JP2002313540A - Planar heating element - Google Patents

Planar heating element

Info

Publication number
JP2002313540A
JP2002313540A JP2001114832A JP2001114832A JP2002313540A JP 2002313540 A JP2002313540 A JP 2002313540A JP 2001114832 A JP2001114832 A JP 2001114832A JP 2001114832 A JP2001114832 A JP 2001114832A JP 2002313540 A JP2002313540 A JP 2002313540A
Authority
JP
Japan
Prior art keywords
heating element
electrode
width
electrodes
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001114832A
Other languages
Japanese (ja)
Inventor
Shinji Ushijima
慎二 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2001114832A priority Critical patent/JP2002313540A/en
Publication of JP2002313540A publication Critical patent/JP2002313540A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar heating element 1 that can make heat distribution uniform or almost uniform on the whole heating face 5 without forming electrode width so large in the planar heating element 1 in which electrodes 3, 4 are formed of material with high surface resistivity such as a silver paste. SOLUTION: The heating face 5 of the planar heating element 1 is divided in a plurality of blocks, and a voltage drop portion by electric resistance in each block is adjusted by a distance between branch electrodes and branch electrode width so that current density is constant or almost constant on the whole heating face 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、面状発熱体に係
り、特に、ドアミラー用ヒーター等として用いられるの
に適した面状発熱体に関するものである。ドアミラー用
ヒーターは、車両用ドアミラー等の曇り止めや霜取りを
なすために、ドアミラーの裏面側に取り付けられるもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet heating element, and more particularly to a sheet heating element suitable for use as a door mirror heater or the like. The door mirror heater is mounted on the back side of the door mirror to prevent fogging and defrosting of the vehicle door mirror and the like.

【0002】[0002]

【従来の技術】銀ペースト(Agペースト)等の表面抵
抗率の高い材料によって電極を形成する面状発熱体にお
いては、電極での発熱を抑えるために電極抵抗を小さく
する必要があり、その結果として、電極幅が数十mmと
大きく形成されている。
2. Description of the Related Art In a planar heating element in which an electrode is formed of a material having a high surface resistivity such as a silver paste (Ag paste), it is necessary to reduce the electrode resistance in order to suppress heat generation at the electrode. The electrode width is as large as several tens of mm.

【0003】しかしながら、ドアミラー用ヒーター等と
して用いられる面状発熱体の平面積にはおよそ一定の制
限があり、よって電極幅を大きくすると、その分、発熱
部の面積が小さくなるために発熱温度の制御が難しいも
のとなる。一方、電極幅を小さくすると電極抵抗が大き
くなり、電圧印加部分近傍では発熱するが、電圧印加部
から離れた部分では、電圧が降下するために発熱性が著
しく低下すると云う事態が発生する。
However, the plane area of a planar heating element used as a heater for a door mirror or the like has an approximately constant limit. Therefore, if the electrode width is increased, the area of the heating section is reduced correspondingly, so that the heating temperature is reduced. It becomes difficult to control. On the other hand, when the electrode width is reduced, the electrode resistance increases, and heat is generated in the vicinity of the voltage application portion. However, in a portion away from the voltage application portion, the voltage drops and the heat generation property is significantly reduced.

【0004】以上のように、表面抵抗率の高い材料を使
って電極を形成する面状発熱体においては、効率の良い
発熱性能を発揮するのが、なかなか困難である。
As described above, it is very difficult for a sheet heating element in which an electrode is formed using a material having a high surface resistivity to exhibit efficient heating performance.

【0005】尚、銀ペーストの表面抵抗率が例えば銅箔
の表面抵抗率に比べて高いにもかかわらず銀ペーストが
電極として多用されるのは、電極の形成過程において、
銀ペーストの方が銅箔よりも製造工程数が少ないからで
ある。
[0005] In spite of the fact that the surface resistivity of silver paste is higher than the surface resistivity of copper foil, for example, silver paste is frequently used as an electrode in the process of forming an electrode.
This is because the number of manufacturing steps of the silver paste is smaller than that of the copper foil.

