たり、かなりの高温での水素処理が必要であったりとい
うような難しさが現実には存在する。また、これまでの
研究から、水素分子も屈折率分布に影響を及ぼすことが
わかってきており、水素分子の均一なドープが重要であ
ることもわかってきた。
Techniques for obtaining highly homogeneous quartz glass have been studied in many fields, and many patents have been filed. In general, the homogeneity of quartz glass for optics means the homogeneity of the refractive index, and the distribution of the refractive index is calculated by measuring the phase lag with an interferometer using a 632.8 nm He-Ne laser. are doing. Since a lens used for lithography is required to have very high imaging performance, a very high uniform quartz glass lens material is required. The refractive index changes depending on impurities in the quartz glass, for example, chlorine and hydroxyl groups, and also changes according to the fictive temperature. If there is a distribution of impurities in the quartz glass, the refractive index also changes with the distribution. For example, a portion having a large amount of SiOH groups has a relatively low refractive index. The fictive temperature depends on the cooling rate when heat-treating the quartz glass, and a fictive temperature distribution is generated in the quartz glass, so that a refractive index distribution is also formed. Japanese Patent Application Laid-Open No. 3-88743 discloses a manufacturing method for obtaining highly homogeneous glass by positively combining the above-mentioned individual factors causing the refractive index fluctuation in order to obtain a highly homogeneous quartz glass material for optical use. Have been. Further, the publication describes that in order to impart high laser resistance, heat treatment is performed in a hydrogen-containing atmosphere to dope hydrogen molecules. That is, the technique is to obtain a highly uniform glass while maintaining high excimer laser properties by doping with hydrogen. As described above, by applying hydrogen doping to highly homogeneous quartz glass obtained by controlling the distribution of impurities such as SiOH and chlorine, high laser resistance can be imparted, and thus it is suitably used as a lens material for excimer laser lithography. Was thought to be possible. However, in practice, 1) higher laser resistance is required in recent years with higher repetition and higher energy of lasers, and 2) larger materials are required due to higher NA. The practical problem that it is difficult to dope uniformly is emerging, and the method described in the above-mentioned publication does not necessarily provide a material that can sufficiently satisfy the current required level. In particular, it is very difficult to obtain a large-sized material in which hydrogen molecules are uniformly doped by heat treatment in a hydrogen-containing atmosphere in consideration of the diffusion coefficient of hydrogen molecules. Actually, there are difficulties such as a very long calculation time required for the calculation and a hydrogen treatment at a considerably high temperature. In addition, previous studies have shown that hydrogen molecules also affect the refractive index distribution, and that the uniform doping of hydrogen molecules is important.

【0004】均一な水素ドープを施すことは、高均質、
かつ、高耐性を持つ石英ガラスを得るために重要である
が、特に大型の材料の場合、水素が内部まで十分に拡散
するにはかなりの時間を要し、その結果、生産性が悪化
する、という大きな問題がある。水素の拡散係数が大き
くなる高温での水素ドープを施すことで、水素の拡散時
間の短縮化は可能であるが、高温で水素にさらされた石
英ガラスは新たな欠陥を生じ易く、これがレーザー耐性
を悪化させる要因となることがわかっている。特開平6
−166522号公報には、間接法で試作した合成石英
ガラス部材を水素雰囲気中において各種温度で熱処理を
し、水素をドープした材料のArFエキシマレーザー照射
耐性について記載されているが、特に600℃を超える
高温で熱処理を施したもののレーザー耐性が極端に悪化
していることが示されている。これは高温で導入された
水素分子により石英ガラス中に還元性欠陥が生じ、エキ
シマレーザーが照射されることによって紫外線領域に吸
収が誘起されるためである。この誘起される吸収はE’
センターと一般的に呼ばれている常磁性欠陥によるもの
であり、中心波長が210〜215nmの吸収帯を有し
ている。したがって、該公報ではE’センターの生成を
抑えるために、すなわち誘起吸収の発生を抑えるために
600℃以下で水素処理を施すことが記載されている
が、前述のように、低温での水素の拡散係数は小さくな
る為に、大型材料を処理する場合、処理時間が長時間と
なり生産性が悪くなってしまう。そのため、該公報で
は、より多くの水素分子を石英ガラス中に導入するため
に、1気圧以上、好ましくは50気圧以上の高圧で処理
することが記載されている。しかし、一般的にこのよう
にして得られた石英ガラスの水素分子濃度分布は、拡散
現象の原理に基づく結果として、その周辺部の濃度は中
心部の濃度と比べて高くなっており、特に高圧での処理
の場合、その差が大きいため、均質性(屈折率分布)に
多大な影響を及ぼすことが分かっている。
[0004] Uniform hydrogen doping is highly homogeneous,
And it is important to obtain quartz glass with high resistance, but especially in the case of large materials, it takes considerable time for hydrogen to sufficiently diffuse inside, and as a result, productivity deteriorates. There is a big problem. Hydrogen doping at a high temperature, where the diffusion coefficient of hydrogen is large, can shorten the hydrogen diffusion time, but quartz glass exposed to hydrogen at high temperatures tends to cause new defects, which is the laser resistance. It is known to be a factor that worsens. JP 6
Japanese Patent Application Publication No. 166522 discloses that the synthetic quartz glass member prototyped by the indirect method is heat-treated at various temperatures in a hydrogen atmosphere, and the resistance of the hydrogen-doped material to ArF excimer laser irradiation is described. It is shown that the laser resistance was extremely deteriorated even though the heat treatment was performed at a higher temperature. This is because hydrogen molecules introduced at a high temperature cause reducing defects in the quartz glass, and irradiation with an excimer laser induces absorption in the ultraviolet region. This induced absorption is E '
This is due to a paramagnetic defect generally called a center, and has an absorption band having a center wavelength of 210 to 215 nm. Therefore, this publication describes that hydrogen treatment is performed at 600 ° C. or less to suppress generation of E ′ center, that is, to suppress generation of induced absorption. Since the diffusion coefficient is small, when processing a large-sized material, the processing time becomes long and the productivity deteriorates. Therefore, this publication describes that the treatment is performed at a high pressure of 1 atm or more, preferably 50 atm or more in order to introduce more hydrogen molecules into the quartz glass. However, in general, the concentration of hydrogen molecules in the quartz glass obtained in this way is higher at the periphery than at the center, as a result of the principle of diffusion phenomenon. In the case of the treatment with, it is known that the difference is large, so that the uniformity (refractive index distribution) is greatly affected.

【0005】均質性に影響を及ぼさないように、水素濃
度分布があまり形成されないような高圧での水素ドープ
の方法が特開2000−95535号公報に示されてい
る。この公報では10atm以上、好ましくは50at
m以上の圧力で水素分子をドープし(第2工程)、その
後、熱処理(第三工程)によって、周辺部の水素分子濃
度の高い部分を選択的に脱ガスすることによって、均一
な水素濃度分布をもつ石英ガラス材が得られる、という
方法である。しかしながら、該特許による方法では、均
質な水素含有成型体を得るためには、水素をドープする
熱処理(第2工程)の後に、水素を含まない雰囲気中で
の熱処理(第3工程)という2段階の熱処理を施さなく
てはならない。また、後者の熱処理においても、あまり
高温に保持すると新たな欠陥生成のために、レーザー耐
性が悪化することがわかっている。したがって、周辺部
の水素濃度の高い部分のみを選択的に脱ガスする場合
も、比較的低い温度で処理する必要があり、結果的に長
い時間の熱処理が必要である。また、成型体のサイズや
第2工程の条件次第によって導入される水素濃度および
その分布はかなり大きく変動するが、単純な第3工程の
みの熱処理で、選択的に周辺部のみ適切に水素を脱ガス
し、平坦な水素濃度を得ることはかなり困難であった。
以上示したように、水素をドープした後で更に追加で熱
処理を施すことは、レーザー耐性や生産性の点でもあま
り好ましい方法とはいえなかった。
Japanese Unexamined Patent Publication No. 2000-95535 discloses a method of doping hydrogen at a high pressure so that the hydrogen concentration distribution is not so formed so as not to affect the homogeneity. In this publication, 10 atm or more, preferably 50 atm
a hydrogen concentration at a pressure of at least m or more (second step) and then a heat treatment (third step) to selectively degas the high-hydrogen-concentration parts in the peripheral region, thereby achieving a uniform hydrogen concentration distribution. This is a method of obtaining a quartz glass material having However, in the method according to the patent, in order to obtain a homogeneous hydrogen-containing molded body, a two-step process is performed in which a heat treatment for doping with hydrogen (second step) is followed by a heat treatment in an atmosphere containing no hydrogen (third step). Heat treatment must be performed. It is also known that, in the latter heat treatment, if the temperature is kept too high, new defects are generated and the laser resistance deteriorates. Therefore, when selectively degassing only the peripheral portion having a high hydrogen concentration, it is necessary to perform the treatment at a relatively low temperature, and as a result, a long-time heat treatment is required. The concentration of hydrogen introduced and its distribution vary considerably depending on the size of the molded body and the conditions of the second step, but the heat treatment in the simple third step only selectively removes hydrogen appropriately only in the peripheral portion. It was quite difficult to gas and obtain a flat hydrogen concentration.
As described above, additional heat treatment after doping with hydrogen was not a very preferable method in terms of laser resistance and productivity.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、か
かる従来技術の欠点に鑑み、レーザー耐性を低下させる
還元性欠陥の生成を抑えつつ高いレーザー耐性を得るに
十分な水素分子を石英ガラス中に導入し、かつ、水素分
子の濃度分布に起因する屈折率分布が平坦になるように
水素分子を均一に導入するエキシマレーザー用合成石英
ガラス部材の製造方法およびその製造法で得られた高い
レーザー耐性と均質性をともに備えるエキシマレーザー
用合成石英ガラス部材を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks of the prior art, the present invention requires that sufficient hydrogen molecules be obtained in quartz glass to obtain high laser resistance while suppressing generation of reducing defects that lower laser resistance. And a method for producing a synthetic quartz glass member for an excimer laser for uniformly introducing hydrogen molecules so that the refractive index distribution caused by the concentration distribution of hydrogen molecules becomes flat, and a high laser obtained by the method. An object of the present invention is to provide a synthetic quartz glass member for an excimer laser having both resistance and homogeneity.