【0006】[0006]

【発明が解決しようとする課題】本発明は以上の点に鑑
みて、銀ペースト等の表面抵抗率の高い材料によって形
成する電極を発熱層に重ね合わせる構造の面状発熱体に
おいて、電極幅をそれほど大きく形成しなくても、発熱
面全体で発熱分布を均一または略均一にすることのでき
る面状発熱体を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, the present invention provides a planar heating element having a structure in which an electrode formed of a material having a high surface resistivity such as silver paste is superposed on a heating layer. It is an object of the present invention to provide a planar heating element that can make the heat generation distribution uniform or substantially uniform over the entire heat generation surface without being formed so large.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1による面状発熱体は、銀ペースト
等の表面抵抗率の高い材料によって電極を形成する面状
発熱体において、当該面状発熱体の発熱面を複数のブロ
ックに分け、前記発熱面全体で電流密度が一定または略
一定になるように、各ブロックにおける電気抵抗による
電圧降下分を枝電極間距離および枝電極幅により調整す
ることを特徴とするものである。
According to a first aspect of the present invention, there is provided a planar heating element for forming an electrode using a material having a high surface resistivity, such as a silver paste. The heating surface of the planar heating element is divided into a plurality of blocks, and the voltage drop due to the electric resistance in each block is determined by the distance between the branch electrodes and the width of the branch electrode so that the current density is constant or substantially constant over the entire heating surface. It is characterized by the following.

【0008】また、本発明の請求項2による面状発熱体
は、上記した請求項1の面状発熱体において、枝電極間
距離はこれを電圧降下分に合わせて狭く形成し、枝電極
幅はこれを電圧降下分に合わせて広く形成することを特
徴とするものである。
According to a second aspect of the present invention, there is provided the planar heating element according to the first aspect of the present invention, wherein the distance between the branch electrodes is narrowed in accordance with the voltage drop, and the width of the branch electrode is reduced. Is characterized in that it is formed widely according to the voltage drop.

【0009】上記構成を備えた本発明の請求項1による
面状発熱体は、銀ペースト等の表面抵抗率の高い材料に
よって電極を形成する面状発熱体において、面状発熱体
の発熱面を複数のブロック(例えば、数ブロック)に分
け、各ブロックにおける電気抵抗による電圧降下分を枝
電極間距離、枝電極幅により調整し、発熱面全体で電流
密度が一定または略一定になることを狙った電極パター
ンを構成するものであり、また、電極幅と電圧降下率と
の関係を予め把握しておき、枝電極間距離、枝電極幅を
調整し、電圧降下分を補正した電極パターンを構成する
ものである。上記調整においては、請求項2に記載した
ように、枝電極間距離はこれを電圧降下分に合わせて狭
くするとともに、枝電極幅はこれを電圧降下分に合わせ
て広くすることになる。
The sheet heating element according to the first aspect of the present invention having the above-mentioned structure is a sheet heating element in which an electrode is formed of a material having a high surface resistivity, such as silver paste, wherein the heating surface of the sheet heating element is formed. It is divided into a plurality of blocks (for example, several blocks), and the voltage drop due to the electric resistance in each block is adjusted by the distance between the branch electrodes and the width of the branch electrodes, so that the current density is constant or substantially constant over the entire heating surface. In addition, the relationship between the electrode width and the voltage drop rate is grasped in advance, the distance between the branch electrodes, the width of the branch electrodes are adjusted, and the electrode pattern in which the voltage drop is corrected is configured. Is what you do. In the above adjustment, as described in claim 2, the distance between the branch electrodes is reduced according to the voltage drop, and the branch electrode width is widened according to the voltage drop.

【0010】製品抵抗および電極温度について予め狙い
値を定め、その値に基づいて、電極パターンの幹電極幅
を決定する。この幹電極はこれも電圧印加部から離れた
部分においてその幅を小さく形成する。更に、電極パタ
ーンの端部は、面状発熱体の発熱面を数ブロック、例え
ば水平方向に3ブロックに分け、更に各ブロックを垂直
方向にも3ブロックに分け、予め把握しておいた、電極
幅と電圧降下率との関係を使って、枝電極間距離、枝電
極幅を調整し、電圧降下分を補正した電極パターンを構
成する。
[0010] Target values are determined in advance for the product resistance and the electrode temperature, and the width of the main electrode of the electrode pattern is determined based on the values. The width of the stem electrode is also reduced at a portion away from the voltage application unit. Further, at the end of the electrode pattern, the heating surface of the planar heating element is divided into several blocks, for example, three blocks in the horizontal direction, and each block is also divided into three blocks in the vertical direction. By using the relationship between the width and the voltage drop rate, the distance between the branch electrodes and the width of the branch electrodes are adjusted, and an electrode pattern in which the voltage drop is corrected is formed.