【0007】[0007]

【課題を解決するための手段】上記の課題は、本発明の
下記(1)〜(10)のいずれかに記載の構成により達
成される。 (1) 合成石英ガラス体を1気圧以上150気圧未満
の圧力の水素含有雰囲気中で、処理温度600℃以下で
熱処理して、該石英ガラス体に水素分子を含有させる工
程を含むエキシマレーザー光学用合成石英ガラス部材の
製造方法であって、前記熱処理中の少なくとも一部にお
いて、前記水素含有ガスの圧力を連続的もしくは段階的
に変化させることを特徴とするエキシマレーザー用合成
石英ガラス部材の製造方法。 (2) 前記水素含有ガスの圧力の変化が減少である上
記(1)記載のエキシマレーザー用合成石英ガラス部材
の製造方法。 (3) 合成石英ガラス体を、水素含有雰囲気中で、第
1設定圧力で、第1設定時間、熱処理を施した後、前記
第1設定圧力より低い第2設定圧力で、第2設定時間熱
処理を施す上記(2)記載のエキシマレーザー用合成石
英ガラス部材の製造方法。 (4) 前記水素含有雰囲気が、100%の水素ガス、
もしくは、窒素、アルゴンまたはヘリウムと水素ガスの
混合ガスである、上記(1)〜(3)のいずれかに記載
のエキシマレーザー用合成石英ガラス部材の製造方法。 (5) 水素を含有させる前記合成石英ガラス体を、直
接火炎加水分解法または間接火炎加水分解法によって作
成する、上記(1)〜(4)のいずれかに記載のエキシ
マレーザー用合成石英ガラス部材の製造方法。 (6) 請求項1〜5のいずれかに記載のエキシマレー
ザー用合成石英ガラス部材の製造方法によって製造さ
れ、均一に水素が含有されているエキシマレーザー用合
成石英ガラス部材。 (7) 水素分子濃度の平均値が1×1018分子数/cm3
以上であり、水素分子濃度の最大値と最小値の差ΔH
が1.2×1018分子数/cm3以下である上記(6)記載
のエキシマレーザー用合成石英ガラス部材。 (8) ArFエキシマレーザーを、1パルスあたりの
エネルギー密度2mJ/cm、周波数200Hz、照
射数2×105パルス照射したときの照射中の215n
mにおける誘起吸収量が、厚さ1cmあたりの吸光度で
0.003以下である上記(6)または(7)記載のエ
キシマレーザー用合成石英ガラス部材。 (9) KrFエキシマレーザーを、1パルスあたりの
エネルギー密度100mJ/cm、周波数200H
z、照射数2×105パルス照射したときの照射中の2
10nmにおける誘起吸収量が、厚さ1cmあたりの吸
光度で0.0075以下である上記(6)または(7)
記載のエキシマレーザー用合成石英ガラス部材。 (10) 632.8nmにおける屈折率の均質性が±
4×10-6(/cm)以下であり、複屈折が2nm/cm以
下である上記(7)〜(9)のいずれかに記載のエキシ
マレーザー用合成石英ガラス部材。 本発明によって得られた部材は、エキシマレーザー用、
特にKrFやArFエキシマレーザー用の各種装置に好
適に用いられるものであり、光学部材中に水素分子が高
濃度かつ高均質に導入されているために、高いレーザー
耐性と均質性を両立しており、上記のエキシマレーザー
を用いた各種装置において、長期間安定して使用できる
光学部材である。例えば、エキシマレーザーステッパー
やレーザー加工装置、レーザーアニール装置などの光学
部材として好適に使用できるものである。
The above-mentioned object is achieved by the present invention according to any one of the following (1) to (10). (1) Excimer laser optics including a step of heat-treating a synthetic quartz glass body in a hydrogen-containing atmosphere at a pressure of 1 atm or more and less than 150 atm at a processing temperature of 600 ° C. or less to cause the quartz glass body to contain hydrogen molecules. A method of manufacturing a synthetic quartz glass member for an excimer laser, wherein the pressure of the hydrogen-containing gas is changed continuously or stepwise at least in part during the heat treatment. . (2) The method for producing a synthetic quartz glass member for an excimer laser according to the above (1), wherein a change in the pressure of the hydrogen-containing gas is reduced. (3) heat-treating the synthetic quartz glass body in a hydrogen-containing atmosphere at a first set pressure for a first set time, and then heat-treating the synthetic quartz glass body at a second set pressure lower than the first set pressure for a second set time; (2) The method for producing a synthetic quartz glass member for excimer laser according to the above (2). (4) the hydrogen-containing atmosphere is 100% hydrogen gas;
Alternatively, the method for producing a synthetic quartz glass member for an excimer laser according to any one of the above (1) to (3), which is a mixed gas of nitrogen, argon or helium and hydrogen gas. (5) The synthetic quartz glass member for an excimer laser according to any one of (1) to (4), wherein the synthetic quartz glass body containing hydrogen is prepared by a direct flame hydrolysis method or an indirect flame hydrolysis method. Manufacturing method. (6) A synthetic quartz glass member for excimer laser produced by the method for producing a synthetic quartz glass member for excimer laser according to any one of claims 1 to 5, wherein hydrogen is contained uniformly. (7) The average value of the hydrogen molecule concentration is 1 × 10 18 molecules / cm 3
And the difference ΔH 2 between the maximum value and the minimum value of the hydrogen molecule concentration.
The synthetic quartz glass member for an excimer laser according to the above (6), which has a molecular weight of 1.2 × 10 18 molecules / cm 3 or less. (8) 215 n during irradiation when an ArF excimer laser is irradiated at an energy density of 2 mJ / cm 2 per pulse, a frequency of 200 Hz, and an irradiation number of 2 × 10 5 pulses.
The synthetic quartz glass member for an excimer laser according to the above (6) or (7), wherein the induced absorption amount at m is 0.003 or less in absorbance per 1 cm thickness. (9) A KrF excimer laser was used with an energy density per pulse of 100 mJ / cm 2 and a frequency of 200H.
z, 2 during irradiation when 2 × 10 5 pulses are irradiated
(6) or (7) above, wherein the induced absorption amount at 10 nm is 0.0075 or less in absorbance per 1 cm thickness.
The synthetic quartz glass member for an excimer laser according to the above. (10) The homogeneity of the refractive index at 632.8 nm is ±
The synthetic quartz glass member for an excimer laser according to any one of the above (7) to (9), which has a birefringence of 2 × 10 −6 (/ cm) or less and a birefringence of 2 nm / cm or less. The member obtained by the present invention is for excimer laser,
Particularly, it is suitably used for various devices for KrF and ArF excimer lasers, and has high laser resistance and homogeneity because hydrogen molecules are introduced into optical members in high concentration and high homogeneity. An optical member that can be stably used for a long period of time in various devices using the above-described excimer laser. For example, it can be suitably used as an optical member of an excimer laser stepper, a laser processing device, a laser annealing device, or the like.

【0008】[0008]

【発明の実施の形態】本発明のエキシマレーザー用合成
石英ガラス部材の製造方法においては、1気圧以上の水
素含有雰囲気下で600℃以下の温度で熱処理を施し、
上記熱処理中に水素雰囲気ガスの圧力を段階的、もしく
は連続的に変化させることによって、石英ガラス中に高
濃度の水素分子を均一に含有させることができる。その
結果、均質性、レーザー耐性の両特性が非常に優れてい
る光学用石英ガラス材料が得られる。すなわち、比較的
低温での水素分子を石英ガラス中に高濃度拡散させるた
めには長時間の処理が必要であるが、1気圧以上の高圧
力に設定することにより高濃度の水素分子を含有させる
ことが可能であり、更にこれを、圧力を変化させること
によって積極的に石英ガラス中の水素濃度分布をコント
ロールでき、均一な水素濃度プロファイルが得られる。
本発明の製造方法によれば、水素雰囲気での処理温度が
比較的低く、かつ、処理時間が短いことから、石英ガラ
ス中にレーザー耐性を悪化させる還元性欠陥の生成が見
られず、また、高圧で処理することにより高濃度の水素
分子が含有されることから、長期的なレーザー耐性が優
れているものが得られ、更に、変圧処理により均一に水
素分子が含有されることから、屈折率やレーザー耐性が
極めて均質で安定しているものを得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a synthetic quartz glass member for an excimer laser according to the present invention, a heat treatment is performed at a temperature of 600 ° C. or less in a hydrogen-containing atmosphere of 1 atm or more.
By changing the pressure of the hydrogen atmosphere gas stepwise or continuously during the heat treatment, a high concentration of hydrogen molecules can be uniformly contained in the quartz glass. As a result, a quartz glass material for optics having both excellent properties of homogeneity and laser resistance is obtained. In other words, long-term processing is required to diffuse hydrogen molecules at a relatively low temperature into quartz glass at a high concentration, but high-concentration hydrogen molecules are contained by setting the pressure at 1 atm or higher. The hydrogen concentration distribution in the quartz glass can be positively controlled by changing the pressure, and a uniform hydrogen concentration profile can be obtained.
According to the production method of the present invention, the processing temperature in a hydrogen atmosphere is relatively low, and since the processing time is short, generation of reducing defects that deteriorate laser resistance in quartz glass is not observed, Since high-concentration hydrogen molecules are contained by high-pressure treatment, those that have excellent long-term laser resistance can be obtained. And a laser having extremely uniform and stable laser resistance.

【0009】以下に本発明の製造方法の一形態について
詳細に説明する。本発明に用いられる石英ガラスは一般
的にどのようなものでも良く、代表的なものは間接火炎
加水分解法(スート法)もしくは直接火炎加水分解法
(ダイレクト法)によって製造された合成石英ガラスが
好適である。水素ガス含有雰囲気で処理する前に、熱ア
ニール処理を施し、石英ガラス中に残留している水素ガ
スを脱ガスしておくことが重要である。一般的にスート
法で得られた石英ガラス中にはほとんど水素分子が存在
していない(多くは1×1016分子数/cm以下)
が、ダイレクト法により得られた石英ガラス中には水素
分子が残留していることが多い。水素分子は均一に残留
しているわけではないので、本発明の水素含有雰囲気で
の水素ドープ処理前にアニールをして、石英ガラス中の
水素分子を脱ガスしておくことが、均一な水素ドープを
行うために必要である。また、一般的にダイレクト法に
含有されている水素ガスは高温状態で導入されているこ
とが多く、多くの還元性欠陥が生成している可能性が高
い。したがって、ダイレクト法で製造された石英ガラス
を用いる場合、水素ドープする前に熱処理し脱ガスをし
ておく。
Hereinafter, one embodiment of the production method of the present invention will be described in detail. The quartz glass used in the present invention may be generally any kind, and a typical one is a synthetic quartz glass produced by an indirect flame hydrolysis method (soot method) or a direct flame hydrolysis method (direct method). It is suitable. It is important to perform a thermal annealing treatment before the treatment in the hydrogen gas-containing atmosphere to degas the hydrogen gas remaining in the quartz glass. Generally, almost no hydrogen molecules are present in the quartz glass obtained by the soot method (in most cases, 1 × 10 16 molecules / cm 3 or less).
However, hydrogen molecules often remain in the quartz glass obtained by the direct method. Since hydrogen molecules do not remain uniformly, annealing before hydrogen doping treatment in a hydrogen-containing atmosphere of the present invention to degas hydrogen molecules in quartz glass requires uniform hydrogen. Necessary for doping. In general, the hydrogen gas contained in the direct method is often introduced in a high temperature state, and it is highly likely that many reducing defects are generated. Therefore, when using quartz glass manufactured by the direct method, heat treatment and degassing are performed before hydrogen doping.