【0011】上記従来技術において、発熱面全体の電流
密度が一定にならなかった理由は、銀ペースト自体の抵
抗が大きいために、電圧印加部付近と電圧印加部から離
れた部分とで、流れる電流の大きさが 電圧印加部付近の電流値>電圧印加部から離れた部分の
電流値 と異なっていたからである。
In the above-mentioned prior art, the reason why the current density on the entire heating surface is not constant is that the resistance of the silver paste itself is large, so that the current flowing near the voltage application part and the part distant from the voltage application part are different. This is because the magnitude of the current was different from the current value in the vicinity of the voltage application part> the current value in the part away from the voltage application part.

【0012】これに対し、本発明に適用される面状発熱
体において、鋭意研究した結果、「電極幅」と「電圧損
失率」との間に図1に示す関係、および「電流密度」と
「電極発熱温度」との間に図2に示す関係があることが
判明した。そこで、本発明はこの関係から、面状発熱体
の発熱部の全ての部分において電流密度が一定になるよ
うに設定することによって、面状発熱体の均一な温度分
布(発熱)を実現するものである。
On the other hand, as a result of intensive studies on the sheet heating element applied to the present invention, the relationship shown in FIG. 1 between “electrode width” and “voltage loss rate” and “current density” It has been found that there is a relationship shown in FIG. 2 between “electrode heating temperature”. In view of this, the present invention realizes a uniform temperature distribution (heat generation) of the sheet heating element by setting the current density to be constant in all of the heating sections of the sheet heating element from this relationship. It is.

【0013】尚、用語としては以下のとおりである。 表面抵抗率 正方形の相対する辺の間の電気抵抗値の内、1辺が1c
mの正方形で測定したもの(単位はΩ/□)。 体積抵抗率 立方体の相対する面の間の電気抵抗値の内、1辺が1c
mの立方体で測定したもの(単位はΩcm)。 電流密度 電流に垂直な単位面積当たりの電流の強さ。
The terms are as follows. Surface resistivity One side is 1c in the electric resistance value between the opposite sides of the square.
Measured with a square of m (unit is Ω / □). Volume resistivity One side is 1c of the electric resistance value between the opposing surfaces of the cube.
Measured with a cube of m (unit is Ωcm). Current density Current intensity per unit area perpendicular to current.

【0014】[0014]

【発明の実施の形態】以下、その好適な実施例を図面に
したがって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments will be described below with reference to the drawings.

【0015】図3は、本発明の実施例に係る面状発熱体
1の平面図を示しており、この面状発熱体1は、以下の
ように構成されている。
FIG. 3 is a plan view of a sheet heating element 1 according to an embodiment of the present invention. The sheet heating element 1 is configured as follows.

【0016】すなわち先ず、当該面状発熱体1をヒータ
ーとして利用するドアミラー等の形状に合わせて所定の
平面形状に形成された発熱層2が設けられており、この
発熱層2の一面2aに、この発熱層2よりも一回り小さ
な平面形状に形成された一対の電極3,4が積層固定さ
れている。
That is, first, a heat generating layer 2 formed in a predetermined plane shape according to the shape of a door mirror or the like using the planar heat generating element 1 as a heater is provided. A pair of electrodes 3 and 4 formed in a planar shape slightly smaller than the heat generating layer 2 are laminated and fixed.

【0017】この一対の電極3,4はそれぞれ、表面抵
抗率の比較的高い銀ペースト等によって形成されるとと
もに、幹電極3a,4aおよび櫛歯状の枝電極3b,4
bを一体に有して、櫛歯状の枝電極3b,4b同士を交
互に組み合わせたパターンに形成されている。また、こ
の一対の電極3,4にはそれぞれ、電圧印加部としての
端子接続部3c,4cが幹電極3a,4aの図上左上の
部位に位置して一箇所ずつ設けられている。
Each of the pair of electrodes 3 and 4 is formed of a silver paste or the like having a relatively high surface resistivity, and includes the main electrodes 3a and 4a and the comb-shaped branch electrodes 3b and 4 respectively.
b are integrally formed, and are formed in a pattern in which the comb-shaped branch electrodes 3b and 4b are alternately combined. Further, each of the pair of electrodes 3 and 4 is provided with a terminal connection portion 3c and 4c as a voltage application portion, each of which is located at an upper left portion of the stem electrodes 3a and 4a in the drawing.

【0018】図上上側の電極3において、その幹電極3
aは、端子接続部3cから発熱層2の上縁に沿って右方
向へ延びる第一部分3dと、この第一部分3dの端部か
ら発熱層2の右側縁に沿って下方向へ延びる第二部分3
eと、上記第一部分3dの中ほどから下方向へ延びる直
線状の第三部分3fとを有しており、また図上下側の電
極4において、その幹電極4aは、端子接続部4cから
発熱層2の左側縁に沿って下方向へ延びる第一部分4d
と、この第一部分4dの端部から発熱層2の下縁に沿っ
て右方向へ延びる第二部分4eと、この第二部分4eの
端部から上方向へ延びる直線状の第三部分4fとを有し
ている。この第三部分4fは上側の電極3の第二および
第三部分3e,3fの間に位置している。そして、上側
の電極3の第二および第三部分3e,3fならびに下側
の電極4の第一および第三部分4d,4fからそれぞれ
多数の枝電極3b,4bが左方向または右方向へ向けて
設けられており、この多数の枝電極3b,4bが櫛歯状
をなして上下方向に交互に並べられている。枝電極間距
離および枝電極幅は一定ではなく、以下のようにしてブ
ロック毎に調整されている。
In the upper electrode 3 in FIG.
a is a first portion 3d extending rightward along the upper edge of the heat generating layer 2 from the terminal connection portion 3c, and a second portion extending downward along the right edge of the heat generating layer 2 from an end of the first portion 3d. 3
e, and a linear third portion 3f extending downward from the middle of the first portion 3d. In the upper and lower electrodes 4 in the figure, the main electrode 4a is heated by the terminal connection portion 4c. First portion 4d extending downward along the left edge of layer 2
A second portion 4e extending rightward from the end of the first portion 4d along the lower edge of the heating layer 2, and a linear third portion 4f extending upward from the end of the second portion 4e. have. This third portion 4f is located between the second and third portions 3e, 3f of the upper electrode 3. A large number of branch electrodes 3b, 4b are respectively directed to the left or right from the second and third portions 3e, 3f of the upper electrode 3 and the first and third portions 4d, 4f of the lower electrode 4. The plurality of branch electrodes 3b and 4b are arranged alternately in the vertical direction in a comb shape. The distance between the branch electrodes and the width of the branch electrodes are not constant, but are adjusted for each block as follows.

【0019】すなわち、当該面状発熱体1においては、
その発熱面5が複数のブロックに区分けされていて、図
では縦横それぞれに3分割されて、A〜Iの9ブロック
に区分けされており、発熱面5全体で電流密度が一定ま
たは略一定になるように、各ブロックにおける電気抵抗
による電圧降下分が枝電極間距離および枝電極幅によっ
て調整されている。
That is, in the sheet heating element 1,
The heat generating surface 5 is divided into a plurality of blocks. In the figure, the heat generating surface 5 is divided into three blocks vertically and horizontally to be divided into nine blocks A to I, and the current density is constant or substantially constant over the entire heat generating surface 5. As described above, the voltage drop due to the electric resistance in each block is adjusted by the distance between the branch electrodes and the width of the branch electrodes.

【0020】調整方法は、以下のとおりである。The adjustment method is as follows.

【0021】すなわち、上記した電圧損失率[単位:%
/10mm]は先ずは幹電極3a,4aの幅によって決
定され、その幅を大きくするとその損失率が小さくな
る。したがって先ず、各ブロック(ブロックの中央部を
設定)に電流が到達するまでの電圧損失率を算出する。
That is, the above-mentioned voltage loss rate [unit:%
/ 10 mm] is first determined by the width of the main electrodes 3a and 4a, and the loss rate decreases as the width increases. Therefore, first, the voltage loss rate until the current reaches each block (set the center of the block) is calculated.