【0010】水素雰囲気処理は水素ガス100%、もし
くはHeや窒素ガスなどと混合した水素含有雰囲気中で
行っても良い。水素雰囲気処理をする石英ガラスの大き
さや形状に特に制限はないが、水素分子を表面から石英
ガラス内部に拡散させるために、あまり厚さの厚いもの
だと長い時間を要する。現実的には厚さ50mm以下が
好ましいが、もちろんこのサイズに限定されるものでは
ない。
The hydrogen atmosphere treatment may be performed in a hydrogen-containing atmosphere mixed with 100% hydrogen gas or He or nitrogen gas. The size and shape of the quartz glass to be subjected to the hydrogen atmosphere treatment are not particularly limited, but if the thickness is too large, it takes a long time to diffuse hydrogen molecules from the surface into the quartz glass. Actually, the thickness is preferably 50 mm or less, but is not limited to this size.

【0011】水素処理圧力は、1気圧以上であるが、石
英ガラス中に所望の水素濃度が得られるように圧力を調
整する。所望する水素濃度が高い場合、処理圧力も必然
的に高くなる。しかし、圧力があまり高くなった場合、
変圧の制御が難しく、均一な水素濃度分布を得ることが
難しくなってくる。処理する石英ガラス体の形状やサイ
ズにもよるが、一般的には5気圧〜100気圧程度の条
件を選択することが多い。水素処理は一定時間保持する
ことによって水素分子が表面から石英ガラス内部に拡散
していくが、時間が短いと表面近傍の水素濃度が内部よ
り高く設定される。石英ガラス中の水素分子濃度の最大
値と最小値の差がどのような形状になるのかは、処理す
るサンプルの形状、処理温度、処理時間などの条件によ
って異なる。一般に石英ガラスの形状が平行平板の場合
(図1に示した円盤形状など)、特に外周部近傍では側
面からの水素の拡散も生じるが、外周部から少し内部に
入ると、2つの平行平面から厚さ方向に向むかう水素分
子の拡散が支配的になる。したがって、一般的には水素
分子の分布は厚さ方向で著しく生じる。このように、厚
さ方向に水素分子濃度の最大値と最小値の差が生じ、平
行平板面近傍の水素濃度が高くなった場合、一般的には
屈折率も高くなり、側面からのみた屈折率分布が平坦で
はなくなる。このような材料を高精度が要求されるプリ
ズムや各種レンズに使用した場合、光学特性に影響を与
えるために、好ましくない。したがって、高精度の光学
用石英ガラスには極めて均一に水素分子をドープするこ
とが好ましい。しかしながら、一定圧力で均一に水素分
子をドープするためには十分に長い時間、処理する必要
があり、また、処理時間は石英ガラスの厚さの2乗に比
例して長くなっていく。本発明は、水素分子濃度が一定
に拡散するまで処理することなく、水素処理途中の水素
濃度分布が大きいときに、適当に水素処理圧力を変化さ
せることによって、積極的に石英ガラス中の水素分子濃
度を平坦化させ、短い処理時間で水素分子を均一にドー
プし、均質性が高く、かつ、高いレーザー耐性をもつ光
学用石英ガラス体を得る。
The hydrogen treatment pressure is 1 atm or more. The pressure is adjusted so that a desired hydrogen concentration can be obtained in the quartz glass. If the desired hydrogen concentration is high, the processing pressure will necessarily also be high. But if the pressure gets too high,
It is difficult to control the transformation and it is difficult to obtain a uniform hydrogen concentration distribution. Although it depends on the shape and size of the quartz glass body to be treated, generally a condition of about 5 to 100 atm is often selected. In the hydrogen treatment, hydrogen molecules are diffused from the surface to the inside of the quartz glass by holding for a certain period of time, but if the time is short, the hydrogen concentration near the surface is set higher than the inside. The shape of the difference between the maximum value and the minimum value of the hydrogen molecule concentration in the quartz glass depends on conditions such as the shape of the sample to be processed, the processing temperature, and the processing time. In general, when the shape of quartz glass is a parallel plate (such as the disk shape shown in FIG. 1), hydrogen diffusion from the side surface also occurs particularly in the vicinity of the outer peripheral portion. The diffusion of hydrogen molecules in the thickness direction becomes dominant. Therefore, distribution of hydrogen molecules generally occurs significantly in the thickness direction. As described above, when the difference between the maximum value and the minimum value of the hydrogen molecule concentration occurs in the thickness direction and the hydrogen concentration near the parallel plate surface increases, the refractive index generally also increases, and the refraction only from the side surface is performed. The rate distribution is no longer flat. When such a material is used for a prism or various lenses that require high precision, it is not preferable because it affects the optical characteristics. Therefore, it is preferable to highly uniformly dope the optical quartz glass with hydrogen molecules. However, it is necessary to perform the treatment for a sufficiently long time in order to uniformly dope the hydrogen molecules at a constant pressure, and the treatment time becomes longer in proportion to the square of the thickness of the quartz glass. The present invention does not perform the process until the hydrogen molecule concentration is diffused to a certain extent, and when the hydrogen concentration distribution during the hydrogen process is large, the hydrogen molecule in the quartz glass is actively changed by appropriately changing the hydrogen process pressure. The concentration is flattened, hydrogen molecules are uniformly doped in a short processing time, and a quartz glass body for optics having high homogeneity and high laser resistance is obtained.

【0012】水素含有雰囲気ガスの圧力は連続的、もし
くは段階的に変化させる。連続的に変化させるほうがよ
り細かな水素濃度分布のコントロールが可能であるが、
一般的な厚さの石英ガラスの場合、2段階もしくは3段
階程度の圧力変化で実質的には問題のないレベルで水素
が均一にドープされる。
The pressure of the hydrogen-containing atmosphere gas is changed continuously or stepwise. It is possible to control the hydrogen concentration distribution more finely by changing it continuously,
In the case of quartz glass having a general thickness, hydrogen is uniformly doped at a level that does not substantially cause a problem by a pressure change in two or three steps.

【0013】水素雰囲気処理の温度は600℃以下、好
ましくは200℃〜400℃以下で行うことが良い。処
理温度が高すぎると還元性欠陥が多く生成しレーザー耐
性が悪化し、処理温度が低すぎると処理時間が長くなり
生産性が極端に悪化する。還元性欠陥が生成することに
より、ArFやKrFレーザーを照射すると215nm
近傍に吸収バンドが誘起され、透過性を著しく低下させ
る。還元性欠陥の生成量は水素雰囲気処理の温度や時間
と関係している。一般的にはできるだけ低い温度で短時
間の処理を施すことが好ましいが、個々のサンプルにお
ける処理条件の設定はサンプルサイズや所望の水素分子
濃度によって適当に選択されるべきものである。
The temperature of the hydrogen atmosphere treatment is 600 ° C. or less, preferably 200 ° C. to 400 ° C. or less. If the processing temperature is too high, many reducing defects are generated and the laser resistance is deteriorated. If the processing temperature is too low, the processing time is prolonged and productivity is extremely deteriorated. Irradiation of ArF or KrF laser causes 215 nm
An absorption band is induced in the vicinity, which significantly reduces the transmittance. The amount of reducing defects generated is related to the temperature and time of the hydrogen atmosphere treatment. Generally, it is preferable to perform the treatment at a temperature as low as possible for a short time, but the setting of the treatment conditions for each sample should be appropriately selected depending on the sample size and the desired hydrogen molecule concentration.

【0014】以上説明した本製造方法によれば、均一に
水素が含有されているエキシマレーザー用合成石英ガラ
ス部材が得られる。本発明によるエキシマレーザー用合
成石英ガラス部材は、水素分子濃度の平均値が1×10
18分子数/cm3以上であり、水素分子濃度の最大値と最小
値の差ΔH が1.2×1018分子数/cm3以下であるあ
ることが好ましい。以上のような水素分子濃度と水素分
子濃度の最大値と最小値の差ΔHを満足することによ
り、以下のような高いエキシマレーザー耐性と、高均質
を兼ね備えたエキシマレーザー用合成石英ガラス部材が
得られる。すなわち、本発明によれば、ArFエキシマ
レーザーを、1パルスあたりのエネルギー密度2mJ/
cm、周波数200Hz、照射数2×105パルス照
射したときの照射中の215nmにおける誘起吸収量
が、厚さ1cmあたりの吸光度で0.003以下である
エキシマレーザー用合成石英ガラス部材が得られる。ま
た、KrFエキシマレーザーを、1パルスあたりのエネ
ルギー密度100mJ/cm、周波数200Hz、照
射数2×105パルス照射したときの照射中の210n
mにおける誘起吸収量が、厚さ1cmあたりの吸光度で
0.0075以下であるエキシマレーザー用合成石英ガ
ラス部材が得られる。そして、本発明のエキシマレーザ
ー用合成石英ガラス部材においては、632.8nmに
おける屈折率の均質性が±4×10-6(/cm)以下、複屈
折が2nm/cm以下を達成できる。
According to the manufacturing method described above, the uniform
Synthetic quartz glass for excimer laser containing hydrogen
The resulting member is obtained. Excimer laser according to the present invention
The average value of the hydrogen molecule concentration of the synthetic quartz glass member is 1 × 10
18Number of molecules / cmThreeThe maximum and minimum of the hydrogen molecule concentration
Value difference ΔH 2Is 1.2 × 1018Number of molecules / cmThreeIs below
Preferably. Above hydrogen molecule concentration and hydrogen content
Difference ΔH between maximum and minimum values2By satisfying
High excimer laser resistance and high homogeneity
Synthetic quartz glass for excimer laser
can get. That is, according to the present invention, the ArF excimer
The laser has an energy density per pulse of 2 mJ /
cm2, Frequency 200Hz, irradiation number 2 × 10FivePulse illumination
Induced absorption at 215 nm during irradiation
Is less than 0.003 in absorbance per 1 cm thickness
A synthetic quartz glass member for excimer laser is obtained. Ma
In addition, the KrF excimer laser is
Lugie density 100mJ / cm2, Frequency 200Hz, illumination
Shot number 2 × 10Five210n during pulsed irradiation
The induced absorption at m is the absorbance per 1 cm thickness
Synthetic quartz gas for excimer laser of 0.0075 or less
A lath member is obtained. And the excimer laser of the present invention
For synthetic quartz glass members for
± 4 × 10 in refractive index homogeneity-6(/ cm) or less
Folding can achieve 2 nm / cm or less.