【0022】例えば、上記A〜Iの9ブロックのうちで
端子接続部3c,4cに最も近いAブロックにおける電
極幅xが1mm、電極間距離yが2mmである場
合、このAブロックにおける数値を基準として、B〜I
の8ブロックを一つずつ設定していく。
[0022] For example, the electrode width x A is 1mm at the closest A block terminal connections 3c, and 4c among the nine blocks of the A to I, when the inter-electrode distance y A is 2 mm, numerical values in the A block B to I on the basis of
8 blocks are set one by one.

【0023】W=IV・・・(1)式 但し、W:電力(=発熱量) I:電流 V:電圧 上記(1)式において、電流値Iはこれを変化させるよ
うに調整することができないため、 V=IR・・・(2)式 但し、R:抵抗 から I=V/R・・・(3)式 であるので、すなわち W=V/R・・・(4)式 であり、抵抗Rはこれを変化させるように調整すること
ができるため、発熱量が均一になるように、このRをあ
る値に設定する。
W = IV (1) where W: electric power (= heat generation) I: current V: voltage In the above equation (1), the current value I can be adjusted so as to change it. Since it is impossible, V = IR formula (2) where R = resistance I = V / R formula (3), that is, W = V 2 / R formula (4) Since the resistance R can be adjusted so as to change the resistance, the resistance R is set to a certain value so that the calorific value becomes uniform.

【0024】例えば、上記Aブロックの直ぐ下方に位置
するBブロックの設定は、以下のようにして行なう。
For example, the setting of the B block located immediately below the A block is performed as follows.

【0025】単位長さ当りの各電極幅での電圧損失率×
Bブロックの中心までの距離=電圧損失率 端子4cからの電圧印加では、 幹電極幅10.5mmなので、上記「電極幅と電圧損
失率」から、この電圧損失率は0.5%/10mm、 Bブロックの中心までの距離20mm、 端子3cからの電圧印加では、 幹電極幅7.2mmなので、上記「電極幅と電圧損失
率」から、この電圧損失率は0.65%/10mm、 Bブロックの中心までの距離20mm。 以上の数値から、端子3cと端子4cとからの平均の電
圧損失率を算出すると (0.5[%/10mm]×2[cm]+0.65[%
/10mm]×2[cm])/2=1.15[%] となる。この損失率を考慮して、電極間距離(この部分
が発熱する)を設定してAブロックと同じ電圧損失率に
する。Aブロックの電極間距離yが2mmだから、B
ブロックの電極間距離yは 2×(1−0.0115)=1.9543 によって、約1.95mmとなり、電極幅xは、 3−1.95=1.05mm となる(この3はAブロックの電極幅x+電極間距離
=3mmである)。
Voltage loss rate at each electrode width per unit length ×
Distance to the center of the B block = voltage loss rate When voltage is applied from the terminal 4c, since the width of the main electrode is 10.5 mm, from the above “electrode width and voltage loss rate”, the voltage loss rate is 0.5% / 10 mm. The distance to the center of the B block is 20 mm, and when a voltage is applied from the terminal 3c, the width of the main electrode is 7.2 mm. Therefore, from the above “electrode width and voltage loss rate”, the voltage loss rate is 0.65% / 10 mm. Distance to the center of 20mm. From the above values, the average voltage loss rate from the terminal 3c and the terminal 4c is calculated as follows: (0.5 [% / 10 mm] × 2 [cm] +0.65 [%
/ 10 mm] × 2 [cm]) / 2 = 1.15 [%]. In consideration of this loss rate, the distance between the electrodes (this portion generates heat) is set to make the same voltage loss rate as that of the A block. Since the distance y A between the electrodes of the A block is 2 mm, B
By between blocks of the electrode distance y B is 2 × (1-0.0115 2) = 1.9543 , about 1.95mm, and the electrode width x B becomes 3-1.95 = 1.05mm (this 3 is the electrode width x a + electrode distance y a = 3 mm of the a block).