【0015】本製造方法で得られた石英ガラスの各種物
性の評価方法について以下に記載しておく。 1)水素濃度測定 本発明における石英ガラス中の含有水素濃度は、Zhurma
l Prikladonoi Spektroskopii Vol. 46 No.6 pp987 to
991 June 1987に示される方法によって測定した。この
方法はラマン散乱スペクトルを用いるもので、SiO
に関するラマンシフト800cm−1のバンド強度と石
英ガラス中に含有する水素分子に関する4137cm
−1のバンドの強度の比率から水素濃度を求めるもので
あり、水素分子濃度C(分子数/cm)は以下の式に
より算出される。 C=K×(I(4137)/I(800)) ここでKは水素分子量をガスマススペクトロスコピーに
よって測定された絶対値と合わせるために用いる係数で
あり、本実験では1.22×1021が用いられた。I
(4137)およびI(800)は4137cm−1
よび800cm のラマンバンドの面積強度である。
この式から算出される水素分子濃度は1cmの容積あ
たりの石英ガラスに含まれる水素分子の個数である。使
用機器は日本分光製のNR−1100ダブルモノクロメ
ーター、波長488nmのArイオンレーザーを出力7
00mWで使用、浜松フォトニクス製のR943−02
光電子増倍管を使用している。
The methods for evaluating the various physical properties of the quartz glass obtained by this production method are described below. 1) Measurement of Hydrogen Concentration In the present invention, the concentration of hydrogen contained in quartz glass is determined by Zhurma
l Prikladonoi Spektroskopii Vol. 46 No.6 pp987 to
It was measured by the method shown in 991 June 1987. This method uses a Raman scattering spectrum, and uses SiO 2
Raman shift of 800 cm -1 for band intensity and 4137 cm for hydrogen molecules contained in quartz glass
The hydrogen concentration is obtained from the intensity ratio of the band of −1 , and the hydrogen molecule concentration C (number of molecules / cm 3 ) is calculated by the following equation. C = K × (I (4137) / I (800) ) where K is a coefficient used to match the hydrogen molecular weight with the absolute value measured by gas mass spectroscopy. In this experiment, 1.22 × 10 21 was used. Used. I
(4137) and I (800) is 4137Cm -1 and 800 cm - is the area strength of 1 Raman band.
The hydrogen molecule concentration calculated from this equation is the number of hydrogen molecules contained in the quartz glass per volume of 1 cm 3 . The equipment used was an NR-1100 double monochromator manufactured by JASCO and an Ar ion laser with a wavelength of 488 nm was output.
Used at 00mW, R943-02 manufactured by Hamamatsu Photonics
A photomultiplier tube is used.

【0016】2)屈折率分布 フィゾー型干渉計による測定法。632.8nmにおけ
る屈折率の最大値と最小値(Δn)を測定する。図1に
示したように、石英ガラス体が円盤形状の場合、側面か
ら測定する場合は厚さ方向の屈折率分布が、また、上下
面方向から測定する場合は直径方向の屈折率分布を測定
する。なお、円盤状石英ガラス体の側面からの測定は、
図1に示すように、斜線部分をカットし、両方の面を平
行に研削して行う。
2) Refractive index distribution Measurement method using Fizeau interferometer. The maximum value and the minimum value (Δn) of the refractive index at 632.8 nm are measured. As shown in FIG. 1, when the quartz glass body has a disk shape, the refractive index distribution in the thickness direction is measured when measured from the side surface, and the refractive index distribution in the diameter direction is measured when measured from the upper and lower surfaces. I do. In addition, the measurement from the side of the disk-shaped quartz glass body
As shown in FIG. 1, the cutting is performed by cutting a hatched portion and grinding both surfaces in parallel.

【0017】3)複屈折量 オーク製作所 自動複屈折測定装置 ADR−100使
3) Birefringence amount Oak Manufacturing Co., Ltd. Automatic birefringence measuring device ADR-100 used

【0018】4)レーザー耐性評価方法および評価用装
置 ArF及びKrFレーザー耐性を評価する装置の概略図
を図2に示した。水素雰囲気処理によって還元性欠陥の
生成した石英ガラスにエキシマレーザーを照射すると約
215nm(KrFの場合210nm)に中心を持つ吸
収バンドが生成し、このバンドの裾が193nm(Ar
F)や248nm(KrF)の波長に重なるために、レ
ーザーの透過性が低下する。すなわち、215nmの吸
収量を測定することによってもレーザー耐性の評価が可
能である。上記吸収バンドはレーザー照射中に出現し、
照射を中断すると緩和してしまうので、レーザー照射中
に同時に測定しなければいけない。図2にレーザー耐性
を評価するための透過率測定装置の概略を示した。図
中、符号2は評価試料で、通常10mm×10mm×5
0mmのサイズで、側面の全面(10mm×50mmの
面)を鏡面に研磨している。試料2に所定のエネルギー
密度のエキシマレーザー光を照射しつつ、レーザー照射
部位に同時にレーザー光と直交する方向から215nm
の透過率測定用の光を通じることによって、レーザー照
射と同時に215nmの吸光度を測定できるようなって
いる。紫外線の光源として重水素ランプ3、その光を2
15nmの単色光に分光する第一のモノクロメータ6
1、ビームスプリッター4を介して入射光の光量を測定
するための第一のフォトマル51、および試料2を挟ん
で第二のモノクロメータ62及び試料中を透過してくる
光量を測定するためのフォトマル52によって構成され
ている。重水素ランプ3より照射された光は第一のモノ
クロメータ61によって215nmの光に単色化され、
該215nm単色光はビームスプリッター4を介して一
部フォトマル52に入射すると共に、他の光は試料2を
通じ、モノクロメータ62を経てフォトマル52に受光
される。ここでフォトマル51と52で測定される光量
の比率から透過率が測定できる。ここでフォトマル51
と52の受光量の計測はエキシマレーザーの発振パルス
と同期しているため、レーザー照射を行いながら、同時
に透過率の測定が行える。なお、レーザー照射に伴う2
15nmの誘起吸収量は試料1cmあたりの誘起される
吸光度の値で表される。すなわち、誘起吸収量Dは、 D= −Log(レーザー照射中の透過率/レーザー照
射前の透過率) で算出ができる。誘起吸収は、ArFの場合、1パルス
あたりの照射エネルギー密度を2mJ/cmで照射し
た場合、2×105ショットあたりで吸光度が安定する
ため、この時の吸光度の値を測定する。なお、KrFの
場合、ArFと比較してダメージが小さいため、1パル
スあたりの照射エネルギー密度を100mJ/cm
設定する。
4) Method and apparatus for evaluating laser resistance FIG. 2 shows a schematic view of an apparatus for evaluating ArF and KrF laser resistance. When excimer laser is applied to quartz glass in which reducing defects have been generated by the hydrogen atmosphere treatment, an absorption band having a center at about 215 nm (210 nm in the case of KrF) is generated, and the tail of this band is 193 nm (Ar
F) or the wavelength of 248 nm (KrF), so that the laser transmittance is reduced. That is, the laser resistance can be evaluated by measuring the absorption at 215 nm. The absorption band appears during laser irradiation,
If the irradiation is interrupted, it will be relaxed, so measurement must be performed simultaneously during laser irradiation. FIG. 2 schematically shows a transmittance measuring device for evaluating laser resistance. In the figure, reference numeral 2 denotes an evaluation sample, usually 10 mm × 10 mm × 5.
It has a size of 0 mm and the entire side surface (10 mm × 50 mm surface) is polished to a mirror surface. While irradiating the sample 2 with an excimer laser beam having a predetermined energy density, the laser irradiation site is simultaneously 215 nm from a direction orthogonal to the laser beam.
By passing through the light for measuring the transmittance, the absorbance at 215 nm can be measured simultaneously with the laser irradiation. A deuterium lamp 3 as a light source for ultraviolet rays,
First monochromator 6 for dispersing into monochromatic light of 15 nm
1. A first photomultiplier 51 for measuring the amount of incident light via the beam splitter 4, and a second monochromator 62 for measuring the amount of light transmitted through the sample with the sample 2 interposed therebetween. The photomultiplier 52 is used. The light emitted from the deuterium lamp 3 is monochromatized by the first monochromator 61 into light of 215 nm,
The 215 nm monochromatic light partially enters the photomultiplier 52 via the beam splitter 4, and the other light passes through the sample 2 and is received by the photomultiplier 52 via the monochromator 62. Here, the transmittance can be measured from the ratio of the amount of light measured by the photomultipliers 51 and 52. Here Photomaru 51
Since the measurement of the amount of received light is synchronized with the oscillation pulse of the excimer laser, the transmittance can be simultaneously measured while irradiating the laser. In addition, 2
The amount of 15 nm induced absorption is represented by the value of the induced absorbance per 1 cm of the sample. That is, the induced absorption amount D can be calculated by D = -Log (transmittance during laser irradiation / transmittance before laser irradiation). As for the induced absorption, in the case of ArF, when the irradiation energy density per pulse is 2 mJ / cm 2 , the absorbance is stabilized at about 2 × 10 5 shots. Therefore, the value of the absorbance at this time is measured. In the case of KrF, the irradiation energy density per pulse is set to 100 mJ / cm 2 because damage is smaller than that of ArF.

【0019】[0019]

【実施例】それぞれの実施例、比較例に記載している石
英ガラス体の各種物性の測定値や簡単な製造条件などは
まとめて図3の表に示した。 実施例1 四塩化珪素を酸素、水素火炎中に導入し、火炎加水分解
して得られる合成シリカ微粒子をそのまま回転する基体
上に堆積させ、多孔質シリカ母材を作成した(間接火炎
加水分解法)。次に前記多孔質シリカ母材を真空炉で1
−4torrの高真空下で1600℃以上に加熱し
て、透明なインゴットを得た。次に得られたインゴット
をカーボンヒータを用いた電気炉で窒素中にて1800
℃に保持し、溶融、円盤状に成型した。成型体のサイズ
は直径260mm、厚さ60mmである。該成型体の外
表面を10mmの深さで研削し、直径240mm、厚さ
40mmの石英ガラス体を得た。次に、上記石英ガラス
体の歪み除去、均質化のために、大気雰囲気中の電気炉
内で1150℃で50時間加熱した後、5℃/時間の降
温速度で900℃まで徐冷を行い、その後炉の通電を停
止し、自然冷却を行った。この時の水素濃度は検出限界
以下、厚さ方向の屈折率の均質性(側面から測定)は、
屈折率の最大値と最小値の差(Δn)で±1.2×10
−6、直径方向の屈折率の均質性(上下面からの測定)
はΔnで±0.7×10−6であった。
EXAMPLES The measured values of various physical properties and simple manufacturing conditions of the quartz glass bodies described in the respective examples and comparative examples are summarized in the table of FIG. Example 1 Silicon tetrachloride was introduced into an oxygen / hydrogen flame, and synthetic silica fine particles obtained by flame hydrolysis were directly deposited on a rotating substrate to prepare a porous silica base material. ). Next, the porous silica base material is placed in a vacuum furnace for 1 hour.
The mixture was heated to 1600 ° C. or higher under a high vacuum of 0 −4 torr to obtain a transparent ingot. Next, the obtained ingot was placed in an electric furnace using a carbon heater in nitrogen for 1800 hours.
C., and was melted and formed into a disk shape. The size of the molded body is 260 mm in diameter and 60 mm in thickness. The outer surface of the molded body was ground to a depth of 10 mm to obtain a quartz glass body having a diameter of 240 mm and a thickness of 40 mm. Next, in order to remove the distortion of the quartz glass body and homogenize, the material was heated at 1150 ° C. for 50 hours in an electric furnace in an air atmosphere, and then gradually cooled to 900 ° C. at a temperature reduction rate of 5 ° C./hour. Thereafter, the power supply to the furnace was stopped, and natural cooling was performed. The hydrogen concentration at this time is below the detection limit, and the homogeneity of the refractive index in the thickness direction (measured from the side)
± 1.2 × 10 as the difference (Δn) between the maximum value and the minimum value of the refractive index
-6 , homogeneity of refractive index in the diameter direction (measurement from upper and lower surfaces)
Was ± 0.7 × 10 −6 in Δn.

【0020】上記成型体に水素分子を導入するために、
水素処理炉で熱処理を施した。処理条件は、水素分子1
00%の雰囲気中で、加熱保持温度は350℃、圧力
(p1)30気圧で600時間(t1)保持し、続い
て、加熱保持温度は350℃、圧力(p2)を8気圧に
減圧し550時間(t2)保持した。該水素処理済み成
型体を取り出し、屈折率の均質性を厚さ方向および直径
方向で測定を行った。厚さ方向の屈折率の最大値と最小
値の差(Δn)は±1.5×10−6、直径方向では±
0.9×10-6であり、水素分子の導入後も高い均質性
が維持されていた。また厚さ方向で複屈折を測定したと
ころ、<1.5nm/cmであった。
In order to introduce hydrogen molecules into the above-mentioned molded product,
Heat treatment was performed in a hydrogen treatment furnace. The processing conditions are hydrogen molecule 1
In an atmosphere of 00%, the heating and holding temperature is maintained at 350 ° C. and a pressure (p1) of 30 atm for 600 hours (t1). Subsequently, the heating and holding temperature is 350 ° C. and the pressure (p2) is reduced to 8 atm and reduced to 550. The time (t2) was maintained. The hydrogenated molded product was taken out, and the homogeneity of the refractive index was measured in the thickness direction and the diameter direction. The difference (Δn) between the maximum value and the minimum value of the refractive index in the thickness direction is ± 1.5 × 10 −6 and ± in the diameter direction.
0.9 × 10 −6 , and high homogeneity was maintained even after the introduction of hydrogen molecules. When the birefringence was measured in the thickness direction, it was <1.5 nm / cm.

【0021】次に上記水素処理済成型体の中央部から水
素分子濃度分布測定用サンプルおよびレーザー耐性評価
用サンプルを切り出し、それぞれ、ラマン分光測定およ
びレーザー透過率測定装置を用いて、水素分子濃度分布
およびレーザー耐性評価を行った。厚さ方向の水素分子
濃度分布は少なく、平均水素分子濃度が4.5×10 18
(分子数/cm)、水素分子濃度の最大値と最小値の差
(ΔH)は5.0×1017(分子数/cm)であっ
た。
Next, water is applied from the center of the hydrogen-treated molded body.
Sample for elemental molecular concentration distribution measurement and laser resistance evaluation
Cut out samples for Raman spectroscopy and
Distribution of hydrogen molecules using a laser
And laser resistance evaluation. Hydrogen molecules in the thickness direction
The concentration distribution is small and the average hydrogen molecule concentration is 4.5 × 10 18
(Number of molecules / cm3), Difference between maximum and minimum values of hydrogen molecule concentration
(ΔH2) Is 5.0 × 1017(Number of molecules / cm3)
Was.

【0022】レーザー耐性の評価を行うために、上記成
型体の中心に近い部分から評価用試料を切り出し、前記
された評価方法にてArF及びKrFレーザー照射耐性
を評価した。ArFレーザーを1パルスあたりのエネル
ギー密度2mJ/cm、周波数200Hzで2×10
5ショット照射したときの、215nmにおける誘起さ
れた吸光度は0.0015(/cm)であった。図4に
ArFレーザー照射に伴う215nmの吸光度の変化を
示した。また、KrFレーザーを1パルスあたりのエネ
ルギー密度100mJ/cm、周波数200Hzで2
×105ショット照射したときの210nmにおける誘
起された吸光度は0.0035(/cm)であった。こ
のレベルはエキシマレーザー光学用の石英ガラス材料と
しては十分に小さいものであり、高いレーザー耐性が備
わっているといえる。
In order to evaluate the laser resistance, a sample for evaluation was cut out from a portion near the center of the above-mentioned molded body, and the ArF and KrF laser irradiation resistance were evaluated by the evaluation method described above. An ArF laser is applied at an energy density of 2 mJ / cm 2 per pulse at a frequency of 200 Hz and 2 × 10 2
The induced absorbance at 215 nm when irradiated with 5 shots was 0.0015 (/ cm). FIG. 4 shows a change in absorbance at 215 nm due to ArF laser irradiation. Further, a KrF laser is used at an energy density of 100 mJ / cm 2 per pulse and a frequency of 200 Hz.
The induced absorbance at 210 nm upon irradiation with × 10 5 shots was 0.0035 (/ cm). This level is sufficiently small as a quartz glass material for excimer laser optics, and can be said to have high laser resistance.

【0023】以上のように、高圧水素雰囲気処理中の処
理圧力を変化させることによって、水素分子の濃度分布
を生じさせることなく均一にドープされることから、屈
折率の均質性が高く、かつ、レーザー耐性の優れた光学
用石英ガラスを得ることができる。実施例及び比較例の
評価結果をまとめて図3の表に示した。
As described above, by changing the processing pressure during the high-pressure hydrogen atmosphere processing, the doping is performed uniformly without causing the concentration distribution of the hydrogen molecules, so that the refractive index has high homogeneity, and An optical quartz glass having excellent laser resistance can be obtained. The evaluation results of the examples and the comparative examples are collectively shown in the table of FIG.

【0024】実施例2 四塩化珪素を酸素、水素火炎中に導入し、火炎加水分解
して得られる合成シリカ微粒子をそのまま回転する基体
上に溶融、堆積させ、透明ガラス体のインゴットを作成
した(直接火炎加水分解法)。次に前記透明ガラスイン
ゴットをカーボンヒータを用いた電気炉で窒素中にて1
800℃に保持し、溶融、円盤状に成型した。成型体の
サイズは直径260mm、厚さ65mmである。該成型
体の最初から含有している水素分子を一旦脱ガスするた
めに、大気雰囲気中の電気炉内で温度1150℃で25
0hr保持し、続いて、歪み除去および均質化のため
に、前記加熱処理に引き続き、5℃/minの降温速度で9
00℃までは徐冷を行い、その後炉の通電を停止し、自
然冷却を行った。次いで、該成型体の外表面を10mm
の深さで研削し、直径240mm、厚さ40mmの石英
ガラス体を得た。この石英ガラス体の水素濃度は検出限
界以下、厚さ方向の屈折率の均質性(側面から測定)
は、Δnで±1.0×10−6、直径方向(上下面から
測定)はΔnで±0.7×10−6であった。
Example 2 Silicon tetrachloride was introduced into an oxygen / hydrogen flame, and synthetic silica fine particles obtained by flame hydrolysis were melted and deposited on a rotating substrate as it was to produce an ingot of a transparent glass body ( Direct flame hydrolysis method). Next, the transparent glass ingot was placed in an electric furnace using a carbon heater in nitrogen for 1 hour.
It was kept at 800 ° C., melted and shaped into a disk. The size of the molded body is 260 mm in diameter and 65 mm in thickness. In order to temporarily degas the hydrogen molecules contained from the beginning of the molded body, a temperature of 1150.degree.
Hold for 0 hr, and subsequently, at a temperature lowering rate of 5 ° C./min.
Slow cooling was performed until the temperature reached 00 ° C., and thereafter, power supply to the furnace was stopped, and natural cooling was performed. Next, the outer surface of the molded body was
To obtain a quartz glass body having a diameter of 240 mm and a thickness of 40 mm. The hydrogen concentration of this quartz glass body is below the detection limit, and the refractive index homogeneity in the thickness direction (measured from the side)
Was ± 1.0 × 10 −6 in Δn, and ± 0.7 × 10 −6 in Δn in the diameter direction (measured from the upper and lower surfaces).

【0025】上記成型体に水素分子を導入するために、
水素処理炉で熱処理を施した。処理条件は、水素分子1
00%の雰囲気中で、加熱保持温度は400℃、圧力
(p1)10気圧で350時間(t1)保持し、続い
て、加熱保持温度は400℃、圧力(p2)を2.5気
圧に減圧し300時間(t2)保持した。該水素処理済
み成型体を取り出し、屈折率の均質性を厚さ方向および
直径方向で測定を行った。厚さ方向の屈折率の均質性
(側面から測定)は、Δnで±1.2×10−6、直径
方向(上下面から測定)はΔnで±0.9×10−6
あり、水素分子の導入後も高い均一性が維持されてい
た。また厚さ方向で複屈折を測定したところ、<1.5
nm/cmであった。実施例1と同様、水素分子濃度分
布、ArF及びKrFのエキシマレーザー耐性の評価を
行った。平均水素分子濃度が1.7×10 18(分子数/
cm)、水素分子濃度の最大値と最小値の差(Δ
)は3.5×1017(分子数/cm)であった。ま
た、ArFレーザー照射時の215nm誘起吸光度は
0.002(/cm)、KrFレーザーを照射したとき
の210nmの誘起吸光度は0.0045(/cm)で
あった。図4にArFレーザー照射に伴う215nmの
吸光度の変化を示した。このレベルはエキシマレーザー
光学用の石英ガラス材料としては十分に小さいものであ
り、実施例1の場合と同様、高いレーザー耐性が備わっ
ているといえる。
In order to introduce hydrogen molecules into the above molded product,
Heat treatment was performed in a hydrogen treatment furnace. The processing conditions are hydrogen molecule 1
In an atmosphere of 00%, the heating and holding temperature is 400 ° C., and the pressure is
(P1) Hold at 10 atm for 350 hours (t1), then
The heating and holding temperature is 400 ° C. and the pressure (p2) is 2.5
The pressure was reduced to and maintained for 300 hours (t2). Hydrogen treated
Take out the molded body and adjust the homogeneity of the refractive index in the thickness direction and
The measurements were taken in the diametric direction. Refractive index homogeneity in the thickness direction
(Measured from the side) is ± 1.2 × 10 in Δn-6,diameter
Direction (measured from upper and lower surfaces) is ± 0.9 × 10 in Δn-6so
And high uniformity is maintained even after the introduction of hydrogen molecules.
Was. When birefringence was measured in the thickness direction, it was found that <1.5.
nm / cm. As in Example 1, the hydrogen molecule concentration
Evaluation of excimer laser resistance of cloth, ArF and KrF
went. Average hydrogen molecule concentration of 1.7 × 10 18(Number of molecules /
cm3), The difference between the maximum and minimum values of the hydrogen molecule concentration (Δ
H2) Is 3.5 × 1017(Number of molecules / cm3)Met. Ma
Also, the 215 nm induced absorbance upon ArF laser irradiation is
When irradiated with KrF laser at 0.002 (/ cm)
The induced absorbance at 210 nm is 0.0045 (/ cm).
there were. FIG. 4 shows the 215 nm wavelength accompanying ArF laser irradiation.
A change in absorbance was indicated. This level is excimer laser
A sufficiently small quartz glass material for optical use
High laser resistance as in the case of Example 1.
It can be said that.