【0026】したがって、具体的には、以上のような方
法によって以降、C〜Iブロックの電極幅xおよび電極
間距離yをそれぞれ設定することにより、本発明の目的
とする発熱分布の均一化を実現することができ、すなわ
ち「電極幅と電圧損失率」および「電流密度と電極発熱
温度」との関係から、面状発熱体1の発熱部5の全ての
部分について電流密度が一定になるような設定を行なう
ことにより、発熱分布の均一化を実現することができ
る。
Therefore, specifically, thereafter, by setting the electrode width x and the inter-electrode distance y of the C to I blocks respectively by the above-described method, the heat generation distribution which is the object of the present invention can be made uniform. That is, the current density is constant for all portions of the heat generating portion 5 of the sheet heating element 1 based on the relationship between “electrode width and voltage loss rate” and “current density and electrode heat generation temperature”. By making appropriate settings, it is possible to achieve uniform heat generation distribution.

【0027】当該実施例に係る図3の面状発熱体1は、
以上の方法によってA〜Iの9つのブロックの全てにお
いて電流密度が一定になるように調整が行なわれてお
り、その発熱状態を測定したところ、図4に示すように
発熱状態が均一化された良好な結果を確認することがで
きた。これに対して、比較例として図5に示す同一幅電
極パターンの面状発熱体51においては、図6に示すよ
うに発熱状態が不均一なものであった。
The sheet heating element 1 of FIG.
The adjustment is performed by the above method so that the current density is constant in all nine blocks A to I. When the heat generation state is measured, the heat generation state is made uniform as shown in FIG. Good results could be confirmed. On the other hand, as a comparative example, in the planar heating element 51 of the same width electrode pattern shown in FIG. 5, the heat generation state was non-uniform as shown in FIG.

【0028】すなわち、図4では、電圧印加部(端子
部)に最も近い図上左上のブロック(Aブロック)でそ
の発熱温度が約72℃、電圧印加部(端子部)から最も
遠い図上右下のブロック(Iブロック)でその発熱温度
が約74〜75℃であって、両ブロック間の温度差が僅
か約2〜3℃であるのに対して、比較例の図6では、電
圧印加部(端子部)に最も近い図上一番上の部位でその
発熱温度が約72℃、電圧印加部(端子部)から最も遠
い図上一番下の部位でその発熱温度が62〜63℃であ
り、約10℃もの温度差がある。したがってこの比較結
果からしても、本発明によれば発熱温度が略均一化され
ることを確認することができた。
That is, in FIG. 4, the heating temperature of the upper left block (block A) closest to the voltage application section (terminal section) is about 72 ° C., and the right side of the drawing farthest from the voltage application section (terminal section). In the lower block (I block), the heat generation temperature is about 74 to 75 ° C., and the temperature difference between both blocks is only about 2 to 3 ° C., whereas in FIG. The heating temperature is about 72 ° C. at the uppermost part on the drawing closest to the part (terminal part), and the heating temperature is 62 to 63 ° C. at the lowest part on the drawing farthest from the voltage application part (terminal part). And there is a temperature difference of about 10 ° C. Therefore, from the comparison results, it was confirmed that the heat generation temperature was made substantially uniform according to the present invention.

【0029】[0029]

【発明の効果】本発明は、以下の効果を奏する。The present invention has the following effects.

【0030】すなわち、上記構成を備えた本発明の請求
項1による面状発熱体においては、銀ペースト等の表面
抵抗率の高い材料によって電極を形成する面状発熱体に
おいて、当該面状発熱体の発熱面を複数のブロックに分
け、発熱面全体で電流密度が一定または略一定になるよ
うに、各ブロックにおける電気抵抗による電圧降下分を
枝電極間距離および枝電極幅により調整するようにした
ために、電極幅をそれほど大きく形成しなくても、すな
わち比較的大きな発熱量を確保した上で、発熱面全体で
発熱分布を均一または略均一にすることができる。した
がって、発熱量が比較的大きく、かつ発熱面全体で発熱
分布が均一または略均一な高品質の面状発熱体ないしヒ
ーター製品を提供することができる。
That is, in the planar heating element according to the first aspect of the present invention having the above structure, the planar heating element in which the electrode is formed of a material having a high surface resistivity, such as silver paste, is used. The heating surface is divided into a plurality of blocks, and the voltage drop due to the electric resistance in each block is adjusted by the distance between the branch electrodes and the width of the branch electrodes so that the current density is constant or substantially constant over the entire heating surface. In addition, even if the electrode width is not so large, that is, a relatively large amount of heat is secured, and the heat generation distribution can be made uniform or substantially uniform over the entire heat generating surface. Therefore, it is possible to provide a high-quality sheet heating element or a heater product having a relatively large heat value and a uniform or substantially uniform heat distribution over the entire heating surface.

【0031】またこれに加えて、上記構成を備えた本発
明の請求項2による面状発熱体においては、上記請求項
1における調整において、枝電極間距離を電圧降下分に
合わせて狭く形成するとともに枝電極幅を電圧降下分に
合わせて広く形成するようにしたために、微妙な調整作
業を各ブロックにおいて適格に行なうことができる。
In addition, in the planar heating element according to the second aspect of the present invention having the above configuration, in the adjustment according to the first aspect, the distance between the branch electrodes is formed to be narrow according to the voltage drop. At the same time, the width of the branch electrode is made wider in accordance with the voltage drop, so that a fine adjustment operation can be appropriately performed in each block.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電極幅と電圧損失率との関係を示すグラフ図FIG. 1 is a graph showing a relationship between an electrode width and a voltage loss rate.

【図2】電流密度と電極発熱温度との関係を示すグラフ
FIG. 2 is a graph showing the relationship between current density and electrode heating temperature.

【図3】本発明の実施例に係る面状発熱体の平面図FIG. 3 is a plan view of a sheet heating element according to an embodiment of the present invention.

【図4】同面状発熱体の発熱状態測定試験結果を示す説
明図
FIG. 4 is an explanatory view showing a heat generation state measurement test result of the planar heating element.

【図5】比較例に係る面状発熱体の平面図FIG. 5 is a plan view of a sheet heating element according to a comparative example.

【図6】同面状発熱体の発熱状態測定試験結果を示す説
明図
FIG. 6 is an explanatory view showing a heat generation state measurement test result of the planar heating element.

【符号の説明】[Explanation of symbols]

1 面状発熱体 2 発熱層 2a 一面 3,4 電極 3a,4a 幹電極 3b,4b 枝電極 3c,4c 端子接続部 3d,3e,3f,4d,4e,4f 幹電極部分 5 発熱面 DESCRIPTION OF SYMBOLS 1 Planar heating element 2 Heating layer 2a One surface 3, 4 electrode 3a, 4a Trunk electrode 3b, 4b Branch electrode 3c, 4c Terminal connection part 3d, 3e, 3f, 4d, 4e, 4f Trunk electrode part 5 Heating surface

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年5月28日(2002.5.2
8)
[Submission Date] May 28, 2002 (2002.5.2)
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 3/10 H05B 3/10 A Fターム(参考) 3D025 AA10 AC11 AD13 3D053 FF03 FF19 GG06 HH21 JJ20 3K034 CA03 CA22 CA34 3K092 PP20 QA05 QB30 QB43 QC07 QC31 RF17 RF22 VV22 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05B 3/10 H05B 3/10 A F term (Reference) 3D025 AA10 AC11 AD13 3D053 FF03 FF19 GG06 HH21 JJ20 3K034 CA03 CA22 CA34 3K092 PP20 QA05 QB30 QB43 QC07 QC31 RF17 RF22 VV22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銀ペースト等の表面抵抗率の高い材料に
よって電極(3)(4)を形成する面状発熱体(1)に
おいて、 当該面状発熱体(1)の発熱面(5)を複数のブロック
に分け、前記発熱面(5)全体で電流密度が一定または
略一定になるように、各ブロックにおける電気抵抗によ
る電圧降下分を枝電極間距離および枝電極幅により調整
することを特徴とする面状発熱体。
1. A sheet heating element (1) for forming electrodes (3) and (4) with a material having a high surface resistivity such as silver paste, wherein a heating surface (5) of the sheet heating element (1) is formed. The method is characterized by dividing into a plurality of blocks and adjusting the voltage drop due to the electric resistance in each block by the distance between the branch electrodes and the width of the branch electrodes so that the current density is constant or substantially constant over the entire heating surface (5). And a sheet heating element.
【請求項2】 請求項1の面状発熱体において、 枝電極間距離はこれを電圧降下分に合わせて狭く形成
し、枝電極幅はこれを電圧降下分に合わせて広く形成す
ることを特徴とする面状発熱体。
2. The planar heating element according to claim 1, wherein the distance between the branch electrodes is formed to be narrow in accordance with the voltage drop, and the branch electrode width is formed to be wide in accordance with the voltage drop. And a sheet heating element.
JP2001114832A 2001-04-13 2001-04-13 Planar heating element Withdrawn JP2002313540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114832A JP2002313540A (en) 2001-04-13 2001-04-13 Planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114832A JP2002313540A (en) 2001-04-13 2001-04-13 Planar heating element