【0026】実施例3 直接火炎加水分解法により得られた石英ガラスインゴッ
トから脱水素熱アニール処理まで実施例2に示した同様
の方法を用いて、直径240mm、厚さ25mmの円盤
状の透明ガラス体を作成した。この石英ガラス体の水素
濃度は検出限界以下、厚さ方向の屈折率の均質性(側面
から測定)は、Δnで±1.2×10 、直径方向
(上下面から測定)では±0.9×10−6であった。
Example 3 A disk-shaped transparent glass having a diameter of 240 mm and a thickness of 25 mm was obtained from the quartz glass ingot obtained by the direct flame hydrolysis method to the thermal annealing treatment for dehydrogenation in the same manner as described in Example 2. Created body. The hydrogen concentration of the quartz glass body below the detection limit, uniformity in the thickness direction of the refractive index (measured from the side) is, ± at Δn 1.2 × 10 - 6, (measured from the upper and lower surfaces) diameter direction at ± 0 0.9 × 10 −6 .

【0027】上記成型体に水素分子を導入するために、
水素処理炉で熱処理を施した。処理条件は、水素分子1
00%の雰囲気中で、加熱保持温度は350℃、圧力
(p1)100気圧で120時間(t1)保持し、続い
て、加熱保持温度は350℃、圧力(p2)50気圧に
減圧し85時間(t2)保持、次いで加熱保持温度35
0℃にて、圧力(p3)を25気圧に減圧し135時間
(t3)保持した。該水素処理済み成型体を取り出し、
屈折率の均質性を厚さ方向および直径方向で測定を行っ
た。厚さ方向(側面より測定)の屈折率の最大値と最小
値の差(Δn)は±1.8×10−6、直径方向(上下
面から測定)は±1.5×10−6であり、水素分子の
導入後も高い均質性が維持されていた。また厚さ方向で
複屈折を測定したところ、<2nm/cmであった。実
施例1と同様、水素分子濃度分布、ArF及びKrFの
エキシマレーザー耐性の評価を行った。平均水素分子濃
度が1.6×1019(分子数/cm)、水素分子濃度の
最大値と最小値の差(ΔH)は1.2×1018(分子
数/cm)であった。また、ArFレーザー照射時の
215nm誘起吸光度は0.0023(/cm)、Kr
Fレーザーを照射したときの210nmの誘起吸光度は
0.0050(/cm)であった。図4にArFレーザ
ー照射に伴う215nmの吸光度の変化を示した。この
レベルはエキシマレーザー光学用の石英ガラス材料とし
ては十分に小さいものであり、実施例1の場合と同様、
高いレーザー耐性が備わっているといえる。
In order to introduce hydrogen molecules into the above molded product,
Heat treatment was performed in a hydrogen treatment furnace. The processing conditions are hydrogen molecule 1
In a 00% atmosphere, the heating and holding temperature was maintained at 350 ° C. and a pressure (p1) of 100 atm for 120 hours (t1). Subsequently, the heating and holding temperature was reduced to 350 ° C. and a pressure (p2) of 50 atm and reduced for 85 hours (T2) Hold, then heat hold temperature 35
At 0 ° C., the pressure (p3) was reduced to 25 atm and maintained for 135 hours (t3). Take out the hydrogenated molded body,
The homogeneity of the refractive index was measured in the thickness direction and the diameter direction. The difference (Δn) between the maximum value and the minimum value of the refractive index in the thickness direction (measured from the side surface) is ± 1.8 × 10 −6 , and the difference in the diameter direction (measured from the upper and lower surfaces) is ± 1.5 × 10 −6 . High homogeneity was maintained even after the introduction of hydrogen molecules. When the birefringence was measured in the thickness direction, it was <2 nm / cm. As in Example 1, the hydrogen molecule concentration distribution and the excimer laser resistance of ArF and KrF were evaluated. The average hydrogen molecule concentration was 1.6 × 10 19 (number of molecules / cm 3 ), and the difference (ΔH 2 ) between the maximum value and the minimum value of the hydrogen molecule concentration was 1.2 × 10 18 (number of molecules / cm 3 ). Was. The 215 nm-induced absorbance at the time of ArF laser irradiation was 0.0023 (/ cm), and Kr
The induced absorbance at 210 nm when irradiated with the F laser was 0.0050 (/ cm). FIG. 4 shows a change in absorbance at 215 nm due to ArF laser irradiation. This level is sufficiently small as a quartz glass material for excimer laser optics, and as in the case of Example 1,
It can be said that it has high laser resistance.

【0028】実施例4 水素分子ドープのための熱処理で、ヘリウムガスと水素
ガスの混合ガスを使用する以外は、実施例1と同様の条
件で成型体を作成した。水素分子を導入するための熱処
理条件は、第一段階の処理として、処理温度350℃、
100%の水素ガス雰囲気中で、圧力(p1)30気圧
で600時間(t1)保持した。次いで第二段階の処理
は、ヘリウムガスと水素ガスの混合ガスを用いた。混合
ガス中のヘリウムガスの分圧は22気圧、水素ガスの分
圧を8気圧に設定し、この30気圧の混合ガス中に、温
度350℃で550hr保持した。実施例1の場合と同様
に均質性、水素分子濃度分布、レーザー耐性の評価を行
った。厚さ方向の屈折率の均質性は、最大値と最小値の
差(Δn)で±1.5×10−6、直径方向では±1.
0×10−6であり、水素分子の導入後も高い均質性が
維持されていた。また厚さ方向で複屈折を測定したとこ
ろ、<1.5nm/cmであった。平均水素分子濃度は
4.0×1018(分子数/cm)、水素分子濃度の最大
値と最小値の差(ΔH)は4.0×1017(分子数/
cm)であった。また、ArFレーザー照射時の21
5nm誘起吸光度は0.0015(/cm)、KrFレ
ーザーを照射したときの210nmの誘起吸光度は0.
0035(/cm)と、実施例1と同様の結果が得られ
た。図4にArFレーザー照射に伴う215nmの吸光
度の変化を示した。
Example 4 A molded article was prepared under the same conditions as in Example 1 except that a mixed gas of helium gas and hydrogen gas was used in the heat treatment for doping hydrogen molecules. The heat treatment conditions for introducing hydrogen molecules are as follows: the processing temperature is 350 ° C.
The pressure (p1) was maintained at 30 atm for 600 hours (t1) in a 100% hydrogen gas atmosphere. Next, in the second stage treatment, a mixed gas of helium gas and hydrogen gas was used. The partial pressure of the helium gas in the mixed gas was set at 22 atm, the partial pressure of the hydrogen gas was set at 8 atm, and the mixture was maintained at 350 ° C. for 550 hours in the 30 atm mixed gas. As in the case of Example 1, the homogeneity, the hydrogen molecule concentration distribution, and the laser resistance were evaluated. The homogeneity of the refractive index in the thickness direction is ± 1.5 × 10 −6 as the difference (Δn) between the maximum value and the minimum value, and ± 1.
0 × 10 −6 , indicating that high homogeneity was maintained even after the introduction of hydrogen molecules. When the birefringence was measured in the thickness direction, it was <1.5 nm / cm. Mean concentration of hydrogen molecules is 4.0 × 10 18 (molecules / cm 3), the difference between the maximum value and the minimum value of the hydrogen molecule concentration ([Delta] H 2) is 4.0 × 10 17 (molecules /
cm 3 ). In addition, 21 when ArF laser irradiation
The induced absorbance at 5 nm was 0.0015 (/ cm), and the induced absorbance at 210 nm when irradiated with a KrF laser was 0.15 (/ cm).
0035 (/ cm), a result similar to that of Example 1 was obtained. FIG. 4 shows a change in absorbance at 215 nm due to ArF laser irradiation.

【0029】実施例5 実施例1と同様の方法で、直径240nm、厚さ50m
mの成型体を作成した。水素分子を導入するための熱処
理は処理圧力を3段階に変化させ、第三段階の処理圧力
は第二段階の処理圧力より高く設定した。具体的な処理
条件は、第一段階の熱処理は、処理温度350℃、10
0%の水素ガス雰囲気中で、圧力(p1)30気圧で5
50時間(t1)保持した。次いで第二段階の処理は、
処理温度350℃で保持し、圧力(p2)を4気圧に設
定し、500時間(t2)保持した。更に第三段階の処
理として、圧力(p3)を10気圧に設定し、120時
間(t3)保持した。実施例1の場合と同様に均質性、
水素分子濃度分布、レーザー耐性の評価を行った。厚さ
方向の屈折率の均質性は、最大値と最小値の差(Δn)
で±1.2×10−6、直径方向では±0.9×10
−6であり、水素分子の導入後も高い均質性が維持され
ていた。水素処理の圧力を3段階に設定することによ
り、厚さの比較的厚いものでも均一に水素分子をドープ
することができ、したがって、十分に均質性の高い石英
ガラスが得られることがわかった。また厚さ方向で複屈
折を測定したところ、<2nm/cmであった。平均水
素分子濃度は3.0×1018(分子数/cm)、水素分
子濃度の最大値と最小値の差(ΔH )は3.0×10
17(分子数/cm)であった。また、ArFレーザー照射
時の215nm誘起吸光度は0.0012(/cm)、
KrFレーザーを照射したときの210nmの誘起吸光
度は0.0032(/cm)と、かなり低い値が得られ
た。図4にArFレーザー照射に伴う215nmの吸光
度の変化を示した。
Example 5 In the same manner as in Example 1, the diameter was 240 nm and the thickness was 50 m.
m was formed. Heat treatment to introduce molecular hydrogen
The process pressure is changed in three stages, the third stage processing pressure
Was set higher than the processing pressure in the second stage. Specific processing
The conditions are as follows.
In a 0% hydrogen gas atmosphere, a pressure (p1) of 30 atm.
It was kept for 50 hours (t1). Then the second stage processing is
The processing temperature was maintained at 350 ° C, and the pressure (p2) was set at 4 atm.
And held for 500 hours (t2). Further processing in the third stage
In principle, the pressure (p3) is set to 10 atm and
The time (t3) was maintained. Homogeneity as in Example 1,
The hydrogen molecule concentration distribution and laser resistance were evaluated. thickness
The homogeneity of the refractive index in the direction is the difference between the maximum value and the minimum value (Δn)
± 1.2 × 10-6± 0.9 × 10 in the diameter direction
-6High homogeneity is maintained even after the introduction of hydrogen molecules.
I was By setting the pressure of hydrogen treatment in three stages
Even if the thickness is relatively large, dope hydrogen molecules uniformly
Quartz can therefore be sufficiently homogeneous
It was found that glass was obtained. Bifurcated in the thickness direction
The fold was measured to be <2 nm / cm. Average water
Elemental molecule concentration is 3.0 × 1018(Number of molecules / cm3), Hydrogen content
Difference between the maximum value and the minimum value of the 2) Is 3.0 × 10
17(Number of molecules / cm3)Met. ArF laser irradiation
215 nm induced absorbance at the time is 0.0012 (/ cm),
Induced absorption at 210 nm when irradiated with KrF laser
The degree is as low as 0.0032 (/ cm).
Was. FIG. 4 shows the absorption at 215 nm due to ArF laser irradiation.
Degrees of change were indicated.