Publications (1)

Publication Number Publication Date
JP2002313540A true JP2002313540A (en) 2002-10-25

Family

ID=18965827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114832A Withdrawn JP2002313540A (en) 2001-04-13 2001-04-13 Planar heating element

Country Status (1)

Country Link
JP (1) JP2002313540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180037B1 (en) * 2012-02-29 2012-09-12 도전테크 주식회사 A film heater that can be controled by a independent cell
KR20190102581A (en) * 2018-02-26 2019-09-04 주식회사 참그래핀 Plate heater
KR20190102608A (en) * 2018-02-26 2019-09-04 주식회사 참그래핀 Plate heater
US11234297B2 (en) 2018-02-26 2022-01-25 Charmgraphene Co., Ltd. Plate heater

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180037B1 (en) * 2012-02-29 2012-09-12 도전테크 주식회사 A film heater that can be controled by a independent cell
KR20190102581A (en) * 2018-02-26 2019-09-04 주식회사 참그래핀 Plate heater
KR20190102608A (en) * 2018-02-26 2019-09-04 주식회사 참그래핀 Plate heater
KR102053096B1 (en) * 2018-02-26 2019-12-06 주식회사 참그래핀 Plate heater
KR102053101B1 (en) * 2018-02-26 2020-01-08 주식회사 참그래핀 Plate heater
US11234297B2 (en) 2018-02-26 2022-01-25 Charmgraphene Co., Ltd. Plate heater
US11716791B2 (en) 2018-02-26 2023-08-01 Charmgraphene Co., Ltd. Plate heater
US11716790B2 (en) 2018-02-26 2023-08-01 Charmgraphene Co., Ltd. Plate heater

Similar Documents

Publication Publication Date Title
TWI430293B (en) Production method of corner plate type chip resistor and corner plate type chip resistor
EP1041859B1 (en) Heater with PTC element
KR20160138431A (en) Heater, fixing device, image formation device, and heating device provided with heater, and method for producing heater
TWI743731B (en) Method to compensate for irregularities in a thermal system
CN109984385A (en) Atomizing component and its manufacturing method for electronic cigarette
JP2019201142A (en) Chip resistor and manufacturing method of chip resistor
KR101863080B1 (en) Heating platform and 3D printing apparatus including the heating platform
CN107535017B (en) Heater, fixing device, image forming apparatus, and heating device
JP4512232B2 (en) Manufacturing method of heating element
CN210094671U (en) Atomization assembly for electronic cigarette
JP2002313540A (en) Planar heating element
KR20100111279A (en) Method for making a heating element by depositing thin layers onto an insulating substrate, and resulting element
EP3253177B1 (en) Double-sided thick film heating element having high thermal conductivity
JP2002134254A (en) Transparent body with heater
JPH11135243A (en) Sheet-form heat generator
JP2007273132A (en) Planer heating element
CN220755080U (en) Thick film heater
WO2024018826A1 (en) Heater, fixing device, image formation device, and heating device
CN211557513U (en) Ceramic heating plate with temperature control function
JP2004220782A (en) Steel heater and heat treatment method
JPH09161959A (en) Planar heating body
JPH0582304A (en) Ceramic heater unit
JP2003059626A (en) Heater
JP2574499Y2 (en) Surge protector
JPH09139279A (en) Surface heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090309