【0030】比較例1 実施例1と同様の方法で、同一サイズの成型体を作成し
た。この成型体は実施例1の水素雰囲気処理前に得られ
たものとまったく同一の方法で作成されたものである。
該成型体に水素分子をドープするために、圧力30気圧
の水素ガス100%の雰囲気中で、処理温度400℃
で、600時間保持した。得られた成型体の均質性、水
素分子濃度分布、レーザー耐性を測定した。直径方向
(上下面からの測定)の均質性は、屈折率の最大値と最
小値の差(Δn)で±2.5×10 で多少悪くなっ
ている程度であったが、厚さ方向の均質性はΔnで1.
8×10−5と、実施例と比較して非常に大きな屈折率
分布が生じてしまった。平均水素分子濃度は7.5×1
18(分子数/cm)と比較的高い濃度であった
が、水素分子濃度の最大値と最小値の差(ΔH)は
1.1×1019(分子数/cm)と非常に大きく、
特に外表面近傍の水素分子濃度が高くなっており、その
ため屈折率の分布も表面近傍で急激に増加している。な
おArFレーザー照射時の215nm誘起吸光度は0.
003(/cm)、KrFレーザーを照射したときの2
10nmの誘起吸光度は0.007(/cm)と極端に
悪いことはない。水素分子のドープ処理時に雰囲気ガス
の圧力を変えなかったため、不十分な処理時間の場合、
石英ガラス内部まで水素分子が拡散していくことがな
く、極端な水素分子濃度分布が生じ、その結果、屈折率
の分布がひどく大きくなっている。
Comparative Example 1 In the same manner as in Example 1, a molded article having the same size was produced. This molded body was produced by exactly the same method as that obtained before the hydrogen atmosphere treatment in Example 1.
In order to dope the molded body with hydrogen molecules, a treatment temperature of 400 ° C. is applied in an atmosphere of hydrogen gas 100% at a pressure of 30 atm.
For 600 hours. The homogeneity, hydrogen molecule concentration distribution, and laser resistance of the obtained molded body were measured. Homogeneity in the diameter direction (measured from the upper and lower surface), ± 2.5 × 10 difference between the maximum value and the minimum value of the refractive index ([Delta] n) - was the extent which is somewhat poor in 6, thickness The direction homogeneity is 1.
8 × 10 −5 , which is a very large refractive index distribution as compared with the example. The average hydrogen molecule concentration is 7.5 × 1
Although the concentration was relatively high at 0 18 (number of molecules / cm 3 ), the difference (ΔH 2 ) between the maximum value and the minimum value of the concentration of hydrogen molecules was 1.1 × 10 19 (number of molecules / cm 3 ), which was very high. Bigger,
In particular, the concentration of hydrogen molecules near the outer surface is high, so that the distribution of the refractive index is also rapidly increasing near the surface. The 215 nm induced absorbance upon ArF laser irradiation was 0.1.
003 (/ cm), 2 when irradiated with KrF laser
The induced absorbance at 10 nm is 0.007 (/ cm), which is not extremely bad. Since the pressure of the atmosphere gas was not changed during the hydrogen molecule doping process, if the processing time was insufficient,
Hydrogen molecules do not diffuse into the quartz glass, and an extreme concentration distribution of hydrogen molecules occurs, and as a result, the distribution of the refractive index becomes extremely large.

【0031】比較例2 水素分子ドープの熱処理条件が異なっていること以外、
実施例1と同じ方法で成型体を作成した。すなわち、間
接法によって直径240mm、厚さ40mmの石英ガラ
ス成型体を作成し、この成型体に水素分子を導入するた
めに、水素ガス雰囲気中で熱処理を施した。熱処理の条
件は、水素100%の雰囲気中で、加熱保持温度が65
0℃、処理圧力(p1)30気圧で130時間(t1)
保持した後、次いで、温度は650℃に保持したまま、
水素ガスの圧力(p2)を8気圧に設定し、120時間
(t2)熱処理を施した。
Comparative Example 2 Except that the heat treatment conditions for hydrogen molecule doping were different,
A molded body was prepared in the same manner as in Example 1. That is, a quartz glass molded body having a diameter of 240 mm and a thickness of 40 mm was prepared by an indirect method, and a heat treatment was performed in a hydrogen gas atmosphere to introduce hydrogen molecules into the molded body. The conditions of the heat treatment are as follows.
0 ° C., processing pressure (p1) at 30 atm for 130 hours (t1)
After holding, then, while maintaining the temperature at 650 ° C,
The pressure (p2) of the hydrogen gas was set to 8 atm, and heat treatment was performed for 120 hours (t2).

【0032】得られた成型体の均質性、水素分子濃度分
布、レーザー耐性を測定した。直径方向(上下面からの
測定)の均質性は、屈折率の最大値と最小値の差(Δ
n)で±1.0×10−6、厚さ方向の均質性はΔnで
1.5×10−6と良好な結果を示した。また、平均水
素分子濃度は4.0×1018(分子数/cm)、水素
分子濃度の最大値と最小値の差(ΔH)は4.5×1
17(分子数・cm)とかなり均一に水素分子が導入
されていることが確認された。しかしながら、ArFレ
ーザー照射時の215nm誘起吸光度は0.013(/
cm)、KrFレーザーを照射したときの210nmの
誘起吸光度は0.031(/cm)と極端に悪化してい
る。図4にArFレーザー照射に伴う215nmの吸光
度変化を示しているが、特に比較例2の試料では急激な
吸収の増加が生じていることがわかる。これは水素分子
ドープのための熱処理が高温で処理されたために石英ガ
ラス中に還元性欠陥が生成し、レーザー照射により吸収
が増加したためである。水素分子濃度の最大値と最小値
の差や均質性には問題がないものの、レーザー耐性が悪
いため、エキシマレーザーの光学用には不適当なもので
ある。
The homogeneity, hydrogen molecule concentration distribution and laser resistance of the obtained molded product were measured. The homogeneity in the diametric direction (measured from the upper and lower surfaces) is determined by the difference between the maximum value and the minimum value of the refractive index (Δ
n) was ± 1.0 × 10 −6 , and the uniformity in the thickness direction was Δn, which was as good as 1.5 × 10 −6 . The average hydrogen molecule concentration was 4.0 × 10 18 (number of molecules / cm 3 ), and the difference (ΔH 2 ) between the maximum value and the minimum value of the hydrogen molecule concentration was 4.5 × 1.
It was confirmed that hydrogen molecules were introduced fairly uniformly at 0 17 (number of molecules · cm 3 ). However, the 215 nm induced absorbance upon ArF laser irradiation was 0.013 (/
cm) and the induced absorbance at 210 nm when irradiated with a KrF laser is extremely deteriorated to 0.031 (/ cm). FIG. 4 shows the change in the absorbance at 215 nm due to the irradiation with the ArF laser. It can be seen that the sample of Comparative Example 2 shows a sharp increase in absorption. This is because the heat treatment for doping hydrogen molecules was performed at a high temperature, so that reducing defects were generated in the quartz glass, and the absorption was increased by laser irradiation. Although there is no problem in the difference between the maximum value and the minimum value of the hydrogen molecule concentration and the homogeneity, it is unsuitable for optical use of excimer laser due to poor laser resistance.

【0033】[0033]

【発明の効果】以上、記載のごとく本発明によれば、石
英ガラスのエキシマレーザーに対する耐性を向上させる
ために導入する水素分子を均一にドープすることがでる
ため、屈折率の均質性、複屈折などの光学特性を損なう
ことなく、レーザー耐性の高い石英ガラス部材を得るこ
とができる。したがって、本発明により製造された石英
ガラスは、すぐれた光学特性を維持しつつ、特にエキシ
マレーザーのような高エネルギー紫外線パルスレーザー
にも長期間、安定して使用できるレーザー耐性を備えて
おり、半導体製造用リソグラフィー装置やその他の紫外
線光学系に好適に使用できるものである。
As described above, according to the present invention, it is possible to uniformly dope hydrogen molecules introduced to improve the resistance of quartz glass to excimer laser, so that the refractive index uniformity and birefringence can be improved. A quartz glass member having high laser resistance can be obtained without impairing optical characteristics such as the above. Therefore, the quartz glass manufactured according to the present invention has laser resistance that can be stably used for a long time even with a high-energy ultraviolet pulse laser such as an excimer laser while maintaining excellent optical characteristics, and a semiconductor. It can be suitably used for a manufacturing lithography apparatus and other ultraviolet optical systems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】屈折率分布の測定方法とその方向を説明するた
めの図である。
FIG. 1 is a diagram for explaining a method of measuring a refractive index distribution and its direction.

【図2】レーザー耐性を評価するための透過率測定装置
の概略図である。
FIG. 2 is a schematic diagram of a transmittance measuring device for evaluating laser resistance.

【図3】実施例、比較例の各種物性評価結果の表を示す
図である。
FIG. 3 is a view showing a table of evaluation results of various physical properties of Examples and Comparative Examples.

【図4】実施例、比較例のArFレーザー照射に伴う2
15nmの吸光度の変化を示す図である。
FIG. 4 shows the results of ArF laser irradiation in Examples and Comparative Examples.
It is a figure which shows the change of the absorbance of 15 nm.

【符号の説明】[Explanation of symbols]

1 エキシマレーザー 2 試料 3 重水素ランプ 4 ビームスプリッター 51 モノクロメータ 52 モノクロメータ 61 フォトマル 62 フォトマル 7 エキシマレーザー光 Reference Signs List 1 excimer laser 2 sample 3 deuterium lamp 4 beam splitter 51 monochromator 52 monochromator 61 photomultiplier 62 photomultiplier 7 excimer laser beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤ノ木 朗 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社石英技術研究所内 Fターム(参考) 4G014 AH15 AH21 5F071 AA06 FF07 FF09 JJ03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Akira Fujinoki 88, Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Shin-Etsu Quartz Co., Ltd. Quartz Research Laboratory F-term (reference) 4G014 AH15 AH21 5F071 AA06 FF07 FF09 JJ03

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 合成石英ガラス体を1気圧以上150気
圧未満の圧力の水素含有雰囲気中で、処理温度600℃
以下で熱処理して、該石英ガラス体に水素分子を含有さ
せる工程を含むエキシマレーザー光学用合成石英ガラス
部材の製造方法であって、前記熱処理中の少なくとも一
部において、前記水素含有ガスの圧力を連続的もしくは
段階的に変化させることを特徴とするエキシマレーザー
用合成石英ガラス部材の製造方法。
A synthetic quartz glass body is treated at a processing temperature of 600 ° C. in a hydrogen-containing atmosphere at a pressure of 1 to 150 atm.
A method for producing a synthetic quartz glass member for excimer laser optics comprising a step of performing a heat treatment below to cause the quartz glass body to contain hydrogen molecules, wherein at least a part of the heat treatment includes reducing the pressure of the hydrogen-containing gas. A method for producing a synthetic quartz glass member for an excimer laser, wherein the member is changed continuously or stepwise.
【請求項2】 前記水素含有ガスの圧力の変化が減少で
ある請求項1記載のエキシマレーザー用合成石英ガラス
部材の製造方法。
2. The method for producing a synthetic quartz glass member for an excimer laser according to claim 1, wherein a change in the pressure of the hydrogen-containing gas is reduced.
【請求項3】 合成石英ガラス体を、水素含有雰囲気中
で、第1設定圧力で、第1設定時間、熱処理を施した
後、前記第1設定圧力より低い第2設定圧力で、第2設
定時間熱処理を施す請求項2記載のエキシマレーザー用
合成石英ガラス部材の製造方法。
3. After subjecting the synthetic quartz glass body to a heat treatment at a first set pressure for a first set time in a hydrogen-containing atmosphere, a second set pressure is set at a second set pressure lower than the first set pressure. The method for producing a synthetic quartz glass member for an excimer laser according to claim 2, wherein the heat treatment is performed for a time.
【請求項4】 前記水素含有雰囲気が、100%の水素
ガス、もしくは、窒素、アルゴンまたはヘリウムと水素
ガスの混合ガスである、請求項1〜3のいずれかに記載
のエキシマレーザー用合成石英ガラス部材の製造方法。
4. The synthetic quartz glass for an excimer laser according to claim 1, wherein the hydrogen-containing atmosphere is 100% hydrogen gas or a mixed gas of nitrogen, argon, or helium and hydrogen gas. Manufacturing method of the member.
【請求項5】 水素を含有させる前記合成石英ガラス体
を、直接火炎加水分解法または間接火炎加水分解法によ
って作成する、請求項1〜4のいずれかに記載のエキシ
マレーザー用合成石英ガラス部材の製造方法。
5. The synthetic quartz glass member for an excimer laser according to claim 1, wherein the synthetic quartz glass body containing hydrogen is produced by a direct flame hydrolysis method or an indirect flame hydrolysis method. Production method.
【請求項6】 請求項1〜5のいずれかに記載のエキシ
マレーザー用合成石英ガラス部材の製造方法によって製
造され、均一に水素が含有されているエキシマレーザー
用合成石英ガラス部材。
6. A synthetic quartz glass member for an excimer laser, which is produced by the method for producing a synthetic quartz glass member for an excimer laser according to claim 1 and which contains hydrogen uniformly.
【請求項7】 水素分子濃度の平均値が1×1018分子
数/cm3以上であり、水素分子濃度の最大値と最小値の差
ΔHが1.2×1018分子数/cm3以下である請求項6
記載のエキシマレーザー用合成石英ガラス部材。
7. An average value of hydrogen molecule concentration is 1 × 10 18 molecules / cm 3 or more, and a difference ΔH 2 between a maximum value and a minimum value of hydrogen molecule concentration is 1.2 × 10 18 molecules / cm 3. Claim 6 which is
The synthetic quartz glass member for an excimer laser according to the above.
【請求項8】 ArFエキシマレーザーを、1パルスあ
たりのエネルギー密度2mJ/cm、周波数200H
z、照射数2×105パルス照射したときの照射中の2
15nmにおける誘起吸収量が、厚さ1cmあたりの吸
光度で0.003以下である請求項6または7記載のエ
キシマレーザー用合成石英ガラス部材。
8. An ArF excimer laser having an energy density per pulse of 2 mJ / cm 2 and a frequency of 200H
z, 2 during irradiation when 2 × 10 5 pulses are irradiated
8. The synthetic quartz glass member for an excimer laser according to claim 6, wherein an induced absorption amount at 15 nm is 0.003 or less as an absorbance per 1 cm thickness.
【請求項9】 KrFエキシマレーザーを、1パルスあ
たりのエネルギー密度100mJ/cm、周波数20
0Hz、照射数2×105パルス照射したときの照射中
の210nmにおける誘起吸収量が、厚さ1cmあたり
の吸光度で0.0075以下である請求項6または7記
載のエキシマレーザー用合成石英ガラス部材。
9. A KrF excimer laser having an energy density per pulse of 100 mJ / cm 2 and a frequency of 20 mJ / cm 2 .
8. The synthetic quartz glass member for an excimer laser according to claim 6, wherein the induced absorption amount at 210 nm during irradiation at 0 Hz and irradiation number of 2 × 10 5 pulses is 0.0075 or less as an absorbance per 1 cm thickness. .
【請求項10】 632.8nmにおける屈折率の均質
性が±4×10-6(/cm)以下であり、複屈折が2nm/
cm以下である請求項7〜9のいずれかに記載のエキシ
マレーザー用合成石英ガラス部材。
10. The homogeneity of the refractive index at 632.8 nm is ± 4 × 10 −6 (/ cm) or less, and the birefringence is 2 nm /
The synthetic quartz glass member for an excimer laser according to any one of claims 7 to 9, which has a diameter of not more than 10 cm.
JP2002037884A 2001-02-15 2002-02-15 Method for producing synthetic quartz glass member for excimer laser Expired - Lifetime JP4191935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037884A JP4191935B2 (en) 2001-02-15 2002-02-15 Method for producing synthetic quartz glass member for excimer laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-38112 2001-02-15
JP2001038112 2001-02-15
JP2002037884A JP4191935B2 (en) 2001-02-15 2002-02-15 Method for producing synthetic quartz glass member for excimer laser

Publications (2)

Publication Number Publication Date
JP2002316825A true JP2002316825A (en) 2002-10-31
JP4191935B2 JP4191935B2 (en) 2008-12-03

Family

ID=26609433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037884A Expired - Lifetime JP4191935B2 (en) 2001-02-15 2002-02-15 Method for producing synthetic quartz glass member for excimer laser

Country Status (1)

Country Link
JP (1) JP4191935B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084427A (en) * 2005-09-16 2007-04-05 Corning Inc Fused silica glass and method for making the same
JP2011168485A (en) * 2003-04-03 2011-09-01 Asahi Glass Co Ltd SILICA GLASS CONTAINING TiO2 AND METHOD OF PRODUCING THE SAME
JP2016531825A (en) * 2013-08-02 2016-10-13 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for adding hydrogen to a blank composed of fused silica, lens element and projection lens
JP2019511985A (en) * 2016-02-12 2019-05-09 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method of manufacturing diffuser material of quartz glass manufactured by synthesis and molded body constituting whole or part thereof
CN110066101A (en) * 2018-01-23 2019-07-30 信越化学工业株式会社 Synthetic quartz glass substrate and its manufacturing method
CN113415978A (en) * 2021-07-03 2021-09-21 四川神光石英科技有限公司 Preparation method of irradiation-resistant quartz glass, crucible for preparation and material rack
CN113443820A (en) * 2021-07-03 2021-09-28 四川神光石英科技有限公司 Material rack, reaction kettle and device for quartz glass hydrogen permeation process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168485A (en) * 2003-04-03 2011-09-01 Asahi Glass Co Ltd SILICA GLASS CONTAINING TiO2 AND METHOD OF PRODUCING THE SAME
JP2007084427A (en) * 2005-09-16 2007-04-05 Corning Inc Fused silica glass and method for making the same
JP2016531825A (en) * 2013-08-02 2016-10-13 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for adding hydrogen to a blank composed of fused silica, lens element and projection lens
US10427965B2 (en) 2013-08-02 2019-10-01 Carl Zeiss Smt Gmbh Method for loading a blank composed of fused silica with hydrogen, lens element and projection lens
JP2019511985A (en) * 2016-02-12 2019-05-09 ヘレウス・クアルツグラース・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンディット・ゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Method of manufacturing diffuser material of quartz glass manufactured by synthesis and molded body constituting whole or part thereof
JP2019127402A (en) * 2018-01-23 2019-08-01 信越化学工業株式会社 Synthetic quarts glass substrate and production method for the same
KR20190089746A (en) * 2018-01-23 2019-07-31 신에쓰 가가꾸 고교 가부시끼가이샤 Synthetic quartz glass substrate and making method
CN110066101A (en) * 2018-01-23 2019-07-30 信越化学工业株式会社 Synthetic quartz glass substrate and its manufacturing method
JP2021107326A (en) * 2018-01-23 2021-07-29 信越化学工業株式会社 Synthetic quartz glass substrate
JP7044189B2 (en) 2018-01-23 2022-03-30 信越化学工業株式会社 Synthetic quartz glass substrate
CN110066101B (en) * 2018-01-23 2022-10-18 信越化学工业株式会社 Synthetic quartz glass substrate and method for producing same
KR102669419B1 (en) * 2018-01-23 2024-05-28 신에쓰 가가꾸 고교 가부시끼가이샤 Synthetic quartz glass substrate and making method
CN113415978A (en) * 2021-07-03 2021-09-21 四川神光石英科技有限公司 Preparation method of irradiation-resistant quartz glass, crucible for preparation and material rack
CN113443820A (en) * 2021-07-03 2021-09-28 四川神光石英科技有限公司 Material rack, reaction kettle and device for quartz glass hydrogen permeation process

Also Published As

Publication number Publication date
JP4191935B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
JP2005289801A (en) Optical element of quartz glass, method of manufacturing the optical element and its use
JP2004269287A (en) Synthetic quartz glass member for optics and method of manufacturing the same
JPH09124337A (en) Production of optical material of quartz glass for ultraviolet laser
JP2000258601A (en) SYNTHETIC QUARTZ GLASS MEMBER FOR ArF EXCIMER LASER LITHOGRAPHY
JP2003246641A (en) Quartz glass bland for optical member, manufacturing method thereof and application for the same
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4191935B2 (en) Method for producing synthetic quartz glass member for excimer laser
US6810687B2 (en) Method for producing synthetic quartz glass members for excimer lasers
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP2000264650A (en) Production of optical quartz glass for excimer laser and vertical type heating furnace
JPH03109233A (en) Synthetic silica glass optical body for ultraviolet laser beam and its production
JPH11209134A (en) Synthetic quartz glass and its production
JP2005239537A (en) Method for producing optical element
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JPH092828A (en) Quartz glass, optical member containing the same and production of the same
JP4453936B2 (en) Manufacturing method of optical member for excimer laser
JP2003238195A (en) Synthetic quartz glass member
JP4085490B2 (en) Synthetic quartz glass for optical members and manufacturing method thereof
JP4177078B2 (en) Synthetic quartz glass material for optical components
JP4174400B2 (en) Silica glass sorting method
JP3715163B2 (en) Synthetic quartz glass member for high-power ArF excimer laser and manufacturing method thereof
JPH06166527A (en) Production of quartz glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term